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Abstract

Let p be a homogeneous polynomial of degree n in n variables, p(z1, . . . , zn) =
p(Z), Z ∈ Cn. We call such a polynomial p H-Stable if p(z1, . . . , zn) 6= 0 provided
the real parts Re(zi) > 0, 1 ≤ i ≤ n. This notion from Control Theory is closely
related to the notion of Hyperbolicity used intensively in the PDE theory.

The main theorem in this paper states that if p(x1, . . . , xn) is a homogeneous
H-Stable polynomial of degree n with nonnegative coefficients; degp(i) is the max-
imum degree of the variable xi, Ci = min(degp(i), i) and

Cap(p) = inf
xi>0,1≤i≤n

p(x1, . . . , xn)

x1 · · · xn

then the following inequality holds

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥ Cap(p)

∏

2≤i≤n

(

Ci − 1

Ci

)Ci−1

.

This inequality is a vast (and unifying) generalization of the Van der Waerden
conjecture on the permanents of doubly stochastic matrices as well as the Schrijver-
Valiant conjecture on the number of perfect matchings in k-regular bipartite graphs.
These two famous results correspond to the H-Stable polynomials which are prod-
ucts of linear forms.

Our proof is relatively simple and “noncomputational”; it uses just very basic
properties of complex numbers and the AM/GM inequality.
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1 The permanent, the mixed discriminant, the Van

Der Waerden conjecture(s) and homogeneous poly-

nomials

Recall that an n × n matrix A is called doubly stochastic if it is nonnegative entry-wise
and its every column and row sum to one. The set of n × n doubly stochastic matrices
is denoted by Ωn. Let Λ(k, n) denote the set of n × n matrices with nonnegative integer
entries and row and column sums all equal to k. We define the following subset of rational
doubly stochastic matrices: Ωk,n = {k−1A : A ∈ Λ(k, n)}. In a 1989 paper [2] R.B. Bapat
defined the set Dn of doubly stochastic n-tuples of n × n matrices.
An n-tuple A = (A1, . . . , An) belongs to Dn iff Ai � 0, i.e. Ai is a positive semi-definite
matrix, 1 ≤ i ≤ n; trAi = 1 for 1 ≤ i ≤ n;

∑n
i=1 Ai = I, where I, as usual, stands for the

identity matrix. Recall that the permanent of a square matrix A is defined by

per(A) =
∑

σ∈Sn

n
∏

i=1

A(i, σ(i)).

Let us consider an n-tuple A = (A1, A2, . . . An), where Ai = (Ai(k, l) : 1 ≤ k, l ≤ n) is a
complex n × n matrix (1 ≤ i ≤ n). Then

DetA(t1, . . . , tn) = det(
∑

1≤i≤n

tiAi)

is a homogeneous polynomial of degree n in t1, t2, . . . , tn. The number

D(A) := D(A1, A2, . . . , An) =
∂n

∂t1 · · ·∂tn
DetA(0, . . . , 0) (1)

is called the mixed discriminant of A1, A2, . . . , An.

The mixed discriminant is just another name, introduced by A.D. Alexandrov, for 3-
dimensional Pascal’s hyperdeterminant. The permanent is a particular (diagonal) case of
the mixed discriminant. I.e. define the following homogeneous polynomial

ProdA(t1, . . . , tn) =
∏

1≤i≤n

∑

1≤j≤n

A(i, j)tj. (2)

Then the next identity holds:

per(A) =
∂n

∂t1, . . . , ∂tn
ProdA(0, . . . , 0). (3)

Let us recall two famous results and one recent result by the author.
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1. Van der Waerden Conjecture
The famous Van der Waerden Conjecture [23] states that

min
A∈Ωn

per(A) =
n!

nn
=: vdw(n) (VDW-bound)

and the minimum is attained uniquely at the matrix Jn in which every entry equals
1
n
. The Van der Waerden Conjecture was posed in 1926 and proved in 1981: D.I.

Falikman proved in [5] the lower bound n!
nn ; the full conjecture, i.e. the uniqueness

part, was proved by G.P. Egorychev in [4].

2. Schrijver-Valiant Conjecture
Define

λ(k, n) = min{per(A) : A ∈ Ωk,n} = k−n min{per(A) : A ∈ Λ(k, n)};
θ(k) = lim

n→∞
(λ(k, n))

1

n .

It was proved in [26] that, using our notations, θ(k) ≤ G(k) =: ( k−1
k

)k−1 and conjec-
tured that θ(k) = G(k). Though the case of k = 3 was proved by M. Voorhoeve in
1979 [28], this conjecture was settled only in 1998 [27] (17 years after the published
proof of the Van der Waerden Conjecture). The main result of [27] is the remarkable
(Schrijver-bound):

min{per(A) : A ∈ Ωk,n} ≥
(

k − 1

k

)(k−1)n

(4)

The proof of (Schrijver-bound) in [27] is, in the words of its author, “highly
complicated”.

Remark 1.1: The dynamics of research which led to (Schrijver-bound) is quite
fascinating. If k = 2 then minA∈Λ(2,n)per(A) = 2. Erdos and Renyi conjectured in
1968 paper that 3-regular case already has exponential growth:

min
A∈Λ(3,n)

per(A) ≥ an, a > 1.

This conjecture is implied by (VDW-bound), this connection was another impor-
tant motivation for the Van der Waerden Conjecture. The Erdos-Renyi conjecture
was answered by M. Voorhoeve in 1979 [28]:

min
A∈Λ(3,n)

per(A) ≥ 6

(

4

3

)n−3

. (5)

Amazingly, the Voorhoeve’s bound (5) is asymptotically sharp and the proof of
this fact is probabilistic. In 1981 paper [26], A.Schrijver and W.G.Valiant found a
sequence µk,n of probabilistic distributions on Λ(k, n) such that

lim
n→∞

(

min
A∈Λ(k,n)

per(A)
)

1

n ≤ lim
n→∞

(

Eµk,n
per(A)

) 1

n = k

(

k − 1

k

)k−1

(6)
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(I.M. Wanless recently extended in [30] the upper bound (6) to the boolean matrices
in Λ(k, n).)

It follows from the Voorhoeve’s bound (5) that

lim
n→∞

(

Eµk,n
per(A)

)
1

n = lim
n→∞

(

min
A∈Λ(k,n)

per(A)
) 1

n

for k = 2, 3.

This was the rather bald intuition that gave rise to the Schrijver-Valiant 1981 con-
jecture.

The number k
(

k−1
k

)k−1
in Schrijver-Valiant conjecture came up via combinatorics

followed by the standard Stirling’s formula manipulations. On the other hand
G(k) = (k−1

k
)k−1 = vdw(k)

vdw(k−1)
.

3. Bapat’s Conjecture (Van der Waerden Conjecture for mixed discrimi-
nants)
One of the problems posed in [2] is to determine the minimum of mixed discrimi-
nants of doubly stochastic tuples: minA∈Dn

D(A) =?
Quite naturally, R.V.Bapat conjectured that minA∈Dn

D(A) = n!
nn (Bapat-bound)

and that it is attained uniquely at Jn =: ( 1
n
I, . . . , 1

n
I).

In [2] this conjecture was formulated for real matrices. The author had proved it [13]
for the complex case, i.e. when matrices Ai above are complex positive semidefinite
and, thus, hermitian.

1.1 The Ultimate Unification (and Simplification)

Falikman/Egorychev proofs of the Van Der Waerden conjecture as well our proof of Ba-
pat’s conjecture are based on the Alexandrov inequalities for mixed discriminants [1] and
some optimization theory, which is rather advanced in the case of the Bapat’s conjecture.
They all rely heavily on the matrix structure and essentially of non-inductive nature.
(D. I. Falikman independently rediscovered in [5] the diagonal case of the Alexandrov in-
equalities and used a clever penalty functional. The very short paper [5] is supremely
original, it cites only three references and uses none of them.)
The Schrijver’s proof has nothing in common with these analytic proofs; it is based on
the finely tuned combinatorial arguments and multi-level induction. It heavily relies on
the fact that the entries of matrices A ∈ Λ(k, n) are integers.

The main result of this paper is one, easily stated and proved by easy induction,
theorem which unifies, generalizes and, in the case of (Schrijver-bound), improves the
results described above. This theorem is formulated in terms of the mixed derivative

∂n

∂x1...∂xn
p(0, . . . , 0) (rewind to the formula (3)) of H-Stable (or positive hyperbolic) ho-

mogeneous polynomials p.
The next two completely self-contained sections introduce the basics of stable homoge-
neous polynomials and proofs of the theorem and its corollaries. We have tried to simplify
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everything to the undergraduate level, making the paper longer than a dry technical note
of 4-5 pages. Our proof of the uniqueness in the generalized Van der Waerden Conjecture
is a bit more involved, as it uses Garding’s result on the convexity of the hyperbolic cone.

2 Homogeneous Polynomials

The next definition introduces key notations and notions.

Definition 2.1:

1. The linear space of homogeneous polynomials with real (complex) coefficients of
degree n and in m variables is denoted HomR(m, n) (HomC(m, n)).
We denote as Hom+(m, n) (Hom++(n, m)) the closed convex cone of polynomials
p ∈ HomR(m, n) with nonnegative (positive) coefficients.

2. For a polynomial p ∈ Hom+(n, n) we define its Capacity as

Cap(p) = inf
xi>0,

Q

1≤i≤n xi=1
p(x1, . . . , xn) = inf

xi>0

p(x1, . . . , xn)
∏

1≤i≤n xi
. (7)

3. Consider a polynomial p ∈ HomC(m, n),

p(x1, . . . , xm) =
∑

(r1,...,rm)

ar1,...,rm

∏

1≤i≤m

xri

i .

We define Rankp(S) as the maximal joint degree attained on the subset
S ⊂ {1, . . . , m}:

Rankp(S) = max
ar1,...,rm 6=0

∑

j∈S

rj. (8)

If S = {i} is a singleton, we define degp(i) = Rankp(S).

4. Let p ∈ Hom+(n, n),

p(x1, . . . , xn) =
∑

r1+···+rn=1

ar1,...,rn

∏

1≤i≤n

xri

i .

Such a homogeneous polynomial p with nonnegative coefficients is called doubly-
stochastic if

∂

∂xi

p(1, 1, . . . , 1) = 1 : 1 ≤ i ≤ n.

In other words, p ∈ Hom+(n, n) is doubly-stochastic if

∑

r1+···+rn=1

ar1,...,rn
rj = 1 : 1 ≤ j ≤ n. (9)
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It follows from the Euler’s identity that p(1, 1, . . . , 1) = 1:

∑

r1+···+rn=1

ar1,...,rn
= 1 (10)

Using the concavity of the logarithm on R++ we get that

log (p(x1, . . . , xn)) ≥
∑

r1+···+rn=1

ar1,...,rn
ri log(xi) = log(x1 · · ·xn).

Therefore

Fact 2.2: If p ∈ Hom+(n, n) is doubly-stochastic then Cap(p) = 1.

5. A polynomial p ∈ HomC(m, n) is called H-Stable if p(Z) 6= 0 provided Re(Z) > 0;
is called H-SStable if p(Z) 6= 0 provided Re(Z) ≥ 0 and

∑

1≤i≤m Re(zi) > 0.
We coined the term “H-Stable” to stress two things: Homogeniety and Hurwitz’
stability. Other terms are used in the same context: Wide Sense Stable in [15],
Half-Plane Property in [3].

6. We define

vdw(i) =
i!

ii
; G(i) =

vdw(i)

vdw(i − 1)
=

(

i − 1

i

)i−1

, i > 1; G(1) = 1. (11)

Notice that vdw(i) as well as G(i) are strictly decreasing sequences.

Example 2.3:

1. Let p ∈ Hom+(2, 2), p(x1, x2) = A
2
x2

1 + Cx1x2 + B
2
x2

2; A, B, C ≥ 0. Then

Cap(p) = C +
√

AB and the polynomial p is H-Stable iff C ≥
√

AB.

2. Let A ∈ Ωn be a doubly stochastic matrix. Then the polynomial ProdA is doubly-
stochastic. Therefore Cap(ProdA) = 1. In the same way, if A ∈ Dn is a doubly
stochastic n-tuple then the polynomial DetA is doubly-stochastic and Cap(DetA) =
1.

3. Let A = (A1, A2, . . . Am) be an m-tuple of PSD hermitian n × n matrices, and
∑

1≤i≤m Ai � 0 (the sum is positive-definite). Then the determinantal polynomial
DetA(t1, . . . , tm) = det(

∑

1≤i≤m tiAi) is H-Stable and

RankDetA(S) = Rank(
∑

i∈S

Ai). (12)
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The main result in this paper is the following Theorem.

Theorem 2.4: Let p ∈ Hom+(n, n) be H-Stable polynomial. Then the following in-
equality holds

∂n

∂x1 . . . ∂xn

p(0, . . . , 0) ≥
∏

2≤i≤n

G
(

min(i, degp(i))
)

Cap(p). (13)

Note that
∏

2≤i≤n

G
(

min(i, degp(i))
)

≥
∏

2≤i≤n

G(i) = vdw(n),

which gives the next generalized Van Der Waerden Inequality:

Corollary 2.5: Let p ∈ Hom+(n, n) be H-Stable polynomial. Then

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥ n!

nn
Cap(p). (14)

Corollary (2.5) was conjectured by the author in [10], where it was proved that
∂n

∂x1...∂xn
p(0, . . . , 0) ≥ C(n)Cap(p) for some constant C(n).

2.1 Three Conjectures/Inequalities

The fundamental nature of Theorem (2.4) is illustrated in the following Example.

Example 2.6:

1. Let A ∈ Ωn be n×n doubly stochastic matrix. It is easy to show that the polynomial
ProdA is H-Stable and doubly-stochastic. Therefore Cap(ProdA) = 1. Applying
Corollary (2.5) we get the celebrated Falikman’s result [5]:

min
A∈Ωn

per(A) =
n!

nn
.

(The complementary uniqueness statement for Corollary (2.5) will be considered in
Section(5).)

2. Let (A1, . . . , An) = A ∈ Dn be a doubly stochastic n-tuple. Then the determinantal
polynomial DetA is H-Stable and doubly-stochastic. Thus Cap(DetA) = 1 and we
get the (Bapat-bound), proved by the author:

min
A∈Dn

D(A) =
n!

nn
.
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3. Important for what follows is the next observation, which is a diagonal case of (12):
degProdA

(j) is equal to the number of nonzero entries in the jth column of
the matrix A.
The next Corrolary combines this observation with Theorem(2.4).

Corollary 2.7:

(a) Let Cj be the number of nonzero entries in the jth column of A, where A is an
n × n matrix with non-negative real entries. Then

per(A) ≥
∏

2≤j≤n

G (min(j, Cj)) Cap(ProdA). (15)

(b) Suppose that Cj ≤ k : k + 1 ≤ j ≤ n. Then

per(A) ≥
(

(k − 1

k

)k−1
)n−k

k!

kk
Cap(ProdA). (16)

Let Λ(k, n) denote the set of n × n matrices with nonnegative integer entries and
row and column sums all equal to k. The matrices in Λ(k, n) correspond to the
k-regular bipartite graphs with multiple edges.
Recall the (Schrijver-bound):

min
A∈Λ(k,n)

per(A) ≥ knG(k)n =

(

(k − 1)k−1

kk−2

)n

. (17)

The Falikman’s inequality gives that

min
A∈Λ(k,n)

per(A) ≥ knvdw(n) > knG(k)n if k ≥ n.

Therefore the inequality (17) is interesting only if k < n.
Note that if A ∈ Λ(k, n), k < n then all columns of A have at most k nonzero entries.
If A ∈ Λ(k, n) then the matrix 1

k
A ∈ Ωn, thus Cap(ProdA) = kn. As we observed

above, degProdA
(j) ≤ k. Applying the inequality (16) to the polynomial ProdA we

get for k < n an improved (Schrijver-bound):

min
A∈Λ(k,n)

per(A) ≥ kn

(

(k − 1

k

)k−1
)n−k

k!

kk
>

(

(k − 1)k−1

kk−2

)n

. (18)

Interestingly, the inequality (18) recovers for k = 3 the Voorhoeve’s inequality (5).

4. The inequality (15) is sharp if Ci = · · · = Cn−1 = n; Cn = k : 1 < k ≤ n− 1. To see
this, consider the doubly stochastic matrix
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D =

















a . . . a b

. . . . . .

a . . . a b

c . . . c 0
. . . . . .

c . . . c 0

















; a =
1 − b

n − 1
=

k − 1

k(n − 1)
, b =

1

k
, c =

1

n − 1
, (19)

and the associated polynomial

ProdD(x1, . . . , xn) =

(

(
∑

1≤i≤n−1

axi) + bxn

)k

(
∑

1≤i≤n−1

cxi)
n−k.

Since the matrix D is doubly stochastic, Cap(ProdD) = 1. Direct inspection shows
that

per(D) = (n − 1)!(kb)ak−1cn−k = G(k)
(n − 1)!

(n − 1)n−1
.

Which gives the equality

per(D) = Cap(ProdD)
∏

2≤j≤n

G (min(j, Cj)) .

It follows that min{per(A) : A ∈ Ω
(0)
n } = (n−1)!

(n−1)n−1

(

n−2
n−1

)n−2
, where Ω

(0)
n is the set of

n × n doubly stochastic matrices with at least one zero entry.

2.2 The Main Idea

Let p ∈ Hom+(n, n). Define the following polynomials qi ∈ Hom+(i, i):

qn = p, qi(x1, . . . , xi) =
∂n−i

∂xi+1 . . . ∂xn
p(x1, . . . , xi, 0, . . . , 0); 1 ≤ i ≤ n − 1.

Notice that q1(x1) = ∂n

∂x1...∂xn
p(0)x1 and

q2(x1, x2) =
∂n

∂x1 . . . ∂xn
p(0)x1x2 +

1

2

(

∂n

∂x1∂x1 . . . ∂xn
p(0)x2

1 +
∂n

∂x2∂x2 . . . ∂xn
p(0)x2

2

)

.

(20)
Therefore, Cap(q1) = ∂n

∂x1...∂xn
p(0) and

Cap(q2) =
∂n

∂x1 . . . ∂xn
p(0) +

√

∂n

∂x1∂x1 . . . ∂xn
p(0)

∂n

∂x2∂x2 . . . ∂xn
p(0). (21)
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Define the univariate polynomial R(t) = p(x1, . . . , xn−1, t). Then its derivative at zero
is

R′(0) = qn−1(x1, . . . , xn−1). (22)

Another simple but important observation is the next inequality:

degqi
(i) ≤ min (i, degp(i)) ⇐⇒ G (degqi

(i)) ≥ G (min(i, degp(i))) : 1 ≤ i ≤ n. (23)

Recall that vdw(i) = i!
ii
. Suppose that the next inequalities hold

Cap(qi−1) ≥ Cap(qi)
vdw(i)

vdw(i − 1)
= Cap(qi)G(i) : 2 ≤ i ≤ n. (24)

Or better, the next stronger ones hold

Cap(qi−1) ≥ Cap(qi)G (degqi
(i)) : 2 ≤ i ≤ n, (25)

where

G(m) =
vdw(m)

vdw(m − 1)
=

(

m − 1

m

)m−1

. (26)

The next result, proved by the straigthforward induction, summarizes the main idea of
our approach.

Theorem 2.8:

1. If the inequalities (24) hold then the next generalized Van Der Waerden inequality
holds:

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) = Cap(q1) ≥ vdw(n)Cap(p). (27)

In the same way, the next inequality holds for Cap(q2):

∂n

∂x1 . . . ∂xn
p(0)+

√

∂n

∂x1∂x1 . . . ∂xn
p(0)

∂n

∂x2∂x2 . . . ∂xn
p(0) ≥ 2vdw(n)Cap(p). (28)

2. If the inequalities (25) hold then the next generalized (Schrijver-bound) holds:

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) = Cap(q1) ≥ Cap(p)

∏

2≤i≤n

G
(

min(i, degp(i))
)

. (29)

What is left is to prove that the inequalities (25) hold for H-Stable polynomials.
We break the proof of this statement in two steps.

1. Prove that if p ∈ Hom+(n, n) is H-Stable then qn−1 is either zero or H-Stable.
Using equation (22), this implication follows from Gauss-Lukas Theorem. Gauss-
Lukas Theorem states that if z1, . . . , zn ∈ C are the roots of an univariate polynomial
Q then the roots of its derivative Q′ belong to the convex hull CO({z1, . . . , zn}).
This step is, up to minor perturbation arguments, known. See, for instance, [16].
The result in [16] is stated in terms of hyperbolic polynomials, see Remark (5.2)
for the connection between H-Stable and hyperbolic polynomials. Our treatment,
described in Section(4), is self-contained, short and elementary.

the electronic journal of combinatorics 15 (2008), #R66 10



2. Prove that Cap(qn−1) ≥ G(degp(n))Cap(p). This inequality boils down to the next
inequality for the univariate polynomial R from (22):

R′(0) ≥ G(deg(R))

(

inf
t>0

R(t)

t

)

.

We prove it using AM/GM inequality and the fact that the roots of the polynomial
R are real.

It is instructive to see what is going on in the “permanental case”: we start with
the polynomial ProdA which is a product of nonnegative linear forms. The very first
polynomial in the induction, qn−1, is not of this type in the generic case. I.e. there is no
one matrix/graph associated with qn−1. We gave up the matrix structure but had won the
game.

In the rest of the paper Facts are statements which are quite simple and (most likely)
known. We included them having in mind the undergraduate student reader.

3 Univariate Polynomials

Proposition 3.1:

1. (Gauss-Lukas Theorem)
Let R(z) =

∑

0≤i≤n aiz
i be a Hurwitz polynomial with complex coefficients, i.e. all

the roots of R have negative real parts.
Then its derivative R′ is Hurwitz.

2. Let R(z) =
∑

0≤i≤n aiz
i be a Hurwitz polynomial with real coefficients and an > 0.

Then all the coefficients are positive real numbers.

Proof:

1. Recall that
R′(z)

R(z)
=
∑

1≤j≤n

1

z − zj
.

Let µ be a root of R′. Consider two cases. First: µ is a root of R. Then clearly
Re(µ) < 0. Second: µ is not a root of R. Then

L =:
∑

1≤j≤n

1

µ − zj
= 0.

Suppose that Re(µ) ≥ 0. As (a + ib)−1 = a−ib
a2+b2

we get that

Re

(

1

µ − zj

)

=
Re(µ) − Re(zj)

(Re(µ) − Re(zj))
2 + (Im(µ) − Im(zj))

2 > 0.

Therefore Re(L) > 0 which leads to a contradiction. Thus Re(µ) < 0 and the
derivative R′ is Hurwitz.
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2. This part is easy and well known.

The next simple result binds together all the small pieces of our approach.

Lemma 3.2: Let Q(t) =
∑

0≤i≤k ait
i; ak > 0, k ≥ 2 be a polynomial with non-negative

coefficients and real (non-positive) roots. Define C = inf t>0
Q(t)

t
. Then the next inequlity

holds:

a1 = Q′(0) ≥
(

k − 1

k

)k−1

C. (30)

The equality holds if and only if all the roots of Q are equal negative numbers, i.e. Q(t) =
b(t + a)k for some a, b > 0.

Proof: If Q(0) = 0 then Q′(0) ≥ C >
(

k−1
k

)k−1
C.

Let Q(0) > 0. We then can assume WLOG that Q(0) = 1. In this case all the roots of Q

are negative real numbers. Thus

Q(t) :=

k
∏

i=1

(ait + 1) : ai > 0, 1 ≤ i ≤ k,

and Q′(0) = a1 + · · ·+ ak.

Using the AM/GM inequality we get that

Ct ≤ Q(t) ≤ P (t) =:

(

1 +
Q′(0)

k
t

)k

, t ≥ 0. (31)

It follows from basic calculus that

inf
t>0

P (t)

t
= P (s) = Q′(0)

(

k

k − 1

)k−1

, where s =
k

Q′(0)(k − 1)
.

Therefore

C ≤ inf
t>0

P (t)

t
= Q′(0)

(

k

k − 1

)k−1

,

which finally yields the desired inequality

Q′(0) ≥
(

k − 1

k

)k−1

C, k ≥ 2.

It follows from the uniqueness condition in the AM/GM inequality that the equality
in (30) holds if and only if 0 < a1 = · · · = ak.
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Remark 3.3: The condition that the roots of Q are real can be relaxed in several ways.
For instance the statement of Lemma (3.2) holds for any map f : R+ → R+ such that

the derivative f ′(0) exists and f
1

k is concave.

If such map is log-concave, i.e log(f) is concave, then f ′(0) ≥ 1
e
inft>0

f(t)
t

.
Notice that the right inequality in (31) is essentially equivalent to the concavity

of the function (Q(t))
1

k on R+.
It was shown in [11] that the inequality (30) is equivalent to the (VDW-bound) for
doubly stochastic matrices A ∈ Ωn : A = [a|b| . . . |b] with two distinct columns.

4 Stable homogeneous polynomials

4.1 Basics

Definition 4.1: A polynomial p ∈ HomC(m, n) is called H-Stable if p(Z) 6= 0 provided
Re(Z) > 0; is called H-SStable if p(Z) 6= 0 provided Re(Z) ≥ 0 and

∑

1≤i≤m Re(zi) > 0.

Fact 4.2: Let p ∈ HomC(m, n) be H-Stable and A is m × m matrix with nonnegative
real entries without zero rows. Then the polynomial pA, defined as pA(Z) = p(AZ) is also
H-Stable. If all entries of A are positive then pA is H-SStable.

Fact 4.3: Let p ∈ HomC(m, n), Y ∈ Cm, p(Y ) 6= 0. Define the following univariate
polynomial of degree n:

LX,Y (t) = p(tY − X) = p(Y )
∏

1≤i≤n

(t − λi;Y (X)) : X ∈ Cm.

Then
λi;Y (bX + aY ) = bλi;Y (X) + a; p(X) = p(Y )

∏

1≤i≤n

λi;Y (X). (32)

The following simple result substantially simplifies the proofs below. Proposition (4.4)
connects the notion of H-Stability with the notion of Hyperbolicity, see more on this
connection in Subsection(5.1).

Proposition 4.4: A polynomial p ∈ HomC(m, n) is H-Stable if and only if p(X) 6=
0 : X ∈ Rm

++ and the roots of univariate polynomials P (tX − Y ) : X, Y ∈ Rm
++ are real

positive numbers.

Proof:

1. Suppose that p(X) 6= 0 : X ∈ Rm
++ and the roots of univariate polynomials p(tX −

Y ) : X, Y ∈ Rm
++ are real positive numbers. It follows from identities (32) (shift

L → L + aX > 0) that the roots of P (tX − L) : X ∈ Rm
++, L ∈ Rm are real

numbers. We want to prove that this property implies that p ∈ HomC(m, n) is
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H-Stable. Let Z = Re(Z) + iIm(Z) ∈ Cm : Im(Z) ∈ Rm, 0 < Re(Z) ∈ Rm
++. If

p(Z) = 0 then also p(−iRe(Z) + Im(Z)) = 0, which contradicts the real rootedness
of p(tX − Y ) : X > 0, Y ∈ Rm.

2. Suppose that p ∈ HomC(m, n) is H-Stable. Let X, Y ∈ Rm
++ and p(zX − Y ) =

0, z = a+bi. We need to prove that b = 0 and a > 0. If b 6= 0 then p(aX−Y +biX) =
(bi)np(X − b−1i(aX − y)) 6= 0 as the real part Re(X − b−1i(aX − y)) = X > 0.
Therefore b = 0. If a ≤ 0 then −(aX−Y ) ∈ Rm

++. Which implies that p(aX−Y ) =
(−1)np(−(aX − Y )) 6= 0. Thus a > 0.

We will use the following corollaries:

Corollary 4.5: If Re(Z) ∈ Rm
+ and a polynomial p is H-Stable then

|p(Z)| ≥ |p (Re(Z)) |. (33)

Proof: Since p is continuous on Cm hence it is sufficient to assume that Re(Z) ∈ Rm
++.

It follows from identities (32) that

p(Z) = p (Re(Z) + iIm(Z)) = p (Re(Z))
∏

1≤j≤n

(1 + iλj), (34)

where (λ1, . . . , λn) are the roots of the univariate polynomial p(tRe(Z)−Im(Z)). Because
Re(Z) ∈ Rm

++, all these roots are real numbers.
Therefore |p(Z)| = |p(Re(Z))|

∏

1≤j≤n |1 + iλj| ≥ |p(Re(Z))|.

Corollary 4.6: Let p ∈ HomC(m, n) be H-Stable; X, Y ∈ Rm and 0 < X + Y ∈ Rm
++.

Then all the roots of the univariate polynomial equation p(tX + Y ) = 0 are real numbers.

Proof: Let p(tX + Y ) = 0, then also p((t− 1)X + (X + Y )) = 0. Since X + Y > 0 hence
t − 1 6= 0. As the polynomial p is homogeneous therefore p(X + (1 − t)−1(X + Y )) = 0.
It follows that (1 − t)−1 is real, thus t is also a real number.

Fact 4.7: Let p ∈ HomC(m, n) be H-SStable (H-Stable). Then for all X ∈ Rm
++ the

coefficients of the polynomial q = p
p(X)

are positive (nonnegative) real numbers.

Proof: We prove first the case of H-SStable polynomials.
Since q(X) = 1 we get from (32) that q(Y ) is a positive real number for all vectors
Y ∈ Rm

++. Therefore, by a standard interpolation argument, the coefficients of q are real.
We will prove by induction the following equivalent statement: if q ∈ HomR(m, n) is H-
SStable and q(Y ) > 0 for all Y ∈ Rm

++ then the coefficients of q are all positive. Write
q(t; Z) =

∑

0≤i≤n tiqi(Z), where Z ∈ Cm−1, the polynomials qi ∈ HomR(m − 1, n − i),
0 ≤ i ≤ n − 1 and qn(Z) is a real number. Let us fix the complex vector Z such that
Re(Z) ∈ Rm−1

+ and Re(Z) 6= 0. Since q is H-SStable hence all roots of the univariate
polynomial q(t; Z) have negative real parts. Therefore, using the first part of Proposition

the electronic journal of combinatorics 15 (2008), #R66 14



(3.1), we get that polynomials qi : 0 ≤ i ≤ n are all H-SStable. Since the degree of q is n

hence qn(Z) is a constant, qn(Z) = q(1; 0) > 0. Using now the second part of Proposition
(3.1), we see that qi(Y ) > 0 for all Y ∈ Rm

++ and 0 ≤ i ≤ n. Continuing this process we
will end up with either m = 1 or n = 1. Both those cases have positive coefficients.

Let p ∈ HomC(m, n) be H-Stable and A > 0 is m × m matrix with positive entries
such that AX = X. Then for all ε > 0 the polynomials qI+εA ∈ HomR(m, n), defined
as in Fact(4.2), are H-SStable and limε→0 qI+εA = q. Therefore the coefficients of q are
nonnegative real numbers.

From now on we will deal only with the polynomials with nonnegative coefficients.

Corollary 4.8: Let pi ∈ Hom+(m, n) be a sequence of H-Stable polynomials and p =
limi→∞ pi. Then p is either zero or H-Stable.

Some readers might recognize Corollary (4.8) as a particular case of A. Hurwitz’s theorem
on limits of sequences of nowhere zero analytical functions. Our proof below is elementary.

Proof: Suppose that p is not zero. Since p ∈ Hom+(m, n) hence p(x1, . . . , xm) > 0 if
xj > 0 : 1 ≤ j ≤ m. As the polynomials pi are H-Stable therefore |pi(Z)| ≥ |pi (Re(Z)) | :
Re(Z) ∈ Rm

++. Taking the limits we get that |p(Z)| ≥ |p (Re(Z)) | > 0 : Re(Z) ∈ Rm
++,

which means that p is H-Stable.

Fact 4.9: For a polynomial p ∈ HomC(m, n) we define a polynomial
q ∈ HomC(m − 1, n − 1) as

q(x1, . . . , xm−1) =
∂

∂xm
p(x1, . . . , xm−1, 0).

Then the next two statements hold:

1. Let p ∈ Hom+(m, n) be H-SStable. Then the polynomial q is also H-SStable.

2. Let p ∈ Hom+(m, n) be H-Stable. Then the polynomial q is either zero or H-
Stable.

Proof:

1. Let p ∈ Hom+(m, n) be H-SStable and consider an univariate polynomial

R(z) = p(Y ; z) : z ∈ C, Y ∈ Cm−1.

Suppose that 0 6= Re(Y ) ≥ 0. It follows from the definition of H-SStability that
R(z) 6= 0 if Re(z) ≥ 0. In other words, the univariate polynomial R is Hurwitz. It
follows from Gauss-Lukas Theorem that

q(Y ) = R′(0) 6= 0,

which means that q is H-SStable.
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2. Let p ∈ Hom+(m, n) be H-Stable and q 6= 0. Take an m × m matrix A > 0.
Then the polynomial pI+εA, pI+εA(Z) = p ((I + εA)Z) is H-SStable for all ε > 0.
Therefore, using the first part, qI+εA is H-SStable. Clearly limε→0 qI+εA = q. Since
q 6= 0, it follows from Corollary (4.8) that q is H-Stable.

Theorem 4.10: Let p ∈ Hom+(n, n) be H-Stable, and

qn−1(x1, . . . , xn−1) =
∂

∂xn
p(x1, . . . , xn−1, 0).

Then
Cap(qn−1) ≥ Cap(p)G (degp(n)) . (35)

Proof: We need to prove that

∂

∂xn
p(x1, . . . , xn−1, 0) ≥ Cap(p)G (degp(n)) , x1, . . . , xn−1 > 0,

∏

1≤i≤n−1

xi = 1.

Fix a positive vector (x1, . . . , xn−1),
∏

1≤i≤n−1 xi = 1 and define, as in proof of Fact (4.9),
the polynomial R(t) = p(x1, . . . , xn−1, t). It follows from Corollary(4.6) that all the roots
of R are real. Since the coefficients of the polynomial R are non-negative hence its roots
are non-positive real numbers. It follows from a definition of Cap(p) that R(t) ≥ Cap(p)t,
therefore

inf
t>0

R(t)

t
≥ Cap(p).

The degree of the polynomial R is equal to degp(n). It finally follows from Lemma(3.2)
that

qn−1(x1, . . . , xn−1, 0) = R′(0) ≥ Cap(p)G (degp(n)) .

5 Uniqueness in Generalized Van Der Waerden In-

equality

5.1 Hyperbolic Polynomials

The following concept of hyperbolic polynomials arose from the theory of partial differential
equations [6], [14]. A recent paper [24] gives nice and concise introduction to the area (with
simplified proofs of the key theorems) and describes connections to convex optimization.
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Definition 5.1:

1. A homogeneous polynomial p : Cm → C of degree n (p ∈ HomC(m, n)) is called
hyperbolic in the direction e ∈ Rm (or e-hyperbolic) if p(e) 6= 0 and for each vector
X ∈ Rm the univariate (in λ) polynomial p(X−λe) has exactly n real roots counting
their multiplicities.

2. Denote an ordered vector of roots of p(x − λe) as

λe(X) = (λn(X) ≥ λn−1(X) ≥ . . . λ1(X)).

Call X ∈ Rm e-positive (e-nonnegative) if λ1(X) > 0 (λn(X) ≥ 0). We denote the
closed set of e-nonnegative vectors as Ne(p), and the open set of e-positive vectors
as Ce(p).

Remark 5.2: Proposition (4.4) essentially says that a polynomial p ∈ HomC(m, n) is
H-Stable iff p is hyperbolic in some direction e ∈ Rm

++ and the inclusion Rm
+ ⊂ Ne(p)

holds. If p ∈ HomC(m, n) is H-SStable then any non-zero vector 0 ≤ X ∈ Rm
+ belongs

to the (open) hyperbolic cone Ce(p).

We need the next fundamental fact due to L. Garding [6] (we recommend the very
readable treatment in [24]):

Theorem 5.3: Let p ∈ HomC(m, n) be e-hyperbolic polynomial and d ∈ Ce(p) ⊂ Rm.
Then p is also d-hyperbolic and Cd(p) = Ce(p), Nd(p) = Ne(p). Moreover cone Ce(p),
called hyperbolic cone, is convex.

Corollary 5.4:

1. For any two vectors in the hyperbolic cone d1, d2 ∈ Ce(p) the following set equality
holds:

Nd1
(p)
⋂

(−Nd1
(p)) = Nd2

(p)
⋂

(−Nd2
(p)) = Nullp. (36)

Thus Nullp ⊂ Rm is a linear subspace.

2.
Nullp = {X ∈ Rm : p(Y + X) = p(Y ) for all Y ∈ Cm} (37)

Let Pr(Nullp) be orthogonal projector on the linear subspace Nullp. It follows from
(37) that

p(Y ) = p ((I − Pr(Nullp))Y ) (38)

3. Let p ∈ Hom+(n, n) be a doubly-stochastic H-Stable polynomial. If (y1, . . . , yn) ∈
Nullp then

y1 + · · ·+ yn = 0. (39)
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Proof:

1. It is well known and obvious that if K is a convex cone in some linear space L over
reals then the intersection K

⋂

(−K) is a linear subspace of L.

2. Let T ∈ Ce(p) and X ∈ Nullp. Then all the roots of the equation p(xT +X) = 0 are
equal to zero. Since p(T ) 6= 0 and the polynomial p ∈ HomC(m, n) is homogeneous,
hence p(xT +X) = xnp(T ). Therefore p(T +X) = p(T ) for all T ∈ Ce(p). As Ce(p)
is a non-empty open subset of Rm, equality (37) follows from the analyticity of p.

3. Consider the vector of all ones e = (1, . . . , 1) ∈ Rn and a vector Y = (y1, . . . , yn) ∈
Nullp. Then d(t) = p(e + tY ) = p(e) for all t ∈ R. Therefore

0 = d′(0) =
∑

1≤i≤n

yi
∂

∂xi
p(1, 1, . . . , 1) = y1 + · · ·+ yn.

Example 5.5:

1. Consider the power polynomial q ∈ Hom+(n, n), q(x1, . . . , xn) = (a1x1+· · ·+anxn)n.
If the non-zero vector a = (a1, . . . , an) ∈ Rn

+ then the power polynomial q is H-
Stable. The correspondind linear subspace

Nullp = a⊥ =: {(y1, . . . , yn) ∈ Rn :
∑

1≤i≤n

aiyi = 0}, dim(Nullp) = n − 1;

and Cap(p) = nn
∏

1≤i≤n ai. Therefore Cap(q) 6= 0 iff a ∈ Rn
++.

It is easy to see that

∂n

∂x1 . . . ∂xn
(a1x1 + · · ·+ anxn)n = n!a1 . . . an.

Therefore
∂n

∂x1 . . . ∂xn

q(0, . . . , 0) = Cap(q)
n!

nn
. (40)

If dim(Nullp) = n − 1 and a polynomial p ∈ Hom+(n, n) is H-Stable then
p(x1, . . . , xn) = (b1x1 + · · ·+ bnxn)n for some non-zero vector b = (b1, . . . , bn) ∈ Rn

+.
The power polynomial p is doubly-stochastic iff bi = 1

n
, 1 ≤ i ≤ n.

2. Let p ∈ HomC(m, n) be an e-hyperbolic polynomial, D ∈ Ce(p) ⊂ Rm and X ∈ Rm.
Suppose that the univariate polynomial R(t) = p(tD+X) = a(t+b)n, b ∈ R. Define
the next real vector Y = −bD+X. Then all the roots of the equation p(Y −λD) = 0
are equal to zero. Therefore Y ∈ ND(p)

⋂

(−ND(p)) = Nullp.
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5.2 Uniqueness

Definition 5.6: We call a H-Stable polynomial p ∈ Hom+(n, n) extremal if
Cap(p) > 0 and

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) =

n!

nn
Cap(p). (41)

Our goal is the next theorem

Theorem 5.7: A H-Stable polynomial p ∈ Hom+(n, n) is extremal if and only if

p(x1, . . . , xn) = (a1x1 + · · ·+ anxn)n

for some positive real numbers a1, . . . , an > 0.
In other words, the equality (41) holds iff dim(Nullp) = n − 1.

Notice that the “if” part is simple and follows from the equality(40).
We collect the basic properties of extremal polynomials in the next proposition.

Proposition 5.8:

1. If a H-Stable polynomial p ∈ Hom+(n, n) is extremal then all its coefficients are
positive real numbers.

2. Let c = (c1, . . . , cn) ∈ Rn
++ and p ∈ Hom+(n, n). Define the scaled polynomial pc

as pc(x1, . . . , xn) = p(c1x1, . . . , cnxn). If p ∈ Hom+(n, n) is H-Stable extremal
polynomial then also the scaled polynomial pc is.

Proof:

1. Our goal in this step is to show that if equation (41) holds then the H-Stable
polynomial p is, in fact, H-SStable and therefore has all positive coefficients.

Since G(2) · · ·G(n) = n!
nn and the function G is strictly decreasing on [0,∞), hence

it follows from (13) that degp(n) = n. Since the inequality (13) is invariant with
respect to permutations of variables hence degp(i) = n : 1 ≤ i ≤ n. Which means
that p(ei) > 0 : 1 ≤ i ≤ n, where {e1, . . . , en} is the standard orthonormal basis
in Rn. Therefore the polynomial p is H-SStable. Thus its coefficients are strictly
positive real numbers and all non-zero vectors Y ∈ Rn

+ belong to its open hyperbolic
cone Ce(p).

2. First, if p ∈ Hom+(n, n) is H-Stable then clearly the scaled polynomial pc is also
H-Stable.
It follows from the definition of the Capacity that Cap(pc) = c1 · · · cnCap(p).
We get, by a direct computation, that

∂n

∂x1 . . . ∂xn
pc(0, . . . , 0) = c1 · · · cn

∂n

∂x1 . . . ∂xn
p(0, . . . , 0).
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This proves that the set of H-Stable extremal polynomials is invariant with respect
to the scaling.

We need the following simple result (it was essentially proved in Lemma 3.8 from [8]).

Fact 5.9: Consider p ∈ Hom++(n, n), p(x1, . . . xn) =
∑

r1,...,rn
ar1,...,rn

∏

1≤i≤n xri

i . Then
there exists a positive vector t =: (t1, . . . , tn) ∈ Rn

++, t1 · · · tn = 1 such that

p(t1, . . . , tn) = Cap(p) = inf
xi>0,1≤i≤n;x1···xn=1

p(x1, . . . , xn). (42)

Consider the corresponding scaled polynomial pt. Then the polynomial q = pt

pt(1,...,1)
is

doubly-stochastic. I.e. ∂
∂xi

q(1, 1, . . . , 1) = 1, 1 ≤ i ≤ n..

Proof: Consider a subset

T = {(x1, . . . , xn) ∈ Rn
++ : x1 · · ·xn = 1 and p(x1, . . . , xn) ≤ p(1, . . . , 1)}.

In order to prove that the infimum is attained, it is sufficient to show that the subset T is
compact. Clearly, T is closed, and we need to prove that T is bounded. Let (x1, . . . , xn) ∈
T and assume WLOG that max1≤i≤n xi = x1. Then

an,0,...,0x
n
1 ≤ p(x1, . . . , xn) ≤ p(1, . . . , 1) ⇒ max

1≤i≤n
xi ≤

p(1, . . . , 1)

an,0,...,0

< ∞.

This shows the desired boundness of T and the existence of the minimum.
Consider a positive vector (t1, . . . , tn) such that p(t1, . . . , tn) = Cap(p). Define αi =
log(ti), 1 ≤ i ≤ n. Then

p(exp(α1), . . . , exp(αn)) = min
β1+...βn=0

p(exp(β1), . . . , exp(βn)).

Therefore there exists the Lagrange multiplier γ such that

∂

∂αi

p(exp(α1), . . . , exp(αn)) = ti
∂

∂ti
p(t1, . . . , tn) = γ, 1 ≤ i ≤ n.

It follows from the Euler’s identity that γ = p(t1, . . . , tn) and

∂

∂xi
q(1, . . . , 1) = (p(t1, . . . , tn))−1ti

∂

∂ti
p(t1, . . . , tn) = 1.

Remark 5.10: It is easy to prove that, in fact, the minimum in (42) is attained uniquely.
It was proved in [12] that if p ∈ Hom+(n, n) is H-Stable then the minimum in (42) exists
and attained uniquely iff

∂n

∂xi∂xj

∏

m6=(i,j) ∂xm
q(0, . . . , 0) > 0 : 1 ≤ i 6= j ≤ n.
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Proof: (Proof of Theorem (5.7).)
It follows from Proposition(5.8) and Fact(5.9) that we can assume without loss of gen-
erality that the H-Stable extremal polynomial p ∈ Hom++(n, n) is doubly-stochastic
and all its coefficients are positive real numbers.

1. Using uniqueness part of Lemma(3.2)
Let {e1, . . . , en} be the standard basis in Rn and p is now a H-SStable doubly-
stochastic polynomial with positive coefficients, p satisfies the equality (41). We
need to look at the case of equality in (35). Recall the polynomial qn−1 is given by
qn−1(x1, . . . , xn−1) = ∂

∂xn
p(x1, . . . , xn−1, 0).

Clearly, the polynomial qn−1 ∈ Hom++(n − 1, n − 1) also has positive coefficients.
Let

qn−1(t1,n, . . . , tn−1,n) = min
x1,...,xn−1>0,

Q

1≤i≤n−1
xi=1

qn−1(x1, . . . , xn−1).

The existence of such a vector was proved in Proposition (5.9).
It follows from the uniqueness part of Lemma(3.2) that the univariate polynomial
R(t) = p(t1,n, . . . , tn−1,n, t) = p(

∑

1≤i≤n−1 ti,n−1ei + ten) has n equal negative roots:
R(t) = b(t + an)n; an, b > 0. This fact implies, as in the second part of Example
(5.5), that

Kn =: en −
∑

j 6=n

aj,nej ∈ Nullp, aj,n =
tj,n

an

> 0.

Since p is doubly-stochastic, hence it follows from (39) that the coordinates of Kn

sum to zero. Which gives that
∑

j 6=n aj,n = 1.

In the same way, we get that there exists an n×n column stochastic matrix A with
the zero diagonal and the positive off-diagonal part such that the vectors

Ki =: ei −
∑

j 6=i

aj,iej ∈ Nullp, i ≤ i ≤ n.

2. Recall that our goal is to prove that dim(Nullp) = n − 1. It follows that

dim(Nullp) ≥ dim(L(K1, . . . , Kn)) = Rank(I − A),

where L(K1, . . . , Kn) is the minimal linear subspace containing the set {K1, . . . , Kn}.
Since the polynomial p is non-zero thus dim(Nullp) ≤ n − 1. It is easy to see that
Rank(I − A) = n − 1. Indeed, any principal n − 1 × n − 1 submatrix of I − A is
strictly diagonally dominant and, therefore, is nonsingular.
We finally conclude that dim(Nullp) = n − 1.
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6 Comments

1. Falikman [5] and Egorychev [4] publications were followed by a flurry of expository
papers, which clarified and popularized the proofs. The author learned the Ego-
rychev’s proof from [17]. It is our guess that many scientists first learned about
Alexandrov inequalities for mixed discriminants and Alexandrov-Fenchel inequal-
ities for mixed volumes [1] in one of those expository papers. We would like to
distinguish the following two papers: [16] and [25]. They both explicitly connected
Alexandrov inequalities for mixed discriminants with homogeneous hyperbolic poly-
nomials. The paper [16] was, essentially a rediscovery of Garding’s theory [6]. Still,
as the author had read [16] before reading [6], the paper [16] gave us the first hint
for the possibility of our approach.
The paper [25], apparently written as a technical report in 1981 and published only
in 2006 in an obscure book, is technically very similar to [16]. Besides, it implicitly
introduced the Bapat’s conjecture.
Other related publications are D. London’s (univariate) papers [21],[20],[19].

As far as we know, there were no previously published connections between Shrijver-
Valiant conjecture, which was thought to be of purely combinatorial nature, and
stable/hyperbolic polynomials.

2. Two main ingredients of our approach, which make the proofs simple, are the
usage of the notion of Capacity and Lemma (3.2). They together allowed the
simple induction. The induction, used in this paper, is by partial differentia-
tion. It is very similar to the inductive proofs of hyperbolic polynomials analogues
of Alexandrov inequalities for mixed discriminants in [16],[25]. Using our termi-
nology, these analogues correspond to the fact that the polynomial q2(x1, x2) =

∂n−2

∂x3...∂xn
p(x1, x2, 0, . . . , 0) is either zero or H-Stable provided the polynomial p is

H-Stable.
The idea to use Capacity in the context of permanents is implicit in [22]. The
notion of Capacity was crucial for algorithmic results in [7], [8] as log (Cap(p)) =
infy1+···+yn=0 log (p(ey1 , . . . , eyn)) and the functional log (p(ey1, . . . , eyn)) is convex for
any polynomial with non-negative coefficients.
Probably, the papers [7], [8] were the first to reformulate Van der Waerden/Bapat
conjectures as in inequality (27). Although quite simple, it happened to be a very
enlighting observation.

3. Our, inductive by the partial differentiation, approach was initiated in [10]. The
main tool there was Vinnikov-Dubrovin determinantal representation [29] of hyper-
bolic homogeneous polynomials in 3 variables. The paper [10] proved the implication
Cap(p) > 0 =⇒ ∂n

∂x1...∂xn
p(0, . . . , 0) > 0 for H-Stable polynomials p ∈ Hom+(n, n).

Additionally, it was proved that in this H-Stable case the functional Rankp(S) =
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maxar1,...,rn 6=0

∑

j∈S rj is submodular and

ar1,...,rn
> 0 ⇐⇒

∑

j∈S

rj ≤ Rankp(S) : S ⊂ {1, . . . , n}. (43)

The characterization (43) is a far reaching generalization of the Hall-Rado theorem.
The paper [12] provides algorithmic applications of these results: strongly polyno-
mial deterministic algorithms for the membership problem as for the support as
well for the Newton polytope of H-Stable polynomials p ∈ Hom+(m, n), given as
oracles.
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Corrigendum – submitted May 29, 2008

1. On page 5, the formula in the 4th item of Definition 2.1

p(x1, . . . , xn) =
∑

r1+···+rn=1

ar1,...,rn

∏

1≤i≤n

xri

i .

should be replaced by

p(x1, . . . , xn) =
∑

r1+···+rn=n

ar1,...,rn

∏

1≤i≤n

xri

i .

2. The formula (9) on page 5 should be replaced by

∑

r1+···+rn=n

ar1,...,rn
rj = 1 : 1 ≤ j ≤ n.

3. The formula (10) on page 6 should be replaced by

∑

r1+···+rn=n

ar1,...,rn
= 1

4. The second formula on page 6,

log (p(x1, . . . , xn)) ≥
∑

r1+···+rn=1

ar1,...,rn
ri log(xi) = log(x1 · · ·xn).

should be replaced by

log (p(x1, . . . , xn)) ≥
∑

r1+···+rn=n

ar1,...,rn

∑

1≤i≤n

ri log(xi) = log(x1 · · ·xn).

All these corrections deal with the same typo : r1 + · · · + rn = 1 is replaced by
r1 + · · · + rn = n

5. The last formula in Remark 5.10 on page 20,

∂n

∂xi∂xj

∏

m6=(i,j) ∂xm
q(0, . . . , 0) > 0 : 1 ≤ i 6= j ≤ n.

should be replaced by

∂n

(∂xi)2
∏

k/∈{i,j}

∂xk

p(0, . . . , 0) > 0,
∂n

(∂xj)2
∏

k/∈{i,j}

∂xk

p(0, . . . , 0) > 0 : 1 ≤ i 6= j ≤ n.

the electronic journal of combinatorics 15 (2008), #R66 26


