Hurwitz Equivalence in Tuples of Generalized Quaternion Groups and Dihedral Groups

Xiang-dong Hou
Department of Mathematics
University of South Florida, Tampa, FL 33620
xhou@math.usf.edu

Submitted: Apr 6, 2008; Accepted: May 29, 2008; Published: Jun 13, 2008
Mathematics Subject Classifications: 20F36, 20F05

Abstract

Let Q_{2}^{m} be the generalized quaternion group of order 2^{m} and D_{N} the dihedral group of order $2 N$. We classify the orbits in $Q_{2^{m}}^{n}$ and $D_{p^{m}}^{n}$ (p prime) under the Hurwitz action.

1 The Hurwitz Action

Let G be a group. For $a, b \in G$, let $a^{b}=b^{-1} a b$ and ${ }^{b} a=b a b^{-1}$. The Hurwitz action on $G^{n}(n \geq 2)$ is an action of the n-string braid group B_{n} on G^{n}. Recall that B_{n} is given by the presentation

$$
\left.B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right| \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j|>2 ; \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, 1 \leq i \leq n-2\right\rangle
$$

The action of σ_{i} on G^{n} is defined by

$$
\sigma_{i}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, a_{i}^{a_{i+1}}, a_{i+2}, \ldots, a_{n}\right),
$$

where $\left(a_{1}, \ldots, a_{n}\right) \in G^{n}$. Note that

$$
\sigma_{i}^{-1}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{i-1},{ }^{a_{i}} a_{i+1}, a_{i}, a_{i+2}, \ldots, a_{n}\right)
$$

An action by σ_{i} or σ_{i}^{-1} on G^{n} is called a Hurwitz move. Two tuples $\left(a_{1}, \ldots, a_{n}\right)$, $\left(b_{1}, \ldots, b_{n}\right) \in G^{n}$ are called (Hurwitz) equivalent, denoted as $\left(a_{1}, \ldots, a_{n}\right) \sim\left(b_{1}, \ldots, b_{n}\right)$, if they are in the same B_{n}-orbit. The (Hurwitz) equivalence class of $\left(a_{1}, \ldots, a_{n}\right) \in G^{n}$, i.e., the B_{n}-orbit of $\left(a_{1}, \ldots, a_{n}\right)$, is denoted by $\left[a_{1}, \ldots, a_{n}\right]$.

If G is a nonabelian group, in general, the B_{n}-orbits in G^{n} are not known. In [1], Ben-Itzhak and Teicher determined all B_{n}-orbits in S_{m}^{n} represented by $\left(t_{1}, \ldots, t_{n}\right)$, where S_{m} is the symmetric group, each t_{i} is a transposition and $t_{1} \cdots t_{n}=1$. It is obvious that if
$a_{1}, \ldots, a_{n} \in G$ generate a finite subgroup, then the B_{n}-orbit of $\left(a_{1}, \ldots, a_{n}\right)$ in G^{n} is finite. It has been proved that if $s_{1}, \ldots, s_{n} \in \mathrm{GL}\left(\mathbb{R}^{n}\right)$ are reflections such that the B_{n}-orbit of $\left(s_{1}, \ldots, s_{n}\right)$ is finite, then the group generated by s_{1}, \ldots, s_{n} is finite; see [2] and [3].

It is natural to ask which types of nonabelian group G allow complete determination of the B_{n}-orbits in G^{n}. In this paper, we show that when G is the generalized quaternion group $Q_{2^{m}}$ or the dihedral group $D_{p^{m}}$ of order $2 p^{m}$, where p is a prime, the answer to the above question is affirmative.

2 The Generalized Quaternion Group

Let $m \geq 2$. The generalized quaternion group $Q_{2^{m}}$ of order 2^{m} is given by the presentation

$$
Q_{2^{m}}=\left\langle\alpha, \beta \mid \alpha^{2^{m-1}}=1, \alpha^{2^{m-2}}=\beta^{2}, \beta \alpha \beta^{-1}=\alpha^{-1}\right\rangle
$$

Each element of $Q_{2^{m}}$ can be uniquely written as $\alpha^{i} \beta^{j}$, where $0 \leq i<2^{m-1}$ and $0 \leq j \leq 1$. We have

$$
\begin{gather*}
\left(\alpha^{i} \beta^{j}\right)^{\alpha^{k} \beta^{l}}=\alpha^{(-1)^{l}(i-2 k j)} \beta^{j} \tag{2.1}\\
\alpha^{i} \beta^{j}\left(\alpha^{k} \beta^{l}\right)=\alpha^{(-1)^{j} k+2 i l} \beta^{l} . \tag{2.2}
\end{gather*}
$$

Thus in $Q_{2^{m}}^{n}$, a Hurwitz move gives one of the following equivalences:

$$
\begin{gathered}
\left(\cdots, \alpha^{i} \beta^{j}, \alpha^{k} \beta^{l}, \cdots\right) \sim\left(\cdots, \alpha^{k} \beta^{l}, \alpha^{(-1)^{l}(i-2 k j)} \beta^{j}, \cdots\right) \\
\left(\cdots, \alpha^{i} \beta^{j}, \alpha^{k} \beta^{l}, \cdots\right) \sim\left(\cdots, \alpha^{(-1)^{j} k+2 i l} \beta^{l}, \alpha^{i} \beta^{j}, \cdots\right)
\end{gathered}
$$

For easier reading, we rewrite the above equivalences, omitting the \ldots 's, with $(j, l)=$ $(0,0),(0,1),(1,0)$ and $(1,1)$ respectively.

$$
\begin{gather*}
\left(\alpha^{i}, \alpha^{k}\right) \sim\left(\alpha^{k}, \alpha^{i}\right), \tag{2.3}\\
\left\{\begin{array}{l}
\left(\alpha^{i}, \alpha^{k} \beta\right) \sim\left(\alpha^{k} \beta, \alpha^{-i}\right), \\
\left(\alpha^{i}, \alpha^{k} \beta\right) \sim\left(\alpha^{k+2 i} \beta, \alpha^{i}\right),
\end{array}\right. \tag{2.4}\\
\left\{\begin{array}{l}
\left(\alpha^{i} \beta, \alpha^{k}\right) \sim\left(\alpha^{k}, \alpha^{i-2 k} \beta\right), \\
\left(\alpha^{i} \beta, \alpha^{k}\right) \sim\left(\alpha^{-k}, \alpha^{i} \beta\right),
\end{array}\right. \tag{2.5}\\
\left\{\begin{array}{l}
\left(\alpha^{i} \beta, \alpha^{k} \beta\right) \sim\left(\alpha^{k} \beta, \alpha^{-i+2 k} \beta\right)=\left(\alpha^{i+(k-i)} \beta, \alpha^{k+(k-i)} \beta\right), \\
\left(\alpha^{i} \beta, \alpha^{k} \beta\right) \sim\left(\alpha^{-k+2 i} \beta, \alpha^{i} \beta\right)=\left(\alpha^{i-(k-i)} \beta, \alpha^{k-(k-i)} \beta\right) .
\end{array}\right. \tag{2.6}
\end{gather*}
$$

Lemma 2.1. (i) $\left(\alpha^{i}, \alpha^{j} \beta\right) \sim\left(\alpha^{-i}, \alpha^{j+2 i} \beta\right)$ for all $i, j \in \mathbb{Z}$.
(ii) $\left(\alpha^{i} \beta, \alpha^{j} \beta\right) \sim\left(\alpha^{i+k(j-i)} \beta, \alpha^{j+k(j-i)} \beta\right)$ for all $i, j, k \in \mathbb{Z}$.
(iii) Let $\tau, \nu, e, f \in \mathbb{Z}$ such that $0 \leq \nu \leq m-2$ and $e \not \equiv f(\bmod 2)$. Then for every $g \in \mathbb{Z}$,

$$
\left(\alpha^{\tau+2^{\nu} e} \beta, \alpha^{\tau+2^{\nu} f} \beta\right) \sim\left(\alpha^{\tau+2^{\nu}(e+g)} \beta, \alpha^{\tau+2^{\nu}(f+g)} \beta\right)
$$

Proof. (i) We have

$$
\begin{aligned}
\left(\alpha^{i}, \alpha^{j} \beta\right) & \sim\left(\alpha^{j} \beta, \alpha^{-i}\right) & & \text { (the first eq. of (2.4)) } \\
& \sim\left(\alpha^{-i}, \alpha^{j+2 i} \beta\right) & & \text { (the first eq. of }(2.5)) .
\end{aligned}
$$

(ii) follows from (2.6).
(iii) In (ii) let $i=\tau+2^{\nu} e, j=\tau+2^{\nu} f$ and choose $k \in \mathbb{Z}$ such that $k 2^{\nu}(f-e) \equiv g 2^{\nu}$ $\left(\bmod 2^{m-1}\right)$.

$3 \quad B_{n}$-Orbits in $Q_{2^{m}}^{n}$

Let G be a group. For $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in G^{n}$, define $\pi(\boldsymbol{a})=a_{1} \cdots a_{n} \in G . \pi(\boldsymbol{a})$ is an invariant of the Hurwitz action on G^{n}.

For $\boldsymbol{a}=\left(\alpha^{i_{1}} \beta^{j_{1}}, \ldots, \alpha^{i_{n}} \beta^{j_{n}}\right) \in Q_{2^{m}}^{n}$, where $0 \leq i_{k}<2^{m-1}$ and $0 \leq j_{k} \leq 1$, let

$$
\begin{aligned}
& \Lambda(\boldsymbol{a})=\text { the multi set }\left\{\min \left\{i_{k}, 2^{m-1}-i_{k}\right\}: j_{k}=0\right\}, \\
& \Gamma(\boldsymbol{a})=\left\{i_{k}: j_{k}=1\right\} .
\end{aligned}
$$

For example, if $\boldsymbol{a}=\left(\alpha^{3} \beta, \alpha^{4} \beta, \alpha^{3} \beta, \alpha \beta\right), \boldsymbol{b}=\left(\alpha^{6}, \alpha \beta, 1, \alpha^{2}\right) \in Q_{2^{4}}^{4}$, then $\Lambda(\boldsymbol{a})=\varnothing$, $\Lambda(\boldsymbol{b})=\{0,2,2\}, \Gamma(\boldsymbol{a})=\{1,3,4\}, \Gamma(\boldsymbol{b})=\{1\} . \Lambda(\boldsymbol{a})$ is an invariant of the Hurwitz action on $Q_{2^{m}}^{n}$. In fact, it is easy to see that $\Lambda(\boldsymbol{a})$ is invariant under each of the Hurwitz moves in (2.3) - (2.6).

To determine the B_{n}-orbits in $Q_{2^{m}}^{n}$, we first partition $Q_{2^{m}}^{n}$ into suitable subsets. Let

$$
\mathcal{A}=\left\{\boldsymbol{a} \in Q_{2^{m}}^{n}: \Gamma(\boldsymbol{a})=\varnothing\right\} .
$$

For each $1 \leq \nu \leq m-1$ and $0 \leq \tau<2^{\nu}$, let

$$
\mathcal{B}_{\nu, \tau}=\left\{\boldsymbol{a} \in Q_{2^{m}}^{n}: \min \left(\left\{\nu_{2}(i): i \in \Lambda(\boldsymbol{a})\right\} \cup\{m-2\}\right)=\nu-1, \varnothing \neq \Gamma(\boldsymbol{a}) \subset \tau+2^{\nu} \mathbb{Z}\right\}
$$

where ν_{2} is the 2-adic order. For each $0 \leq \nu \leq m-2$ and $0 \leq \tau<2^{\nu}$, let

$$
\begin{aligned}
& \mathcal{C}_{\nu, \tau}=\left\{\boldsymbol{a} \in Q_{2^{m}}^{n}:\right. \min \left(\left\{\nu_{2}(i): i \in \Lambda(\boldsymbol{a})\right\} \cup\{m-2\}\right) \geq \nu, \Gamma(\boldsymbol{a}) \subset \tau+2^{\nu} \mathbb{Z}, \\
&\left.\exists j, j^{\prime} \in \Gamma(\boldsymbol{a}) \text { such that } \nu_{2}\left(j-j^{\prime}\right)=\nu\right\} .
\end{aligned}
$$

Then

$$
Q_{2^{m}}^{n}=\mathcal{A} \dot{\cup}\left(\bigcup_{\substack{1 \leq \nu \leq m-1 \\ 0 \leq \tilde{\tau}<2^{\nu}}}^{\left.\dot{\mathcal{B}} \mathcal{B}_{\nu, \tau}\right) \dot{\cup}\left(\bigcup_{\substack{0 \leq \nu \leq m-2 \\ \overline{0} \leq \tilde{\tau}<2^{\nu}}}^{\dot{\mathcal{C}}} \mathcal{C}_{\nu, \tau}\right)}\right.
$$

It is routine to check that each of $\mathcal{A}, \mathcal{B}_{\nu, \tau}, \mathcal{C}_{\nu, \tau}$ is invariant under the Hurwitz moves in (2.3) - (2.6). Thus, $\mathcal{A}, \mathcal{B}_{\nu, \tau}$ and $\mathcal{C}_{\nu, \tau}$ are invariant under the Hurwitz equivalence. Therefore, to determine the B_{n}-orbits in $Q_{2^{m}}^{n}$, it suffices to find a set of representatives of the B_{n}-orbits in each of $\mathcal{A}, \mathcal{B}_{\nu, \tau}$ and $\mathcal{C}_{\nu, \tau}$.

For $\boldsymbol{a}=\left(\alpha^{i_{1}} \beta^{j_{1}}, \ldots, \alpha^{i_{n}} \beta^{j_{n}}\right) \in \mathcal{C}_{\nu, \tau}$, where $0 \leq i_{k}<2^{m-1}$ and $0 \leq j_{k} \leq 1$, let

$$
t(\boldsymbol{a})=\mid\left\{k: j_{k}=1 \text { and } i_{k} \equiv \tau \quad\left(\bmod 2^{\nu+1}\right)\right\} \mid .
$$

We claim that $t(\boldsymbol{a})$ is an invariant under the Hurwitz equivalence. Once again, it is easy to see that $t(\boldsymbol{a})$ is invariant under the Hurwitz moves in (2.3) - (2.6).

Theorem 3.1. (i) The B_{n}-orbits in \mathcal{A} are represented by

$$
\left(\alpha^{i_{1}}, \ldots, \alpha^{i_{n}}\right),
$$

where $0 \leq i_{1} \leq \cdots \leq i_{n}<2^{m-1}$.
(ii) Let $1 \leq \nu \leq m-1$ and $0 \leq \tau<2^{\nu}$. The B_{n}-orbits in $\mathcal{B}_{\nu, \tau}$ are represented by

$$
\begin{equation*}
\left(\alpha^{i_{1}}, \ldots, \alpha^{i_{s}}, \alpha^{\tau+2^{\nu} e} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right), \tag{3.1}
\end{equation*}
$$

where $0 \leq i_{1} \leq \cdots \leq i_{s} \leq 2^{m-2}, \min \left\{\nu_{2}\left(i_{1}\right), \ldots, \nu_{2}\left(i_{s}\right), m-2\right\}=\nu-1,0 \leq e<$ $2^{m-1-\nu}$.
(iii) Let $0 \leq \nu \leq m-2$ and $0 \leq \tau<2^{\nu}$. The B_{n}-orbits in $\mathcal{C}_{\nu, \tau}$ are represented by

$$
\begin{equation*}
(\alpha^{i_{1}}, \ldots, \alpha^{i_{s}}, \alpha^{\tau+2^{\nu} e} \beta, \alpha^{\tau+2^{\nu}} \beta, \ldots, \alpha^{\tau+2^{\nu}} \beta, \underbrace{\alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta}_{t}), \tag{3.2}
\end{equation*}
$$

where $0 \leq i_{1} \leq \cdots \leq i_{s} \leq 2^{m-2}$, $\min \left\{\nu_{2}\left(i_{1}\right), \ldots, \nu_{2}\left(i_{s}\right), m-2\right\} \geq \nu, 0 \leq e<2^{m-1-\nu}$, $e \equiv 1(\bmod 2), t>0$.

Proof. (i) is obvious.
(ii) We first observe that different tuples in (3.1) have different combinations of invariants $\Lambda(\boldsymbol{a})$ and $\pi(\boldsymbol{a})$. Thus, different tuples in (3.1) are nonequivalent.

Next, we show that every $\boldsymbol{a} \in \mathcal{B}_{\nu, \tau}$ is equivalent to one of the tuples in (3.1). We may assume that

$$
\begin{equation*}
\boldsymbol{a}=\left(\alpha^{i_{1}^{\prime}}, \ldots, \alpha^{i_{s-1}^{\prime}}, \alpha^{\tau+2^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{t}} \beta, \alpha^{j_{0}}\right) \tag{3.3}
\end{equation*}
$$

where $\nu_{2}\left(j_{0}\right)=\nu-1$. Using (2.5) repeatedly, we have

$$
\begin{align*}
& \left(\alpha^{\tau+2^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{t}} \beta, \alpha^{j_{0}}\right) \\
\sim & \left(\alpha^{\tau+2^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{t-1}} \beta, \alpha^{j_{1}}, \alpha^{\tau+2^{\nu} e_{t}^{\prime}} \beta\right) \tag{3.4}\\
\sim & \cdots \\
\sim & \left(\alpha^{j_{t}}, \alpha^{\tau+2^{\nu} e_{1}^{\prime}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{t}^{\prime}} \beta\right),
\end{align*}
$$

where $\nu_{2}\left(j_{0}\right)=\cdots=\nu_{2}\left(j_{t}\right)=\nu-1, e_{1}^{\prime}, \ldots, e_{t-1}^{\prime}$ are even and e_{t}^{\prime} is odd. Using Lemma 2.1 (iii) repeatedly, we have

$$
\begin{align*}
& \left(\alpha^{\tau+2^{\nu} e_{1}^{\prime}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{t-1}^{\prime}} \beta, \alpha^{\tau+2^{\nu} e_{t}^{\prime}} \beta\right) \\
\sim & \left(\alpha^{\tau+2^{\nu} e_{1}^{\prime}} \beta, \ldots, \alpha^{\tau+2^{\nu} f_{1}} \beta, \alpha^{\tau} \beta\right) \quad\left(f_{1} \text { odd }\right) \tag{3.5}\\
\sim & \cdots \\
\sim & \left(\alpha^{\tau+2^{\nu} f_{t-1}} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right) \quad\left(f_{t-1} \text { odd }\right) .
\end{align*}
$$

Combining (3.3) - (3.5), we have

$$
\begin{aligned}
\boldsymbol{a} & \sim\left(\alpha^{i_{1}^{\prime}}, \ldots, \alpha^{i_{s-1}^{\prime}}, \alpha^{j_{t}}, \alpha^{\tau+2^{\nu} f_{t-1}} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right) \\
& \sim\left(\alpha^{i_{1}}, \ldots, \alpha^{i_{s}}, \alpha^{\tau+2^{\nu} e} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right) \quad(\text { by Lemma } 2.1 \text { (i) }),
\end{aligned}
$$

where $0 \leq i_{1} \leq \cdots \leq i_{s} \leq 2^{m-2}$ and $0 \leq e<2^{m-1-\nu}$.
(iii) Different tuples in (3.2) have different combinations of invariants $\Lambda(\boldsymbol{a}), t(\boldsymbol{a})$ and $\pi(\boldsymbol{a})$. Hence different tuples in (3.2) are nonequivalent.

It remains to show that every $\boldsymbol{a} \in \mathcal{C}_{\nu, \tau}$ is equivalent to one of the tuples in (3.2). We may assume that

$$
\begin{equation*}
\boldsymbol{a}=\left(\alpha^{i_{1}}, \ldots, \alpha^{i_{s}}, \alpha^{\tau+2^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{u}} \beta, \alpha^{\tau+2^{\nu} f_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} f_{t}} \beta\right) \tag{3.6}
\end{equation*}
$$

where $0 \leq i_{1} \leq \cdots \leq i_{s} \leq 2^{m-2}, u>0, t>0, e_{1}, \ldots, e_{u}$ are odd and f_{1}, \ldots, f_{t} are even. We have

$$
\begin{aligned}
& \left(\alpha^{\tau+2^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{u}} \beta, \alpha^{\tau+2^{\nu} f_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} f_{t}} \beta\right) \\
\sim & \left(\alpha^{\tau+2^{\nu} f_{0}^{\prime}} \beta, \alpha^{\tau+2^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{u}} \beta, \alpha^{\tau+2^{\nu} f_{2}} \beta, \ldots, \alpha^{\tau+2^{\nu} f_{t}} \beta\right) \quad \text { (} f_{0}^{\prime} \text { even) },
\end{aligned}
$$

where

$$
\begin{aligned}
& \left(\alpha^{\tau+2^{\nu} f_{0}^{\prime}} \beta, \alpha^{\tau+2^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{u}} \beta\right) \\
\sim & \left(\alpha^{\tau+2^{\nu}} \beta, \alpha^{\tau+2^{\nu} f_{1}^{\prime}} \beta, \alpha^{\tau+2^{\nu} e_{2}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{u}} \beta\right) \\
\sim & \left(f_{1}^{\prime} \text { even, Lemma } 2.1 \text { (iii) }\right) \\
\sim & \left(\alpha^{\tau+2^{\nu}} \beta, \ldots, \alpha^{\tau+2^{\nu}} \beta, \alpha^{\tau+2^{\nu} f_{u}^{\prime}} \beta\right)
\end{aligned} \quad\left(f_{u}^{\prime} \text { even }\right) . ~ l
$$

Hence

$$
\begin{align*}
& \left(\alpha^{\tau+2^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{u}} \beta, \alpha^{\tau+2^{\nu} f_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} f_{t}} \beta\right) \tag{3.7}\\
\sim & \left(\alpha^{\tau+2^{\nu}} \beta, \ldots, \alpha^{\tau+2^{\nu}} \beta, \alpha^{\tau+2^{\nu} f_{u}^{\prime}} \beta, \alpha^{\tau+2^{\nu} f_{2}} \beta, \ldots, \alpha^{\tau+2^{\nu} f_{t}} \beta\right) .
\end{align*}
$$

By a similar argument,

$$
\begin{align*}
& \left(\alpha^{\tau+2^{\nu}} \beta, \alpha^{\tau+2^{\nu} f_{u}^{\prime}} \beta, \alpha^{\tau+2^{\nu} f_{2}} \beta, \ldots, \alpha^{\tau+2^{\nu} f_{t}} \beta\right) \\
\sim & \left(\alpha^{\tau+2^{\nu} h} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right) \quad \text { (h odd) } . \tag{3.8}
\end{align*}
$$

By (3.7) and (3.8),

$$
\begin{align*}
& \left(\alpha^{\tau+2^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} e_{u}} \beta, \alpha^{\tau+2^{\nu} f_{1}} \beta, \ldots, \alpha^{\tau+2^{\nu} f_{t}} \beta\right) \\
\sim & \left(\alpha^{\tau+2^{\nu}} \beta, \ldots, \alpha^{\tau+2^{\nu}} \beta, \alpha^{\tau+2^{\nu} h} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right) \tag{3.9}\\
\sim & \left(\alpha^{\tau+2^{\nu} e} \beta, \alpha^{\tau+2^{\nu}} \beta, \ldots, \alpha^{\tau+2^{\nu}} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right) \quad(e \text { odd }) .
\end{align*}
$$

Combining (3.6) and (3.9), we see that α is equivalent to the tuple in (3.2).
Theorem 3.1 has an immediate corollary.

Corollary 3.2. (i) $\boldsymbol{a}, \boldsymbol{b} \in \mathcal{A}$ are equivalent $\Leftrightarrow \boldsymbol{a}$ is a permutation of \boldsymbol{b}.
(ii) $\boldsymbol{a}, \boldsymbol{b} \in \mathcal{B}_{\nu, \tau}$ are equivalent $\Leftrightarrow \Lambda(\boldsymbol{a})=\Lambda(\boldsymbol{b})$ and $\pi(\boldsymbol{a})=\pi(\boldsymbol{b})$.
(iii) $\boldsymbol{a}, \boldsymbol{b} \in \mathcal{C}_{\nu, \tau}$ are equivalent $\Leftrightarrow \Lambda(\boldsymbol{a})=\Lambda(\boldsymbol{b}), t(\boldsymbol{a})=t(\boldsymbol{b})$ and $\pi(\boldsymbol{a})=\pi(\boldsymbol{b})$.

Theorem 3.1 and Corollary 3.2 allow us to compute the number of B_{n}-orbits in $\mathbb{Q}_{2^{m}}^{n}$ and the cardinality of each B_{n}-orbit.

Corollary 3.3. The total number of equivalence classes in $Q_{2^{m}}^{n}$ is

$$
\left|Q_{2^{m}}^{n} / \sim\right|=\binom{n+2^{m-1}-1}{n}+2^{m-1}\binom{n+2^{m-2}}{n-1}+2^{m-2} \sum_{\nu=0}^{m-2}\binom{n+2^{m-2-\nu}}{n-2} .
$$

Proof. By Theorem 3.1 (i),

$$
|\mathcal{A} / \sim|=\binom{n+2^{m-1}-1}{n}
$$

In (3.1), the number $\left(i_{1}, \ldots, i_{s}\right)$, where $s \leq n-1$ is not fixed, with $0 \leq i_{1} \leq \cdots \leq i_{s} \leq 2^{m-2}$ is $\binom{n+2^{m-2}}{n-1}$, which is the number of " $2^{m-2}+2$ choose $n-1$ with repetition". When i_{1}, \ldots, i_{s} are chosen, the number of choices for (τ, e) in (3.1) is 2^{m-1}. So,

$$
\left|\left(\bigcup_{\substack{1 \leq \nu \leq m-1 \\ 0 \leq \tau<2^{1}}} \mathcal{B}_{\nu, \tau}\right) / \sim\right|=2^{m-1}\binom{n+2^{m-2}}{n-1} .
$$

In (3.2), for each $0 \leq \nu \leq m-2$, the number of $\left(i_{1}, \ldots, i_{s} ; t\right)$, where $s \leq n-2$ is not fixed, with $0 \leq i_{1} \leq \cdots \leq i_{s} \leq 2^{m-2}, \min \left\{\nu_{2}\left(i_{1}\right), \ldots, \nu_{2}\left(i_{s}\right)\right\} \geq \nu$ and $1 \leq t \leq n-s-1$ is $\binom{n+2^{m-2-\nu}}{n-2}$, which is the number of " $2^{m-2-\nu}+3$ choose $n-2$ with repetition". When ν and $\left(i_{1}, \ldots, i_{s} ; t\right)$ are chosen, the number of choices for (τ, e) in (3.2) is 2^{m-2}. So,

$$
\left|\left(\bigcup_{\substack{0 \leq \nu \leq m-2 \\ 0 \leq \tau<2^{\nu}}} \mathcal{C}_{\nu, \tau}\right) / \sim\right|=2^{m-2} \sum_{\nu=0}^{m-2}\binom{n+2^{m-2-\nu}}{n-2}
$$

Therefore,

$$
\begin{aligned}
\left|Q_{2^{m}}^{n} / \sim\right| & =|\mathcal{A} / \sim|+\left|\left(\bigcup_{\substack{1 \leq \nu \leq m-1 \\
0 \leq \tau<2^{\nu}}} \mathcal{B}_{\nu, \tau}\right) / \sim\right|+\left|\left(\bigcup_{\substack{0 \leq \nu \leq m-2 \\
0 \leq \tau<2^{\nu}}} \mathcal{C}_{\nu, \tau}\right) / \sim\right| \\
& =\binom{n+2^{m-1}-1}{n}+2^{m-1}\binom{n+2^{m-2}}{n-1}+2^{m-2} \sum_{\nu=0}^{m-2}\binom{n+2^{m-2-\nu}}{n-2} .
\end{aligned}
$$

Corollary 3.4. (i) Let $n_{0}, \ldots, n_{2^{m-1}-1} \in \mathbb{N}$ such that $n_{0}+\cdots+n_{2^{m-1}-1}=n$. Then

$$
\left\lvert\,[\underbrace{\alpha^{0}, \ldots, \alpha^{0}}_{n_{0}}, \ldots, \underbrace{\alpha^{2^{m-1}-1}, \ldots, \alpha^{2^{m-1}-1}}_{n_{2^{m-1}-1}} \left\lvert\,=\binom{n}{n_{0}, \ldots, n_{2^{m-1}-1}} .\right.\right.
$$

(ii) Let $1 \leq \nu \leq m-1,0 \leq \tau<2^{\nu}$, and $0 \leq e<2^{m-1-\nu}$. Let $n_{0}, \ldots, n_{2^{m-2}} \in \mathbb{N}$ such that $n_{0}+\cdots+n_{2^{m-2}} \leq n-1$ and $\min \left(\left\{\nu_{2}(i): n_{i}>0\right\} \cup\{m-2\}\right)=\nu-1$. Then

$$
\begin{aligned}
& |[\underbrace{\alpha^{0}, \ldots, \alpha^{0}}_{n_{0}}, \ldots, \underbrace{\alpha^{2^{m-2}}, \ldots, \alpha^{2^{m-2}}}_{n_{2^{m-2}}}, \alpha^{\tau+2^{\nu} e} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta]| \\
= & \binom{n}{n_{0}, \ldots, n_{2^{m-2}}, n-n_{0}-\cdots-n_{2^{m-2}}} 2^{(m-1-\nu)\left(n-n_{0}-\cdots-n_{2} m-2-1\right)+n_{0}+\cdots+n_{2^{m-2}-1}} .
\end{aligned}
$$

(iii) Let $0 \leq \nu \leq m-2,0 \leq \tau<2^{\nu}$, and $0 \leq e<2^{m-1-\nu}$, $e \equiv 1(\bmod 2)$. Let $n_{0}, \ldots, n_{2^{m-2}} \in \mathbb{N}$ and $t>0$ such that $n_{0}+\cdots+n_{2^{m-2}}+t \leq n-1$ and $\min \left(\left\{\nu_{2}(i):\right.\right.$ $\left.\left.n_{i}>0\right\} \cup\{m-2\}\right) \geq \nu$. Then

$$
\begin{aligned}
& \mid[\underbrace{\alpha^{0}, \ldots, \alpha^{0}}_{n_{0}}, \ldots, \underbrace{\alpha^{2^{m-2}}, \ldots, \alpha^{2^{m-2}}}_{n_{2 m-2}}, \alpha^{\tau+2^{\nu}} \beta, \alpha^{\tau+2^{\nu}} \beta, \ldots, \alpha^{\tau+2^{\nu}} \beta, \underbrace{\left.\alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right]}_{t} \mid \\
= & \binom{n}{n_{0}, \ldots, n_{2^{m-2}}, t, n-n_{0}-\cdots-n_{2^{m-2}}-t} 2^{(m-2-\nu)\left(n-n_{0}-\cdots-n_{2^{m-2}}-1\right)+n_{0}+\cdots+n_{2^{m-2}-1}} .
\end{aligned}
$$

Proof. The formulas follow from Corollary 3.2 and simple counting arguments.

$4 \quad B_{n}$-orbits in Tuples of Dihedral Groups

The dihedral group D_{N} of order $2 N$ is given by the presentation

$$
D_{N}=\left\langle\alpha \beta \mid \alpha^{N}=1=\beta^{2}, \beta \alpha \beta^{-1}=\alpha^{-1}\right\rangle .
$$

Each element of D_{N} can be uniquely written as $\alpha^{i} \beta^{j}$ with $0 \leq i<N$ and $0 \leq j \leq 1$. Clearly, equations (2.1) and (2.2), hence (2.3) - (2.6), also hold for D_{N}. In these equations, the only difference between D_{N} and $Q_{2^{m}}$ that affects the Hurwitz action is that $o(\alpha)=N$ in D_{N} but $o(\alpha)=2^{m-1}$ in $Q_{2^{m}}$. When $N=2^{m-1}$, there is no difference. Therefore, under the bijection $D_{2^{m-1}} \rightarrow Q_{2^{m}}, \alpha^{i} \beta^{j} \mapsto \alpha^{i} \beta^{j}, 0 \leq i<2^{m-1}, 0 \leq j \leq 1$, the action of B_{n} on $D_{2^{m-1}}^{n}$ is identical to that on $Q_{2^{m}}^{n}$. Hence, all results in section 3 hold with $Q_{2^{m}}$ replaced by $D_{2^{m-1}}$.

When $N=p^{m}$, where p is an odd prime, the B_{n}-orbits in $D_{p^{m}}^{n}$ can be determined using a method similar to that of section 3.

For $\boldsymbol{a}=\left(\alpha^{i_{1}} \beta^{j_{1}}, \ldots, \alpha^{i_{n}} \beta^{j_{n}}\right) \in D_{p^{m}}^{n}$, where $0 \leq i_{k}<p^{m}$ and $0 \leq j_{k} \leq 1$, let

$$
\begin{gathered}
\lambda(\boldsymbol{a})=\text { the multi set }\left\{\min \left\{i_{k}, p^{m}-i_{k}\right\}: j_{k}=0\right\}, \\
\gamma(\boldsymbol{a})=\left\{i_{k}: j_{k}=1\right\} .
\end{gathered}
$$

$\lambda(\boldsymbol{a})$ is an invariant of the Hurwitz action on $D_{p^{m}}^{n}$. Let

$$
\mathfrak{A}=\left\{\boldsymbol{a} \in D_{p^{m}}^{n}: \gamma(\boldsymbol{a})=\varnothing\right\} .
$$

Moreover, for $0 \leq \nu \leq m$ and $0 \leq \tau<p^{\nu}$, let

$$
\mathfrak{B}_{\nu, \tau}=\left\{\boldsymbol{a} \in D_{p^{m}}^{n}: \min \left(\left\{\nu_{p}(i): i \in \lambda(\boldsymbol{a})\right\} \cup\{m\}\right)=\nu, \varnothing \neq \gamma(\boldsymbol{a}) \subset \tau+p^{\nu} \mathbb{Z}\right\}
$$

for $0 \leq \nu \leq m-1$ and $0 \leq \tau<p^{\nu}$, let

$$
\begin{aligned}
& \mathfrak{C}_{\nu, \tau}=\left\{\boldsymbol{a} \in D_{p^{m}}^{n}:\right. \min \left(\left\{\nu_{p}(i): i \in \lambda(\boldsymbol{a})\right\} \cup\{m\}\right) \geq \nu+1, \varnothing \neq \gamma(\boldsymbol{a}) \subset \tau+p^{\nu} \mathbb{Z}, \\
&\left.\exists j, j^{\prime} \in \gamma(\boldsymbol{a}) \text { such that } \nu_{p}\left(j-j^{\prime}\right)=\nu\right\} .
\end{aligned}
$$

Then $\mathfrak{A}, \mathfrak{B}_{\nu, \tau}$ and $\mathfrak{C}_{\nu, \tau}$ are all invariant under the Hurwitz equivalence and

$$
D_{p^{m}}=\mathfrak{A} \dot{\cup}\left(\bigcup_{\substack{0 \leq \nu \leq m \\ 0 \leq \tau<p^{\nu}}}^{\cdot} \mathfrak{B}_{\nu, \tau}\right) \dot{\cup}\left(\bigcup_{\substack{0 \leq \nu \leq m-1 \\ 0 \leq \tau<p^{\nu}}}^{\cdot} \mathfrak{C}_{\nu, \tau}\right)
$$

For $\boldsymbol{a} \in \mathfrak{C}_{\nu, \tau}$, collect the components of \boldsymbol{a} of the form $\alpha^{i} \beta$ and let the result be $\left(\alpha^{i_{1}} \beta, \ldots, \alpha^{i_{t}} \beta\right)$, where $0 \leq i_{k}<p^{m}$. Let $e_{k} \in \mathbb{Z}_{p}, 1 \leq k \leq t$, be defined by $i_{k} \equiv \tau+p^{\nu} e_{k}$ $\left(\bmod p^{\nu+1}\right)$. Put

$$
\sigma(\boldsymbol{a})=\sum_{k=1}^{t}(-1)^{k-1} e_{k}
$$

For example, let $p=5, m=4, n=5$, and let

$$
\boldsymbol{a}=\left(\alpha^{9+5^{2} \cdot 4} \beta, \alpha^{5^{3} \cdot 3}, \alpha^{9+5^{2} \cdot 2} \beta, \alpha^{9+5^{2} \cdot 8} \beta, \alpha^{9+5^{2}} \beta\right) \in \mathfrak{C}_{2,9}
$$

Then $\sigma(\boldsymbol{a})=4-2+8-1=4 \in \mathbb{Z}_{5}$. From (2.3) - (2.6), it is easy to see that $\sigma(\boldsymbol{a})$ is an invariant under the Hurwitz equivalence. Further partition $\mathfrak{C}_{\nu, \tau}$ as

$$
\mathfrak{C}_{\nu, \tau}^{0}=\left\{\boldsymbol{a} \in \mathfrak{C}_{\nu, \tau}: \sigma(\boldsymbol{a})=0\right\}
$$

and

$$
\mathfrak{C}_{\nu, \tau}^{1}=\left\{\boldsymbol{a} \in \mathfrak{C}_{\nu, \tau}: \sigma(\boldsymbol{a}) \neq 0\right\}
$$

Lemma 4.1. Let $\tau, \nu, e, f \in \mathbb{Z}$ such that $0 \leq \nu \leq m-1$ and $e \not \equiv f(\bmod p)$. Then for every $g \in \mathbb{Z}$,

$$
\left(\alpha^{\tau+p^{\nu} e} \beta, \alpha^{\tau+p^{\nu} f} \beta\right) \sim\left(\alpha^{\tau+p^{\nu}(e+g)} \beta, \alpha^{\tau+p^{\nu}(f+g)} \beta\right)
$$

The proof of Lemma 4.1 is the same as that of Lemma 2.1 (iii).
Theorem 4.2. (i) The B_{n}-orbits in \mathfrak{A} are represented by

$$
\left(\alpha^{i_{1}}, \ldots, \alpha^{i_{n}}\right),
$$

where $0 \leq i_{1} \leq \cdots \leq i_{n}<p^{m}$.
(ii) Let $0 \leq \nu \leq m$ and $0 \leq \tau<p^{\nu}$. The B_{n}-orbits in $\mathfrak{B}_{\nu, \tau}$ are represented by

$$
\left(\alpha^{i_{1}}, \ldots, \alpha^{i_{s}}, \alpha^{\tau+p^{\nu} e} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right)
$$

where $0 \leq i_{1} \leq \cdots \leq i_{s}<\frac{1}{2} p^{m}, \min \left\{\nu_{p}\left(i_{1}\right), \ldots, \nu_{p}\left(i_{s}\right), m\right\}=\nu, 0 \leq e<p^{m-\nu}$.
(iii) Let $0 \leq \nu \leq m-1$ and $0 \leq \tau<p^{\nu}$.
(iii-1) The B_{n}-orbits in $\mathfrak{C}_{\nu, \tau}^{0}$ are represented by

$$
\begin{equation*}
(\alpha^{i_{1}}, \ldots, \alpha^{i_{s}}, \alpha^{\tau+p^{\nu} e} \beta, \alpha^{\tau+p^{\nu}} \beta, \underbrace{\alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta}_{n-2-s}), \tag{4.1}
\end{equation*}
$$

where $0 \leq i_{1} \leq \cdots \leq i_{s}<\frac{1}{2} p^{m}, n-2-s>0, \min \left\{\nu_{p}\left(i_{1}\right), \ldots, \nu_{p}\left(i_{s}\right), m\right\} \geq \nu+1$, $0 \leq e<p^{m-\nu}, e \equiv 1(\bmod p)$.
(iii-2) The B_{n}-orbits in $\mathfrak{C}_{\nu, \tau}^{1}$ are represented by

$$
\begin{equation*}
(\alpha^{i_{1}}, \ldots, \alpha^{i_{s}}, \alpha^{\tau+p^{\nu} e} \beta, \underbrace{\alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta}_{n-1-s}), \tag{4.2}
\end{equation*}
$$

where $0 \leq i_{1} \leq \cdots \leq i_{s}<\frac{1}{2} p^{m}, n-1-s>0, \min \left\{\nu_{p}\left(i_{1}\right), \ldots, \nu_{p}\left(i_{s}\right), m\right\} \geq \nu+1$, $0 \leq e<p^{m-\nu}, e \not \equiv 0(\bmod p)$.

Proof. The proofs of (i) and (ii) are identical to those of the corresponding cases in Theorem 3.1.
(iii) Different tuples in (4.1) are nonequivalent since they have different combinations of invariants $\lambda(\boldsymbol{a})$ and $\pi(\boldsymbol{a})$. The same is true for the tuples in (4.2). Therefore, it remains to show that every tuple $\boldsymbol{a} \in \mathfrak{C}_{\nu, \tau}$ is equivalent to one of the tuples in (4.1) or (4.2).

By (2.3) - (2.5), we may write

$$
\boldsymbol{a}=\left(\alpha^{i_{1}}, \ldots, \alpha^{i_{s}}, \alpha^{\tau+p^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+p^{\nu} e_{t}} \beta\right),
$$

where $0 \leq i_{1} \leq \cdots \leq i_{s}<\frac{1}{2} p^{m}$ and there exist k, l such that $e_{k} \not \equiv e_{l}(\bmod p)$. It suffices to show that either

$$
\begin{equation*}
\left(\alpha^{\tau+p^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+p^{\nu} e_{t}} \beta\right) \sim\left(\alpha^{\tau+p^{\nu} e} \beta, \alpha^{\tau+p^{\nu}} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right) \tag{4.3}
\end{equation*}
$$

for some $0 \leq e<p^{m-\nu}$ with $e \equiv 1(\bmod p)$ or

$$
\begin{equation*}
\left(\alpha^{\tau+p^{\nu} e_{1}} \beta, \ldots, \alpha^{\tau+p^{\nu} e_{t}} \beta\right) \sim\left(\alpha^{\tau+p^{\nu} e} \beta, \alpha^{\tau} \beta, \ldots, \alpha^{\tau} \beta\right) \tag{4.4}
\end{equation*}
$$

for some $0 \leq e<p^{m-\nu}$ with $e \not \equiv 0(\bmod p)$. We prove this claim by induction on t.
If $t=2$, by Lemma 4.1, we have

$$
\left(\alpha^{\tau+p^{\nu} e_{1}} \beta, \alpha^{\tau+p^{\nu} e_{2}} \beta\right) \sim\left(\alpha^{\tau+p^{\nu}\left(e_{1}-e_{2}\right)} \beta, \alpha^{\tau} \beta\right) ;
$$

hence (4.4) holds.

Now assume $t>2$. Assume that $e_{k} \not \equiv e_{k+1} \equiv \cdots \equiv e_{t}(\bmod p)$. By Lemma 4.1,

$$
\begin{aligned}
& \left(\alpha^{\tau+p^{\nu} e_{k}} \beta, \alpha^{\tau+p^{\nu} e_{k+1}} \beta, \ldots, \alpha^{\tau+p^{\nu} e_{t}} \beta\right) \\
\sim & \left(\alpha^{\tau+p^{\nu} e_{k}^{\prime}} \beta, \alpha^{\tau+p^{\nu} e_{k}} \beta, \ldots, \alpha^{\tau+p^{\nu} e_{t}} \beta\right) \\
\sim & \cdots \\
\sim & \left(\alpha^{\tau+p^{\nu} e_{k}^{\prime}} \beta, \cdots, \alpha^{\tau+p^{\nu} e_{t-2}^{\prime}} \beta, \alpha^{\tau+p^{\nu} e_{k}} \beta, \alpha^{\tau+p^{\nu} e_{t}} \beta\right) \\
\sim & \left(\alpha^{\tau+p^{\nu} e_{k}^{\prime}} \beta, \cdots, \alpha^{\tau+p^{\nu} e_{t-1}^{\prime}} \beta, \alpha^{\tau} \beta\right) .
\end{aligned}
$$

So,

$$
\left(\alpha^{\tau+p^{\nu} e_{1}} \beta, \cdots, \alpha^{\tau+p^{\nu} e_{t}} \beta\right) \sim\left(\alpha^{\tau+p^{\nu} f_{1}} \beta, \cdots, \alpha^{\tau+p^{\nu} f_{t-1}} \beta, \alpha^{\tau} \beta\right) .
$$

If f_{1}, \ldots, f_{t-1} are not all the same modulo p, the induction hypothesis applies to $\left(\alpha^{\tau+p^{\nu} f_{1}} \beta, \cdots, \alpha^{\tau+p^{\nu} f_{t-1}} \beta\right)$. So, assume $f_{1} \equiv \cdots \equiv f_{t-1} \not \equiv 0(\bmod p)$. Let $x \in \mathbb{Z}$ such that $x \not \equiv-f_{t-1}(\bmod p)$. Then

$$
\begin{aligned}
& \left(\alpha^{\tau+p^{\nu} f_{t-2}} \beta, \alpha^{\tau+p^{\nu} f_{t-1}} \beta, \alpha^{\tau} \beta\right) \\
\sim & \left(\alpha^{\tau+p^{\nu} f_{t-2}} \beta, \alpha^{\tau+p^{\nu}\left(f_{t-1}+1\right)} \beta, \alpha^{\tau+p^{\nu}} \beta\right) \\
\sim & \left(\alpha^{\tau+p^{\nu}\left(f_{t-2}+x\right)} \beta, \alpha^{\tau+p^{\nu}\left(f_{t-1}+x+1\right)} \beta, \alpha^{\tau+p^{\nu}} \beta\right) \\
\sim & \left(\alpha^{\tau+p^{\nu}\left(f_{t-2}+x\right)} \beta, \alpha^{\tau+p^{\nu}\left(f_{t-1}+x\right)} \beta, \alpha^{\tau} \beta\right) .
\end{aligned}
$$

If $t=3$, choose $x=-f_{t-1}+1$, then (4.4) holds. If $t>3$, choose $x \in \mathbb{Z}$ such that $x \not \equiv-f_{t-1}, 0(\bmod p)$. Then the induction hypothesis applies to

$$
\left(\alpha^{\tau+p^{\nu} f_{1}} \beta, \cdots, \alpha^{\tau+p^{\nu} f_{t-3}} \beta, \alpha^{\tau+p^{\nu}\left(f_{t-2}+x\right)} \beta, \alpha^{\tau+p^{\nu}\left(f_{t-1}+x\right)} \beta\right) .
$$

Corollary 4.3. (i) $\boldsymbol{a}, \boldsymbol{b} \in \mathfrak{A}$ are equivalent $\Leftrightarrow \boldsymbol{a}$ is a permutation of \boldsymbol{b}.
(ii) $\boldsymbol{a}, \boldsymbol{b} \in \mathfrak{B}_{\nu, \tau}$ are equivalent $\Leftrightarrow \lambda(\boldsymbol{a})=\lambda(\boldsymbol{b})$ and $\pi(\boldsymbol{a})=\pi(\boldsymbol{b})$.
(iii) $\boldsymbol{a}, \boldsymbol{b} \in \mathfrak{C}_{\nu, \tau}$ are equivalent $\Leftrightarrow \lambda(\boldsymbol{a})=\lambda(\boldsymbol{b}), \sigma(\boldsymbol{a})=\sigma(\boldsymbol{b})$ and $\pi(\boldsymbol{a})=\pi(\boldsymbol{b})$.

We remark that the B_{n}-orbits of $D_{2 p^{m}}^{n}$, where p is an odd prime, can also be determined due to the fact that $D_{2 p^{m}} \cong \mathbb{Z}_{2} \times D_{p^{m}}$. However, for an arbitrary positive integer N, determination of the B_{n}-orbits of D_{N}^{n} seems to be a difficult problem.

Acknowledgment: The author thanks the referee for pointing out an error in Corollary 3.3 in a previous version of the paper.

References

[1] T. Ben-Itzhak and M. Teicher, Graph theoretic method for determining Hurwitz equivalence in the symmetric group, Israel J. Math. 135 (2003), 83-91.
[2] S. P. Humphries, Finite Hurwitz braid group actions on sequences of Euclidean reflections, J. Algebra 269 (2003), 556 - 58.
[3] J. Michel, Hurwitz action on tuples of Euclidean reflections, J. Algebra 295 (2006), 289-292.

