Note on generating all subsets of a finite set with disjoint unions

David Ellis e-mail: dce27@cam.ac.uk

Submitted: Dec 2, 2008; Accepted: May 12, 2009; Published: May 20, 2009 Mathematics Subject Classification: 05D05

Abstract

We call a family $\mathcal{G} \subset \mathbb{P}[n]$ a k-generator of $\mathbb{P}[n]$ if every $x \subset [n]$ can be expressed as a union of at most k disjoint sets in \mathcal{G} . Frein, Lévêque and Sebő [1] conjectured that for any $n \geq k$, such a family must be at least as large as the k-generator obtained by taking a partition of [n] into classes of sizes as equal as possible, and taking the union of the power-sets of the classes. We generalize a theorem of Alon and Frankl [2] in order to show that for fixed k, any k-generator of $\mathbb{P}[n]$ must have size at least $k2^{n/k}(1 - o(1))$, thereby verifying the conjecture asymptotically for multiples of k.

1 Introduction

We call a family $\mathcal{G} \subset \mathbb{P}[n]$ a k-generator of $\mathbb{P}[n]$ if every $x \subset [n]$ can be expressed as a union of at most k disjoint sets in \mathcal{G} . Frein, Lévêque and Sebő [1] conjectured that for any $n \geq k$, such a family must be at least as large as the k-generator

$$\mathcal{F}_{n,k} := \bigcup_{i=1}^{k} \mathbb{P}V_i \setminus \{\emptyset\}$$
(1)

where (V_i) is a partition of [n] into k classes of sizes as equal as possible. For k = 2, removing the disjointness condition yields the stronger conjecture of Erdős – namely, if $\mathcal{G} \subset \mathbb{P}[n]$ is a family such that any subset of [n] is a union (not necessarily disjoint) of at most two sets in \mathcal{G} , then \mathcal{G} is at least as large as

$$\mathcal{F}_{n,2} = \mathbb{P}V_1 \cup \mathbb{P}V_2 \setminus \{\emptyset\}$$
⁽²⁾

where (V_1, V_2) is a partition of [n] into two classes of sizes $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$. We refer the reader to for example Füredi and Katona [5] for some results around the Erdős conjecture. In fact, Frein, Lévêque and Sebő [1] made the analogous conjecture for all k. (We call a

family $\mathcal{G} \subset \mathbb{P}[n]$ a k-base of $\mathbb{P}[n]$ if every $x \subset [n]$ can be expressed as a union of at most k sets in \mathcal{G} ; they conjectured that for any $k \leq n$, any k-base of $\mathbb{P}[n]$ is at least as large as $\mathcal{F}_{n,k}$.)

In this paper, we show that for k fixed, a k-generator must have size at least $k2^{n/k}(1 - o(1))$; when n is a multiple of k, this is asymptotic to $f(n, k) = |\mathcal{F}_{n,k}| = k(2^{n/k} - 1)$. Our main tool is a generalization of a theorem of Alon and Frankl, proved via an Erdős-Stone type result.

As observed in [1], for a k-generator \mathcal{G} , we have the following trivial bound on $|\mathcal{G}| = m$. The number of ways of choosing at most k sets in \mathcal{G} must be at least the number of subsets of [n], i.e.:

$$\sum_{i=0}^{k} \binom{m}{i} \ge 2^{n}$$

For fixed k, the number of subsets of [n] of size at most k-1 is $\sum_{i=0}^{k-1} {m \choose i} = \Theta(1/m) {m \choose k}$, so

$$\sum_{i=0}^{k} \binom{m}{i} = (1 + \Theta(1/m))\binom{m}{k} = (1 + \Theta(1/m))m^{k}/k!$$

Hence,

$$m \ge (k!)^{1/k} 2^{n/k} (1 - o(1))$$

Notice that this ignores disjointness, and is therefore also a lower bound on the size of a k-base; it also ignores the fact that some unions may occur several times. We will improve the constant from $(k!)^{1/k} \approx k/e$ to k by taking into account disjointness. Namely, we will show that for any fixed $k \in \mathbb{N}$ and $\delta > 0$, if $m \geq 2^{(1/(k+1)+\delta)n}$, then any family $\mathcal{G} \subset \mathbb{P}[n]$ of size m contains at most

$$\left(\frac{k!}{k^k} + o(1)\right) \binom{m}{k}$$

unordered k-tuples $\{A_1, \ldots, A_k\}$ of pairwise disjoint sets, where the $o(1) = o_{k,\delta}(1)$ term tends to 0 as $m \to \infty$ for fixed k, δ . In other words, if we consider the 'Kneser graph' on $\mathbb{P}[n]$, with edge set consisting of the disjoint pairs of subsets, the density of K_k 's in any sufficiently large $\mathcal{G} \subset \mathbb{P}[n]$ is at most $k!/k^k + o(1)$. The proof uses an Erdős-Stone type result (Theorem 1) together with a result of Alon and Frankl (Lemma 4, which is Lemma 4.3 in [2]).

The k = 2 case of this was proved by Alon and Frankl (Theorem 1.3 of [2]): for any fixed $\delta > 0$, if $m \ge 2^{(1/3+\delta)n}$, then any family $\mathcal{G} \subset \mathbb{P}[n]$ of size m contains at most

$$\left(\frac{1}{2} + o(1)\right) \binom{m}{2}$$

disjoint pairs, where the o(1) term tends to 0 as $m \to \infty$ for fixed δ . In other words, the edge-density in any sufficiently large subset of the Kneser graph is at most $\frac{1}{2} + o(1)$.

Our result will follow quickly from this. From the trivial bound above, any k-generator $\mathcal{G} \subset \mathbb{P}[n]$ has size $m \geq 2^{n/k}$, so putting $\delta = 1/k(k+1)$, we will see that the number of

unordered k-tuples of pairwise disjoint sets in \mathcal{G} is at most

$$\left(\frac{k!}{k^k} + o(1)\right) \binom{m}{k}$$

 \mathbf{SO}

$$2^{n} \leq \left(\frac{k!}{k^{k}} + o(1) + \Theta(1/m)\right) \binom{m}{k} = \left(\frac{m}{k}\right)^{k} (1 + o(1))$$

and therefore

$$m \ge k2^{n/k}(1-o(1))$$

where the o(1) term tends to 0 as $n \to \infty$ for fixed $k \in \mathbb{N}$.

For k = 2, this improves the estimate $m \ge \sqrt{2}2^{n/2} - 1$ in [1] (Theorem 5.3) by a factor of $\sqrt{2}$. For *n* even, it is asymptotically tight, but for *n* odd, the conjectured smallest 2-generator (2) has size $(3/\sqrt{2})2^{n/2} - 1$, so our constant is 'out' by a factor of $3/(2\sqrt{2}) = 1.061$ (to 3 d.p.)

For general k and n = qk + r, the conjectured smallest k-generator (1) has size

$$(k-r)2^{q} + r2^{q+1} - k = (k+r)2^{-r/k}2^{n/k} - k$$

so our constant is out by a factor of $(1 + r/k)2^{-r/k} \le 2^{1-1/\ln 2}/\ln 2 = 1.061$ (to 3 d.p.).

It seems that different arguments will be required to improve the constant for $k \nmid n$, or to prove the exact result. Further, it seems likely that proving the same bounds for k-bases (i.e. without the assumption of disjoint unions) would be much harder, and require different techniques altogether.

2 A preliminary Erdős-Stone type result

We will need the following generalization of the Erdős-Stone theorem:

Theorem 1 Given $r \leq s \in \mathbb{N}$ and $\epsilon > 0$, if n is sufficiently large depending on r, s and ϵ , then any graph G on n vertices with at least

$$\left(\frac{s(s-1)(s-2)\dots(s-r+1)}{s^r}+\epsilon\right)\binom{n}{r}$$

 K_r 's contains a copy of $K_{s+1}(t)$, where $t \ge C_{r,s,\epsilon} \log n$ for some constant $C_{r,s,\epsilon}$ depending on r, s, ϵ .

Note that the density $\eta = \eta_{r,s} := \frac{s(s-1)(s-2)\dots(s-r+1)}{s^r}$ above is the density of K_r 's in the *s*-partite Turán graph with classes of size T, $K_s(T)$, when T is large.

Proof:

Let G be a graph with K_r density at least $\eta + \epsilon$; let N be the number of l-subsets $U \subset V(G)$

such that G[U] has K_r -density at least $\eta + \epsilon/2$. Then, double counting the number of times an *l*-subset contains a K_r ,

$$N\binom{l}{r} + \left(\binom{n}{r} - N\right)(\eta + \epsilon/2)\binom{l}{r} \ge (\eta + \epsilon)\binom{n}{r}\binom{n-r}{l-r}$$

so rearranging,

$$N \ge \frac{\epsilon/2}{1 - \eta - \epsilon/2} \binom{n}{l} \ge \frac{\epsilon}{2} \binom{n}{l}$$

Hence, there are at least $\frac{\epsilon}{2} \binom{n}{l}$ *l*-sets *U* such that G[U] has K_r -density at least $\eta + \epsilon/2$. But Erdős proved that the number of K_r 's in a K_{s+1} -free graph on *l* vertices is maximized by the *s*-partite Turán graph on *l* vertices (Theorem 3 in [3]), so provided *l* is chosen sufficiently large, each such G[U] contains a K_{s+1} . Each K_{s+1} in *G* is contained in $\binom{n-s-1}{l-s-1}$ *l*-sets, and therefore *G* contains at least

$$\frac{\epsilon}{2} \frac{\binom{n}{l}}{\binom{n-s-1}{l-s-1}} \ge \frac{\epsilon}{2} (n/l)^{s+1}$$

 K_{s+1} 's, i.e. a positive density of K_{s+1} 's. Let a = s + 1, $c = \frac{\epsilon}{2l^{s+1}}$ and apply the following 'blow up' theorem of Nikiforov (a slight weakening of Theorem 1 in [4]):

Theorem 2 Let $a \ge 2$, $c^a \log n \ge 1$. Then any graph on n vertices with at least $cn^a K_a$'s contains a $K_a(t)$ with $t = \lfloor c^a \log n \rfloor$.

We see that provided n is sufficiently large depending on r, s and ϵ , G must contain a $K_{s+1}(t)$ for $t = \lfloor c^{s+1} \log n \rfloor = \lfloor (\frac{\epsilon}{2l^{s+1}})^{s+1} \log n \rfloor \ge C_{r,s,\epsilon} \log n$, proving Theorem 1. \Box

3 Density of K_k 's in large subsets of the Kneser graph

We are now ready for our main result, a generalization of Theorem 1.3 in [2]:

Theorem 3 For any fixed $k \in \mathbb{N}$ and $\delta > 0$, if $m \ge 2^{\left(\frac{1}{k+1}+\delta\right)n}$, then any family $\mathcal{G} \subset \mathbb{P}[n]$ of size $|\mathcal{G}| = m$ contains at most

$$\left(\frac{k!}{k^k} + o(1)\right) \binom{m}{k}$$

unordered k-tuples $\{A_1, \ldots, A_k\}$ of pairwise disjoint sets, where the o(1) term tends to 0 as $m \to \infty$ for fixed k, δ .

Proof:

By increasing δ if necessary, we may assume $m = 2^{\left(\frac{1}{k+1}+\delta\right)n}$. Consider the subgraph G of the 'Kneser graph' on $\mathbb{P}[n]$ induced on the set \mathcal{G} , i.e. the graph G with vertex set \mathcal{G} and edge set $\{xy : x \cap y = \emptyset\}$. Let $\epsilon > 0$; we will show that if n is sufficiently large depending

on k, δ and ϵ , the density of K_k 's in G is less than $\frac{k!}{k^k} + \epsilon$. Suppose the density of K_k 's in G is at least $\frac{k!}{k^k} + \epsilon$; we will obtain a contradiction for n sufficiently large. Let $l = m^f$ (we will choose $f < \frac{\delta}{2(1+(k+1)\delta)}$ maximal such that m^f is an integer). By the argument above, there are at least $\frac{\epsilon}{2} \binom{m}{l} l$ -sets U such that G[U] has K_k -density at least $\frac{k!}{k^k} + \frac{\epsilon}{2}$. Provided m is sufficiently large depending on k, δ and ϵ , by Theorem 1, each such G[U] contains a copy of $K := K_{k+1}(t)$ where $t \ge C_{k,k,\epsilon/2} \log l = fC'_{k,\epsilon} \log m = C''_{k,\delta,\epsilon} \log m$. Any copy of K is contained in $\binom{m-(k+1)t}{l-(k+1)t} l$ -sets, so G must contain at least $\frac{\epsilon}{2} \binom{m}{l} \ge \frac{\epsilon}{2} (m/l)^{(k+1)t}$ copies of K.

But we also have the following lemma of Alon and Frankl (Lemma 4.3 in [2]), whose proof we include for completeness:

Lemma 4 G contains at most $(k+1)2^{n(1-\delta t)} {m \choose t}^{k+1} \frac{1}{(k+1)!}$ copies of $K_{k+1}(t)$.

Proof:

The probability that a *t*-subset $\{A_1, \ldots, A_t\}$ chosen uniformly at random from \mathcal{G} has union of size at most $\frac{n}{k+1}$ is at most

$$\sum_{S \subset [n]: |S| \le n/(k+1)} \binom{2^{|S|}}{t} / \binom{m}{t} \le 2^n (2^{n/(k+1)}/m)^t = 2^{n(1-\delta t)}$$

Choose at random k + 1 such t-sets; the probability that at least one has union of size at most n/(k+1) is at most

$$(k+1)2^{n(1-\delta)t}$$

But this condition holds if our k+1 t-sets are the vertex classes of a $K_{k+1}(t)$ in G. Hence, the number of copies of $K_{k+1}(t)$ in G is at most

$$(k+1)2^{n(1-\delta t)}\binom{m}{t}^{k+1}\frac{1}{(k+1)!}$$

as required. \Box

If m is sufficiently large depending on k, δ and ϵ , we may certainly choose $t \geq \lceil 4/\delta \rceil$, and comparing our two bounds gives

$$\frac{\epsilon}{2} (m/l)^{(k+1)t} \le (k+1)2^{n(1-\delta t)} \binom{m}{t}^{k+1} \frac{1}{(k+1)!} \le \frac{1}{2} 2^{n(1-\delta t)} m^{(k+1)t}$$

Substituting in $l = m^f$, we get

$$\epsilon \le 2^{n(1-\delta t)} m^{f(k+1)t}$$

Substituting in $m = 2^{\left(\frac{1}{k+1}+\delta\right)n}$, we get

$$\epsilon \le 2^{n(1-t(\delta - f(1+(k+1)\delta)))} \le 2^{-n}$$

since we chose $f < \frac{\delta}{2(1+(k+1)\delta)}$ and $t \ge 4/\delta$. This is a contradiction if n is sufficiently large, proving Theorem 3. \Box

As explained above, our result on k-generators quickly follows:

Theorem 5 For fixed $k \in \mathbb{N}$, any k-generator \mathcal{G} of $\mathbb{P}[n]$ must contain at least $k2^{n/k}(1 - o(1))$ sets.

Proof:

Let \mathcal{G} be a k-generator of $\mathbb{P}[n]$, with $|\mathcal{G}| = m$. As observed in the introduction, the trivial bound gives $m \geq 2^{n/k}$, so applying Theorem 3 with $\delta = 1/k(k+1)$, we see that the number of ways of choosing k pairwise disjoint sets in \mathcal{G} is at most

$$\left(\frac{k!}{k^k} + o(1)\right) \binom{m}{k}$$

The number of ways of choosing less than k pairwise disjoint sets is, very crudely, at most $\sum_{i=0}^{k-1} {m \choose i} = \Theta(1/m) {m \choose k}$; since every subset of [n] is a disjoint union of at most k sets in \mathcal{G} , we obtain

$$2^{n} \leq \left(\frac{k!}{k^{k}} + o(1) + \Theta(1/m)\right) \binom{m}{k} = \left(\frac{m}{k}\right)^{k} (1 + o(1))$$

(where the o(1) term tends to 0 as $m \to \infty$), and therefore

$$m \ge k2^{n/k}(1-o(1))$$

(where the o(1) term tends to 0 as $n \to \infty$).

Note: The author wishes to thank Peter Keevash for bringing to his attention the result of Erdős in [3], after reading a previous draft of this paper in which a weaker, asymptotic version of Erdős' result was proved.

References

- Frein, Y., Lévêque, B., Sebő, A., Generating All Sets With Bounded Unions, Combinatorics, Probability and Computing 17 (2008) pp. 641-660
- [2] Alon, N., Frankl, P., The Maximum Number of Disjoint Pairs in a Family of Subsets, Graphs and Combinatorics 1 (1985), pp. 13-21
- [3] Erdős, P., On the number of complete subgraphs contained in certain graphs, Publ. Math. Inst. Hung. Acad. Sci., Ser. A 7 (1962), pp. 459-464
- [4] Nikiforov, V., Graphs with many *r*-cliques have large complete *r*-partite subgraphs, Bulletin of the London Mathematical Society Volume 40, Issue 1 (2008) pp. 23-25
- [5] Füredi, Z., Katona, G.O.H., 2-bases of quadruples, Combinatorics, Probability and Computing 15 (2006) pp. 131-141