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Abstract

We call a family G ⊂ P[n] a k-generator of P[n] if every x ⊂ [n] can be expressed
as a union of at most k disjoint sets in G. Frein, Lévêque and Sebő [1] conjectured
that for any n ≥ k, such a family must be at least as large as the k-generator
obtained by taking a partition of [n] into classes of sizes as equal as possible, and
taking the union of the power-sets of the classes. We generalize a theorem of Alon
and Frankl [2] in order to show that for fixed k, any k-generator of P[n] must have
size at least k2n/k(1 − o(1)), thereby verifying the conjecture asymptotically for
multiples of k.

1 Introduction

We call a family G ⊂ P[n] a k-generator of P[n] if every x ⊂ [n] can be expressed as a
union of at most k disjoint sets in G. Frein, Lévêque and Sebő [1] conjectured that for
any n ≥ k, such a family must be at least as large as the k-generator

Fn,k :=
k

⋃

i=1

PVi \ {∅} (1)

where (Vi) is a partition of [n] into k classes of sizes as equal as possible. For k = 2,
removing the disjointness condition yields the stronger conjecture of Erdős – namely, if
G ⊂ P[n] is a family such that any subset of [n] is a union (not necessarily disjoint) of at
most two sets in G, then G is at least as large as

Fn,2 = PV1 ∪ PV2 \ {∅} (2)

where (V1, V2) is a partition of [n] into two classes of sizes ⌊n/2⌋ and ⌈n/2⌉. We refer the
reader to for example Füredi and Katona [5] for some results around the Erdős conjecture.
In fact, Frein, Lévêque and Sebő [1] made the analagous conjecture for all k. (We call a
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family G ⊂ P[n] a k-base of P[n] if every x ⊂ [n] can be expressed as a union of at most
k sets in G; they conjectured that for any k ≤ n, any k-base of P[n] is at least as large as
Fn,k.)

In this paper, we show that for k fixed, a k-generator must have size at least k2n/k(1−
o(1)); when n is a multiple of k, this is asymptotic to f(n, k) = |Fn,k| = k(2n/k − 1). Our
main tool is a generalization of a theorem of Alon and Frankl, proved via an Erdős-Stone
type result.

As observed in [1], for a k-generator G, we have the following trivial bound on |G| = m.
The number of ways of choosing at most k sets in G must be at least the number of subsets
of [n], i.e.:

k
∑

i=0

(

m

i

)

≥ 2n

For fixed k, the number of subsets of [n] of size at most k − 1 is
∑k−1

i=0

(

m
i

)

= Θ(1/m)
(

m
k

)

,
so

k
∑

i=0

(

m

i

)

= (1 + Θ(1/m))

(

m

k

)

= (1 + Θ(1/m))mk/k!

Hence,
m ≥ (k!)1/k2n/k(1 − o(1))

Notice that this ignores disjointness, and is therefore also a lower bound on the size of a
k-base; it also ignores the fact that some unions may occur several times. We will improve
the constant from (k!)1/k ≈ k/e to k by taking into account disjointness. Namely, we will
show that for any fixed k ∈ N and δ > 0, if m ≥ 2(1/(k+1)+δ)n, then any family G ⊂ P[n]
of size m contains at most

(

k!

kk
+ o(1)

) (

m

k

)

unordered k-tuples {A1, . . . , Ak} of pairwise disjoint sets, where the o(1) = ok,δ(1) term
tends to 0 as m → ∞ for fixed k, δ. In other words, if we consider the ‘Kneser graph’ on
P[n], with edge set consisting of the disjoint pairs of subsets, the density of Kk’s in any
sufficiently large G ⊂ P[n] is at most k!/kk + o(1). The proof uses an Erdős-Stone type
result (Theorem 1) together with a result of Alon and Frankl (Lemma 4, which is Lemma
4.3 in [2]).

The k = 2 case of this was proved by Alon and Frankl (Theorem 1.3 of [2]): for any
fixed δ > 0, if m ≥ 2(1/3+δ)n, then any family G ⊂ P[n] of size m contains at most

(

1
2

+ o(1)
)

(

m

2

)

disjoint pairs, where the o(1) term tends to 0 as m → ∞ for fixed δ. In other words, the
edge-density in any sufficiently large subset of the Kneser graph is at most 1

2
+ o(1).

Our result will follow quickly from this. From the trivial bound above, any k-generator
G ⊂ P[n] has size m ≥ 2n/k, so putting δ = 1/k(k + 1), we will see that the number of
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unordered k-tuples of pairwise disjoint sets in G is at most

(

k!

kk
+ o(1)

) (

m

k

)

so

2n ≤
(

k!

kk
+ o(1) + Θ(1/m)

) (

m

k

)

=
(m

k

)k

(1 + o(1))

and therefore
m ≥ k2n/k(1 − o(1))

where the o(1) term tends to 0 as n → ∞ for fixed k ∈ N.
For k = 2, this improves the estimate m ≥

√
22n/2 − 1 in [1] (Theorem 5.3) by a

factor of
√

2. For n even, it is asymptotically tight, but for n odd, the conjectured
smallest 2-generator (2) has size (3/

√
2)2n/2 − 1, so our constant is ‘out’ by a factor of

3/(2
√

2) = 1.061 (to 3 d.p.)
For general k and n = qk + r, the conjectured smallest k-generator (1) has size

(k − r)2q + r2q+1 − k = (k + r)2−r/k2n/k − k

so our constant is out by a factor of (1 + r/k)2−r/k ≤ 21−1/ ln 2/ ln 2 = 1.061 (to 3 d.p.).
It seems that different arguments will be required to improve the constant for k ∤ n,

or to prove the exact result. Further, it seems likely that proving the same bounds for k-
bases (i.e. without the assumption of disjoint unions) would be much harder, and require
different techniques altogether.

2 A preliminary Erdős-Stone type result

We will need the following generalization of the Erdős-Stone theorem:

Theorem 1 Given r ≤ s ∈ N and ǫ > 0, if n is sufficiently large depending on r, s and

ǫ, then any graph G on n vertices with at least

(

s(s − 1)(s − 2) . . . (s − r + 1)

sr
+ ǫ

) (

n

r

)

Kr’s contains a copy of Ks+1(t), where t ≥ Cr,s,ǫ log n for some constant Cr,s,ǫ depending

on r, s, ǫ.

Note that the density η = ηr,s := s(s−1)(s−2)...(s−r+1)
sr above is the density of Kr’s in the

s-partite Turán graph with classes of size T , Ks(T ), when T is large.

Proof:

Let G be a graph with Kr density at least η+ǫ; let N be the number of l-subsets U ⊂ V (G)
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such that G[U ] has Kr-density at least η + ǫ/2. Then, double counting the number of
times an l-subset contains a Kr,

N

(

l

r

)

+

((

n

r

)

− N

)

(η + ǫ/2)

(

l

r

)

≥ (η + ǫ)

(

n

r

)(

n − r

l − r

)

so rearranging,

N ≥ ǫ/2

1 − η − ǫ/2

(

n

l

)

≥ ǫ
2

(

n

l

)

Hence, there are at least ǫ
2

(

n
l

)

l-sets U such that G[U ] has Kr-density at least η + ǫ/2.
But Erdős proved that the number of Kr’s in a Ks+1-free graph on l vertices is maximized
by the s-partite Turán graph on l vertices (Theorem 3 in [3]), so provided l is chosen
sufficiently large, each such G[U ] contains a Ks+1. Each Ks+1 in G is contained in

(

n−s−1
l−s−1

)

l-sets, and therefore G contains at least

ǫ
2

(

n
l

)

(

n−s−1
l−s−1

) ≥ ǫ

2
(n/l)s+1

Ks+1’s, i.e. a positive density of Ks+1’s. Let a = s + 1, c = ǫ
2ls+1 and apply the following

‘blow up’ theorem of Nikiforov (a slight weakening of Theorem 1 in [4]):

Theorem 2 Let a ≥ 2, ca log n ≥ 1. Then any graph on n vertices with at least cna Ka’s

contains a Ka(t) with t = ⌊ca log n⌋.

We see that provided n is sufficiently large depending on r, s and ǫ, G must contain a
Ks+1(t) for t = ⌊cs+1 log n⌋ = ⌊( ǫ

2ls+1 )
s+1 log n⌋ ≥ Cr,s,ǫ log n, proving Theorem 1. �

3 Density of Kk’s in large subsets of the Kneser graph

We are now ready for our main result, a generalization of Theorem 1.3 in [2]:

Theorem 3 For any fixed k ∈ N and δ > 0, if m ≥ 2

“

1
k+1

+δ
”

n
, then any family G ⊂ P[n]

of size |G| = m contains at most

(

k!

kk
+ o(1)

) (

m

k

)

unordered k-tuples {A1, . . . , Ak} of pairwise disjoint sets, where the o(1) term tends to 0
as m → ∞ for fixed k, δ.

Proof:

By increasing δ if necessary, we may assume m = 2

“

1
k+1

+δ
”

n
. Consider the subgraph G of

the ‘Kneser graph’ on P[n] induced on the set G, i.e. the graph G with vertex set G and
edge set {xy : x∩ y = ∅}. Let ǫ > 0; we will show that if n is sufficiently large depending
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on k, δ and ǫ, the density of Kk’s in G is less than k!
kk + ǫ. Suppose the density of Kk’s in

G is at least k!
kk + ǫ; we will obtain a contradiction for n sufficiently large. Let l = mf (we

will choose f < δ
2(1+(k+1)δ)

maximal such that mf is an integer). By the argument above,

there are at least ǫ
2

(

m
l

)

l-sets U such that G[U ] has Kk-density at least k!
kk + ǫ

2
. Provided

m is sufficiently large depending on k, δ and ǫ, by Theorem 1, each such G[U ] contains
a copy of K := Kk+1(t) where t ≥ Ck,k,ǫ/2 log l = fC ′

k,ǫ log m = C ′′
k,δ,ǫ log m. Any copy of

K is contained in
(

m−(k+1)t
l−(k+1)t

)

l-sets, so G must contain at least ǫ
2

(m

l
)

(m−(k+1)t
l−(k+1)t )

≥ ǫ
2
(m/l)(k+1)t

copies of K.
But we also have the following lemma of Alon and Frankl (Lemma 4.3 in [2]), whose

proof we include for completeness:

Lemma 4 G contains at most (k + 1)2n(1−δt)
(

m
t

)k+1 1
(k+1)!

copies of Kk+1(t).

Proof:

The probability that a t-subset {A1, . . . , At} chosen uniformly at random from G has
union of size at most n

k+1
is at most

∑

S⊂[n]:|S|≤n/(k+1)

(

2|S|

t

)

/

(

m

t

)

≤ 2n(2n/(k+1)/m)t = 2n(1−δt)

Choose at random k + 1 such t-sets; the probability that at least one has union of size at
most n/(k + 1) is at most

(k + 1)2n(1−δ)t

But this condition holds if our k+1 t-sets are the vertex classes of a Kk+1(t) in G. Hence,
the number of copies of Kk+1(t) in G is at most

(k + 1)2n(1−δt)

(

m

t

)k+1
1

(k + 1)!

as required. �

If m is sufficiently large depending on k, δ and ǫ, we may certainly choose t ≥ ⌈4/δ⌉,
and comparing our two bounds gives

ǫ
2
(m/l)(k+1)t ≤ (k + 1)2n(1−δt)

(

m

t

)k+1
1

(k + 1)!
≤ 1

2
2n(1−δt)m(k+1)t

Substituting in l = mf , we get

ǫ ≤ 2n(1−δt)mf(k+1)t

Substituting in m = 2

“

1
k+1

+δ
”

n
, we get

ǫ ≤ 2n(1−t(δ−f(1+(k+1)δ))) ≤ 2−n
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since we chose f < δ
2(1+(k+1)δ)

and t ≥ 4/δ. This is a contradiction if n is sufficiently large,
proving Theorem 3. �

As explained above, our result on k-generators quickly follows:

Theorem 5 For fixed k ∈ N, any k-generator G of P[n] must contain at least k2n/k(1 −
o(1)) sets.

Proof:

Let G be a k-generator of P[n], with |G| = m. As observed in the introduction, the trivial
bound gives m ≥ 2n/k, so applying Theorem 3 with δ = 1/k(k + 1), we see that the
number of ways of choosing k pairwise disjoint sets in G is at most

(

k!

kk
+ o(1)

) (

m

k

)

The number of ways of choosing less than k pairwise disjoint sets is, very crudely, at most
∑k−1

i=0

(

m
i

)

= Θ(1/m)
(

m
k

)

; since every subset of [n] is a disjoint union of at most k sets in
G, we obtain

2n ≤
(

k!

kk
+ o(1) + Θ(1/m)

) (

m

k

)

=
(m

k

)k

(1 + o(1))

(where the o(1) term tends to 0 as m → ∞), and therefore

m ≥ k2n/k(1 − o(1))

(where the o(1) term tends to 0 as n → ∞). �

Note: The author wishes to thank Peter Keevash for bringing to his attention the result
of Erdős in [3], after reading a previous draft of this paper in which a weaker, asymptotic
version of Erdős’ result was proved.
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[3] Erdős, P., On the number of complete subgraphs contained in certain graphs, Publ.

Math. Inst. Hung. Acad. Sci., Ser. A 7 (1962), pp. 459-464

[4] Nikiforov, V., Graphs with many r -cliques have large complete r -partite subgraphs,
Bulletin of the London Mathematical Society Volume 40, Issue 1 (2008) pp. 23-25
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