Note on generating all subsets of a finite set with disjoint unions

David Ellis
e-mail: dce27@cam.ac.uk

Submitted: Dec 2, 2008; Accepted: May 12, 2009; Published: May 20, 2009
Mathematics Subject Classification: 05D05

Abstract

We call a family $\mathcal{G} \subset \mathbb{P}[n]$ a k-generator of $\mathbb{P}[n]$ if every $x \subset[n]$ can be expressed as a union of at most k disjoint sets in \mathcal{G}. Frein, Lévêque and Sebő [1] conjectured that for any $n \geq k$, such a family must be at least as large as the k-generator obtained by taking a partition of $[n]$ into classes of sizes as equal as possible, and taking the union of the power-sets of the classes. We generalize a theorem of Alon and Frankl [2] in order to show that for fixed k, any k-generator of $\mathbb{P}[n]$ must have size at least $k 2^{n / k}(1-o(1))$, thereby verifying the conjecture asymptotically for multiples of k.

1 Introduction

We call a family $\mathcal{G} \subset \mathbb{P}[n]$ a k-generator of $\mathbb{P}[n]$ if every $x \subset[n]$ can be expressed as a union of at most k disjoint sets in \mathcal{G}. Frein, Lévêque and Sebő [1] conjectured that for any $n \geq k$, such a family must be at least as large as the k-generator

$$
\begin{equation*}
\mathcal{F}_{n, k}:=\bigcup_{i=1}^{k} \mathbb{P} V_{i} \backslash\{\emptyset\} \tag{1}
\end{equation*}
$$

where $\left(V_{i}\right)$ is a partition of $[n]$ into k classes of sizes as equal as possible. For $k=2$, removing the disjointness condition yields the stronger conjecture of Erdős - namely, if $\mathcal{G} \subset \mathbb{P}[n]$ is a family such that any subset of $[n]$ is a union (not necessarily disjoint) of at most two sets in \mathcal{G}, then \mathcal{G} is at least as large as

$$
\begin{equation*}
\mathcal{F}_{n, 2}=\mathbb{P} V_{1} \cup \mathbb{P} V_{2} \backslash\{\emptyset\} \tag{2}
\end{equation*}
$$

where $\left(V_{1}, V_{2}\right)$ is a partition of $[n]$ into two classes of sizes $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$. We refer the reader to for example Füredi and Katona [5] for some results around the Erdős conjecture. In fact, Frein, Lévêque and Sebő [1] made the analagous conjecture for all k. (We call a
family $\mathcal{G} \subset \mathbb{P}[n]$ a k-base of $\mathbb{P}[n]$ if every $x \subset[n]$ can be expressed as a union of at most k sets in \mathcal{G}; they conjectured that for any $k \leq n$, any k-base of $\mathbb{P}[n]$ is at least as large as $\mathcal{F}_{n, k}$.)

In this paper, we show that for k fixed, a k-generator must have size at least $k 2^{n / k}(1-$ $o(1))$; when n is a multiple of k, this is asymptotic to $f(n, k)=\left|\mathcal{F}_{n, k}\right|=k\left(2^{n / k}-1\right)$. Our main tool is a generalization of a theorem of Alon and Frankl, proved via an Erdős-Stone type result.

As observed in [1], for a k-generator \mathcal{G}, we have the following trivial bound on $|\mathcal{G}|=m$. The number of ways of choosing at most k sets in \mathcal{G} must be at least the number of subsets of $[n]$, i.e.:

$$
\sum_{i=0}^{k}\binom{m}{i} \geq 2^{n}
$$

For fixed k, the number of subsets of $[n]$ of size at most $k-1$ is $\sum_{i=0}^{k-1}\binom{m}{i}=\Theta(1 / m)\binom{m}{k}$, so

$$
\sum_{i=0}^{k}\binom{m}{i}=(1+\Theta(1 / m))\binom{m}{k}=(1+\Theta(1 / m)) m^{k} / k!
$$

Hence,

$$
m \geq(k!)^{1 / k} 2^{n / k}(1-o(1))
$$

Notice that this ignores disjointness, and is therefore also a lower bound on the size of a k-base; it also ignores the fact that some unions may occur several times. We will improve the constant from $(k!)^{1 / k} \approx k / e$ to k by taking into account disjointness. Namely, we will show that for any fixed $k \in \mathbb{N}$ and $\delta>0$, if $m \geq 2^{(1 /(k+1)+\delta) n}$, then any family $\mathcal{G} \subset \mathbb{P}[n]$ of size m contains at most

$$
\left(\frac{k!}{k^{k}}+o(1)\right)\binom{m}{k}
$$

unordered k-tuples $\left\{A_{1}, \ldots, A_{k}\right\}$ of pairwise disjoint sets, where the $o(1)=o_{k, \delta}(1)$ term tends to 0 as $m \rightarrow \infty$ for fixed k, δ. In other words, if we consider the 'Kneser graph' on $\mathbb{P}[n]$, with edge set consisting of the disjoint pairs of subsets, the density of K_{k} 's in any sufficiently large $\mathcal{G} \subset \mathbb{P}[n]$ is at most $k!/ k^{k}+o(1)$. The proof uses an Erdős-Stone type result (Theorem 1) together with a result of Alon and Frankl (Lemma 4, which is Lemma 4.3 in [2]).

The $k=2$ case of this was proved by Alon and Frankl (Theorem 1.3 of [2]): for any fixed $\delta>0$, if $m \geq 2^{(1 / 3+\delta) n}$, then any family $\mathcal{G} \subset \mathbb{P}[n]$ of size m contains at most

$$
\left(\frac{1}{2}+o(1)\right)\binom{m}{2}
$$

disjoint pairs, where the $o(1)$ term tends to 0 as $m \rightarrow \infty$ for fixed δ. In other words, the edge-density in any sufficiently large subset of the Kneser graph is at most $\frac{1}{2}+o(1)$.

Our result will follow quickly from this. From the trivial bound above, any k-generator $\mathcal{G} \subset \mathbb{P}[n]$ has size $m \geq 2^{n / k}$, so putting $\delta=1 / k(k+1)$, we will see that the number of
unordered k-tuples of pairwise disjoint sets in \mathcal{G} is at most

$$
\left(\frac{k!}{k^{k}}+o(1)\right)\binom{m}{k}
$$

so

$$
2^{n} \leq\left(\frac{k!}{k^{k}}+o(1)+\Theta(1 / m)\right)\binom{m}{k}=\left(\frac{m}{k}\right)^{k}(1+o(1))
$$

and therefore

$$
m \geq k 2^{n / k}(1-o(1))
$$

where the $o(1)$ term tends to 0 as $n \rightarrow \infty$ for fixed $k \in \mathbb{N}$.
For $k=2$, this improves the estimate $m \geq \sqrt{2} 2^{n / 2}-1$ in [1] (Theorem 5.3) by a factor of $\sqrt{2}$. For n even, it is asymptotically tight, but for n odd, the conjectured smallest 2 -generator (2) has size $(3 / \sqrt{2}) 2^{n / 2}-1$, so our constant is 'out' by a factor of $3 /(2 \sqrt{2})=1.061$ (to 3 d.p.)

For general k and $n=q k+r$, the conjectured smallest k-generator (1) has size

$$
(k-r) 2^{q}+r 2^{q+1}-k=(k+r) 2^{-r / k} 2^{n / k}-k
$$

so our constant is out by a factor of $(1+r / k) 2^{-r / k} \leq 2^{1-1 / \ln 2} / \ln 2=1.061$ (to 3 d.p.).
It seems that different arguments will be required to improve the constant for $k \nmid n$, or to prove the exact result. Further, it seems likely that proving the same bounds for k bases (i.e. without the assumption of disjoint unions) would be much harder, and require different techniques altogether.

2 A preliminary Erdős-Stone type result

We will need the following generalization of the Erdős-Stone theorem:
Theorem 1 Given $r \leq s \in \mathbb{N}$ and $\epsilon>0$, if n is sufficiently large depending on r, s and ϵ, then any graph G on n vertices with at least

$$
\left(\frac{s(s-1)(s-2) \ldots(s-r+1)}{s^{r}}+\epsilon\right)\binom{n}{r}
$$

K_{r} 's contains a copy of $K_{s+1}(t)$, where $t \geq C_{r, s, \epsilon} \log n$ for some constant $C_{r, s, \epsilon}$ depending on r, s, ϵ.

Note that the density $\eta=\eta_{r, s}:=\frac{s(s-1)(s-2) \ldots(s-r+1)}{s^{r}}$ above is the density of K_{r} 's in the s-partite Turán graph with classes of size $T, K_{s}(T)$, when T is large.

Proof:
Let G be a graph with K_{r} density at least $\eta+\epsilon$; let N be the number of l-subsets $U \subset V(G)$
such that $G[U]$ has K_{r}-density at least $\eta+\epsilon / 2$. Then, double counting the number of times an l-subset contains a K_{r},

$$
N\binom{l}{r}+\left(\binom{n}{r}-N\right)(\eta+\epsilon / 2)\binom{l}{r} \geq(\eta+\epsilon)\binom{n}{r}\binom{n-r}{l-r}
$$

so rearranging,

$$
N \geq \frac{\epsilon / 2}{1-\eta-\epsilon / 2}\binom{n}{l} \geq \frac{\epsilon}{2}\binom{n}{l}
$$

Hence, there are at least $\frac{\epsilon}{2}\binom{n}{l} l$-sets U such that $G[U]$ has K_{r}-density at least $\eta+\epsilon / 2$. But Erdős proved that the number of K_{r} 's in a K_{s+1}-free graph on l vertices is maximized by the s-partite Turán graph on l vertices (Theorem 3 in [3]), so provided l is chosen sufficiently large, each such $G[U]$ contains a K_{s+1}. Each K_{s+1} in G is contained in $\binom{n-s-1}{l-s-1}$ l-sets, and therefore G contains at least

$$
\frac{\epsilon}{2} \frac{\binom{n}{l}}{\binom{n-s-1}{l-s-1}} \geq \frac{\epsilon}{2}(n / l)^{s+1}
$$

K_{s+1} 's, i.e. a positive density of K_{s+1} 's. Let $a=s+1, c=\frac{\epsilon}{2 l^{s+1}}$ and apply the following 'blow up' theorem of Nikiforov (a slight weakening of Theorem 1 in [4]):

Theorem 2 Let $a \geq 2, c^{a} \log n \geq 1$. Then any graph on n vertices with at least $c n^{a} K_{a}$'s contains a $K_{a}(t)$ with $t=\left\lfloor c^{a} \log n\right\rfloor$.

We see that provided n is sufficiently large depending on r, s and ϵ, G must contain a $K_{s+1}(t)$ for $t=\left\lfloor c^{s+1} \log n\right\rfloor=\left\lfloor\left(\frac{\epsilon}{2 l^{s+1}}\right)^{s+1} \log n\right\rfloor \geq C_{r, s, \epsilon} \log n$, proving Theorem 1.

3 Density of K_{k} 's in large subsets of the Kneser graph

We are now ready for our main result, a generalization of Theorem 1.3 in [2]:
Theorem 3 For any fixed $k \in \mathbb{N}$ and $\delta>0$, if $m \geq 2^{\left(\frac{1}{k+1}+\delta\right) n}$, then any family $\mathcal{G} \subset \mathbb{P}[n]$ of size $|\mathcal{G}|=m$ contains at most

$$
\left(\frac{k!}{k^{k}}+o(1)\right)\binom{m}{k}
$$

unordered k-tuples $\left\{A_{1}, \ldots, A_{k}\right\}$ of pairwise disjoint sets, where the o(1) term tends to 0 as $m \rightarrow \infty$ for fixed k, δ.

Proof:
By increasing δ if necessary, we may assume $m=2^{\left(\frac{1}{k+1}+\delta\right) n}$. Consider the subgraph G of the 'Kneser graph' on $\mathbb{P}[n]$ induced on the set \mathcal{G}, i.e. the graph G with vertex set \mathcal{G} and edge set $\{x y: x \cap y=\emptyset\}$. Let $\epsilon>0$; we will show that if n is sufficiently large depending
on k, δ and ϵ, the density of K_{k} 's in G is less than $\frac{k!}{k^{k}}+\epsilon$. Suppose the density of K_{k} 's in G is at least $\frac{k!}{k^{k}}+\epsilon$; we will obtain a contradiction for n sufficiently large. Let $l=m^{f}$ (we will choose $f<\frac{\delta}{2(1+(k+1) \delta)}$ maximal such that m^{f} is an integer). By the argument above, there are at least $\frac{\epsilon}{2}\binom{m}{l} l$-sets U such that $G[U]$ has K_{k}-density at least $\frac{k!}{k^{k}}+\frac{\epsilon}{2}$. Provided m is sufficiently large depending on k, δ and ϵ, by Theorem 1, each such $G[U]$ contains a copy of $K:=K_{k+1}(t)$ where $t \geq C_{k, k, \epsilon / 2} \log l=f C_{k, \epsilon}^{\prime} \log m=C_{k, \delta, \epsilon}^{\prime \prime} \log m$. Any copy of K is contained in $\binom{m-(k+1) t}{l-(k+1) t} l$-sets, so G must contain at least $\frac{\epsilon}{2} \frac{\binom{m}{l}}{\binom{m-(k+1) t}{l-(k+1) t}} \geq \frac{\epsilon}{2}(m / l)^{(k+1) t}$ copies of K.

But we also have the following lemma of Alon and Frankl (Lemma 4.3 in [2]), whose proof we include for completeness:

Lemma $4 G$ contains at most $(k+1) 2^{n(1-\delta t)}\binom{m}{t}^{k+1} \frac{1}{(k+1)!}$ copies of $K_{k+1}(t)$.
Proof:
The probability that a t-subset $\left\{A_{1}, \ldots, A_{t}\right\}$ chosen uniformly at random from \mathcal{G} has union of size at most $\frac{n}{k+1}$ is at most

$$
\sum_{S \subset[n]:|S| \leq n /(k+1)}\binom{2^{|S|}}{t} /\binom{m}{t} \leq 2^{n}\left(2^{n /(k+1)} / m\right)^{t}=2^{n(1-\delta t)}
$$

Choose at random $k+1$ such t-sets; the probability that at least one has union of size at most $n /(k+1)$ is at most

$$
(k+1) 2^{n(1-\delta) t}
$$

But this condition holds if our $k+1 t$-sets are the vertex classes of a $K_{k+1}(t)$ in G. Hence, the number of copies of $K_{k+1}(t)$ in G is at most

$$
(k+1) 2^{n(1-\delta t)}\binom{m}{t}^{k+1} \frac{1}{(k+1)!}
$$

as required.
If m is sufficiently large depending on k, δ and ϵ, we may certainly choose $t \geq\lceil 4 / \delta\rceil$, and comparing our two bounds gives

$$
\frac{\epsilon}{2}(m / l)^{(k+1) t} \leq(k+1) 2^{n(1-\delta t)}\binom{m}{t}^{k+1} \frac{1}{(k+1)!} \leq \frac{1}{2} 2^{n(1-\delta t)} m^{(k+1) t}
$$

Substituting in $l=m^{f}$, we get

$$
\epsilon \leq 2^{n(1-\delta t)} m^{f(k+1) t}
$$

Substituting in $m=2^{\left(\frac{1}{k+1}+\delta\right) n}$, we get

$$
\epsilon \leq 2^{n(1-t(\delta-f(1+(k+1) \delta)))} \leq 2^{-n}
$$

since we chose $f<\frac{\delta}{2(1+(k+1) \delta)}$ and $t \geq 4 / \delta$. This is a contradiction if n is sufficiently large, proving Theorem 3.

As explained above, our result on k-generators quickly follows:
Theorem 5 For fixed $k \in \mathbb{N}$, any k-generator \mathcal{G} of $\mathbb{P}[n]$ must contain at least $k 2^{n / k}(1-$ $o(1))$ sets.

Proof:
Let \mathcal{G} be a k-generator of $\mathbb{P}[n]$, with $|\mathcal{G}|=m$. As observed in the introduction, the trivial bound gives $m \geq 2^{n / k}$, so applying Theorem 3 with $\delta=1 / k(k+1)$, we see that the number of ways of choosing k pairwise disjoint sets in \mathcal{G} is at most

$$
\left(\frac{k!}{k^{k}}+o(1)\right)\binom{m}{k}
$$

The number of ways of choosing less than k pairwise disjoint sets is, very crudely, at most $\sum_{i=0}^{k-1}\binom{m}{i}=\Theta(1 / m)\binom{m}{k}$; since every subset of $[n]$ is a disjoint union of at most k sets in \mathcal{G}, we obtain

$$
2^{n} \leq\left(\frac{k!}{k^{k}}+o(1)+\Theta(1 / m)\right)\binom{m}{k}=\left(\frac{m}{k}\right)^{k}(1+o(1))
$$

(where the o(1) term tends to 0 as $m \rightarrow \infty$), and therefore

$$
m \geq k 2^{n / k}(1-o(1))
$$

(where the $o(1)$ term tends to 0 as $n \rightarrow \infty$).
Note: The author wishes to thank Peter Keevash for bringing to his attention the result of Erdős in [3], after reading a previous draft of this paper in which a weaker, asymptotic version of Erdős' result was proved.

References

[1] Frein, Y., Lévêque, B., Sebő, A., Generating All Sets With Bounded Unions, Combinatorics, Probability and Computing 17 (2008) pp. 641-660
[2] Alon, N., Frankl, P., The Maximum Number of Disjoint Pairs in a Family of Subsets, Graphs and Combinatorics 1 (1985), pp. 13-21
[3] Erdős, P., On the number of complete subgraphs contained in certain graphs, Publ. Math. Inst. Hung. Acad. Sci., Ser. A 7 (1962), pp. 459-464
[4] Nikiforov, V., Graphs with many r-cliques have large complete r-partite subgraphs, Bulletin of the London Mathematical Society Volume 40, Issue 1 (2008) pp. 23-25
[5] Füredi, Z., Katona, G.O.H., 2-bases of quadruples, Combinatorics, Probability and Computing 15 (2006) pp. 131-141

