Set Systems with Restricted t-wise Intersections modulo Prime Powers

Rudy X. J. Liu
Department of Mathematics, Pearl River College
Tianjin University of Finance \& Economics, Tianjin, 301811, P. R. China
xiaojiethink@yahoo.com.cn

Submitted: Jan 4, 2009; Accepted: May 24, 2009; Published: Jun 5, 2009
Mathematics Subject Classifications: 05D05

Abstract

We give a polynomial upper bound on the size of set systems with restricted t-wise intersections modulo prime powers. Let $t \geq 2$. Let p be a prime and $q=p^{\alpha}$ be a prime power. Let $\mathcal{L}=\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}$ be a subset of $\{0,1,2, \ldots, q-1\}$. If \mathcal{F} is a family of subsets of an n element set X such that $\left|F_{1} \cap \cdots \cap F_{t}\right|(\bmod q) \in \mathcal{L}$ for any collection of t distinct sets from \mathcal{F} and $|F|(\bmod q) \notin \mathcal{L}$ for every $F \in \mathcal{F}$, then $$
|\mathcal{F}| \leq \frac{t(t-1)}{2} \sum_{i=0}^{2^{s-1}}\binom{n}{i}
$$

Our result extends a theorem of Babai, Frankl, Kutin, and Štefankovič, who studied the 2 -wise case for prime power moduli, and also complements a result of Grolmusz that no polynomial upper bound holds for non-prime-power composite moduli.

1 Introduction

We are interested in set systems with restricted t-wise intersections modulo prime powers. Let X denote a set of n elements and \mathcal{F} be a family of subsets of X. Let p be a prime and $q=p^{\alpha}$ be a prime power. Let \mathcal{L} be a subset of $\{0,1,2, \ldots, q-1\}$ of size s. For an integer $t \geq 2$, a family \mathcal{F} is called t-wise q-modular \mathcal{L}-intersecting if $\left|F_{1} \cap \cdots \cap F_{t}\right|(\bmod q) \in \mathcal{L}$ for any collection of t distinct sets from \mathcal{F} and $|F|(\bmod q) \notin \mathcal{L}$ for every $F \in \mathcal{F}$. It is called q-modular \mathcal{L}-intersecting for simplicity when $t=2$. Note that, the same definition is also used when q is not a prime power.

In 2001, Babai, Frankl, Kutin, and Stefankovič proved the size of a p^{α}-modular \mathcal{L} intersecting family is polynomial bounded as a function of n.

Theorem 1 (Babai et al. [1]) If \mathcal{F} is a p^{α}-modular \mathcal{L}-intersecting family of subsets of X, then

$$
|\mathcal{F}| \leq\binom{ n}{2^{s-1}}+\binom{n}{2^{s-1}-1}+\cdots+\binom{n}{0} .
$$

When $q=p$, Grolmusz [5] proved the following result in 2002.
Theorem 2 (Grolmusz [5]) If \mathcal{F} is a t-wise p-modular \mathcal{L}-intersecting family of subsets of X, then

$$
|\mathcal{F}| \leq(t-1) \sum_{i=0}^{s}\binom{n}{i}
$$

When $t=2$, it is a modular version of the celebrated Frankl-Wilson Theorem. Grolmusz and Sudakov [6] gave another proof of this bound using multilinear polynomials. Recently, Cao, Hwang and West [2] improved the above bound by replacing $\binom{n}{i}$ with $\binom{n-1}{i}$ in the sum.

In the same paper [5], Grolmusz also showed that Theorem 2 does not generalize to non-prime-power composite moduli. In particular for any $t \geq 2, q=6$ and $\mathcal{L}=\{1, \ldots, 5\}$, there exists a t-wise 6 -modular \mathcal{L}-intersecting family of X of superpolynomial size in n, see Theorem 11 in [5] for detail.

In this paper, we will fill the gap between Theorem 2 (prime moduli) and Grolmusz's result (non-prime-power composite moduli, Theorem 11 in [5]) by proving a polynomial upper bound on the size of the t-wise p^{α}-modular \mathcal{L}-intersecting families for any $t \geq 2$.

Theorem 3 If \mathcal{F} is a t-wise p^{α}-modular \mathcal{L}-intersecting family of subsets of X, then

$$
|\mathcal{F}| \leq \frac{t(t-1)}{2} \sum_{i=0}^{2^{s-1}}\binom{n}{i}
$$

Clearly, the special case $t=2$ of Theorem 3 corresponds to Theorem 1.

2 The Proof

In this section, let $q=p^{\alpha}$ be a prime power and we will give a proof of Theorem 3, which is motivated by the methods used in [1] and [3].

First we need the following Frankl-Wilson-type result for pairs of families of sets with restricted intersection modulo prime power, which is a slight generalization of Theorem 1.

Lemma 1 Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be two families of subsets of X such that $\left|A_{i} \cap B_{i}\right|(\bmod q) \notin \mathcal{L}$ for all $1 \leq i \leq m$ and $\left|A_{i} \cap B_{j}\right|(\bmod q) \in \mathcal{L}$ for $i \neq j$. Then

$$
m \leq\binom{ n}{2^{s-1}}+\binom{n}{2^{s-1}-1}+\cdots+\binom{n}{0}
$$

Note that Theorem 1 is a special case of Lemma 1 when $A_{i}=B_{i}$ for $1 \leq i \leq m$. The proof of this lemma follows from the proof of Lemma 3.1 in [1], and we refer the reader there for details.
Proof of Theorem 3 Let us apply induction on t. When $t=2$, it has been proved by Theorem 1. Now assume that $t>2$ and the assertion is true for $t=k$, we will prove that it also holds for $t=k+1$.

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be a $(k+1)$-wise q-modular \mathcal{L}-intersecting family of subsets of X. To prove the statement, we partition \mathcal{F} into three families of sets $\mathcal{A}, \mathcal{F}_{1}$ and \mathcal{F}_{2} with the following properties: there exists a family of sets \mathcal{B} such that the pair $(\mathcal{A}, \mathcal{B})$ satisfies the condition of Lemma $1,\left|\mathcal{F}_{1}\right|=(k-1)|\mathcal{A}|$ and the family \mathcal{F}_{2} is k-wise q-modular \mathcal{L} intersecting. To do this we repeat the following procedure. For every $0 \leq r \leq|\mathcal{F}|-1$, suppose that after step r we have already constructed families of sets $\mathcal{A}=\left\{A_{1}, \ldots, A_{i}\right\}$, $\mathcal{B}=\left\{B_{1}, \ldots, B_{i}\right\}, \mathcal{F}_{1}$ and $\mathcal{F}_{2}=\left\{D_{1}, \ldots, D_{j}\right\}$ such that $\left|\mathcal{F}_{1}\right|=(k-1) i$. Consider three possible cases.

Case 1: If $F_{r+1} \in \mathcal{F}_{1}$, then proceed to the next step.
Case 2: If there are indices $r+1<r_{1}<\cdots<r_{k-1}$ such that $F_{r_{i}} \notin \mathcal{F}_{1}$ for all $1 \leq i \leq k-1$ and $\left|F_{r+1} \cap F_{r_{1}} \cap \cdots \cap F_{r_{k-1}}\right|(\bmod q) \notin \mathcal{L}$, then define $A_{i+1}=F_{r+1}$, $B_{i+1}=F_{r+1} \cap F_{r_{1}} \cap \cdots \cap F_{r_{k-1}}$. Let $\mathcal{F}_{1}=\mathcal{F}_{1} \cup\left\{F_{r_{1}}, \cdots, F_{r_{k-1}}\right\}$ and proceed to the next step.

Case 3: Suppose that $\left|F_{r+1} \cap F_{r_{1}} \cap \cdots \cap F_{r_{k-1}}\right|(\bmod q) \in \mathcal{L}$ for every set of indices $r+1<r_{1}<\cdots<r_{k-1}$ with $F_{r_{i}} \notin \mathcal{F}_{1}$ for all $1 \leq i \leq k-1$. In this case define $D_{j+1}=F_{r+1}$ and continue. Clearly, by construction, \mathcal{F}_{2} is a k-wise q-modular \mathcal{L}-intersecting family.

Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{h}\right\}, \mathcal{B}=\left\{B_{1}, \ldots, B_{h}\right\}, \mathcal{F}_{1}$ and \mathcal{F}_{2} be the set systems obtained in the end of our procedure. Note that, by definition, $\left|A_{i} \cap B_{i}\right|(\bmod q) \notin \mathcal{L}$ for $1 \leq i \leq h$ but $\left|A_{i} \cap B_{j}\right|(\bmod q) \in \mathcal{L}$ for $i \neq j$, since this is a size of intersection of $k+1$ distinct members of \mathcal{F}.

Now we can apply Lemma 1 to bound the size of \mathcal{A}. Since $\mathcal{F}=\mathcal{A} \cup \mathcal{F}_{1} \cup \mathcal{F}_{2}$ and $\left|\mathcal{F}_{1}\right|=(k-1)|\mathcal{A}|$, by the induction hypothesis we obtain that

$$
\begin{aligned}
|\mathcal{F}| & \leq|\mathcal{A}|+\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right|=k|\mathcal{A}|+\left|\mathcal{F}_{2}\right| \\
& \leq k \sum_{i=0}^{2^{s-1}}\binom{n}{i}+\frac{k(k-1)}{2} \sum_{i=0}^{2^{s-1}}\binom{n}{i} \\
& =\frac{k(k+1)}{2} \sum_{i=0}^{2^{s-1}}\binom{n}{i} .
\end{aligned}
$$

This completes the proof of the theorem.

3 Concluding Remarks

The main point we make is that our bound in Theorem 3 implies a polynomial upper bound in n for the t-wise p^{α}-modular \mathcal{L}-intersecting families with $t \geq 3$. For the special
case of prime power moduli q and $s=q-1$, the bound in Theorem 3 can be improved.
Theorem 4 (Grolmusz and Sudakov [6]) Let $t \geq 2$ and r be integers. If \mathcal{F} is a family of subsets of X such that $|F|(\bmod q)=r$ for each $F \in \mathcal{F}$ and $\left|F_{1} \cap \cdots \cap F_{t}\right|(\bmod q) \neq r$ for any collection of t distinct sets from \mathcal{F}, then

$$
|\mathcal{F}| \leq(t-1) \sum_{i=0}^{q-1}\binom{n}{i}
$$

Still it would be interesting to obtain improved upper bound for our results.
Acknowledgments. I would like to thank my research supervisor, Professor Jiuqiang Liu for his support, especially during the last 2 years. This work was partially done when I was a student in Center for Combinatorics in Nankai University. I would also like to thank an anonymous referee for some helpful suggestions.

References

[1] L. Babai, P. Frankl, S. Kutin, and D. Stefankovič, Set systems with restricted intersections modulo prime powers, J. Combinatorial Theory, Ser. A, 95 (2001), 39-73.
[2] Weiting Cao, Kyung-Won Hwang, and Douglas B. West, Improved bounds on families under k-wise set-intersection constraints, Graphs and Combinatorics, 23 (2007), 381-386.
[3] Z. Füredi and B. Sudakov, Extremal set systems with restricted k-wise intersections, J. Combinatorial Theory, Ser. A, 105 (2004), 143-159.
[4] Vince Grolmusz, Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs, Combinatorica, 20, No.1, (2000), 71-86.
[5] Vince Grolmusz, Set-systems with restricted multiple intersections, Electronic J. Combinatorics, 9 (2002), R8.
[6] Vince Grolmusz and Benny Sudakov, On k-wise set-intersections and k-wise hamming distances, J. Combinatorial Theory, Ser. A, 99 (2002), 180-190.

