A note on packing graphs without cycles of length up to five

Agnieszka Görlich*, Andrzej Żak
University of Science and Technology AGH, Al. Mickiewicza 30, 30-059 Kraków, Poland
\{forys,zakandrz\}@agh.edu.pl

Submitted: Feb 3, 2009; Accepted: Oct 20, 2009; Published: Oct 26, 2009
Mathematics Subject Classification: 05C70

Abstract

The following statement was conjectured by Faudree, Rousseau, Schelp and Schuster: if a graph G is a non-star graph without cycles of length $m \leqslant 4$ then G is a subgraph of its complement. So far the best result concerning this conjecture is that every non-star graph G without cycles of length $m \leqslant 6$ is a subgraph of its complement. In this note we show that $m \leqslant 6$ can be replaced by $m \leqslant 5$.

1 Introduction

We deal with finite, simple graphs without loops and multiple edges. We use standard graph theory notation. Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. The order of G is denoted by $|G|$ and the size is denoted by $\|G\|$. We say that G is packable in its complement (G is packable, in short) if there is a permutation σ on $V(G)$ such that if $x y$ is an edge in G then $\sigma(x) \sigma(y)$ is not an edge in G. Thus, G is packable if and only if G is a subgraph of its complement. In [2] the authors stated the following conjecture:

Conjecture 1 Every non-star graph G without cycles of length $m \leqslant 4$ is packable.
In [2] they proved that the above conjecture holds if $\|G\| \leqslant \frac{6}{5}|G|-2$. Woźniak proved that a graph G without cycles of length $m \leqslant 7$ is packable [6]. His result was improved by Brandt [1] who showed that a graph G without cycles of length $m \leqslant 6$ is packable. Another, relatively short proof of Brandt's result was given in [3]. In this note we prove the following statement.

[^0]Theorem 2 If a graph G is a non-star graph without cycles of length $m \leqslant 5$ then G is packable.

The basic ingredient for the proof of our theorem is the lemma presented below. This lemma is both a modification and an extension of Lemma 2 in [4].

Lemma 3 Let G be a graph and $k \geqslant 1, l \geqslant 1$ be any positive integers. If there is a set $U=\left\{v_{1}, \ldots, v_{k+l}\right\} \subset V(G)$ of $k+l$ independent vertices of G such that

1. k vertices of U have degree at most l and l vertices of U have degree at most k;
2. vertices of U have mutually disjoint sets of neighbors, i.e. $N\left(v_{i}\right) \cap N\left(v_{j}\right)=\emptyset$ for $i \neq j$;
3. $G-U$ is packable
then there exists a packing σ of G such that U is an invariant set of σ, i.e. $\sigma(U)=U$.
Proof. Let $G^{\prime}:=G-U$ and σ^{\prime} be a packing of G^{\prime}. Below we show that we can find an appropriate packing σ of G.
For any $v \in V\left(G^{\prime}\right)$ we define $\sigma(v):=\sigma^{\prime}(v)$. Then let us consider a bipartite graph B with partition sets $X:=\left\{v_{1}, \ldots, v_{k+l}\right\} \times\{0\}$ and $Y:=\left\{v_{1}, \ldots, v_{k+l}\right\} \times\{1\}$. For $i, j \in\{1, \ldots, k+l\}$ the vertices $\left(v_{i}, 0\right),\left(v_{j}, 1\right)$ are joined by an edge in B if and only if $\sigma^{\prime}\left(N\left(v_{i}\right)\right) \cap N\left(v_{j}\right)=\emptyset$. So, if $\left(v_{i}, 0\right),\left(v_{j}, 1\right)$ are joined by an edge in B we can put $\sigma\left(v_{i}\right)=v_{j}$.
Without loss of generality we can assume that $k \leqslant l$. Note that if $\operatorname{deg} v_{i} \leqslant l$ in G then $\operatorname{deg}\left(v_{i}, 0\right) \geqslant k$ in B. Furthermore, if $\operatorname{deg} v_{i} \leqslant k$ in G then $\operatorname{deg}\left(v_{i}, 0\right) \geqslant l$ in B. Thus X contains k vertices of degree $\geqslant k$ and l vertices of degree $\geqslant l$. In the similar manner we can see that Y contains k vertices of degree $\geqslant k$ and l vertices of degree $\geqslant l$. In particular, every vertex in Y has degree $\geqslant k$. Let $S \subset X$. If $|S| \leqslant k$ then obviously $|N(S)| \geqslant|S|$. Suppose that $k<|S| \leqslant l$. Then there is at least one vertex of degree l in S thus $|N(S)| \geqslant$ $l \geqslant|S|$. Finally, we show that if $|S|>l$, then $N(S)=Y$. Indeed, otherwise let $\left(v_{j}, 1\right) \in Y$ be a vertex which has no neighbor in S. Thus $\operatorname{deg}\left(v_{j}, 1\right) \leqslant|X|-|S|<k+l-l=k$, a contradiction. Hence, for any $S \subset X$ we get $|S| \leqslant|N(S)|$. Therefore, by the famous Hall's theorem [5], there is a matching M in B. We define $\sigma\left(v_{i}\right)=v_{j}$ for $i, j \in\{1, \ldots, k+l\}$ such that $\left(v_{i}, 0\right),\left(v_{j}, 1\right)$ are incident with the same edge in M.

2 Proof of Theorem 2

Proof. Assume that G is a counterexample of Theorem 2 with minimal order. Without loss of generality we may assume that G is connected. We choose an edge $x y \in E(G)$ with the maximal sum $\operatorname{deg} x+\operatorname{deg} y$ of degrees of its endvertices among all edges of G. Since G is not a star $\operatorname{deg} x \geqslant 2$ and $\operatorname{deg} y \geqslant 2$. Let U be the union of the sets of neighbors of x and y different from x, y. Define $k:=\operatorname{deg} x-1, l:=\operatorname{deg} y-1$. We may assume that $k \leqslant l$. Consider graph $G^{\prime}:=G-\{x, y\}$. Note that because of the choice of the edge $x y$, U contains k vertices of degree $\leqslant l$ and l vertices of degree $\leqslant k$ in G^{\prime}. Moreover, since G
has no cycles of length $\leqslant 5$, the vertices of U are independent in G^{\prime} and have mutually disjoint sets of neighbors in G^{\prime}. By our assumption $G^{\prime}-U$ is packable or it is a star.

Assume that $G^{\prime}-U$ is packable. Thus, by Lemma 3, there is a packing σ^{\prime} of G^{\prime} such that $\sigma^{\prime}(U)=U$. This packing can be easily modified in order to obtain a packing of G. Namely, note that there are vertices $v, w \in U$ where v is a neighbor of x and w is a neighbor of y such that $\sigma^{\prime}(v)$ is a neighbor of x and $\sigma^{\prime}(w)$ is a neighbor of y, or $\sigma^{\prime}(v)$ is a neighbor of y and $\sigma^{\prime}(w)$ is a neighbor of x. In the former case $\left(x \sigma^{\prime}(v) y \sigma^{\prime}(w)\right) \sigma^{\prime}$ is a packing of G and in the latter case $\left(x \sigma^{\prime}(v)\right)\left(y \sigma^{\prime}(w)\right) \sigma^{\prime}$ is a packing of G. Thus we get a contradiction.

Assume now that $G^{\prime}-U$ is a star (with at least one edge). Note that since G has no cycles of lengths up to five, every vertex from U has degree $\leqslant 2$ in G. Moreover, G has a vertex which is at distance at least 3 from y. Let z denote a vertex which is not in U and is at distance 2 from x, or if such a vertex does not exist let z be any vertex which is at distance at least 3 from y. Furthermore, let W denote the set of neighbours of y. Consider a graph $G^{\prime \prime}:=G-\{y, z\}$. Thus W consists of l vertices of degree $\leqslant 1$ in $G^{\prime \prime}$ and one vertex of degree $k \leqslant l$ in $G^{\prime \prime}$. Note that $G^{\prime \prime}-W$ has an isolated vertex, namely a neighbour of x. Thus $G^{\prime \prime}-W$ is not a star, hence it is packable. Moreover vertices from W are independent and have mutually disjoint sets of neighbours in $G^{\prime \prime}$. Thus by Lemma 3 there is a packing $\sigma^{\prime \prime}$ of $G^{\prime \prime}$ such that $\sigma^{\prime \prime}(W)=W$. Then $(y z) \sigma^{\prime \prime}$ is a packing of G. Therefore, we get a contradiction again, so the proof is completed.

References

[1] S. Brandt, Embedding graphs without short cycles in their complements, in: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics, and Application of Graphs, 1 (1995) 115-121
[2] R. J. Faudree, C. C. Rousseau, R. H. Schelp, S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31 (106) (1981) 53-62
[3] A. Görlich, M. Pilśniak, M. Woźniak, I. A. Zioło, A note on embedding graphs without short cycles, Discrete Math. 286 (2004) 75-77.
[4] A. Görlich, M. Pilśniak, M. Woźniak, I. A. Zioło, Fixed-point-free embeddings of digraphs with small size, Discrete Math. 307 (2007) 1332-1340.
[5] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30.
[6] M. Woźniak, A note on embedding graphs without short cycles, Colloq. Math. Soc. Janos Bolyai 60 (1991) 727-732.

[^0]: *The research was partially supported by a grant N201 1247/ 33

