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Abstract

The trace of a set F on a another set X is F |X = F ∩ X and the trace of a
family F of sets on X is FX = {F |X : F ∈ F}. In this note we prove that if a

k-uniform family F ⊂
([n]

k

)

has the property that for any k-subset X the trace F|X
does not contain a maximal chain (a family C0 ⊂ C1 ⊂ ... ⊂ Ck with |Ci| = i), then

|F| ≤
(

n−1
k−1

)

. This bound is sharp as shown by {F ∈
([n]

k

)

, 1 ∈ F}. Our proof gives
also the stability of the extremal family.

1 Introduction

Let [n] denote the set of the first n positive integers {1, 2, ..., n}. Given a set X we
write 2X for its power set and

(

X
l

)

for the set of all of its l-element subsets (l-subsets
for short). Given a family F ⊆ 2X of sets and an element x ∈ X we write Fx for the
subfamily of all the sets in F that contain x and Fx for the family {F \ {x} : F ∈ Fx}.
The degree of x is the size of Fx.

The trace of a set F on another set X is F ∩ X and is denoted by F |X. The trace
of a family F of sets is just the family of traces, i.e. F|X = {F |X : F ∈ F}. The
following fundamental result concerning traces of families was proved in the early 1970s
independently by Sauer [11], Shelah [12] and Vapnik and Chervonenkis [13].

Theorem 1.1. If F ⊆ 2[n] is a family with more than
∑k−1

i=0 sets, then there exists a

k-subset X of [n] such that F|X = 2X.

The above theorem is sharp as shown by the families {F ⊆ [n] : |F | < k} and
{F ⊆ [n] : |F | > n−k}, but no characterization is known for the extremal families. Füredi
and Quinn [7] constructed extremal families Fl of size

∑k−1
i=0 for all l with 0 < l < k such

that for any k-subset X of [n] we have
(

X
l

)

6⊆ F|X.
Frankl and Pach [5] considered the k-uniform case of the problem. They proved the

following upper bound.
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Theorem 1.2. If F ⊆
(

[n]
k

)

and |F| >
(

n
k−1

)

, then there is a k-subset X of [n] such that

F|X = 2X.

Frankl and Pach conjectured {F ∈
(

[n]
k

)

: 1 ∈ F} to be an extremal family of size
(

n−1
k−1

)

,
but Ahlswede and Khachatrian [1] disproved their conjecture by giving a counterexample
of size

(

n−1
k−1

)

+
(

n−4
k−3

)

. Later Mubayi and Zhao [9] gave exponentially many pairwise non-
isomorphic families of that size and improved the upper bound of Frankl and Pach, but
the problem is still open.

Several papers [2], [3], [10] dealt with “Turán-type” problems of traces, i.e. given one
or more families H1,H2, ...,Hs ⊆ 2[h] what is the maximum size of a family F ⊆ 2[n] such
that for any h-subset X of [n] and 1 ≤ i ≤ s the trace F|X does not contain Hi. With
this formulation in Theorems 1.1 and 1.2 the excluded family is 2[k].

In [10] it is proved (among others) that if we change 2[k] to the maximal chain Ck =
{∅, [1], [2], ..., [k]} in Theorem 1.1, then the only extremal families are {F ⊆ [n] : |F | < k}
and {F ⊆ [n] : |F | > n − k}. In this note we consider the corresponding k-uniform
problem and prove that the conjecture of Frankl and Pach becomes true in this scenario
if again we change 2[k] to Ck. Furthermore we prove the stability of the extremal family
{F ∈

(

[n]
k

)

: 1 ∈ F}.

Theorem 1.3. For every integer 2 ≤ k and real 1/2 < c < 1 there exists an N0(k, c) such

that for any n ≥ N0(k, c) if F ⊆
(

[n]
k

)

has size larger than c
(

n−1
k−1

)

and there is no subset

X of [n] with |X| = k such that Ck ⊆ F|X, then there exists an x ∈ [n] such that x ∈ F
for all F ∈ F .

Clearly Theorem 1.3 is a generalization of the well-known Erdős-Ko-Rado theorem
[4], therefore it is not surprising that our proof will use the following stability theorem of
Hilton and Milner [8].

Theorem 1.4. If 2k+1 ≤ n and F ⊆
(

[n]
k

)

is an intersecting family such that
⋂

F∈F F = ∅,

then |F| ≤
(

n−1
k−1

)

−
(

n−k−1
k−1

)

+ 1.

2 Proof of Theorem 1.3

First we prove a lemma stating that if we want to have an “almost” maximal chain
C−

k = {[1], [2], ..., [k]} as trace, then much smaller families suffice.

Lemma 2.1. For every integer 2 ≤ k and real 1/2 < c′ < 1 there exists an N ′
0(k, c′) such

that for any n ≥ N ′
0(k, c′) if F ⊆

(

[n]
k

)

has size larger than c′
(

n−1
k−1

)

then there exists a set

X ⊂ [n] with |X| = k such that C−
k ⊆ F|X.

Proof of Lemma: We proceed by induction on k. For k = 2, if there exists an inter-
secting pair of 2-sets F1, F2 ∈ F , then ∅ 6= F1|F2

⊂ F2 is a C−
2 . Therefore F is a pairwise

disjoint family and thus |F| ≤ n/2 < c′(n − 1) for any 1/2 < c′ if n is large enough.
Now suppose the lemma is proved for k−1 and any real between 1/2 and 1. For a real

c′ fix an M > N ′(k − 1, c′+1/2
2

) such that the following inequalities hold for all n ≥ M
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c′ − 1/2

2

(

n − 2

k − 2

)

>

(

n − 2

k − 2

)

−

(

n − k − 2

k − 2

)

, (1)

c′
((

n − 2

k − 2

)

+

(

n − 3

k − 2

))

>

(

n − 2

k − 2

)

. (2)

The existence of such M for (1) follows from the fact that if we consider the two sides of
(1) as polynomials of n, then the degree of the LHS is one larger than the degree of the
RHS and for (2) from c′ > 1/2 and from limn→∞

(

n−2
k−2

)

/
(

n−3
k−2

)

= 1 .

Let N ′(k, c′) = M+1+2
(

M+1
k−1

)

, n ≥ N ′(k, c′) and F ⊆
(

[n]
k

)

a family with |F| ≥ c′
(

n−1
k−1

)

.
Let x1 ∈ [n] be an element with maximum degree which is at least the average degree
c′
(

n−1
k−1

)

k
n
≥ c′

(

n−2
k−2

)

and consider Fx1
. By the inductive hypothesis there exists a (k − 1)-

subset X ⊂ [n] \ {x1} such that Fx1
|X contains C−

k−1. Just by removing these sets one
after the other and repeatedly using the inductive hypothesis we get that G = {X ∈ Fx1

:

C−
k−1 ⊆ Fx1

|X} has size at least (c′− c′+1/2
2

)
(

n−2
k−2

)

= c′−1/2
2

(

n−2
k−2

)

. If two sets X1, X2 ∈ G are

disjoint, then writing F1 = X1 ∪ {x1}, F2 = X2 ∪ {x1} both F|F1
and F|F2

contain C−
k as

F1|F2
= F1 ∩ F2 = F2|F1

= {x}. Thus we may assume that G is intersecting and thus by
Theorem 1.4 and (1) there exists an x2 ∈ [n] \ {x1} such that x2 ∈ X for all X ∈ G.

Let us assume that there is a set F ′ ∈ Fx1
with x2 /∈ F ′. We claim that there is a

set X ∈ G such that F ′ ∩ X = ∅. Indeed, the number of (k − 1)-sets containing x2 and
meeting F is

(

n−2
k−2

)

−
(

n−k−2
k−2

)

, thus again by (1) there is a set X ∈ G as claimed. By the

definition of G there are sets F2, F3, ..., Fk ∈ Fx1
such that their traces on X form a C−

k−1.
Writing F = X ∪ {x} we have F ′|F = {x1} and thus the traces of F ′, F2, F3, ..., Fk on F
form a C−

k proving the lemma in this case.
Otherwise all sets in Fx1

contain x2 and thus as x1 is of maximum degree x1 and x2

are contained in the same sets of F . The number of sets in F containing both x1 and x2

is at most
(

n−2
k−2

)

, thus removing these sets from F there remains a family F1 of subsets
of [n] \ {x1, x2} of size at least

c′
(

n − 1

k − 1

)

−

(

n − 2

k − 2

)

= c′
((

n − 1

k − 1

)

−

(

n − 2

k − 1

)

+

(

n − 2

k − 1

)

−

(

n − 3

k − 1

))

−

(

n − 2

k − 2

)

+ c′
(

n − 3

k − 1

)

= c′
((

n − 2

k − 2

)

+

(

n − 3

k − 2

))

−

(

n − 2

k − 2

)

+ c′
(

n − 3

k − 1

)

≥ c′
(

n − 3

k − 1

)

+ 1,

where the last inequality follows by (2).
Let us consider an element x3 ∈ [n] \ {x1, x2} with maximum degree in F1. Repeating

the above argument we either find a set X ⊂ [n]\{x1, x2} such that C−
k ⊂ F1

x3
|X ⊂ F|X or

we have an element x4 ∈ [n]\{x1, x2, x3} such that x3 and x4 are contained in exactly the
same sets of F1. Removing these sets from F1 we obtain a family F2 ⊂

(

[n]\{x1,x2,x3,x4}
k

)

with size at least |F1| −
(

n−4
k−2

)

≥ c′
(

n−3
k−1

)

−
(

n−4
k−2

)

+ 1 which is by (2) greater or equal to

c′
(

n−5
k−1

)

+ 1 + 1 = c′
(

n−5
k−1

)

+ 2.
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Repeating the above argument l times, we either find a set X such that C−
k ⊆ F l−1|X ⊆

F|X or subfamily F l ⊆
(

[n]\{x1,x2,z3,x4,...,x2l−1,x2l}
k

)

∩ F l−1 with size at least c′
(

n−2l−1
k−1

)

+ l.

Thus we either find a set X such that C−
k ⊆ F l|X ⊆ F|X for some l ≤ n−M

2
or as

n ≥ M + 1 + 2
(

M+1
k−1

)

we obtain a subfamily of F on M or M + 1 elements (depending on

the parity of n) with size larger than
(

M+1
k−1

)

, and thus by Theorem 1.2 we even find a 2[k]

as trace which proves the lemma. �

To prove the theorem for some k and c, let us fix an integer N(k, c) larger than

N ′(k, c+1/2
2

) of the Lemma such that for any n ≥ N(k, c) the following inequality holds

c − 1/2

2

(

n − 1

k − 1

)

>

(

n − 1

k − 1

)

−

(

n − k − 1

k − 1

)

+ 1. (3)

Let F ⊂
(

[n]
k

)

be a family with size at least c
(

n−1
k−1

)

. We claim that the size of the set

H = {X ⊂ [n] : |X| = k, C−
k ⊆ FX} is at least c−1/2

2

(

n−1
k−1

)

. Indeed, using Lemma 2.1 to
F we obtain 1 set in H, then removing this set from F and applying the Lemma again
we get another set and so on until the remaining family contains less set than c+1/2

2

(

n−1
k−1

)

sets. If there is a pair of disjoint sets X1, X2 ∈ H, then X1 ∩X2 = ∅ extends this to a Ck,
thus we may assume that those sets form an intersecting family, therefore by Theorem
1.4 and (3) there must exist an element x ∈ [n] such that x ∈ X for all X ∈ H. Any
set F ∈ F \ H must meet all sets in H as otherwise F |X = F ∩ X = ∅ would complete
C−

k ⊆ F|X to Ck. But this can happen only if F contains x as otherwise the number of
k-sets containing x and meeting F would be

(

n−1
k−1

)

−
(

n−k−1
k−1

)

which is by (3) smaller than
c−1/2

2

(

n−1
k−1

)

≤ |H|. Thus all sets in F contain x which proves the theorem.

Remark

Frankl and Watanabe [6] strengthened the conjecture of Frankl and Pach to the fol-
lowing: for every k ≤ m there exists an N = N(k, m) such that for any n ≥ N and
family F ⊆

(

[n]
m

)

with size larger than
(

n−m+k−1
k−1

)

there is a k-subset X of [n] such that

2[k] = F|X. The counterexample of Ahlswede and Khachatrian can be extended to the
k < m case. It is natural to ask what happens if we change again 2[k] to Ck. Our proof
does not carry through mainly because of two reasons: X1 ∩ X2 = ∅, |X1| = |X2| = k,
F ⊆

(

[n]
m

)

, C−
k ⊆ F|X1

,F|X2
does not imply Ck ⊆ F|X1

if k < m and two different m-sets
F1, F2 may have F1|X = F2|X = X for some k-set X. However, we conjecture that an
analogous statement for the k < m case is true.

Conjecture 2.2. For any pair of integers 2 ≤ k ≤ m and F ⊆
(

[n]
m

)

with |F| >
(

n−m+k−1
k−1

)

there exists a k-subset X of [n] such that Ck ⊆ F|X.

The bound (if true) would be sharp as shown by the family {F ∈
(

[n]
m

)

: [m−k+1] ⊂ F}.
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