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Abstract

A known construction for face 2-colourable triangular embeddings of complete
regular tripartite graphs is re-examined from the viewpoint of the underlying Latin
squares. This facilitates biembeddings of a wide variety of Latin squares, including
those formed from the Cayley tables of the elementary Abelian 2-groups Ck

2 (k 6= 2).
In turn, these biembeddings enable us to increase the best known lower bound for
the number of face 2-colourable triangular embeddings of Kn,n,n for an infinite class
of values of n.

1 Background

In [6] a recursive construction was presented for face 2-colourable triangular embeddings
of complete tripartite graphs Kn,n,n. The construction was used in that paper to provide
lower bounds of the form 2an2

for the numbers of face 2-colourable triangular embeddings
of both complete tripartite graphs Kn,n,n and complete graphs Kn, for certain values of n.
In a subsequent paper [2], a generalization of this construction was used to increase these
lower bounds to ones of the form nan2

for certain values of n. A face 2-colourable triangular
embedding of Kn,n,n corresponds to a biembedding of two Latin squares. The purpose
of this current paper is to re-examine the construction from [6] from the viewpoint of
the Latin squares involved. This alternative focus enables us to obtain new results about
biembeddings of Latin squares and to improve the bound given in [2].

For general background material on topological embeddings, we refer the reader to
[7] and [9]. Our embeddings will always be in closed connected 2-manifolds without a
boundary. A graph embedding is face 2-colourable if the faces may be coloured in such a
way that any two faces with a common boundary receive different colours. We will always

the electronic journal of combinatorics 16 (2009), #R106 1



take the colours to be black and white. It was shown in [3] that a triangular embedding
of Kn,n,n is face 2-colourable if and only if the supporting surface is orientable, and the
surface is therefore a sphere with an appropriate number of handles.

A face 2-colourable triangular embedding of Kn,n,n determines two transversal designs,
TD(3, n), one for each colour class. Such a design comprises an ordered triple (V,G,B),
where V is a 3n-element set (the points), G is a partition of V into three disjoint sets (the
groups) each of cardinality n, and B is a set of 3-element subsets of V (the triples), such
that every unordered pair of elements from V is either contained in precisely one triple
or one group, but not both. The vertices of the embedded graph Kn,n,n form the points
of each design, the tripartition determines the groups, and the faces in each colour class
form the triples of each design.

The connection with Latin squares is that a TD(3, n) determines a Latin square of
order n by assigning the three groups of the design as labels for the rows, columns and
entries (in any one of six possible orders) of the Latin square. Conversely any Latin square
of order n determines a TD(3, n). Two Latin squares are said to be in the same main
class or paratopic if the corresponding TD(3, n)s are isomorphic. Thus a face 2-colourable
triangular embedding of Kn,n,n may be considered as a biembedding of two TD(3, n)s or,
equivalently, two Latin squares. To be precise, we say that two Latin squares of order
n are biembeddable in a surface if there is a face 2-colourable triangular embedding of
Kn,n,n in which the face sets forming the two colour classes give paratopic copies of the
two squares.

Given a Latin square L of side n, we may use the notation k = L(i, j) to denote that
entry k appears in row i column j of L; alternatively we may write (i, j, k) ∈ L. In this
latter form, the triples of any Latin square will always be specified in (row, column, entry)
order. Note however that in a biembedding of two Latin squares, the vertices of faces
from one colour class will appear clockwise in the cyclic order (row, column, entry), while
those from the other will appear anticlockwise if taken in the same cyclic order. A parallel
class of triples in a TD(3, n) is a set of triples in which each point of the design appears
precisely once. Such a parallel class is equivalent to a transversal in a corresponding Latin
square.

In this paper we need to distinguish carefully between statements about biembeddings
of Latin squares where paratopic copies are allowed, and statements about particular
realizations of Latin squares. For Latin squares A and A′ with common sets of row labels,
of column labels, and of entries, we will write A ⊲⊳ A′ (to be read as A biembeds with A′

without relabelling), if and only if the particular realizations of A and A′ form a surface
embedding; that is to say that the triangles formed by the (row, column, entry) triples of
A and A′ may be sewn together along their common edges to form the surface. With a
slight abuse of notation we also use A ⊲⊳ A′ to denote the actual embedding itself.

It is known that there are many nonisomorphic biembeddings of Latin squares. How-
ever, up until now, the only clearly identifiable family of Latin squares that are known to
admit biembeddings has been the family of cyclic squares Cn defined by Cn(i, j) = i+ j
(mod n). In [5] it was proved that for many values of n, there are exponentially many
mates M ′

n, all of which are paratopic to Cn and are such that Cn ⊲⊳ M
′

n. In the current
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paper, it is shown that a wide variety of Latin squares admit biembeddings; in particular
Ck

2 for k 6= 2. Note however that, apart from the trivial case k = 1, any mate A′

k of Ck
2

such that Ck
2 ⊲⊳ A

′

k cannot be a paratopic copy of Ck
2 [8].

2 Construction

The construction to which we refer is taken from [6]. It produces a face 2-colourable tri-
angular embedding of Kmn,mn,mn from face 2-colourable triangular embeddings of Km,m,m

andKn,n,n, provided that each of theKm,m,m embeddings has a parallel class in one colour.
We start by describing this construction, using a labelling of the vertices of the embedding
that will help in the subsequent discussion.

So, suppose that for 0 6 u 6 m − 1, φu is a face 2-colourable triangular embedding
of Kn,n,n with vertex set Ru ∪ Cu ∪ Eu, where Ru = {rnu+i : 0 6 i 6 n − 1}, Cu =
{cnu+i : 0 6 i 6 n − 1} and Eu = {enu+i : 0 6 i 6 n − 1} are three disjoint sets. We
use the letters r, c and e because these will later be related to the row, column and entry
labels of a Latin square. We also suppose that for each oriented white triangle (ri, cj, ek)
(= (rn0+i, cn0+j, en0+k)) of φ0, the ordered triple (rnu+i, cnu+j, enu+k) defines an oriented
white triangle of φu for each u ∈ {0, 1, . . . , m − 1}. In essence, this means that the
embeddings φu all have the “same” white triangles with the same orientations, although
the black triangles may be different. Then, for 0 6 i, j 6 n − 1, let ψi,j be a face 2-
colourable triangular embedding of Km,m,m having a parallel class of m black triangular
faces. Initially, the supporting surfaces of all the embeddings φu and ψi,j are taken to be
disjoint from one another.

Next list the n2 white triangles of φ0; without loss of generality, we can take these
as given by Wi,j = (ri, cj, ek), where k is uniquely determined by (i, j). Then label
the m black triangles forming the parallel class in ψi,j as (r∗nu+i, c

∗

nu+j, e
∗

nu+k), 0 6 u 6

m − 1, in some order, taking care to respect the three vertex parts of the embedding so
that one vertex part receives labels r∗, another c∗ and the third e∗. Then each vertex
of ψi,j is uniquely labelled and, for each oriented white triangle (rnu+i, cnu+j, enu+k) of
the embedding φu, there is a corresponding black triangle (r∗nu+i, c

∗

nu+j, e
∗

nu+k), which we
take with the opposite orientation, in a unique embedding ψi,j . Figure 1 illustrates the
situation.

Finally, cut out from the supporting surfaces each such pair of corresponding triangles,
one pair at a time, and identify the corresponding vertices (x∗ with x) and edges bordering
the two holes. After dealing with all mn2 pairs of corresponding triangles in this fashion
the result, as proved in [6], is a face 2-colourable triangular embedding χ of Kmn,mn,mn.
The vertex set of χ is R̄ ∪ C̄ ∪ Ē, where R̄ = {rnu+i : 0 6 u 6 m − 1, 0 6 i 6 n − 1},
C̄ = {cnu+i : 0 6 u 6 m−1, 0 6 i 6 n−1} and Ē = {enu+i : 0 6 u 6 m−1, 0 6 i 6 n−1}
are three disjoint sets.

We are now in a position to state our main result which reinterprets the above con-
struction in terms of Latin squares.
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Each φu is an embedding of Kn,n,n and ψi,j is an embedding of Km,m,m.

Figure 1. The construction.

Theorem 2.1 Suppose that, for 0 6 u 6 m − 1, L ⊲⊳ L′

u, where L and each L′

u are of
order n and have row, column and entry labels {0, 1, . . . , n − 1}. Suppose also that for
each (i, j) with 0 6 i, j 6 n − 1, Qi,j ⊲⊳ Q

′

i,j, where both Qi,j and Q′

i,j are of order m,
and have row, column and entry labels {0, 1, . . . , m − 1}, and that the squares Q′

i,j have
a common transversal T . Define A and A′, Latin squares of order mn with row, column
and entry labels {0, 1, . . . , mn− 1}, by

A(nu+ i, nv + j) = nQi,j(u, v) + L(i, j),

A′(nu+ i, nv + j) = nQ′

i,j(u, v) + k,

where k =

{

L(i, j) if (u, v, w) 6∈ T for any w,
L′

u(i, j) if there exists w such that (u, v, w) ∈ T ,

for 0 6 u, v 6 m− 1 and 0 6 i, j 6 n− 1. Then A ⊲⊳ A′.

Proof. Throughout the proof and subsequent discussions, we take the triangles determined
by L,Qi,j and A to be white, and those determined by L′

u, Q
′

i,j and A′ to be black. Note
that the biembeddings L ⊲⊳ L′

u all have the same set of white triangles. First, for each u,
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we relabel the two Latin squares of the biembedding L ⊲⊳ L′

u by adding nu to each of the
row, column and entry labels. This converts them to the range {nu, nu+1, nu+2, . . . , nu+
n − 1}. The resulting m embeddings of Kn,n,n may then be represented on m disjoint
surfaces, and the vertex set of the uth embedding φu may be taken as Ru∪Cu ∪Eu, where
Ru = {rnu+i : 0 6 i 6 n−1}, Cu = {cnu+i : 0 6 i 6 n−1} and Eu = {enu+i : 0 6 i 6 n−1}
are three disjoint sets representing the rows, columns and entries of the relabelled Latin
squares. Thus the triple (rnu+i, cnu+j, enu+k) defines a white triangle of φu if and only if
k = L(i, j), and it defines a black triangle of φu if and only if k = L′

u(i, j).
Next suppose that T = {(αu, βu, γu) : 0 6 u 6 m − 1} where, for each u, γu =

Q′

i,j(αu, βu) for every (i, j). Note that {αu : 0 6 u 6 m − 1} = {0, 1, . . . , m − 1},
and similarly for β and γ. Also, without loss of generality, we may take αu = u for
each u. For each of the n2 pairs (i, j), we relabel the two Latin squares Qi,j and Q′

i,j

using the white triangle (i, j, k) defined by k = L(i, j) and the transversal T ; each row
label αu is renamed as nu + i, each column label βu is renamed as nu + j, and each
entry label γu is renamed as nu + k. The resulting n2 embeddings of Km,m,m may then
be represented on n2 disjoint surfaces, which we will take to be disjoint from those of
the biembeddings φu. The vertex set of the (i, j)th embedding ψi,j may be taken as
R∗

i,j ∪ C
∗

i,j ∪ E
∗

i,j, where R∗

i,j = {r∗nu+i : 0 6 u 6 m − 1}, C∗

i,j = {c∗nu+j : 0 6 u 6 m − 1}
and E∗

i,j = {e∗nu+k : 0 6 u 6 m− 1} are three disjoint sets representing the rows, columns
and entries of the relabelled Latin square. Thus the triple (r∗nu+i, c

∗

nv+j , e
∗

nw+k) defines a
white triangle of ψi,j if and only if k = L(i, j) and γw = Qi,j(αu, βv), and it defines a black
triangle of ψi,j if and only if k = L(i, j) and γw = Q′

i,j(αu, βv). Note that if k = L(i, j)
then (r∗nu+i, c

∗

nu+j, e
∗

nu+k) is a black triangle of ψi,j for each u ∈ {0, 1, . . . , m− 1}.
With the relabellings described in the previous two paragraphs, the biembeddings φl

and ψi,j correspond precisely to the construction from [6] as described at the start of
this section. By cutting out from the supporting surfaces each pair of corresponding
triangles, and identifying the corresponding vertices and edges, the result is a face 2-
colourable triangular embedding χ of Kmn,mn,mn. Our labelling of the points gives this
embedding on the vertex set R̄∪ C̄∪Ē, where R̄ = {rnu+i : 0 6 u 6 m−1, 0 6 i 6 n−1},
C̄ = {cnu+i : 0 6 u 6 m−1, 0 6 i 6 n−1} and Ē = {enu+i : 0 6 u 6 m−1, 0 6 i 6 n−1}
are three disjoint sets. We next identify for χ the two Latin squares B (white) and B′

(black) for which the biembedding B ⊲⊳ B′ gives χ.
Take first a typical white triangle of χ having the edge {rnu+i, cnv+j}. This triangle

comes from the embedding ψi,j , and so the third vertex is enw+k where k = L(i, j) and w
is given by γw = Qi,j(αu, βv). Thus the Latin square B giving the white triangles of χ is
represented with row, column and entry labels {0, 1, . . . , mn− 1} by

B(nu+ i, nv + j) = nw + k, where γw = Qi,j(αu, βv) and k = L(i, j).

Black triangles of χ are of two types: those from the embeddings φu, and those from
the embeddings ψi,j . The former have an edge {rnu+i, cnu+j} and then the third vertex is
enu+k where k = L′

u(i, j). The latter have an edge {rnu+i, cnv+j} where v 6= u, and the
third vertex is enw+k where k = L(i, j) and w is given by γw = Q′

i,j(αu, βv). Thus the
Latin square B′ giving the black triangles of χ is represented with row, column and entry
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labels {0, 1, . . . , mn− 1} by

B′(nu+ i, nv + j) = nw + k, where γw = Q′

i,j(αu, βv) and k =

{

L(i, j) if v 6= u,

L′

u
(i, j) if v = u.

Our final step is to permute the row, column and entry labels of B and B′ by defining

A(nαu + i, nβv + j) = nγw + k ⇔ B(nu+ i, nv + j) = nw + k,

A′(nαu + i, nβv + j) = nγw + k ⇔ B′(nu+ i, nv + j) = nw + k,

where u, v, w ∈ {0, 1, . . . , m − 1} and i, j, k ∈ {0, 1, . . . , n − 1}. Since B ⊲⊳ B′, we have
A ⊲⊳ A′. Furthermore, and noting that we have taken αu = u so that L′

αu

= L′

u,

A(nu+ i, nv + j) = nQi,j(u, v) + L(i, j),

A′(nu+ i, nv + j) = nQ′

i,j(u, v) + k,

where k =

{

L(i, j) if (u, v, w) 6∈ T for any w,
L′

u(i, j) if there exists w such that (u, v, w) ∈ T ,

for 0 6 u, v 6 m− 1 and 0 6 i, j 6 n− 1. This completes the proof.

To illustrate Theorem 2.1 we give three examples which differ very slightly. All three
take m = n = 3 and make use of the following Latin squares.

M =

0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

N =

0 1 2
0 1 2 0
1 2 0 1
2 0 1 2

O =

0 1 2
0 2 0 1
1 0 1 2
2 1 2 0

Note that M ⊲⊳ N , M ⊲⊳ O and O ⊲⊳ N . In all three examples we take Q′

i,j = N for all i
and j, and we take T to be the transversal highlighted in N . In Theorem 2.1 it suffices
that the squares Q′

i,j have a common transversal, but in our examples these squares are
identical.

Example 2.1 In this example take L = M , L′

0 = L′

1 = L′

2 = N , Qi,j = M and Q′

i,j = N ,
0 6 i, j 6 2. The entries of A′ which arise from the transversal T are highlighted.

A =

0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 5 3 7 8 6
2 2 0 1 5 3 4 8 6 7
3 3 4 5 6 7 8 0 1 2
4 4 5 3 7 8 6 1 2 0
5 5 3 4 8 6 7 2 0 1
6 6 7 8 0 1 2 3 4 5
7 7 8 6 1 2 0 4 5 3
8 8 6 7 2 0 1 5 3 4

A′ =

0 1 2 3 4 5 6 7 8

0 3 4 5 7 8 6 0 1 2
1 4 5 3 8 6 7 1 2 0
2 5 3 4 6 7 8 2 0 1
3 6 7 8 0 1 2 4 5 3
4 7 8 6 1 2 0 5 3 4
5 8 6 7 2 0 1 3 4 5
6 1 2 0 3 4 5 6 7 8
7 2 0 1 4 5 3 7 8 6
8 0 1 2 5 3 4 8 6 7
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By computing the rotation scheme one can check that A ⊲⊳ A′. For example, the rotation
at r4 is

r4 : c0e4c8e0c5e6c2e3c7e2c4e8c1e5c6e1c3e7

Example 2.2 Now take L = M , L′

0 = L′

2 = N , L′

1 = O, Qi,j = M and Q′

i,j = N ,
0 6 i, j 6 2. We highlight those entries of A and A′ which correspond to φ1 : L ⊲⊳ L′

1 =
M ⊲⊳ O.

A =

0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 5 3 7 8 6
2 2 0 1 5 3 4 8 6 7
3 3 4 5 6 7 8 0 1 2
4 4 5 3 7 8 6 1 2 0
5 5 3 4 8 6 7 2 0 1
6 6 7 8 0 1 2 3 4 5
7 7 8 6 1 2 0 4 5 3
8 8 6 7 2 0 1 5 3 4

A′ =

0 1 2 3 4 5 6 7 8

0 3 4 5 7 8 6 0 1 2
1 4 5 3 8 6 7 1 2 0
2 5 3 4 6 7 8 2 0 1
3 6 7 8 0 1 2 5 3 4
4 7 8 6 1 2 0 3 4 5
5 8 6 7 2 0 1 4 5 3
6 1 2 0 3 4 5 6 7 8
7 2 0 1 4 5 3 7 8 6
8 0 1 2 5 3 4 8 6 7

As in the first example, we present the rotation at r4,

r4 : c0e4c7e2c4e8c1e5c8e0c5e6c2e3c6e1c3e7

Example 2.3 In this example take L = M , L′

0 = L′

1 = L′

2 = N , Qi,j = M for 0 6 i, j 6 2
and (i, j) 6= (1, 2), Q1,2 = O and Q′

i,j = N for 0 6 i, j 6 2. We highlight those entries of
A and A′ which correspond to ψ1,2 : Q1,2 ⊲⊳ Q

′

1,2 = O ⊲⊳ N .

A =

0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8
1 1 2 6 4 5 0 7 8 3
2 2 0 1 5 3 4 8 6 7
3 3 4 5 6 7 8 0 1 2
4 4 5 0 7 8 3 1 2 6
5 5 3 4 8 6 7 2 0 1
6 6 7 8 0 1 2 3 4 5
7 7 8 3 1 2 6 4 5 0
8 8 6 7 2 0 1 5 3 4

A′ =

0 1 2 3 4 5 6 7 8

0 3 4 5 7 8 6 0 1 2
1 4 5 3 8 6 7 1 2 0
2 5 3 4 6 7 8 2 0 1
3 6 7 8 0 1 2 4 5 3
4 7 8 6 1 2 0 5 3 4
5 8 6 7 2 0 1 3 4 5
6 1 2 0 3 4 5 6 7 8
7 2 0 1 4 5 3 7 8 6
8 0 1 2 5 3 4 8 6 7

Again we present the rotation at r4,

r4 : c0e4c8e6c2e0c5e3c7e2c4e8c1e5c6e1c3e7

Corollary 2.1.1 below gives a simplified version of Theorem 2.1, obtained by taking L′

u

to be independent of u, and Q′

i,j to be independent of (i, j). It also introduces a notation
for the resulting squares A and A′ to emphasize their dependency on L,L′, Q and Q′. The
corollary and the notation will be useful in the subsequent section.
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Corollary 2.1.1 Suppose that L ⊲⊳ L′, where L and L′ are of order n and have row,
column and entry labels {0, 1, . . . , n− 1}. Suppose also that Q ⊲⊳ Q′, where Q and Q′ are
of order m and have row, column and entry labels {0, 1, . . . , m−1}, and that the square Q′

has a transversal T . Define Latin squares Q(L) and Q′(L, T , L′), Latin squares of order
mn with row, column and entry labels {0, 1, . . . , mn− 1}, by

Q(L)(nu+ i, nv + j) = nQ(u, v) + L(i, j),

Q′(L, T , L′)(nu+ i, nv + j) = nQ′(u, v) + k,

where k =

{

L(i, j) if (u, v, w) 6∈ T for any w,
L′(i, j) if there exists w such that (u, v, w) ∈ T ,

for 0 6 u, v 6 m− 1 and 0 6 i, j 6 n− 1. Then Q(L) ⊲⊳ Q′(L, T , L′).

The square Q(L) is partitioned into n× n subsquares which are just relabelled copies
of L. The square Q′(L, T , L′) has a similar structure but the subsquares corresponding to
the transversal T are relabelled copies of L′. Note that if L′ has a transversal, then among
the relabelled copies of L′ one can find a transversal inQ′(L, T , L′). This feature facilitates
re-application of the construction and can be illustrated by reference to Example 2.1 which
represents M(M) ⊲⊳ N(M, T , N), where T is the highlighted transversal of N . Because
N has a transversal, N(M, T , N) has a transversal U within the highlighted cells. This
transversal is given by U = {(0, 4, 8), (1, 5, 7), (2, 3, 6), (3, 7, 5), (4, 8, 4), (5, 6, 3), (6, 1, 2),
(7, 2, 1), (8, 0, 0)}.

3 Applications

We begin this section by observing that if Q and R are Cayley tables of groups Q and R
represented respectively on {0, 1, . . . , m− 1} and {0, 1, . . . , n− 1}, then Q(R) as defined
in Section 2 is the Cayley table of the group Q × R represented on {0, 1, . . . , mn − 1}.
Thus, if Q is taken as the Cayley table of C2, then the square Q(Q) gives the Cayley table
for C2

2 . Repeating the process we see that the Cayley table for the elementary Abelian
2-group Ck

2 is Q(Q(. . . (Q) . . .)), where there are k occurrences of the symbol Q. Based
on this observation we can prove the following theorem where, from now onwards, we
identify each group with its Cayley table.

Theorem 3.1 For every k, k 6= 2, there is a Latin square A′

k such that Ck
2 ⊲⊳ A′

k.
Moreover, if k > 2 then the square A′

k may be taken to contain a transversal. For k = 2
there is no A′

2 such that C2
2 ⊲⊳ A

′

2.

C2 =
0 1

0 0 1
1 1 0

A′

1 =
0 1

0 1 0
1 0 1

Table 1. The squares C2 and A′

1 forming a biembedding.
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Proof. For k = 1, Table 1 gives squares A = C2 and A′

1 which provide the biembedding;
this is clearly unique up to isomorphism and neither square has a transversal.

For k = 2, it was shown in [3] that there is no biembedding of C2
2 with any Latin

square. For k = 3, it was shown in [4] that there are 49 nonisomorphic biembeddings in
which one of the squares is C3

2 . Amongst these 49, the one with the largest automorphism
group (of order 48) is the biembedding shown in Table 2.

C3
2 =

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

A′

3 =

0 1 2 3 4 5 6 7
0 2 4 6 7 0 1 3 5
1 4 2 7 6 1 0 5 3
2 7 1 4 5 2 3 6 0
3 1 7 5 4 3 2 0 6
4 6 3 0 2 5 7 4 1
5 3 6 2 0 7 5 1 4
6 0 5 1 3 4 6 2 7
7 5 0 3 1 6 4 7 2

Table 2. The squares C3
2 and A′

3 forming a biembedding.

A transversal T3 is highlighted in the square A′

3. By applying Corollary 2.1.1 we may
then obtain a biembedding of C6

2 = C3
2(C

3
2) with A′

6 = A′

3(C
3
2 , T3, A

′

3), and the latter
square itself has a transversal T6. By repeating this process, it is clear that for n > 1,
C3n

2 ⊲⊳ A′

3n for some Latin square A′

3n that has a transversal. This establishes the result
for k ≡ 0 (mod 3).

A′

4 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 5 8 9 12 13 14 15 1 0 2 3 6 7 10 11
1 5 4 9 8 13 12 15 14 0 1 3 2 7 6 11 10
2 8 9 4 5 14 15 12 13 2 3 0 1 10 11 7 6
3 9 8 5 4 15 14 13 12 3 2 1 0 11 10 6 7
4 14 15 2 3 9 8 10 11 4 5 6 7 12 13 0 1
5 15 14 3 2 8 9 11 10 5 4 7 6 13 12 1 0
6 2 3 15 14 10 11 8 9 6 7 4 5 0 1 12 13
7 3 2 14 15 11 10 9 8 7 6 5 4 1 0 13 12
8 13 12 6 7 0 1 4 5 10 11 14 15 8 9 2 3
9 12 13 7 6 1 0 5 4 11 10 15 14 9 8 3 2
10 6 7 12 13 4 5 0 1 14 15 11 10 2 3 8 9
11 7 6 13 12 5 4 1 0 15 14 10 11 3 2 9 8
12 0 1 10 11 2 3 6 7 8 9 12 13 5 4 14 15
13 1 0 11 10 3 2 7 6 9 8 13 12 4 5 15 14
14 10 11 0 1 6 7 3 2 12 13 8 9 14 15 4 5
15 11 10 1 0 7 6 2 3 13 12 9 8 15 14 5 4

Table 3. The square A′

4 = A′

3(C2, T3, A
′

1).
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Next we consider the case k ≡ 1 (mod 3). We have C3
2(C2) = C4

2 and this biembeds
with A′

3(C2, T3, A
′

1) = A′

4 by Corollary 2.1.1. The square A′

4 is given in Table 3. Although
there is no transversal in A′

1, there is a transversal in A′

4, which is highlighted. Let us
denote this transversal by T4. Again, by applying Corollary 2.1.1, we obtain a biembedding
of C7

2 = C4
2 (C3

2) with A′

7 = A′

4(C
3
2 , T4, A

′

3), and the latter square itself has a transversal
T7. By repeating this process, it is clear that for n > 1, C3n+1

2 ⊲⊳ A′

3n+1 for some Latin
square A′

3n+1 that has a transversal. This establishes the result for k ≡ 1 (mod 3).
Finally consider the case k ≡ 2 (mod 3). We have C4

2 (C2) = C5
2 and this biembeds

with A′

4(C2, T4, A
′

1) = A′

5. The square A′

5 is too big to present here, but its construction
from A′

4 is obvious. The following set of (row, column, entry) triples forms a transversal
in A′

5 which we denote by T5.
{(0, 16, 2), (1, 13, 28), (2, 17, 1), (3, 6, 17), (4, 3, 18), (5, 14, 27), (6, 1, 19),

(7, 15, 24), (8, 4, 4), (9, 0, 29), (10, 8, 16), (11, 12, 23), (12, 2, 6), (13, 18, 15),
(14, 10, 20), (15, 19, 12), (16, 5, 13), (17, 7, 14), (18, 9, 3), (19, 11, 0),
(20, 20, 22), (21, 22, 21), (22, 24, 7), (23, 26, 5), (24, 21, 25), (25, 23, 26),
(26, 28, 30), (27, 25, 8), (28, 30, 10), (29, 27, 31), (30, 29, 11), (31, 31, 9)}.

Then C5
2(C

3
2 ) = C8

2 biembeds with A′

5(C
3
2 , T5, A

′

3) = A′

8 which has a transversal T8. By
repeating this process, it is clear that for n > 1, C3n+2

2 ⊲⊳ A′

3n+2 for some Latin square
A′

3n+2 that has a transversal. This establishes the result for k ≡ 2 (mod 3) and completes
the proof.

We remark that the square A′

k of Theorem 3.1 is not a paratopic copy of Ck
2 except in

the case k = 1. In fact, for k > 1, Ck
2 is not biembeddable with a copy of itself, see [8].

We next make a conjecture concerning embeddings of groups.

Conjecture 3.1 Suppose that G is a direct product of a finite number of cyclic groups.
Then G ⊲⊳ H for some Latin square H, with the exception of G = C2

2 where there is no
biembedding.

If the conjecture is true, then every Abelian group G, with the single exception of C2
2 ,

will biembed with some other Latin square. In support of the conjecture, we make some
observations.

Theorem 3.2 If t is a positive integer, then Ct ⊲⊳ C
′

t, where C ′

t is a paratopic copy of Ct.
Moreover, if t is odd then Ct (and hence also C ′

t) has a transversal.

Proof. The result follows from the existence of the so-called regular embedding of Kt,t,t,
where the Latin squares involved are copies of Ct, [3]. If t is odd then one of the transver-
sals is the set of triples (row, column, entry) T = {(i, i, 2i); 0 6 i < t} with arithmetic
modulo t.

Corollary 3.2.1 Suppose that G is a direct product of a finite number of cyclic groups
of odd order, at most one cyclic group of even order, and at most one elementary Abelian
2-group Cn

2 with n > 2. Then G ⊲⊳ H ′ for some H ′.
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Proof. When G0 is a finite direct product of cyclic groups of odd order, repeated appli-
cation of Corollary 2.1.1 together with Theorem 3.2 gives G0 ⊲⊳ H

′

0 for some H ′

0 having a
transversal. A further application of Corollary 2.1.1 together with Theorem 3.1 will deal
with products involving a factor Cn

2 with n > 2, and will yield a biembedding G1 ⊲⊳ H
′

1

where H ′

1 has a transversal. A final application of Corollary 2.1.1 together with the reg-
ular embedding of a cyclic group of even order will deal with products involving a single
factor of this type.

Note that Corollary 3.2.1 does not guarantee that H ′ has a transversal, although in
practice it may have. For example, if we consider the biembedding M(C2) ⊲⊳ N(C2, T , A

′

1),
where M and N are the squares of order 3 used in the examples of Section 2, T is the
highlighted transversal of N , and A′

1 is the square of order 2 used in Theorem 3.1, then it
is easy to see that H ′ = N(C2, T , A

′

1) has a transversal while M(C2) = C3×C2. Actually,
this H ′ is a paratopic copy of the square numbered 6.2 in the standard listing of [1], and
the biembedding is also described in [3]. A further example is given in [4], where it is
shown that (C2 ×C4) ⊲⊳ D

′

4, where D′

4 is a square paratopic with the Cayley table of the
dihedral group D4 of order 8, and again this square does have a transversal. On the other
hand, it was shown in [3] that the only biembedding of C4 is with a copy of itself, and
this has no transversal.

Finally we turn to lower bounds on the numbers of biembeddings. In [2] it was proved
that for n = 3p, where p = 2s and s is sufficiently large, there are at least nn2/288

nonisomorphic face 2-colourable triangular embeddings of Kn,n,n, each of which has a
parallel class in one colour. The proof depends on the construction of a biembedding of
a pair of Latin squares of side p, one of which has p2(p− 2)/8 subsquares of side 2, and
the other has a transversal. However, Theorem 3.1 establishes that for s > 2, Cs

2 ⊲⊳ A
′

s,
where A′

s has a transversal and Cs
2 has p2(p − 1)/4 subsquares of side 2. By using this

biembedding and employing the same argument as in [2], the result is easily improved to
show that for n = 3p, where p = 2s and s is sufficiently large, there are at least nn2/144

nonisomorphic face 2-colourable triangular embeddings of Kn,n,n, each of which has a
parallel class in one colour. Then, using this estimate, it is possible to improve, again by
a factor 2 in the exponent, the lower bounds given in [2] for the numbers of nonisomorphic
face 2-colourable triangular embeddings of Kn in nonorientable surfaces for values of n
lying in the various infinite classes described in that paper. As a specific example, we now
have that for n = 9 · 2s+1 + 1, there are at least nn2( 1

1296
−o(1)) such embeddings of Kn.
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