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Abstract

The symmetric m-th power of a graph is the graph whose vertices are m-subsets
of vertices and in which two m-subsets are adjacent if and only if their symmetric
difference is an edge of the original graph. It was conjectured that there exists a
fixed m such that any two graphs are isomorphic if and only if their m-th symmetric
powers are cospectral. In this paper we show that given a positive integer m there
exist infinitely many pairs of non-isomorphic graphs with cospectral m-th symmetric
powers. Our construction is based on theory of multidimensional extensions of
coherent configurations.

1 Introduction

Let G be a graph with vertex set V .1 Given a positive integer m the symmetric m-th power
of G is the graph G{m} whose vertices are m-subsets of V and in which two m-subsets
are adjacent if and only if their symmetric difference is an edge in G [11]. One of the
motivations for studying symmetric powers comes from the graph isomorphism problem
which is to recognize in an efficient way whether two given graphs are isomorphic. To be
more precise we cite a paragraph from paper [2]:

∗The author was partially supported by RFBR grants 07-01-00485, 08-01-00379 and 08-01-00640.
1All graphs in this paper are undirected, without loops and multiple edges.
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If it were true for some fixed m that any two graphs G and H are isomorphic
if and only if their m-th symmetric powers are cospectral, then we would have
a polynomial-time algorithm for solving the graph isomorphism problem. For
a pessimist this suggests that, for each fixed m, there should be infinitely
many pairs of non-isomorphic graphs G and H such that G{m} and H{m} are
cospectral.

In this paper we justify the pessimistic point of view by proving the following theorem.

Theorem 1.1 Given a positive integer m there exist infinitely many pairs of non-isomor-
phic graphs G and H such that G{m} and H{m} are cospectral.

Let us discuss briefly the main ideas on which our construction is based. It was an
old observation of B. Weisfeiler and A. Leman that any isomorphism between two graphs
induces the canonical similarity between their schemes [13] (Sections 3 and 2 provide
a background on general schemes and schemes of graphs respectively). However, the
canonical similarity may exist even for non-isomorphic graphs. In any of these cases
the graphs are called equivalent (Definition 3.3). For example any two strongly regular
graphs with the same parameters are equivalent. The first crucial observation in the proof
of Theorem 1.1 is that any two equivalent graphs are cospectral (Theorem 3.4).

There is an efficient algorithm to test whether or not two graphs are equivalent [13].
Therefore the graph isomorphism problem would be solved if any two equivalent graphs
were isomorphic. However, this is not true because the equivalence of two graphs roughly
speaking means that there is an isomorphism preserving bijection between the sets of
their m-subgraphs only for m 6 3. More elaborated technique taking into account the
m-subgraphs for larger m was developed in [12]. In scheme theory this method naturally
leads to study the m-extension of a scheme which is the canonically defined scheme on
the Cartesian m-fold product of the underlying set (see [5] and Section 4). It is almost
obvious that the canonical similarity between the schemes of two isomorphic graphs can
be extended to the canonical similarity between the m-extensions of that schemes. This
enables us to introduce the notion of the m-equivalence of graphs so that the 1-equivalence
coincides with the equivalence. The second crucial observation in the proof of Theorem 1.1
is that the m-th symmetric powers of any two m-equivalent graphs are equivalent, and
then cospectral (Theorem 4.4).

What we said above shows that to prove Theorem 1.1 it suffices to find an infinite
family of pairs of non-isomorphic schemes (associated with appropriate graphs) the m-
extensions of which are similar. In Section 5 we modify a construction of such schemes
found in [5] so that any involved scheme was the scheme of a suitable graph. The graphs
from Theorem 1.1 are exactly those obtained in this way.

After finishing this paper the authors found that Theorem 1.1 was independently
proved in the recent article [1]. However, our approach is completely different from the
one used in [1]: the technique used there is based on analysis of the m-dimensional
Weisfeiler-Lehman algorithm given in [4], whereas we use general theory of schemes in
spirit of [8].

the electronic journal of combinatorics 16 (2009), #R120 2



2 Preliminaries

In our presentation of the scheme theory we follow recent survey [8].

2.1. Schemes. Let V be a finite set and let R be a partition of V ×V . Denote by R∗ the
set of all unions of the elements of R. Obviously, R∗ is closed with respect to taking the
complement Rc of R in V ×V , unions and intersections. Below for R ⊂ V ×V we denote
by RT the set of all pairs (u, v) with (v, u) ∈ R and put R(u) = {v ∈ V : (u, v) ∈ R} for
u ∈ V .

Definition 2.1 A pair C = (V,R) is called a coherent configuration or a scheme on V if
the following conditions are satisfied:

(C1) R∗ contains the diagonal ∆(V ) of the Cartesian product V × V ,

(C2) R∗ contains the relation RT for all R ∈ R,

(C3) given R, S, T ∈ R, the number cR,S(u, v) = |R(u) ∩ ST (v)| does not depend on the
choice of (u, v) ∈ T .

The elements of V , R = R(C), R∗ = R∗(C) and the numbers (C3) are called the points,
the basis relations, the relations and the intersection numbers of C, respectively; the latter
are denoted by cT

R,S. From the definition it easily follows that

R, S ∈ R∗ ⇒ R · S ∈ R∗, (1)

where R·S denotes the relation on V consisting of all pairs (u, w) for which cR,S(u, w) 6= 0.

2.2. Fibers. The point set of the scheme C is the disjoint union of its fibers or homogeneity
sets, i.e. those X ⊂ V for which ∆(X) = {(x, x) : x ∈ X} is a basis relation. Given
R ∈ R there exist uniquely determined fibers X and Y such that R ⊂ X × Y . Moreover,
it follows from (C3) that the number

|R(u)| = c
∆(X)

R,RT (2)

does not depend on u ∈ X. It is simple but useful fact that sets X, Y ⊂ V are unions
of some fibers if and only if X × Y ∈ R∗. The scheme C is called homogeneous (or an
association scheme, [3]) if the set V is (the unique) fiber of it.

2.3. Isomorphisms and similarities. Two schemes are called isomorphic if there exists
a bijection between their point sets preserving the basis relations. Any such bijection is
called an isomorphism of these schemes. Two schemes C and C′ are called similar if

cT
R,S = cT ϕ

Rϕ,Sϕ, R, S, T ∈ R, (3)

for some bijection ϕ : R → R′, R 7→ Rϕ, such bijection is called a similarity from C to C′.
Every isomorphism f : C → C′ induces a similarity ϕ such that Rϕ = Rf for all R ∈ R
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where Rf = {(uf , vf) : (u, v) ∈ R}. The set of all isomorphisms from C to C′ inducing a
similarity ϕ is denoted by Iso(C, C′, ϕ). The set

Aut(C) = Iso(C, C, idR)

where idR is the identity permutation on R, forms a permutation group on V called the
automorphism group of the scheme C.

Any similarity ϕ : C → C′ induces the bijection X 7→ Xϕ between the sets of unions of
fibers, and the bijection R 7→ Rϕ from R∗(C) onto R∗(C′). One can prove that V ϕ = V ′

and
(RT )ϕ = (Rϕ)T , R ∈ R∗(C). (4)

Moreover, Eϕ is an equivalence relation of C′ if and only if E is an equivalence relation
of C. It should be noted that all the above bijections preserve the inclusion relation,
unions and intersections.

2.4. Quotients. Let X ⊂ V and let E ⊂ V × V be an equivalence relation. Then
E ∩ (X × X) is also the equivalence relation; the set of its classes is denoted by X/E.
For any R ⊂ V × V denote by RX/E the relation on the latter set consisting of all pairs
(Y, Z) for which RY,Z = R ∩ (Y × Z) is non-empty.

Suppose that the set X and E are respectively a union of fibers and an equivalence
relation of the scheme C. Then the set RX/E consisting of all nonempty relations RX/E ,
R ∈ R, forms a partition of X/E × X/E and

CX/E = (X/E,RX/E)

is a scheme. If E = ∆(V ), we identify X/E with X, set RX = RX,X and treat CX as a
scheme on X. Any similarity ϕ : C → C′ induces a similarity

ϕX/E : CX/E → C′
X′/E′, RX/E 7→ R′

X′/E′

where X ′ = Xϕ, R′ = Rϕ and E ′ = Eϕ.

2.5. Tensor product. Let Ri be a relation on a set Vi, i = 1, 2. Denote by R1 ⊗ R2

the relation on V1 × V2 consisting of all pairs ((u1, u2), (v1, v2)) with (u1, v1) ∈ R1 and
(u2, v2) ∈ R2.

Let C1 = (V1,R1) and C2 = (V2,R2) be schemes. Then the set R1 ⊗R2 consisting of
all relations R1⊗R2 with R1 ∈ R1 and R2 ∈ R2 is a partition of V ×V where V = V1×V2,
and

C1 ⊗ C2 = (V1 × V2,R1 ⊗R2)

is a scheme which is called the tensor product of C1 and C2. Any two similarities ϕ1 : C1 →
C′

1 and ϕ2 : C2 → C′
2 induce a similarity

ϕ : C1 ⊗ C2 → C′
1 ⊗ C′

2, R1 ⊗ R2 7→ R′
1 ⊗ R′

2

where R′
1 = (R1)

ϕ1 and R′
2 = (R2)

ϕ2.
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2.6. Direct sum. Let Hi be the fiber set of the scheme Ci, i = 1, 2. Denote by V the
disjoint union of V1 and V2, and by R0 the set of all relations X × Y with X ∈ Hi and
Y ∈ Hj where {i, j} = {1, 2}. Then the set R1 ⊞ R2 = ∪2

i=0Ri is a partition of the set
V × V , and

C1 ⊞ C2 = (V,R1 ⊞ R2)

is a scheme called the direct sum of the schemes C1 and C2. Clearly, CVi
= Ci, i = 1, 2,

and C is the smallest scheme on V having this property. It was proved in [8] that any two
similarities ϕ1 : C1 → C′

1 and ϕ2 : C2 → C′
2 induce a uniquely determined similarity

ϕ : C1 ⊞ C2 → C′
1 ⊞ C′

2

such that ϕVi
= ϕi, i = 1, 2.

2.7. Closure. The set of all schemes on V is partially ordered by inclusion of their sets
of relations:

C 6 C′ def
⇔ R∗ ⊂ (R′)∗,

in this case we say that C is a subscheme of C′. For sets R1, . . . ,Rs of binary relations
on V we denote by [R1, . . . ,Rs] the smallest scheme C = (V,R) such that Ri ⊂ R∗ for
all i. Usually instead of Ri in brackets we write Ri (resp. Vi or Ci), if Ri = {Ri} (resp.
Ri = {∆(Vi)} or Ri = R(Ci)).

3 The scheme of a graph

In their seminal paper, B. Weisfeiler and A. Leman (1968) associated with a graph a
special matrix algebra containing its adjacency matrix [13]. In modern terms this algebra
is nothing else than the adjacency algebra of a scheme defined as follows.

3.1. Let G = (V, R) be a graph with vertex set V and edge set R. Then [G] := [R] is
called the scheme of G (see Subsection 2.7). Thus it is the smallest scheme on V for which
R is a union of its basis relations. For example, it is easily seen that if G is a complete
graph with at least 2 vertices, then the scheme [G] has two basis relations: ∆ and ∆c

where ∆ = ∆(V ). Below we write [G, X1, X2, . . . , Xt] instead of [R, X1, X2, . . . , Xt] for
Xi ⊂ V .

In general, it is quite difficult to find the scheme [G] explicitly. Some information on
its structure is given in the following statement. Below given a set X ⊂ V and an integer
d we put

Xd = {v ∈ V : |R(v) ∩ X| = d}. (5)

Clearly, Vd = {v ∈ V : dG(v) = d} where dG(v) is the valency of the vertex v in the
graph G.

Lemma 3.1 Let G be a graph with vertex set V and d be an integer. If X ⊂ V is a union
of fibers of the scheme [G], then so is the set Xd. In particular, the set Vd is a union of
fibers of [G].
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Proof. Suppose that X is a union of fibers of [G]. Without loss in generality we may
assume that Xd 6= ∅. Then there is a fiber Y such that Y ∩ Xd 6= ∅. So there exists
a vertex y ∈ Y such that |R(y) ∩ X| = d. Since R is a union of basis relations of [G],
equality (2) shows that d = |R(y) ∩ X| = |R(y′) ∩ X| for all y′ ∈ Y . Therefore Y ⊂ Xd.
Thus Xd is a union of fibers of the scheme [G] and we are done.

Given graphs G = (V, R) and K = (U, S) with disjoint vertex sets, and a set X ⊂ V
one can form a graph

G ⊞X K = (V ∪ U, R ∪ S ∪ (X × U) ∪ (U × X)). (6)

For X = ∅ and X = V this graph is known respectively as the disjoint union and the join
of the graphs G and K. The scheme of the disjoint union was found in [7]. Below we find
the scheme of the graph G ⊞X K for special sets X; this result will be used in Section 5.

Theorem 3.2 Let G = (V, R) and K = (U, S) be graphs with disjoint vertex sets and
X ⊂ V . Suppose that |V | 6 |U |, and (a) |X| + dK(x) < |V | for all x ∈ U and (b) no
vertex of G is adjacent to all vertices from X. Then

[G ⊞X K] = [G, X] ⊞ [K].

Proof. Denote by V ′ the vertex set of the graph G′ = G ⊞X K. Let us prove that

dG′(x) > n > dG′(y), x ∈ X, y ∈ V ′ \ X (7)

where n = |V |. Indeed, from (6) it follows that X ⊂ Um where m = |U | and Um is defined
as in (5) with X = U , d = m and R being the edge set of G′. Therefore, given x ∈ X we
have

dG′(x) > m > n

which proves the left-hand side inequality in (7). To prove the right-hand side inequality
let y ∈ V ′ \ X. If y ∈ V , then obviously dG′(y) = dG(y) 6 n − 1 and we are done.
Otherwise, y ∈ U . But then dG′(y) = |X|+dK(y) and the claim follows from condition (a).

From inequalities (7) and condition (b) it follows respectively that

X =

n+m⋃

d=n

(V ′)d, U = Xk

where k = |X|. So X, and hence U , is a union of fibers of the scheme [G′] by Lemma 3.1.
This implies that so is the set V \X. However, in this case R = (R′)V and S = (R′)U are
relations of [G′] where R′ is the edge set of the graph G′. Therefore

[G ⊞X K] > [R, X, S] > [G, X] ⊞ [K]

(here we used the minimality of the direct sum). Since the converse inclusion is obvious,
we are done.

the electronic journal of combinatorics 16 (2009), #R120 6



We will apply Theorem 3.2 to the tree K = Tn with n > 7 vertices on the picture
below (it has 3, n − 4 and 1 vertices with valencies 1, 2 and 3 respectively):

1

•
2

•
3

•......
n−4

•
n−3

•
n−2

•

n−1

•
n

•

A straightforward check shows that the automorphism group Aut(Tn) of Tn is trivial. On
the other hand, from [7, Theorems 4.4,6.3] it follows that given an arbitrary tree T the
basis relations of the scheme [T ] are the orbits of the group Aut(T ) acting on the pairs of
vertices. Thus the scheme [Tn] is trivial, i.e. any relation on its point set is the relation
of the scheme.

3.2. Let G = (V, R) and G′ = (V, R′) be graphs with schemes C and C′ respectively.

Definition 3.3 The graphs G and G′ are called equivalent, G ∼ G′, if there exists a
similarity ϕ : C → C′ such that Rϕ = R′.

It is easy to see that ϕ is uniquely determined (when it exists); we call it the canonical
similarity from C to C′. Not every two equivalent graphs are isomorphic (e.g. take non-
isomorphic strongly regular graphs with the same parameters [3]), but if they are, then
any isomorphism between them induces the canonical similarity between their schemes
(see Subsection 2.3). This simple observation appeared in [12] and the exact sense of it
is as follows:

Iso(G, G′) = Iso(C, C′, ϕ) (8)

where the left-hand side is the set of all isomorphisms from G onto G′, and the right-hand
side is the set of all isomorphisms from C onto C′ inducing ϕ (see Subsection 2.3). Thus
the graphs G and G′ are isomorphic if and only if they are equivalent and the canonical
similarity between their schemes is induced by a bijection.

Theorem 3.4 Any two equivalent graphs are cospectral.

Proof. Let G be a graph with the adjacency matrix A = A(G) the distinct eigenvalues
θ1, . . . , θs of which occur in the spectrum of A with multiplicities µ1, . . . , µs. Denote by
A the adjacency algebra of the scheme [G]; by definition it is the matrix algebra over the
complex number field C spanned by the set {A(R) : R ∈ R} where R is the set of the basis
relations of [G]. This algebra is closed with respect to the Hadamard (componentwise)
product and taking transposes.

Suppose that the graph G is equivalent to a graph G′. Then there exists the canonical
similarity ϕ : [G] → [G′] (taking the edge set of G to that of G′). By the linearity it
induces the matrix algebra isomorphism (denoted by the same letter)

ϕ : A → A′, A(R)ϕ 7→ A(Rϕ) (R ∈ R),
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preserving the Hadamard product and the transpose, where A′ is the adjacency algebra of
the scheme [G′], and A(R) and A(Rϕ) are the adjacency matrices of the relations R and
Rϕ. By the canonicity ϕ takes the matrix A to the matrix A′ = A(G′). Therefore these
matrices have the same minimal polynomial and hence the same eigenvalues. Denote by
µ′

i the multiplicity of θi in A′. Then

s∑

i=1

(θi)
jµi = tr(Aj) = tr((A′)j) =

s∑

i=1

(θi)
jµ′

i, 0 6 j 6 s − 1

(see [9, 5.5]). This gives a system of s linear equations with the unknowns µi − µ′
i,

i = 1, . . . , s. The determinant of this system being the Vandermonde determinant equal
to ±

∏
i6=j(θi − θj) 6= 0. Therefore µi −µ′

i = 0 for all i, and so the matrices A and A′ have
the same characteristic polynomials. Thus the graphs G and G′ are cospectral.

4 The m-equivalence of graphs

4.1. Let m be a positive integer. Following [8] by the m-extension of a scheme C = (V,R)

we mean the smallest scheme Ĉ (m) on V m containing the m-fold tensor power of C as a
subscheme and the reflexive relation corresponding to the diagonal ∆m of the Cartesian
m-fold power of V , or more precisely

Ĉ (m) = [Cm, ∆m].

Clearly, the 1-extension of C coincides with C. For m > 1 it is difficult to find the basis
relations of the m-extension explicitly. However, in any case it contains any elementary
cylindric relation

Cyli,j(R) = {(x, y) ∈ V m × V m : (xi, yj) ∈ R}

where R ∈ R∗ and i, j ∈ {1, . . . , m} (see [6, Lemma 6.2]). Since the set of all relations of
a scheme is closed with respect to intersections, we obtain the following statement.

Theorem 4.1 Let T be a family of relations Ri,j ∈ R∗ where i, j = 1, . . . , m. Then the
m-extension of the scheme C contains any cylindric relation

Cylm(T ) =

m⋂

i,j=1

Cyli,j(Ri,j).

Given a permutation σ ∈ Sym(m) denote by Tσ = Tσ(V ) the family of relations Ri,j

coinciding with ∆ or ∆c depending on whether or not j = iσ respectively. Since obviously
∆, ∆c ∈ R∗, from Theorem 4.1 it follows that the m-extension of C contains the relation

Cσ = Cylm(Tσ).
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Given an m-tuple x in the domain of Cσ we have xi 6= xj for all i, j = 1, . . . , m with
j 6= iσ. This implies that the set Sx = {x1, . . . , xm} consists of exactly m elements and
hence |V | > m. Under the latter assumption Cσ 6= ∅. If, in addition, the permutation σ
is the identity, then it is easy to see that Cσ = ∆(Vm) where Vm is the set of m-tuples of
V with pairwise different coordinates,

Vm = {x ∈ V m : |Sx| = m}. (9)

In particular, Vm is a union of fibers of the m-extension of the scheme C. Denote by
Em = Em(V ) the union of all relations Cσ with σ ∈ Sym(V ). Then obviously

Em = {(x, y) ∈ Vm × Vm : Sx = Sy}. (10)

Therefore, Em is an equivalence relation on Vm. One can see that any of its classes is of
the form Û = {x ∈ Vm : Sx = U} for some set U ∈ V {m}. Moreover, the mapping U 7→ Û
is a bijection from V {m} onto Vm/Em.

Let G = (V, R) be a graph and m 6 |V |. Denote by TR = TR(V ) the family of m2

relations Ri,j such that R1,2 = R2,1 = ∆, R1,1 = R2,2 = R and Ri,j = ∆c for the other i, j.
Then obviously the relation Rm = Cylm(TR) is of the form

Rm = {(x, y) ∈ V m × V m : Sx ∆ Sy = {x1, y1} and (x1, y1) ∈ R} (11)

where Sx ∆ Sy is the symmetric difference of the sets Sx and Sy. In particular, R1 = R.
Since the latter is a relation of the scheme C = [G], from Theorem 4.1 it follows that
the m-extension of C contains the relation Rm. The graph with vertex set Vm/Em and
edge set (Rm)Vm/Em

is denoted by Gm. The following statement shows that this graph is
isomorphic to the symmetric m-th power G{m} of the graph G (see the first paragraph of
Section 1).

Theorem 4.2 Let G be a graph with vertex set V . Then the bijection f : U 7→ Û is
an isomorphism of the graph G{m} onto the graph Gm. Moreover, the scheme [Gm] is a

subscheme of the scheme (Ĉ (m))Vm/Em
where C = [G].

Proof. The first statement immediately follows from equality (11). To prove the second
statement, it suffices to note that the edge set R of the graph G is a relation of the
scheme C, and hence the edge set (Rm)Vm/Em

of the graph Gm is a relation of the scheme

(Ĉ (m))Vm/Em
.

4.2. Let C and C′ be similar schemes. A similarity ϕ : C → C′ is called the m-similarity
if there exists a similarity ϕ̂ = ϕ̂(m) from the m-extension of C to the m-extension of C′

such that
(∆m)bϕ = ∆′

m and ϕ̂|Cm = ϕm,

where ϕm is the similarity from Cm to C′m induced by ϕ (see Subsection 2.5). Clearly,
any similarity is 1-similarity. If m > 1, then the similarity ϕ̂ does not necessarily exist.
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However, if it does, then it is uniquely determined and is called the m-extension of ϕ.
It is important to note that any similarity induced by an isomorphism has the obvious
m-extension and hence is an m-similarity for all m. Further information on m-similarities
can be found in [5, 6].

Let ϕ : C → C′ be an m-similarity. It was proved in [6, Lemma 6.2] that for any relation
R of the scheme C the m-extension of ϕ takes the elementary cylindric relation Cyli,j(R)
to the elementary cylindric relation Cyli,j(R

ϕ). Since the m-extension of ϕ preserves the
intersection of relations of the m-extension of C, we obtain the following statement.

Theorem 4.3 Let ϕ : C → C′ be an m-similarity and T be a family of relations Ri,j of
the scheme C, i, j = 1, . . . , m. Then

(Cylm(T ))bϕ = Cylm(T ϕ)

where ϕ̂ is the m-extension of ϕ and T ϕ is the family of relations Rϕ
i,j.

Let V and V ′ be the point sets of the schemes C and C′ respectively. Let us define
the set V ′

m and the relation E ′
m by formulas (9) and (10) with V replaced by V ′. Then

∆(V ′
m) = C ′

σ with σ being the identity permutation and E ′
m the union of all C ′

σ with
σ ∈ Sym(m) where C ′

σ = Cylm(T ′
σ) with T ′

σ = Tσ(V ′). However, by Theorem 4.3 the
similarity ϕ̂ takes the relation Cσ to the relation C ′

σ for all σ. Therefore

(Vm)bϕ = V ′
m, (Em)bϕ = E ′

m. (12)

Analogously, by Theorem 4.3 for any relation R of the scheme C the similarity ϕ̂ takes
the relation Rm = Cylm(TR) to the relation R′

m = Cylm(T ′
R′) where R′ = Rϕ and T ′

R′ =
TR′(V ′). Thus

(Rm)bϕ = R′
m. (13)

Since Vm and Em are respectively a union of fibers and a relation of the scheme Ĉ = Ĉ (m),
the similarity ϕ̂ induces similarity

ϕ̂Vm/Em
: ĈVm/Em

→ Ĉ′
V ′

m/E′

m
(14)

where Ĉ′ = Ĉ′(m) (see Subsection 2.4). By equalities (12) and (13) it takes the relation
(Rm)Vm/Em

to the relation (R′
m)V ′

m/E′

m
. By the second part of Theorem 4.2 this implies

that the similarity (14) induces a similarity from the scheme [Gm] to the scheme [G′
m]

preserving their edge sets. Thus the graphs Gm and G′
m are equivalent.

Definition 4.4 The graphs G = (V, R) and G′ = (V ′, R′) are called m-equivalent if there
exists an m-similarity ϕ : [G] → [G′] such that Rϕ = R′.

Clearly, graphs are 1-equivalent if and only if they are equivalent. Moreover, it can be
proved that any m-similarity is also a k-similarity for all k = 1, . . . , m (see [6]). So any
two m-equivalent graphs are k-equivalent. Now we are ready to prove the main result of
this section.
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Theorem 4.5 Let G and G′ be m-equivalent graphs. Then the graphs G{m} and (G′){m}

are equivalent. In particular, they are cospectral.

Proof. The second statement follows from Theorem 3.4. To prove the first one we observe
that by Theorem 4.2 the graphs G{m} and Gm are isomorphic. By equality (8) this implies
that they are equivalent. Similarly, the graphs (G′){m} and G′

m are equivalent. Finally,
due to the paragraph before Definition 4.4 the graphs Gm and G′

m are also equivalent.
Thus G{m} ∼ Gm ∼ G′

m ∼ (G′){m} and we are done.

5 Construction

5.1. In this subsection we give a brief summary of the results from [5, Section 5]. Below
s is a positive integer and I = {1, . . . , s}.

Let C = (V,R) be a scheme on 4s points with s fibers V1, . . . , Vs each of size 4. Suppose
that for each i ∈ I the scheme CVi

has 4 basis relations and Aut(CVi
) is an elementary

Abelian group of order 4. Then CVi
contains exactly three equivalence relations Ei,1,

Ei,2 and Ei,3 with two classes of size 2. Moreover, for any distinct i, j ∈ I the set
Ri,j = {R ∈ R : R ⊂ Vi × Vj} contains 1, 2 or 4 basis relations. Suppose that

|Ri,j | ∈ {1, 2}, i, j ∈ I, i 6= j.

Denote by K the graph with vertex set I in which the vertices i and j are adjacent if and
only if |Ri,j| = 2. Suppose that K is a cubic graph, i.e. the neighborhood K(i) of any
vertex i in K is of cardinality 3.

Definition 5.1 The scheme C is called a Klein scheme 2 associated with K if for each
i ∈ I there exists a bijection α : {1, 2, 3} → K(i) such that

R · RT = Ei,j , R ∈ Ri,α(j), j = 1, 2, 3. (15)

For any connected cubic graph K on s vertices one can construct a Klein scheme C =
(V,R) on 4s points associated with K. Moreover, for each i ∈ I the mapping ϕi : R → R
defined by

Rϕi =






(Vi × Vj) \ R, if R ∈ Ri,j with j ∈ K(i),

(Vj × Vi) \ R, if R ∈ Rj,i with j ∈ K(i),

R, otherwise.

(16)

is a similarity from C to itself. Suppose that K has no separators3 of cardinality greater or
equal than 3m. Then the similarity ϕi is an m-similarity that is not induced by a bijection.
Since given a positive integer k there exist infinitely many non-isomorphic cubic graphs
with no separators of cardinality k (see e.g. [10]), we obtain the following result.

2The adjacency algebra of a Klein scheme belongs to the class K∗ defined and studied in [5, Subsec-
tions 5.2-5.4].

3A set X ⊂ I is a separator of a graph K with s vertices if any connected component of the subgraph
of K induced on I \ X has 6 s/2 vertices.
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Theorem 5.2 Given a positive integer m there exist infinitely many pairwise non-iso-
morphic Klein schemes C such that given i ∈ I the mapping ϕi is an m-similarity from C
to itself that is not induced by a bijection.

5.2. Let C = (V,R) be a Klein scheme associated with a graph K. We keep the notation
of the previous subsection. A symmetric relation R ∈ R∗ is called generic if

j ∈ K(i) ⇒ Ri,j ∈ Ri,j, i, j ∈ I, (17)

where Ri,j = R ∩ (Vi × Vj). To construct such a relation given i, j ∈ I with j ∈ K(i)
choose a basis relation Ri,j ∈ Ri,j. Then the union of all of them is generic whenever
Ri,j = RT

j,i for all i, j.

Lemma 5.3 For any generic relation R we have [R, V1, . . . , Vs] = C.

Proof. Set C′ = [R, V1, . . . , Vs]. Since R and ∆i = ∆(Vi) (i ∈ I) are relations of C, the
minimality of the scheme C′ implies that C > C′. Therefore, it suffices to verify that any
relation S ∈ R is a relation of C′. However, in this case S ∈ Ri,j for some i, j ∈ I.
Therefore, the required statement holds for i 6= j because in this case we have

S =

{
Ri,j = ∆iR∆i, if |Ri,j | = 1,

(Vi × Vj) \ Ri,j, if |Ri,j | = 2.

Suppose that i = j. Then S = ∆i or S = Ei,k \ ∆i for some k ∈ {1, 2, 3}. On the other
hand, from (15) it follows that Ei,k is a relation of C′ for all k. Thus S is a relation of C′.

Let C be a Klein scheme on 4s points with s > 2 and R be a generic relation of it. Set
G0 = (V, R) and n0 = |V |. By means of operation (6) we successively define the graph

Gi+1 = Gi ⊞Vi+1
Tni

, i = 0, . . . , s − 1,

where ni is the number of vertices of Gi, and Tni
= (Ui, Si) is the tree defined at the end

of Subsection 3.1 (without loss in generality, we may assume that the sets Ui are pairwise
disjoint). It immediately follows from the definition that the vertex set and the edge set
of the graph Gi+1 are respectively the union of V with ∪i

j=0Uj , and the union of R with
the symmetric relation

Ri+1 =
i⋃

j=0

(Sj ∪ (Uj × Vj) ∪ (Vj × Uj)) (18)

where V0 = V . In particular, the graph Gi (as well as the graph Tni
) has ni = 2i+2s

vertices for all i. Moreover,
|Vi+1| + dTni

(x) 6 7 < ni
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for all vertices x of Tni
. Finally, it is easily seen that any vertex of Gi is adjacent with

at most 2 vertices of the set Vi+1 which is of size 4. Thus by Theorem 3.2 with G = Gi,
K = Tni

and X = Vi+1, we conclude that

[Gi+1] = [Gi, Vi+1] ⊞ Tni
, i = 0, . . . , s − 1.

Using induction on i one can see that

[Gi+1] = [G0, V1, . . . , Vi+1] ⊞ ([Tn0
] ⊞ · · ·⊞ [Tni

]). (19)

However, since s > 2, the scheme of the graph Tni
is trivial for all i (see the end of

Subsection 3.1). Therefore the direct sum in the right-hand side of equality (19) is also
trivial. Thus by Lemma 5.3 the scheme of the graph G(C, R) = Gs can be found as
follows:

[G(C, R)] = [R, V1, . . . , Vs] ⊞ D = C ⊞ D (20)

where D is a trivial scheme on ns − n0 points.

5.3. Proof of Theorem 1.1. For a positive integer m denote by C = (V,R) the Klein
scheme from Theorem 5.2. Then given i ∈ I the mapping ϕi defined by (16) is an
m-similarity of the scheme C to itself that is not induced by a bijection. Let

G = G(C, R), G′ = G(C, Rϕ)

where R ∈ R∗ is a generic relation and ϕ is the similarity of the scheme in the right-hand
side of (20) induced by ϕi. Then by Theorem 4.5 it suffices to prove that G and G′ are
non-isomorphic m-equivalent graphs.

From (16) and (17) it follows that R is a generic relation of C if and only if so is the
relation Rϕ = Rϕi . Therefore, formula (20) implies that

[G′] = C ⊞ D = [G]. (21)

On the other hand, from [5, Theorem 7.6] it follows that ϕ is an m-similarity if and only
if both ϕC and ϕD are m-similarities. However, ϕC = ϕi is an m-similarity of C by the
choice of ϕi, and ϕD is obviously an m-similarity of D. Thus we conclude that ϕ is an
m-similarity of the scheme C ⊞ D.

From (20) it follows that any basis relation of the scheme C ⊞ D other than basis
relation of C is one of the relations {u} × Y , Y × {u} where u ∈ Ui for some i and Y is
either Vj or a singleton of Uj for some j. In particular, the similarity ϕ leaves fixed any
such a relation. Therefore,

(R ∪ Rs)
ϕ = Rϕ ∪ Rs

where the relation Rs is defined by (18) for i = s − 1. Since R ∪ Rs and Rϕ ∪ Rs are
the edge sets of the graphs G and G′ respectively, and ϕ is an m-similarity of the scheme
[G] = [G′] to itself, we conclude that the graphs G and G′ are m-equivalent. However,
from the choice of ϕi it follows that ϕ is not induced by a bijection. Therefore, due to
equality (8) the graphs G and G′ are not isomorphic.
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