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Abstract

A tatami tiling is an arrangement of 1 × 2 dominoes (or mats) in a rectangle
with m rows and n columns, subject to the constraint that no four corners meet at
a point. For fixed m we present and expand upon Dean Hickerson’s combinatorial
decomposition of the set of tatami tilings — a decomposition that allows them to
be viewed as certain classes of restricted compositions when n > m. Using this
decomposition we find the ordinary generating functions of both unrestricted and
inequivalent tatami tilings that fit in a rectangle with m rows and n columns, for
fixed m and n > m. This allows us to verify a modified version of a conjecture of
Knuth. Finally, we give explicit solutions for the count of tatami tilings, in the form
of sums of binomial coefficients.

1 Introduction

In the dimer problem one wishes to count the number of different dimer configurations -
ways to cover an m by n rectangle by 1 by 2 tiles. An equivalent problem is counting the
number of perfect matchings in a grid graph. Many papers have been written about the
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Figure 1: Some forbidden configurations for tatami tilings

Figure 2: Typical tatami tilings for m = 2, 3, 4.

dimer problem and its variants. See, for example Read [5] or Section 10.1, “The Dimer
Problem and Perfect Matchings,” of Aigner [1]. Dimer configurations are also sometimes
called domino tilings and we will use the word “tiling” in this paper. All of our tilings
will be of the type defined below.

Definition 1.1. A tatami tiling is a domino tiling which satisfies the tatami property -
that no four tiles meet at a point.

A japanese tatami mat usually has a width to length ratio of 1 : 2, just like 1 by 2 tiles.
These mats are, traditionally, used to tile a rectangular floor using a tatami tiling. Figure
1 shows some forbidden configurations for tatami tilings and Figure 2 shows examples of
tatami tilings for m = 2, 3, 4.

In this paper we are concerned with tatami tilings where the height m is fixed. Figure 2
shows typical tatami tilings with m = 2, 3, 4. Let T (m, n) denote the number of height m,
width n tatami tilings. In the solution to problem 7.1.4.215 of Knuth [4], he conjectures
that the ordinary generating function for the number of tatami tilings of an m by n
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rectangle with m even and 0 6 m − 2 6 n is

K(z) =
(1 + z)2(zm−2 + zm)

1 − zm−1 − zm+1
(1)

By his conjecture, the coefficient of zn in K(z) equal to T (m, n) whenever m is even,
m > 2, and n > m − 2.

Hickerson [3], provides a construction for tatami tilings of m by n rectangles for all
values of m, which we will use to show that Knuth’s generating function is mainly correct.
However, it only generates the number of tatami tilings of an m by n rectangle whenever
m is even and 4 6 m 6 n or 6 6 m − 2 6 n, and not when m = 2 or when n = 4 and
m = 2 or m = 3, or when n = 6 and m = 4, as was conjectured.

In Section 2 we describe Hickerson’s structural characterization of m by n tatami
tilings for 1 6 m 6 n [3]. Section 3 explains how to construct generating functions for m
by n tilings with m = 2 (Section 3.1), m odd and 3 6 m 6 n (Section 3.2), and m even
and 2 6 m 6 n (Section 3.3). Section 3.4 discusses the range of validity of K(z).

The aforementioned sections discuss tatami tilings without consideration of equiva-
lence by reflection or rotation. Thus in Section 4 we construct generating functions for
inequivalent tatami timings. As in Section 3, we construct separate generating functions
for m = 2 (Section 4.1), for m odd and 3 6 m 6 n (Section 4.2), and for m even and
4 6 m 6 n (Section 4.3).

Finally, in section 5 we provide tables generated by the generating functions presented
here as well as a summary of the results.

2 Structure of Tilings

Theorem 2.1. The “triangular” corners of a rectangle cannot be tiled.

Proof. This is illustrated without loss of generality by Figure 3.

Figure 3: The lower left triangle of a rectangle which is impossible to tile.

Theorem 2.2. A tatami tiling of an m by n rectangle with 1 6 m 6 n has no horizontal
tile touching the left edge of the rectangle that is not also touching either the top or bottom
edge of the rectangle.
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Proof. The cases where m = 1 and m = 2 are trivial since a horizontal tile that touches
the left edge of the rectangle must also touch the top or bottom. Consider a tatami tiling
of an m by n rectangle with 3 6 m 6 n and suppose there was such a tile t touching the
left edge but not the top or bottom edge. There are two cases: either the row containing
t is completely filled with horizontal tiles or it isn’t.

case 1 Assume without loss of generality that row r with
⌊

m
2

⌋

< r < m contains only
horizontal tiles. Note that this means n must be even. Thus r is in the bottom half of the
rectangle and r contains exactly n

2
tiles. Because of the tatami property, for 1 6 i 6 m−r,

row r + i must contain n
2
− i contiguous horizontal tiles starting in column i + 1. Since

n > m and r >
⌊

m
2

⌋

, row m contains n
2
−m + r >

⌈

m
2

⌉

−m + r = r −
⌊

m
2

⌋

> 0 tiles. The
remaining untiled portion of the bottom half of the rectangle contains two corners which
cannot be tiled as shown in Theorem 2.1. Figure 4 illustrates these row tilings with row
r shown in black and rows r + i for 1 6 i 6 m − r shown in grey.

Figure 4: Forced tiling with a horizontal tile row.

case 2 Assume that row r with 1 < r < m contains at least one square that is covered
by a vertical tile. Consider the leftmost vertical tile, t, in row r and assume without loss
of generality that t covers row r and row r + 1 as shown in Figure 5.

Figure 5: Leftmost vertical tile in a row with a horizontal tile on the left edge.

Now, as shown by the grey solid tiles in Figure 6, the two tiles above and to the right
of t, and above and to the right of those two tiles, and so on, are forced into place to
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preserve the tatami property until either the top edge or the right edge is reached. Once
again, we have two cases.

Figure 6: Forced tiles to preserve the tatami property due to a row with a horizontal tile
on the left edge and at least one vertical tile.

case 2-1 If the top edge is reached, then, as shown by the grey dashed tiles in the left
hand diagram of Figure 6, further forcing of tiles to preserve the tatami property yields
an upper left corner that, by Theorem 2.1, we cannot tile.

case 2-2 If the right edge is reached, then, as shown in the right hand diagram of
Figure 6, further forcing of tiles to preserve the tatami property yields a parallelogram
of horizontal tiles as shown in Figure 7. This parallelogram consists of n columns and
n− 1 rows since each column corresponds to exactly one row, excepting the two columns
containing the top tile, which together correspond to one row. So n − 1 6 m and since
n > m by definition, either n−1 = m−1 or n−1 = m and in either case the parallelogram
must touch either the top or bottom edge of the rectangle (or both). This leaves at least
two triangular regions that, by Theorem 2.1, cannot be tiled, as shown in Figure 8.

Since we reached a contradiction in both cases, there cannot be a horizontal tile
touching the left edge of the rectangle that is not either in the top or bottom row.

Theorem 2.3. If m is odd and 1 6 m 6 n, a tatami tiling of an m by n rectangle consists
of some combination of tatami tilings of m by m − 1 and m by m + 1 rectangles.

Proof. First note that when m is odd, n must be even for a tatami tiling (or any tiling with
1 by 2 tiles for that matter) to exist. When m = 1 (and n is even), the theorem is trivially
true, as there is only one possible tatami tiling which consists entirely of horizontal tiles
- tilings of 1 by 2 rectangles.

By Theorem 2.2, a tatami tiling of an m by n rectangle where m is odd and 3 6 m 6 n
must have its leftmost column filled with vertical tiles except for either the top or bottom
row. Assume, without loss of generality, that the bottom row contains the horizontal
tile and the rest of the first column is filled with vertical tiles. Then, as shown by the
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Figure 7: Parallelogram of horizontal tiles resulting from a row with a horizontal tile on
the left edge and at least one vertical tile.

Figure 8: Parallelogram of horizontal tiles must touch either the top or bottom row (or
both).

grey tiles in Figure 9, many tiles are forced into position in order to preserve the tatami
property (when m = 3 no tiles are forced but the tiles are already in position for the next
step).

The leftmost pair of unoccupied squares can be filled in two ways: with a single vertical
tile or with a pair of horizontal tiles. Once we fill this pair of squares, more tiles are forced
into position to preserve the tatami property as shown in Figure 10 and we have filled
either an m by m−1 or m by m+1 portion of our rectangle. Now, to preserve the tatami
property, the leftmost column of the unfilled portion of our rectangle must be filled with
vertical tiles except for the topmost square, which must contain a horizontal tile, and the
same forcing process begins again. Thus the entire rectangle must be filled with some
combination of m by m − 1 and m by m + 1 rectangles tiled as described.

Theorem 2.4. If m is even and 4 6 m 6 n, a tatami tiling of an m by n rectangle
consists of some combination of tatami tilings of m by 1 rectangles, m by m−2 rectangles
and m by m rectangles such that the m by 1 tilings appear between any two of the m
by m − 2 and m by m tilings (and possibly at the left edge and/or the right edge of the
rectangle).

the electronic journal of combinatorics 16 (2009), #R126 6



Figure 9: Forced tiles to preserve the tatami property due to m being odd.

Figure 10: Filling an m by m + 1 or m by m − 1 portion of the rectangle.

Proof. By Theorem 2.2, a tatami tiling of an m by n rectangle where m is even and
1 6 m 6 n must either have its leftmost column filled with vertical tiles or have the top
and bottom rows of its leftmost column filled with horizontal tiles and the rest of the
leftmost column filled with vertical tiles, as shown in Figure 11. If the leftmost column
is filled with vertical tiles, we have filled an m by 1 portion of our rectangle and the next
column must have horizontal tiles in the top and bottom row and otherwise be filled with
vertical tiles.

Otherwise many tiles are forced into position in order to preserve the tatami property,
as shown by the grey tiles in the right hand diagram of Figure 11. Now, as with the
odd case, the leftmost pair of unoccupied squares can be filled in two ways: with a single
vertical tile, or with a pair of horizontal tiles. Once we fill this pair of squares, more tiles
are forced into position to preserve the tatami property as shown in Figure 12 and we
have filled either an m by m − 2 or m by m portion of our rectangle. Now, to preserve
the tatami property, the leftmost column of the unfilled portion of our rectangle must be
completely filled with vertical tiles - in other words, it must contain an m by 1 tiling.
Again to preserve the tatami property, the column following an m by 1 tiling must be
filled with vertical tiles except for its top and bottom row which must contain horizontal
tiles and the forcing process described above begins again. Thus the entire rectangle must
be filled with some combination of m by m− 2 and m by m rectangles tiled as described
and alternating with m by 1 tiled rectangles.
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Figure 11: Possible tatami tilings of the leftmost column of an m by n rectangle when n
is even.

Figure 12: Filling an m by m − 2 or m by m portion of the rectangle.

2.1 Compositions

Hickerson’s decomposition implies that there is a correspondence between certain com-
positions of n and width n tatami tilings. For m = 1, the number T (1, n) is the same
as the number of compositions of n into parts equal to 2 (which is 1 if n is even and 0
otherwise). For m = 2, the number T (2, n) is the same as the number of compositions
of n into parts which are 1 or 2, and in which no consecutive 2’s occur. For m > 1 odd,
the number T (m, n) is twice the number of compositions of n into parts which are m− 1
or m + 1. For m > 2 even, the number T (m, n) is the same as the number of compo-
sitions of n into parts which are 1 or m − 2 or m, with the restriction that every other
part is a 1. For example, the compositions of 22 corresponding to the tilings shown in
Figure 2 are 2+1+1+2+1+1+1+2+1+2+1+1+1+1+1+2+1 and 2+2+4+4+2+4+4 and
2+1+4+1+2+1+2+1+4+1+2+1.
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3 Generating Functions

Now that we know the limitations on the structures of tatami tilings with 1 6 m 6 n we
can begin to count them. We will use a similar approach to that used by Graham, et al,
in Section 7.1 of Concrete Mathematics [2].

Let Tm be the set of all tatami tilings of height m and Tm(z) be the ordinary generating
function of these tilings where the coefficient of zn is the number of tilings of a rectangle
with height m and width n. Also, let Tm(x, y) be the bivariate genrating function of
the number of tatami tilings where the coefficient of yvxh is the number of tilings with v
vertical and h horizontal tiles.

The cases where m = 0 and m = 1 are trivial, with T0(z) = 1 and T1(z) = 1/(1− z2).

3.1 Counting Tilings when m = 2

When m = 2, let A be the formal sum of all height 2 tatami tilings that are either empty
(denoted by |) or start with a vertical tile:

A = | + A + A.

Solving for A gives:

A =
|

| − −
.

Now, let T2 be all the 2 by n tatami tilings and express T2 in terms of A:

T2 = (| + )A

= (| + )
|

| − −
. (2)

Since we want to know the number of tilings of a 2 by n rectangle for n > 0, we can
substitute 1 (= z0) for |, and zn for , , and where n is the width of each tiling (1,
2, and 3 respectively):

T2(z) =
1 + z2

1 − z − z3
= 1+z+2z2+3z3+4z4+6z5+9z6+13z7+19z8+28z9+ · · ·

which is the generating function for T (2, n) for all values of n.
Substituting y for each vertical tile and x for each horizontal tile in (2), we obtain

T2(x, y) =
1 + x2

1 − y(1 + x2)
=

∑

k>0

yk(1 + x2)k+1 =
∑

j>0,k>0

(

k + 1

j

)

ykx2j ,

which proves the following theorem.
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Theorem 3.1. The number of tatami tilings of height 2 with k vertical tiles and 2j
horizontal tiles is

(

k + 1

j

)

.

Corollary 3.2. The number of 2 × n tatami tilings is

∑

j,k>0

(

k + 1

j

)

[[k + 2j = n]] =
∑

j>0

(

n − 2j + 1

j

)

.

3.2 Counting Tilings when m is Odd

When m is odd and 3 6 m 6 n, Theorem 2.3 showed that a tatami tiling of an m
by n rectangle consists of some combination of tatami tilings of m by m − 1 and m by
m + 1 rectangles. Note that tatami tilings of both the m by m − 1 rectangles and m by
m + 1 rectangles must have either the top or bottom row (and not both) entirely filled
with horizontal tiles. Thus we can effectively distinguish four possibilities for the tiling
components of our m by n rectangle which we will denote as follows:

• : m by m − 1 tiling with the top row filled with horizontal tiles,

• : m by m + 1 tiling with the top row filled with horizontal tiles,

• : m by m − 1 tiling with the bottom row filled with horizontal tiles, and

• : m by m + 1 tiling with the bottom row filled with horizontal tiles.

Let A be the formal sum of the height m tilings that are either empty or begin with
a horizontal tile in the top row and B be the formal sum of the height m tilings that are
either empty or begin with a horizontal tile in the bottom row.

A = | + + + + + + + · · ·

B = | + + + + + + + · · · .

Define α and β as shown below.

α =
(

+
)

and β =
(

+
)

.

Then A and B can be expressed in terms of each other:

A = | + αB and B = | + βA.

We can substitute for B to get A = |+α+αβA. Solving for A and substituting the result
into B we obtain

A = (| − αβ)−1(| + α) and B = | + β(| − αβ)−1(| + α)
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dimensions horizontal vertical

m × (m + 1), m odd ℓ2 ℓ(ℓ − 1)
m × (m − 1), m odd (ℓ − 1)2 ℓ(ℓ − 1)
m × (m − 2), m even ℓ(ℓ − 1) ℓ(ℓ − 1)

m × m, m even ℓ(ℓ + 1) ℓ(ℓ − 1)
m × 1, m even 0 ℓ

Table 1: Number of horizontal and vertical tiles (with ℓ = ⌈m/2⌉).

Thus

Tm = A + B − |

= (| − αβ)−1(| + α) + | + β(| − αβ)−1(| + α) − |

= (| + β)(| − αβ)−1(| + α)

=
(

| + +
)(

| −
(

+
)(

+
))

−1 (

| + +
)

(3)

Since we want to know the number of tilings of an m by n rectangle, we can substitute:

• 1 for |,

• zm−1 for and , and

• zm+1 for and

into (3) to get a generating function for the number of m by n tilings with 3 6 m 6 n
and m odd:

Tm(z) =
(1 + zm−1 + zm+1)2

1 − (zm−1 + zm+1)2

=
1 + zm−1 + zm+1

1 − zm−1 − zm+1
. (4)

The coefficient of zn in the power series generated by (4) with an odd value of m and
when 3 6 m 6 n is T (m, n).

We now try to count the tatami tilings according to the number of horizontal and
vertical tiles. Let ℓ = (m + 1)/2. Table 1 shows the number of horizontal and vertical
tiles in the m × (m + 1) rectangle and in the m × (m − 1) rectangle.

We then obtain from (4) and Table 1 that

Tm(x, y) =
1 + yℓ(ℓ−1)xℓ2 + yℓ(ℓ−1)x(ℓ−1)2

1 − yℓ(ℓ−1)xℓ2 − yℓ(ℓ−1)x(ℓ−1)2
=

1 + yℓ(ℓ−1)x(ℓ−1)2(1 + x2ℓ−1)

1 − yℓ(ℓ−1)x(ℓ−1)2(1 + x2ℓ−1)
(5)

We now count the number of tilings by the number of horizontal and vertical tiles.
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Theorem 3.3. For m odd, the number of tatami tilings with k(ℓ2 − ℓ) = k(m2 − 1)/4
vertical and k(ℓ − 1)2 + j(2ℓ − 1) = k(m − 1)2/4 + jm horizontal tiles is

2

(

k

j

)

.

Proof. First note that (1 + a)/(1 − a) = 1 + 2a + 2a2 + · · · is the form of (5), so that,
except for the constant term, the coefficient is twice what it is for 1/(1 − a). Thus we
expand as follows

1

1 − yℓ2−ℓx(ℓ−1)2(1 + x2ℓ−1)
=

∑

k>0

(

yℓ2−ℓx(ℓ−1)2(1 + x2ℓ−1)
)k

=
∑

k>0

yk(ℓ2−ℓ)xk(ℓ−1)2
∑

j>0

(

k

j

)

xj(2ℓ−1)

=
∑

k>0,j>0

(

k

j

)

yk(ℓ2−ℓ)xk(ℓ−1)2+j(2ℓ−1).

If α is not an integer, then we adopt the convention that the binomial coefficient
(

α

j

)

is zero.

Corollary 3.4. For m odd and 3 6 m 6 n, the number of m × n tatami tilings is

2
∑

j,k>0

(

k

j

)

[[n = k(m − 1) + 2j]] = 2
∑

j>0

(

(n − 2j)/(m − 1)

j

)

Proof. The total number of tiles in the statement of Theorem 3.3 is

k(m2 − 1)/4 + k(m − 1)2/4 + jm = km(m − 1)/2 + jm.

On the other hand, the total number of tiles in a n × m tatami tiling is nm/2. Thus we
have n = k(m − 1) + 2j.

3.3 Counting Tilings when m is Even

When m is even and 4 6 m 6 n, Theorem 2.4 showed that a tatami tiling of an m
by n rectangle consists of some combination of tatami tilings of m by m − 2 and m by
m rectangles with m by 1 rectangles in between them and possibly in the first or last
column or both. Note that tatami tilings of both the m by m − 2 rectangles and m by
m rectangles must have both the top and bottom row entirely filled with horizontal tiles.
Thus we denote the three possibilities for the tiling components of our m by n rectangle
as follows:
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• : m by 1 tiling (all vertical tiles),

• : m by m − 2 tiling, and

• : m by m tiling.

Let A be the formal sum of the height m tilings which do not begin with an m by 1
tiling and B be the formal sum of the height m tilings which do begin with an m by 1
tiling:

A = | + + + + (6)

+ + + + + · · ·

B = + + + + (7)

+ + + + + · · · .

Define α and β as shown below.

α =
(

+
)

and β = .

Then A and B can be expressed in terms of each other:

A =| +α(| +B) and B = βA.

We can substitute for B to get A = | + α + αβA. Solving for A, substituting the result,
and solving for B we obtain

A = (| − αβ)−1(| + α) and B = β(| − αβ)−1(| + α)

Thus

Tm = A + B

= (| − αβ)−1(| + α) + β(| − αβ)−1(| + α)

= (| + β)(| − αβ)−1(| + α)

=
(

| +
)(

| −
(

+
) )

−1 (

| +
(

+
))

(8)

Since we want to know the number of tilings of an m by n rectangle, we can substitute:

• 1 for |,

• z for ,

• zm−2 for ,
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• zm for

into (8) to get a generating function for the number of m by n tatami tilings with 4 6

m 6 n and m even:

Tm(z) =
(1 + z)(1 + zm−2 + zm)

1 − (zm−2 − zm)z

=
(1 + z)(1 + zm−2 + zm)

1 − zm−1 − zm+1
. (9)

The coefficient of zn in the power series generated by (9) with an even value of m and
when 4 6 m 6 n is T (m, n).

Referring to (9) and again to Table 1, the corresponding bivariate generating function
is

Tm(x, y) =
(1 + yℓ)(1 + yℓ(ℓ−1)xℓ(ℓ−1) + yℓ(ℓ−1)xℓ(ℓ+1))

1 − yℓ2xℓ(ℓ−1) − yℓ2xℓ(ℓ+1)

=
1 + yℓ2(xℓ(ℓ−1) + xℓ(ℓ+1))

1 − yℓ2(xℓ(ℓ−1) + xℓ(ℓ+1))
+

yℓ(1 + yℓ(ℓ−2)(xℓ(ℓ−1) + xℓ(ℓ+1)))

1 − yℓ2(xℓ(ℓ−1) + xℓ(ℓ+1))
(10)

Using the same sort of expansion as used in the proof of Theorem 3.3 on equation
(10), we obtain that 1 + Tm(x, y) is

yℓ(1 + yℓ(ℓ−2)(xℓ(ℓ−1) + xℓ(ℓ+1)))
∑

j,k>0

(

k

j

)

ykℓ2xkℓ(ℓ−1)+2jℓ. (11)

This expansion could be used to state a messy analogue of Theorem 3.3, which we omit.
However, we do give an expression as a sum of binomial coefficients below.

Theorem 3.5. For m even and 4 6 m 6 n, the number of m × n tatami tilings is

∑

j>0

(

2

(n−2j

m−1

j

)

+

(n−2j−1
m−1

j

)

+

(n−2j−m+2
m−1

j

)

+

(n−2j−m

m−1

j

))

.

Proof. Note that the denominator of (9) can be expanded as

1

1 − zm−1 − zm+1
=

∑

j,k>0

(

k

j

)

zk(m−1)+2j ,

and that the numerator is

(1 + z)(1 + zm−2 + zm) = (1 + zm−1 + zm+1) + (z) + (zm−2) + (zm).

Thus in the four sums corresponding to the four parenthesized terms on the right-
hand side above, if n is the exponent of z, then either: (a) n = k(m − 1) + 2j, (b)
n = k(m−1)+2j +1, (c) n = k(m−1)+2j +m−2, or (d) n = k(m−1)+2j +m. Now
solving for k we get the four terms in the summation in the statement of the theorem.

the electronic journal of combinatorics 16 (2009), #R126 14



Figure 13: Center tiles in symmetric figurations for m = 2.

3.4 An Exposé of Knuth’s Generating Function

Recall Knuth’s generating function (1). A simple calculation shows that when m > 4 is
even,

(1 − zm−1 − zm+1)(Tm(z) − K(z)) = (1 + z)(1 − zm−1 − zm+1).

Note that the two generating functions differ in only in the constant coefficient and the
coefficient of z. Thus Knuth’s generating function is valid for even m such that 4 6 m 6 n,
since Tm(z) is valid then. The question remains of whether it (and thus Tm(z)) also gives
the correct coefficients when n = m − 1 and/or n = m − 2. For m > 6, the coefficient of
zm−2 is 1 and for m > 4 the coefficient of zm−1 is 2. The corresponding compositions are
m − 2 = (m − 2) and m − 1 = (1) + (m − 2) = (m − 2) + (1). However, there are two
caveats; firstly, that when m = 4, we have T (4, 2) = T (4, 3) = 4 and secondly, that when
m = 6, we have T (6, 4) = 3. Thus K(z) is correct for 6 6 m− 2 6 n, for 5 6 m− 1 6 n,
and for 4 6 m 6 n but not outside those ranges.

4 Inequivalent Tilings

Two tilings are congruent if there is some isometry in 3-space that maps one to the other.
In this section we derive generating functions for the number of non-congruent tatami
tilings. We use the terms non-congruent and inequivalent interchangeably.

We use Um(z) to denote the ordinary generating function of U(m, n), the number of
height m width n tilings that are symmetric about a vertical line through the center point
x of the tiling (x is denoted by a black circle in Figures 13, 14, and 15). The ordinary
generating function of the number of inequivalent tilings, I(m, n), is denoted Im(z). As
in the previous sections, these generating functions are valid only for restricted values of
n.

As with unrestricted tilings, the cases where m = 0 and m = 1 are trivial, with
I0(z) = U0(z) = T0(z) = 1 and I1(z) = U1(z) = T1(z) = 1/(1 − z2).

4.1 Height 2 tilings

When m = 2 there are three possibilities for the center of the tiling, as illustrated by
Figure 13. Either n is odd and x is in the center of a single vertical tile, or n is even, in
which case one of the following two cases apply. If n is even, then x could lie between two
vertical tiles, or it could lie between two horizontal tiles with two vertical tiles bordering
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Figure 14: Center tiles in symmetric figurations for m odd; illustrated for m = 5.

them. Each of these has a tiling α abutting it on the left and αR (the reversal of α) on
the right. Thus

U2(z) = 1 + (z + z2 + z4)T2(z
2) =

1 + z + z4 + z5 + z8

1 − z2 − z6
. (12)

Therefore the generating function for the number of inequivalent tilings is

I2(z) =
1

2
(T2(z) + U2(z) − z2) =

1 − z2 − z6 − z7 − z9 − z11

(1 − z − z3)(1 − z2 − z6)
. (13)

The −z2 is to account for the fact that there is only one inequivalent 2 by 2 tiling, but
it has an addition isometry, namely a 90 degree rotation. The generating functions (12)
and (13) are accurate for all values of n > 0.

4.2 Odd height tilings

For m odd, there appear to be three possibilities for the center tiles (up to a horizontal
reflection) as illustrated in Figure 14, however the leftmost one is actually a rotational
symmetry about the point x. Each of these latter tilings has a tiling α on the left and
αR (the 180 degree rotation of α) on the right. Each tiling of the other two types has a
tiling α abutting it on the left and αR on the right. For each of the three configurations
of Figure 15, α is an unrestricted Tatami tiling of height m. As before, we let Um(z) be
the generating function for the tilings symmetric about a vertical line, but we will also
define UR

m(z) to be the generating function for the tilings with the rotational symmetry.
Hence

Um(z) = zm−1 + zm+1 + (1 + zm−1 + zm+1)Tm(z2)

=
1 + 2(zm−1 + zm+1) + z2m−2 + z2m+2

1 − z2m−2 − z2m+2

and

UR
m(z) = Tm(z2) =

1 + z2m−2 + z2m+2

1 − z2m−2 − z2m+2
.
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Figure 15: Center tiles in symmetric figurations for m even; illustrated for m = 6.

The number of inequivalent tatami tilings, I(m, n), for 3 6 m 6 n is given by the
coefficients of

Im(z) =
1

4
(Um(z) + UR

m(z) + Tm(z))

=
1

4

(

2(1 + zm−1 + zm+1 + z2m−2 + z2m+2)

1 − z2m−2 − z2m+2
+

1 + zm−1 + zm+1

1 − zm−1 − zm+1

)

When m = 3 the number of tatami tilings has a nice expression in terms of the
Fibonacci numbers; see OEIS [6] A001224, A060312, A068928, and A102526.

4.3 Even height tilings

For m even, there are three possibilities for the center tiles, as illustrated in Figure 15;
each of these has a tiling α abutting it on the left and αR on the right. For the leftmost
configuration of Figure 15, α cannot end in a column of vertical tiles; in the other two
configurations α must end in a column of vertical tiles. The generating functions for these
restricted tilings were essentially determined in (6) and (7), namely

Am(z) =
1 + zm−2 + zm

1 − zm−1 − zm+1
and Bm(z) = zAm(z) =

z + zm−1 + zm+1

1 − zm−1 − zm+1
.

Thus

Um(z) = zAm(z2) + (zm−2 + zm)Bm(z2) =
(z + zm + zm+2)(1 + z2m−4 + z2m)

1 − z2m−2 − z2m+2
.

The number of inequivalent tatami tilings for 4 6 m 6 n is given by the coefficients of

Im(z) =
1

2
(Um(z) + Tm(z) − zm)

=
1

2

(

(z + zm + zm+2)(1 + z2m−4 + z2m)

1 − z2m−2 − z2m+2
+

(1 + z)(1 + zm−2 + zm)

1 − zm−1 − zm+1
− zm

)

.

Like the m = 2 case, the −zm is to account for the fact that the single inequivalent m by
m tiling has a 90 degree rotational symmetry and thus is accounted for twice in Tm(z).
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5 Final Comments

The following equations summarize the generating functions for T (m, n), the number of
unrestricted tatami tilings,

Tm(z) =
∑

n>0

T (m, n)zn =



































1 for m = 0
1

1−z2 for m = 1
1+z2

1−z−z3 for m = 2
1+zm−1+zm+1

1−zm−1
−zm+1 for m odd, 3 6 m 6 n

(1+z)(1+zm−2+zm)
1−zm−1

−zm+1 for m even, 4 6 m 6 n,

U(m, n), the number of vertically symmetrical tatami tilings,

Um(z) =
∑

n>0

U(m, n)zn =



































1 for m = 0
1

1−z2 for m = 1
1+z+z4+z5+z8

1−z2
−z6 for m = 2

1+2(zm−1+zm+1)+z2m−2+z2m+2

1−z2m−2
−z2m+2 for m odd, 3 6 m 6 n

(z+zm+zm+2)(1+z2m−4+z2m)
1−z2m−2

−z2m+2 for m even, 4 6 m 6 n,

and I(m, n), the number of inequivalent tatami tilings,

Im(z) =
∑

n>0

I(m, n)zn

=







































1 for m = 0
1

1−z2 for m = 1
1−z2

−z6
−z7

−z9
−z11

(1−z−z3)(1−z2
−z6)

for m = 2

1
4

(

2(1+zm−1+zm+1+z2m−2+z2m+2)
1−z2m−2

−z2m+2 + Tm(z)
)

for m odd, 3 6 m 6 n

1
2

(

(z+zm+zm+2)(1+z2m−4+z2m)
1−z2m−2

−z2m+2 + Tm(z) − zm
)

for m even, 4 6 m 6 n.

Tables 2, 3, and 4, respectively, show the numbers produced by these generating functions
for 1 6 m, n 6 16.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
2 1 2 3 4 6 9 13 19 28 41 60 88 129 189 277 406
3 0 3 0 4 0 6 0 10 0 16 0 26 0 42 0 68
4 1 4 4 2 3 3 3 5 5 6 8 8 11 13 14 19
5 0 6 0 3 0 2 0 2 0 4 0 4 0 6 0 8
6 1 9 6 3 2 2 2 1 1 2 3 4 3 3 3 4
7 0 13 0 3 0 2 0 2 0 0 0 2 0 4 0 2
8 1 19 10 5 2 1 2 2 2 1 0 0 1 2 3 4
9 0 28 0 5 0 1 0 2 0 2 0 0 0 0 0 2

10 1 41 16 6 4 2 0 1 2 2 2 1 0 0 0 0
11 0 60 0 8 0 3 0 0 0 2 0 2 0 0 0 0
12 1 88 26 8 4 4 2 0 0 1 2 2 2 1 0 0
13 0 129 0 11 0 3 0 1 0 0 0 2 0 2 0 0
14 1 189 42 13 6 3 4 2 0 0 0 1 2 2 2 1
15 0 277 0 14 0 3 0 3 0 0 0 0 0 2 0 2
16 1 406 68 19 8 4 2 4 2 0 0 0 0 1 2 2

Table 2: The numbers T (m, n) for 1 6 m, n 6 16.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
2 1 1 1 2 2 3 3 5 4 7 6 10 9 15 13 22
3 0 2 0 4 0 2 0 6 0 4 0 10 0 6 0 16
4 1 0 0 1 1 1 1 1 1 2 2 2 1 3 2 3
5 0 0 0 2 0 2 0 2 0 0 0 4 0 2 0 4
6 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 2
7 0 0 0 0 0 2 0 2 0 0 0 2 0 0 0 2
8 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0
9 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 2

10 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
11 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0
12 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
13 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0
14 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2
16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 3: The numbers U(m, n) for 1 6 m, n 6 16.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
2 1 1 2 3 4 6 8 12 16 24 33 49 69 102 145 214
3 0 2 0 2 0 2 0 4 0 5 0 9 0 12 0 21
4 1 3 2 1 2 2 2 3 3 4 5 5 6 8 8 11
5 0 4 0 2 0 1 0 1 0 1 0 2 0 2 0 3
6 1 6 2 2 1 1 1 1 1 1 2 2 2 2 2 3
7 0 8 0 2 0 1 0 1 0 0 0 1 0 1 0 1
8 1 12 4 3 1 1 1 1 1 1 0 0 1 1 2 2
9 0 16 0 3 0 1 0 1 0 1 0 0 0 0 0 1

10 1 24 5 4 1 1 0 1 1 1 1 1 0 0 0 0
11 0 33 0 5 0 2 0 0 0 1 0 1 0 0 0 0
12 1 49 9 5 2 2 1 0 0 1 1 1 1 1 0 0
13 0 69 0 6 0 2 0 1 0 0 0 1 0 1 0 0
14 1 102 12 8 2 2 1 1 0 0 0 1 1 1 1 1
15 0 145 0 8 0 2 0 2 0 0 0 0 0 1 0 1
16 1 214 21 11 3 3 1 2 1 0 0 0 0 1 1 1

Table 4: The numbers I(m, n) for 1 6 m, n 6 16.
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