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Abstract

Let Kq(n,R) denote the minimal cardinality of a q-ary code of length n and
covering radius R. Recently the authors gave a new proof of a classical lower bound
of Rodemich on Kq(n, n−2) by the use of partition matrices and their transversals.
In this paper we show that, in contrast to Rodemich’s original proof, the method
generalizes to lower-bound Kq(n, n − k) for any k > 2. The approach is best-
understood in terms of a game where a winning strategy for one of the players
implies the non-existence of a code. This proves to be by far the most efficient
method presently known to lower-bound Kq(n,R) for large R (i.e. small k). One
instance: the trivial sphere-covering bound K12(7, 3) > 729, the previously best
bound K12(7, 3) > 732 and the new bound K12(7, 3) > 878.
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1 Introduction

Let q > 2 and Zq = {0, 1, . . . , q − 1}. The Hamming distance d(x,y) between x =
(x0, . . . , xn−1) ∈ Z

n
q and y = (y0, . . . , yn−1) ∈ Z

n
q is defined by

d(x,y) = |{i ∈ {0, . . . , n − 1} : xi 6= yi}|.

We say C ⊂ Z
n
q is a q-ary code of length n and covering radius (at most) R, if

∀x ∈ Z
n
q ∃y ∈ C with d(x,y) 6 R (1)

is satisfied. Let Kq(n, R) denote the minimal cardinality of a q-ary code of length n and
covering radius R.

For a monograph on covering codes see [2]. An updated table of bounds on Kq(n, R)
is published online by Kéri [5]. An easy lower bound on Kq(n, R) is the sphere-covering
bound

Kq(n, R) >
qn

Vq(n, R)
, (2)

where

Vq(n, R) = |{y ∈ Z
n
q : d(y,x) 6 R}| =

∑

06i6R

(

n

i

)

(q − 1)i

denotes the cardinality of a Hamming-sphere with radius R centered on an arbitrary word
x ∈ Z

n
q .

The following classical lower bound due to Rodemich [7] improves on the sphere-
covering bound in case of R = n − 2:

Kq(n, n − 2) >
q2

n − 1
. (3)

In a previous paper the first and the third author together with Jörn Quistorff [3] presented
a new proof of Rodemich’s bound by the use of partition matrices and their transversals. In
this paper we show that, in contrast to Rodemich’s original proof, the method generalizes
to lower-bound Kq(n, n − k) for any k > 2. We present the method by considering the
following game between player P (the “partition searcher”) and player T (the “transversal
searcher”). Player P successively offers n partitions of ZM into q subsets, while player T
chooses one set per partition. Player T wins if each element of ZM occurs in less than k
of the sets he has chosen. It turns out that if player T has a winning strategy for that
game, then Kq(n, n − k) > M holds true.

We make extensive computer calculations to compute winning strategies for player T
with various values of n, k and q to lower-bound Kq(n, n − k). Although the computing
time grows rapidly with increasing k, the method yields almost 150 new lower bounds for
Kq(n, R) in Kéri’s tables, most of them with substantial improvements.

This paper is organized as follows. In Section 2 we define partition matrices, their
(generalized) transversals and the connection to covering codes. In Section 3 we consider
the game from above and describe how to compute winning strategies for player T. In
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Section 4 we study the computational algorithms in detail. In Section 5 we present the
results of these computations.

We always assume that k, n, q, m, M are integers with 3 6 k 6 n, q > 2 and
0 6 m 6 M .

Added in Proof. After the submission of the article we recognized, that by a sim-
ple modification of the method we are able to produce new lower bounds not only for
Kq(n, n − k), but also for Kq(n, k), where k is small compared to n. The details will
appear elsewhere.

2 Partition Matrices and Covering Codes

The following definition generalizes the one given in [3].

Definition 1. A q × n-matrix M, whose entries are subsets P ⊂ ZM with |P | > m is
called an (n, M, q; m)-partition matrix, if the sets in each of the n columns of M form a
partition of ZM into q subsets. In case of m = 0 we simply speak of a (n, M, q)-partition
matrix.

A sequence T = (P1, . . . , Pd) of d subsets Pi ⊂ ZM , 1 6 i 6 d is called a d-transversal.
If P1, . . . , Pd stem from pairwise different columns of a partition matrix M, we speak of
a d-transversal in M.

For z ∈ ZM and i > 0 we set

mult(z) = mult(z, T ) = |{1 6 i 6 d | z ∈ Pi}|,

Zi = Zi(T ) = {z ∈ ZM | mult(z) = i} ⊂ ZM ,

Z>i = Z>i(T ) = {z ∈ ZM | mult(z) > i} ⊂ ZM .

If l > 0, then a (d, l)-transversal is a d-transversal with Z>l = ∅. For any given k, we
say that a transversal T is of type (a1, . . . , ak; d) if it is a d-transversal and |Z>j(T )| = aj

holds for 1 6 j 6 k.

Clearly transversals of type (a1, . . . , ak; d) exists if and only if M > a1 > a2 > . . . >

ak > 0 and moreover ai = 0 for i > d. We will call such tuples (a1, . . . , ak; d) admissible.

Theorem 2. If R 6 n − 2 then the following two statements are equivalent:

(i) Every (n, M, q)-partition matrix has an (n, n − R)-transversal.

(ii) Kq(n, R) > M .

Proof. (i) ⇒ (ii): Let C ⊂ Z
n
q be a code of cardinality M . Let C = (cjk) (j ∈ ZM , k ∈ Zn)

be an M × n-matrix whose rows are the codewords of C (in an arbitrary order). For
i ∈ Zq, k ∈ Zn set Pik = {j ∈ ZM | cjk = i}. Then M = (Pik) is an (n, M, q)-partition
matrix. By assumption, it has an (n, n − R)-transversal (Pxi,i)06i6n−1 with xi ∈ Zq

(0 6 i 6 n − 1). Then for every j ∈ ZM the equation cji = xi holds for less than n − R
values of i ∈ Zn. Hence, C has covering radius > R.
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(ii) ⇒ (i): Let M = (Pik), (i ∈ Zq, k ∈ Zn) be a (n, M, q)-partition matrix. For every
j ∈ ZM and every k ∈ Zn there exists exactly one cjk := i ∈ Zq with j ∈ Pik. Then
C := {(cj,0, . . . , cj,n−1) ∈ Z

n
q | j ∈ ZM} is a code of cardinality |C| 6 M , which by our

assumption has covering radius > R. Hence, there exists a tuple (x0, . . . , xn−1) ∈ Z
n
q such

that for every j ∈ ZM the equation cji = xi holds for less than n − R values of i ∈ Zn.
Consequently, (Pxi,i)06i6n−1 is the desired (n, n − R)-transversal.

Very recently Kéri [5] announced a computer-aided proof of the new bound K4(6, 3) >

10, improving on the bound K4(6, 3) > 8 due to Chen and Honkala [1]. As an example
application of Theorem 2, we give a non-computational proof of this result.

Lemma 3. Every (4, 9, 4)-partition matrix contains a (3, 2)-transversal.

Proof. Let M be a (4, 9, 4)-partition matrix with the columns 0, 1, 2, 3, whose entries are
subsets P ⊂ Z9. Note that a (3, 2)-transversal in M simply is a 3-transversal in M
consisting of pairwise disjoint sets.

A set P ⊂ Z9 in M with |P | 6 1 can easily be extended to a (3, 2)-transversal, so
without loss each column of M consists of three 2-(element-)sets and one 3-set.

Moreover we may assume that any two 2-sets in different columns are distinct. Oth-
erwise without loss let {0, 1}, {0, 1}, {2, 3} occur in the columns 0, 1, 2. Let R 6= {0, 1} be
a set in column 1 disjoint to {2, 3}. Then {0, 1}, R, {2, 3} is a (3, 2)-transversal.

We may assume that there is a 2-set and an intersecting 3-set, say in columns 0, 1,
since otherwise two disjoint 2-set in any two columns and the 3-set in another were a
(3, 2)-transversal. So let P0 = {0, 1} occur in column 0 and Q1 = {5, 6} as well as {7, 8}
in column 1. Now all four sets P0i, P1i, P2i, P3i in column i, i = 2, 3 intersect {0, 1, 5, 6} as
well as {0, 1, 7, 8}, since {0, 1}, {5, 6} or {7, 8} together with a counterexample would be
a (3, 2)-transversal. Without loss assume that P2i and P3i do not intersect {0, 1}, i = 2, 3.
Then P2i and P3i intersect {5, 6} as well as {7, 8}, implying {5, 6, 7, 8} ⊂ P2i ∪ P3i.
Therefore in column i (i = 2, 3) one of the two sets P2i and P3i must be a 2-set Qi

satisfying Qi ⊂ {5, 6, 7, 8} and one of the two sets P0i and P1i is a 2-set Pi intersecting
{0, 1} with Pi ⊂ {0, 1, 2, 3, 4}.

There exists a 2-set Q0 in column 0 intersecting {5, 6, 7, 8}. Now Q0 ⊂ {5, 6, 7, 8}
is impossible, since then at least two of the four pairwise distinct sets Q0, . . . , Q3 ⊂
{5, 6, 7, 8} are disjoint and would give a (3, 2)-transversal together with P0, P2 or P3; so
without loss Q0 = {4, 5}. Then Q0, {7, 8} and P2 are a (3, 2)-transversal except when
P2 = {y, 4} with y ∈ {0, 1}. Now in the first column there exists a 2-set Q different from
Q0 and {0, 1}. Again Q ⊂ {5, 6, 7, 8} is impossible. Then Q, {5, 6} or {7, 8}, P2 is a
(3, 2)-transversal.

Theorem 4 (Kéri [5]). K4(6, 3) > 10.

Proof. By Theorem 2 it suffices to show that every (6, 9, 4)-partition matrix M has a
(6, 3)-transversal. Let Mi,l (resp. Mi,r) denote the sub-matrix of M consisting of the
first (resp. last) i columns of M.

(i) Without loss each set in M has cardinality > 2 and no 2-set occurs twice.
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Otherwise we may assume that in M2,r there occurs a 6 1-set or the same 2-set twice.
By Lemma 3, M4,l has a (3, 2)-transversal T1, contained in, say M3,l. Now one easily sees
that M3,r has a (3, 2)-transversal T2, which together with T1 forms a (6, 3)-transversal in
M.

We now know that each column of M consists of three 2-sets and one 3-set. We denote
the 3-set in column i by Qi, 0 6 i 6 5.

(ii) Without loss M3,l has a (3, 2)-transversal T1 = (P0, P1, P2) with P0∪P1∪P2 = Z6.

It suffices to show that there exists a (3, 2)-transversal in M consisting of 2-sets. We
may assume that in two different columns there exists a 2-set (say {0, 1} in column 0)
and an intersecting 3-set (say in column 1), since otherwise two disjoint 2-sets in M2,l,
two disjoint 2-sets in columns 2 and 3 and Q4, Q5 in M2,r would form a (6, 3)-transversal.
Now there must be two 2-sets in column 1 disjoint to {0, 1}, say the sets {2, 3} and {4, 5}.
In each of the columns i = 2, 3, 4, 5 there exists a 2-set Ri disjoint to {0, 1}. We may
assume Ri ⊂ {2, 3, 4, 5}, since otherwise {0, 1}, {2, 3} or {4, 5} and Ri would be a (3, 2)-
transversal consisting of 2-sets. Now at least two of the four sets R2 . . . , R5 are equal or
disjoint, say R2 and R3. The first case is impossible by (i) and the latter case gives us
the (3, 2)-transversal {0, 1}, R2 and R3.

The proof of Theorem 4 is complete, if we are able to show that there exists a (3, 3)-
transversal T2 in M3,r with the additional property that

(*) if x ∈ Z9 occurs in two sets of T2 then x ∈ {6, 7, 8},

since then T1 together with T2 forms the desired (6, 3)-transversal in M.

(iii) No set P in M3,r satisfies P ⊂ {6, 7, 8}.

If P in M3,r satisfies P ⊂ {6, 7, 8}, then P and any two disjoint sets from the other
two columns of M3,r form a (3, 3)-transversal in M3,r with the property (*) and we are
done.

(iv) No element of {6, 7, 8} lies in two 2-sets of M3,r.

If an element of {6, 7, 8} lies in two 2-sets R1 and R2 of M3,r, then by (i) we have
|R1 ∪ R2| = 3, and R1, R2 and any set R disjoint to R1 and R2 in the remaining column
of M3,r form a (3, 3)-transversal in M3,r with the property (*).

Now in each of the columns i with i = 3, 4, 5 there occurs a 2-set Pi in M3,r intersecting
{6, 7, 8}, since otherwise Qi must be the set {6, 7, 8} itself, contradicting (iii).

(v) For each i = 3, 4, 5 we have {6, 7, 8} ⊂ Pi ∪ Qi. Pi as well as Qi have exactly one
element in common with Z6.

By (iii) Pi has exactly one element in common with Z6. By (iv) no 2-set intersecting
{6, 7, 8} can occur in M3,r besides P3, P4 and P5. Thus both elements of {6, 7, 8} \ Pi lie
in Qi and (v) follows.

We now complete the proof of Theorem 4. At least two of the three sets P3, P4 and
P5, say P3 and P4, have nonempty intersection, since otherwise P3, P4 and P5 are a (3, 2)-
transversal in M3,r. By (i) and (iv) P3 ∩ P4 = {x} with x ∈ Z6. Let R denote a set
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among the two sets P5 and Q5 not containing x. By (v) R∩Z6 = {y} with x 6= y. Again
by (v) there occur two 2-sets ⊂ Z6 in column 4. Let S denote the one from this two sets
not containing y. Then P3, R and S form a (3, 3)-transversal in M3,r with the property
(*), since S neither contains x by P3 ∩ P4 = {x} and S 6= P4.

It appears, that Theorem 2 leads to many similar improvements for lower-bounding
Kq(n, n − 3) with some small values of q and n by the use of individual considerations.
For instance in a forthcoming paper [4] we further improve Theorem 4 to K4(6, 3) > 11
and settle K4(5, 2) = 16. In the next section we develop a mechanical approach for the
use of Theorem 2 which is well suitable for computer calculations.

3 The Game

We consider a game between player P, who tries to find a certain covering code and player
T, who tries to prove that no such code exists. More precisely, player P wants to show
Kq(n, n− k) 6 M and player T wants to show Kq(n, n− k) > M . We describe the game
in the following definition.

Definition 5. The game G(n, M, q, k; m) between player P and player T goes as follows.
Player P chooses a partition of ZM consisting of q subsets B1, . . . , Bq ⊂ ZM satisfying
|Bi| > m for 1 6 i 6 q and player T chooses one of the sets. Then player P chooses
a second partition with the same properties and again player T chooses one of the sets.
This goes on until player P has chosen n such partitions and player T has chosen an
n-transversal T . Player T wins, if T is an (n, k)-transversal, otherwise he loses.

In case of m = 0 we simply speak of the game G(n, M, q, k).

If Kq(n, n − k) 6 M , then by Theorem 2 there exists an (n, M, q)-partition matrix
M without an (n, k)-transversal. Then player P has a winning strategy for the game
G(n, M, q, k): he simply chooses the n partitions from the columns of M. Thus we get:

Theorem 6. If player T has a winning strategy for the game G(n, M, q, k), then Kq(n, n−
k) > M .

Note that conversely Kq(n, n − k) > M does not imply that player T has a winning
strategy for the game G(n, M, q, k). In fact, the existence of a covering code is equivalent
to the statement that player P has a winning strategy which does not depend on the
choices of player T.

By Theorem 6 it is our task to compute a winning strategy for player T for the game
G(n, M, q, k), if we want to lower-bound Kq(n, n − k). We begin by the definition of
winning tuples. Note that, if after d steps of the game G(n, M, q, k; m) player T has
chosen a d-transversal T , the winner of the game depends only on the type (a1, . . . , ak; d)
of T , provided both players finish the game playing optimal.

Definition 7. Suppose that in the game G(n, M, q, k; m), after d steps (0 6 d 6 n)
player T has chosen a d-transversal T . We then call T a winning transversal, if player T

the electronic journal of combinatorics 16 (2009), #R133 6



has a winning strategy in this situation; otherwise we call T losing. An admissible tuple
(a1, . . . , ak−1; d) is a winning tuple if a transversal of type (a1, . . . , ak−1, 0; d) is winning;
otherwise it is a loosing tuple.

Note: a non-admissible tuple is neither winning nor loosing. Some admissible tuples
can not occur in the game G(n, M, q, k; m) because the corresponding transversal would
have to contain sets of cardinality less than m. Of course it is unnecessary to consider
such tuples; however, for simplicity we still call them winning or losing, depending on the
winner when the remainder of the game is played with sets of cardinality at least m.

The following lemma is evident.

Lemma 8. Let a′
i, 1 6 i 6 k − 1 be integers with a′

i 6 ai (1 6 i 6 k − 1), such
that (a′

1, . . . , a
′
k−1; d) is admissible. If (a1, . . . , ak−1; d) is a winning tuple for the game

G(n, M, q, k; m), then so is (a′
1, . . . , a

′
k−1; d).

The idea is now to recursively determine the winning tuples for the game G(n, M, q, k)
with decreasing d by starting with d = n; if (0, . . . , 0; 0) turns out to be a winning tuple,
then player T has a winning strategy for the game G(n, M, q, k) and Kq(n, n − k) > M
follows by Theorem 6. However, we can do better. It may happen that (0, . . . , 0; 0) is not
a winning tuple, but (a1, 0, . . . , 0; 1) is winning for some a1 > 0 (i.e. player T can win the
game if the first partition contains a set with at most a1 elements by choosing that set).
In that case, we may still be able to prove Kq(n, n−k) > M using the following theorem,
as winning the game G(n, M, q, k; m) for m > 0 is often easier than winning the game
G(n, M, q, k).

Theorem 9. Suppose that 0 = m0 < m1 < · · · < ml are integers such that (mi+1 −
1, 0, . . . , 0; 1) is a winning tuple for the game G(n, M, q, k; mi) for 0 6 i 6 l − 1 and such
that player T has a winning strategy for the game G(n, M, q, k; ml). Then Kq(n, n− k) >
M holds true.

Proof. By Theorem 2 it suffices to show that under the assumptions of the theorem,
every (n, M, q)-partition matrix M has an (n, k)-transversal, so suppose that M is given.
Denote by m the cardinality of the smallest set P0 occuring in M, and let i be maximal
with mi 6 m. Without loss, we may suppose that P0 occurs in the first column of M.

We play the game G(n, M, q, k; mi), and we let player P choose the n columns of M;
as mi 6 m, he is allowed to do so. Suppose first i = l. Then by assumption player T
has a winning strategy, and thus there exists an (n, k)-transversal in M. Now suppose
i < l. Then player T can choose P0 in the first step of the game. Since m 6 mi+1 − 1,
by assumption and Lemma 8 we get that (m, 0, . . . , 0; 1) is a winning tuple, so (P0) is a
winning 1-transversal, and again there exists an (n, k)-transversal in M.

So the enhanced strategy to prove Kq(n, n− k) > M is now the following. Determine
the winning tuples for the game G(n, M, q, k). If player T has a winning strategy, we are
done. Otherwise, check whether there exists a winning tuple of the form (a1, 0, . . . , 0; 1).
If not, give up. If yes, then repeat the procedure for the game G(n, M, q, k; a1 + 1). If we
obtain a winning tuple (a2, 0, . . . , 0; 1) with a2 > a1, then repeat again; go on until either

the electronic journal of combinatorics 16 (2009), #R133 7



ai+1 = ai (in that case, give up) or player T has a winning strategy for one of the games
(then Theorem 9 implies Kq(n, n − k) > M).

In the remainder of this section, we show how winning tuples (a1, . . . , ak−1; d) can be
determined manually. Clearly, for d = n any tuple is a winning tuple. For d > n − 2,
we will get explicit formulas (Lemmas 10 and 11), and for smaller d, we will prove the
general Lemma 12, which is essentially a method of checking every possible partition, but
adapted to manual computations. It can be applied with a reasonable amount of work
when k = 3 and n and q are not too big (say, n, q 6 12). As an example how this works
in practice, we will prove Theorem 13.

Lemma 10. If ak−1 6 q − 1, then (a1, . . . , ak−1; n − 1) is a winning tuple for the game
G(n, M, q, k; m), provided it is admissible.

Proof. Assume that in the game G(n, M, q, k; m), after n− 1 steps player T has chosen a
transversal T of type (a1, . . . , ak−1, 0; n − 1) with ak−1 6 q − 1 and player P has chosen
the partition B1, . . . , Bq of ZM in step n. Then as |Z>k−1| 6 q−1, at least one of the sets
B1, . . . , Bq does not intersect Z>k−1 and this set can be taken by player T to complete T
to an (n, k)-transversal.

Lemma 11. Assume r := q−ak−1 > 0. If ak−2 6 q+r2−r−1 or M 6 (q−r)m+r2−1,
then (a1, . . . , ak−1; n − 2) is a winning tuple for the game G(n, M, q, k; m), provided it is
admissible.

Proof. Assume that in the game G(n, M, q, k; m), player T has chosen a transversal T of
type (a1, . . . , ak−2, q − r, 0; n − 2) after n − 2 steps and player P has chosen the partition
B1, . . . , Bq of ZM in step n − 1. By |Z>k−1| = q − r, at least r = q − |Z>k−1| sets, say
B1, . . . , Br, do not intersect Z>k−1 and thus all extend T to an (n − 1, k)-transversal.

If ak−2 6 q + r2 − r − 1, then we have |Zk−2 ∩ (B1 ∪ . . . ∪ Br)| 6 |Zk−2| = |Z>k−2| −
|Z>k−1| 6 q + r2 − r− 1− (q − r) = r2 − 1 < r2. This implies that at least one of the sets
B1, . . . , Br, say B1, intersects Zk−2 in at most r−1 elements, which means that B1 extends
T to an (n − 1, k)-transversal T ′ satisfying |Z>k−1(T

′)| = |Zk−1(T )| + |Zk−2(T ) ∩ B1| 6

(q − r) + (r − 1) = q − 1. Thus the (admissible) type of T ′ satisfies the prerequisites of
Lemma 10, and thus T ′ and also T are winning transversals. If M 6 (q − r)m + r2 − 1,
then

|Zk−2 ∩ (B1 ∪ . . . ∪ Br)| 6 M − |Br+1 ∪ . . . ∪ Bq| 6 M − (q − r)m 6 r2 − 1

and the lemma follows again.

We now show how the winning tuples of step d + 1 can be used to determine the
winning tuples of step d. The statement of the lemma is long and complicated, but it will
become clear in the proof.

Lemma 12. Suppose that l := q − ak−1 > 0 and that for any integers bij > 0 (1 6 i 6 l,
1 6 j 6 k − 2) satisfying

∑

16i6l

bij 6 aj − aj+1 (1 6 j 6 k − 2) (4)
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there exist integers bi > 0 (1 6 i 6 l) with the properties

(i) if 1 6 i 6 l then (a1 + bi, a2 + bi1, . . . , ak−1 + bi,k−2; d + 1) is a winning tuple for the
game G(n, M, q, k; m),

(ii)
∑

16i6l bi +
∑

16i6l

∑

16j6k−2 bij + max{1, m} · ak−1 + l > M .

Then (a1, . . . , ak−1; d) is a winning tuple for the game G(n, M, q, k; m).

Proof. Assume in the game G(n, M, q, k; m) player T has chosen a transversal T of type
(a1, . . . , ak−1, 0; d) after d steps and player P the partition B1, . . . , Bq of ZM in step d+1.
We have

|Bi| > m (1 6 i 6 q), (5)

since we are playing the game G(n, M, q, k; m). Without loss suppose that B1, . . . , Bl do
not intersect Z>k−1; this is possible as |Z>k−1| = ak−1 = q − l. Moreover, if some of
the sets Bi are empty, then suppose that B1 is one of the empty sets. For 1 6 i 6 l,
0 6 j 6 k − 2 we set

bij = |Zj ∩ Bi|.

Clearly for 1 6 j 6 k − 2 we have
∑

16i6l bij 6 |Zj| = |Z>j \ Z>j+1| = aj − aj+1, so that
(4) is satisfied. By the prerequisites of Lemma 12 there exist integers bi > 0 for 1 6 i 6 l
satisfying (i) and (ii). We now verify that there is an integer i0 with 1 6 i0 6 l and

|Bi0 | 6 bi0 +
∑

16j6k−2

bi0j . (6)

If there exist empty sets Bi, then B1 is empty and i0 = 1 does the job. Otherwise, suppose
that (6) is false. Then for 1 6 i 6 l we have |Bi| > bi + 1 +

∑

16j6k−2 bij . For i > l, we
use (5) to get |Bi| > max{1, m}; hence

M =
∑

16i6l

|Bi| +
∑

l+16i6q

|Bi| >
∑

16i6l

bi + l +
∑

16i6l

∑

16j6k−2

bij + max{1, m} · ak−1

contradicting (ii).
Now in step d+1 of the game G(n, M, q, k; m) let player T choose the set Bi0 . Consider

the (d + 1)-transversal T ′ = (T , Bi0). Since Bi0 does not intersect Z>k−1(T ), we know
that T ′ is a (d + 1, k)-transversal. Furthermore Bi0 =

⋃

06j6k−2(Zj(T ) ∩ Bi0), implying
|Bi0 | =

∑

06j6k−2 bi0j and thus
bi0,0 6 bi0 (7)

by (6). Since for j > 1 we have Z>j(T
′) = Z>j(T )∪ (Zj−1(T )∩Bi0), we find |Z>j(T

′)| =
aj + bi0,j−1 (1 6 j 6 k − 1). Therefore T ′ is of the admissible type (a1 + bi0,0, a2 +
bi0,1, . . . , ak−1+bi0,k−2, 0; d+1), which by (i), (7) and Lemma 8 is a winning tuple. Therefore
T ′ and, consequently T are winning transversals, implying that (a1, a2, . . . , ak−1; d) is a
winning tuple and Lemma 12 follows.
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Using Lemmas 10, 11 and 12, we obtain winning tuples for smaller and smaller d,
until we (hopefully) prove that player T wins the game, or at least that (a1, 0, . . . , 0; 1) is
a winning tuple for some a1. As an example let us use the previous lemmas to improve
on the presently best bound K9(7, 4) > 35 due to Lang, Quistorff and Schneider [6].

Theorem 13. K9(7, 4) > 45.

Proof. By Theorem 6 it suffices to show that player T has a winning strategy for the game
G(7, 44, 9, 3). By Lemma 10 and 11 we find the winning tuples (44, 8; 6) and (44, 2; 5),
(38, 3; 5), (28, 4; 5), (20, 5; 5), (14, 6; 5), (10, 7; 5), (8, 8; 5). We next want to show that
(7, 5; 4) is also a winning tuple.

We apply Lemma 12 with n = 7, M = 44, q = 9, k = 3, m = 0, a1 = 7, a2 = 5 and
d = 4; we have l = q − a2 = 4. Assume that the integers bi1 > 0 (1 6 i 6 4) satisfy (4),
i.e.

∑

16i64 bi1 6 2. For 1 6 i 6 4, we choose the integers bi > 0 as a function of bi1

according to the following table:
bi1 0 1 2
bi 13 7 3

Clearly (i) from Lemma 12 is satisfied by the winning tuples stated above. To verify (ii)
from Lemma 12, it suffices to consider the case when the sum b :=

∑

16i64 bi +
∑

16i64 bi1

is minimal. As the sequence 13, 7, 3 is convex, b is minimal if b1, . . . , b4 are as equal as
possible, i.e. if two of them equal one and two values equals zero. Then b = 42 and (ii)
from Lemma 12 is satisfied, too. An application of Lemma 12 now yields that indeed
(7, 5; 4) is a winning tuple for the game G(7, 44, 9, 3). In a similar way we proceed to get
the following winning tuples

(33, 0; 4)(26, 1; 4)(20, 2; 4)(15, 3; 4)(11, 4; 4)(7, 5; 4)
(18, 0; 3)(14, 1; 3)(10, 2; 3)(7, 3; 3)
(10, 0; 2)(7, 1; 2)(4, 2; 2)
(4, 0; 1)(2, 1; 1).

In the final stage we see that (4, 0; 1) is a winning tuple. Since by 44/9 < 5 player T may
choose a transversal of type (a, 0; 1) with a 6 4 in step 1. This means that indeed player
T has a winning strategy for the game G(7, 44, 9, 3).

The bound K9(7, 4) > 45 may be further improved to K9(7, 4) > 51 (see the tables
in Section 5) with the help of Theorem 9. In the same way as above one shows that
(3, 0; 1) is a winning tuple for the game G(7, 50, 9, 3; 0), that (4, 0; 1) is a winning tuple for
G(7, 50, 9, 3; 4) and that (5, 0; 1) is a winning tuple for G(7, 50, 9, 3; 5). Since 50/9 < 6 we
see that player T has a winning strategy for G(7, 50, 9, 3; 5) and the bound K9(7, 4) > 51
follows from Theorem 9.

4 The implementation

To prove a statement of the form Kq(n, n−k) > M using a computer, we use the strategy
described after Theorem 9. We now describe in detail the algorithm to compute all
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winning tuples of a game G(n, M, q, k; m). It will be slightly more handy to work with
losing tuples than with winning tuples (Lemma 16 would be more complicated otherwise).
Given the set of losing tuples for step d + 1, we have to determine the set of losing
tuples for step d. In principle, this means that we iterate through all admissible tuples
(a1, . . . , ak−1; d) and check whether player P can find a partition, such that no matter
which of its sets player T chooses, he gets a losing (d + 1)-transversal.

Let us now make this precise. Fix an admissible tuple (a1, . . . , ak−1; d) and a corre-
sponding transversal Td = (P1, . . . , Pd) of type (a1, . . . , ak−1, 0; d).

Definition 14. A subset B ⊂ ZM is losing if |B| > m, and when added to Td, it yields
a losing (d + 1)-transversal. We call a partition of a subset B ⊂ ZM losing if it consists
only of losing sets.

Clearly the tuple (a1, . . . , ak−1; d) is losing iff there is a losing partition of ZM consisting
of q sets. If B ⊂ ZM , then for 0 6 j 6 k − 1 we set

cj = |Zj(Td) ∩ B|. (8)

Adding a set B to Td yields a transversal of type (a1 + c0, . . . , ak−1 + ck−2, ck−1; d + 1).
Thus the following lemma holds true.

Lemma 15. B is losing if |B| > m and if moreover ck−1 > 0 or (a1 + c0, . . . , ak−1 +
ck−2; d + 1) is a losing tuple.

Set a0 := M , ak := 0 and c̃j := Zj(Td) = aj −aj+1 for 0 6 j 6 k−1. Then the integers
cj (0 6 j 6 k−1) defined in (8) satisfy 0 6 cj 6 c̃j . We say that the tuple [c0, . . . , ck−1; r]
(1 6 r 6 q) is losing if there is a losing partition B1 ∪ . . . ∪ Br of B. Our goal is then to
determine whether [c̃0, . . . , c̃k−1; q] is losing, since this just means that (a1, . . . , ak−1; d) is
losing.

For r = 1, the tuple [c0, . . . , ck−1; 1] is losing if and only if a set B ⊂ ZM satisfying (8)
is losing. We then proceed by recursion on r. The following lemma is evident.

Lemma 16. Suppose r > 1 and r′, r′′ > 1 with r′ +r′′ = r. Then the tuple [c0, . . . , ck−1; r]
is losing if and only if there exist non-negative integers c′j, c′′j (0 6 j 6 k − 1) satisfying
c′j + c′′j = cj, such that [c′0, . . . , c

′
k−1; r

′] and [c′′0, . . . , c
′′
k−1; r

′′] are losing.

Using this lemma we can determine whether [c0, . . . , ck−1; r] is a losing tuple by first
choosing a fixed value r′ (with 1 6 r′ < r) and then iterating through all tuples (c′j)06j6k−1

with 0 6 c′j 6 cj . Finally we find out whether [c̃0, . . . , c̃k−1; q], and thus (a1, . . . , ak−1; d)
is losing.

Now let us take a break and compute the running time of the algorithm described
so far. A game consists of n steps. In each step, we have to check roughly Mk−1 tuples
(a1, . . . , ak−1; d). To compute the losing tuples for partial partitions with r sets out of
those with r′ and r′′ sets (r′ + r′′ = r), we have to run through Mk c′i-tuples. By choosing
r′ carefully, roughly log q of these steps are necessary. Thus the total running time (for
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one game) is n · M2k−1 · log q, which is a lot. Moreover, the memory needed to store all
losing tuples is roughly Mk, which is a lot, too. We will now describe some significant
improvements; however the precise running time will be difficult to determine. For one of
the improvements, we need the following lemma.

Lemma 17. 1. Suppose (a1, . . . , ak−1; d) is a losing tuple and 1 6 µ < ν 6 k − 1. For
1 6 j 6 k − 1 define a′

j = aj − δjµ + δjν (where δij is the Dirac function). Then
(a′

1, . . . , a
′
k−1; d) is losing, too (provided it is admissible).

2. Fix a tuple (a1, . . . , ak−1; d) and suppose that a corresponding tuple [c0, . . . , ck−1; r]
is losing. Let 0 6 µ < ν 6 k − 1. Define c′j = cj − δjµ + δjν and suppose that for
0 6 j 6 k − 1 we still have 0 6 c′j 6 c̃j. Then [c′0, . . . , c

′
k−1; r] is losing, too.

In other words, if ν > µ then augmenting aν is worse than augmenting aµ, and
augmenting cν is worse than augmenting cµ.

Proof. (1) We use induction over d, starting at d = n. For d = n, this is clear, since there
are no losing tuples (a1, . . . , ak−1; n). Now let 1 6 d 6 n− 1 and suppose that the lemma
is true for d + 1; we want to prove it for d.

Fix any transversal Td of type (a1, . . . , ak−1, 0; d). By a′
µ > a′

µ+1 we have aµ > aµ+1.
Therefore there exists x ∈ ZM satisfying mult(x, Td) = µ. Similarly, aν−1 > aν implies
the existence of y ∈ ZM satisfying mult(y, Td) = ν − 1.

Note that we may assume x 6= y. This is clear if µ < ν − 1. If µ = ν − 1, this follows
from aµ > aν + 2 by a′

µ > a′
ν .

We now build another d-transversal T ′
d from Td by deleting x from a set P from Td with

x ∈ P and adding y to a set P ′ from Td with y 6∈ P ′. Then clearly T ′
d satisfies mult(x, T ′

d ) =
µ−1, mult(y, T ′

d ) = ν and mult(z, T ′
d ) = mult(z, Td) whenever z ∈ ZM \{x, y}. Therefore

T ′
d is of type (a′

1, . . . , a
′
k−1, 0; d) and it remains to show that T ′

d is a losing transversal.
To prove this, it suffices to check that whenever B ⊂ ZM is a set, such that the (d + 1)-
transversal Td+1 := (Td, B) is losing, then T ′

d+1 := (T ′
d , B) loses, too, since then a losing

partition of ZM for Td is also a losing partition for T ′
d .

Now for z ∈ ZM \{x, y} we still have mult(z, T ′
d+1) = mult(z, Td+1). Moreover we have

mult(x, Td+1) = µ, mult(x, T ′
d+1) = µ−1 if x /∈ B and mult(x, Td+1) = µ+1, mult(x, T ′

d+1)
= µ if x ∈ B. Similarly we have mult(y, Td+1) = ν − 1, mult(y, T ′

d+1) = ν if y /∈ B and
mult(y, Td+1) = ν, mult(y, T ′

d+1) = ν + 1 if y ∈ B.
Now one easily sees that the tuples (. . . ; d + 1) describing Td+1 and T ′

d+1 again satisfy
the prerequisites of the lemma, with µ and (or) ν possibly increased by 1, unless the new
values of µ and ν become equal, or the new value of ν is equal to k. In the first case, the
tuples describing Td+1 and T ′

d+1 are the same; in the second case mult(y, T ′
d+1) = k. In all

cases indeed T ′
d+1 is losing (using the induction hypothesis).

(2) Let Td be a transversal of type (a1, . . . , ak−1, 0; d) and let B ⊂ ZM be a subset
corresponding to [c0, . . . , ck−1; r], i.e. |Zj(Td)∩B| = cj for 0 6 j 6 k−1. By 0 6 c′µ = cµ−1
we get cµ > 1, implying Zµ(Td) ∩ B 6= ∅. Thus there exists x ∈ B with mult(x, Td) = µ.
Similarly c′ν 6 aν −aν+1 implies cν +1 6 aν −aν+1 and thus cν = |Zν(Td)∩B| < aν −aν+1.
Therefore there exists y ∈ ZM \B with mult(y, Td) = ν. Then B′ = (B \{x})∪{y} ⊂ ZM
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corresponds to [c′0, . . . , c
′
k−1; r] and we have to show that there exists a partition of B′

consisting of r losing sets.
We claim that a losing partition of B = B1 ∪ . . . ∪ Br yields a losing partition of B′

by replacing x by y. For the sets not containing x, this doesn’t change anything. If, say
x ∈ B1 ⊂ B and B′

1 := (B1 \ {x}) ∪ {y} ⊂ B′, then either the tuples describing (Td, B1)
and (Td, B

′
1) satisfy the prerequisite of part (1), or ν = k−1 and mult(y, (Td, B

′
1)) = k. In

both cases we find that (Td, B
′
1) is a losing transversal, hence indeed B′

1 is a losing set.

Now let us get back to the algorithm. First of all, it is not necessary to iterate
through all tuples (a1, . . . , ak−1; d): increasing an ai only makes the tuple more likely to
be a losing one (see Lemma 8), so it suffices to walk along the hypersurface between losing
and winning. Let us make this precise.

Suppose that ai+1, . . . , ak−1 are fixed. Then we determine the tuples (a1, . . . , ai) such
that (a1, . . . , ak−1; d) loses in the following way. Denote by A := A(ai+1, . . . , ak−1) the
smallest integer such that any a1, . . . , ai with ai > A loses. Equivalently by Lemma 8, A
is the smallest integer such that (A, . . . , A, ai+1, . . . , ak−1; d) loses, so A can be determined
quickly using binary search or something similar. After that, it remains to iterate through
all ai < A and apply the same algorithm recursively with ai, . . . , ak−1 fixed. This method
is also used to save memory: for fixed ai+1, . . . , ak−1, store the corresponding value A =
A(ai+1, . . . , ak−1), and store further details concerning a1, . . . , ai only if ai < A.

It turned out (experimentally) that for any fixed ai+1, . . . , ak−1, almost all losing
a1, . . . , ai satisfy ai > A, so the above method yields a huge gain in efficiency. We
can gain some more time by using the observation that usually, A(ai+1, . . . , ak−1) is not
much bigger than A(ai+1 + 1, . . . , ak−1): use A(ai+1 + 1, . . . , ak−1) as a first estimate to
find A(ai+1, . . . , ak−1) more quickly. (This means that when iterating through values for
ai+1, we have to start from the big values.)

Concerning the losing tuples [c0, . . . , ck−1; r], a similar strategy can be used. For each
given partial tuple ci, . . . , ck−1 let C := C(ci, . . . , ck−1; r) be the smallest integer such that
whenever ci−1 > C, the total tuple loses; equivalently, C is the smallest integer such that
the tuple [0, . . . , 0, C, ci, . . . , ck−1; r] loses. By Lemma 16, this can be computed using the
formula

C(ci, . . . , ck−1; r) = min
(c′j)j>i,(c

′′

j )j>i

c′
j
+c′′

j
=cj

(

C(c′i, . . . , c
′
k−1; r

′) + C(c′′i , . . . , c
′′
k−1; r

′′)
)

, (*)

where r′+r′′ = r. Now whenever we are interested in such a value C(ci, . . . , ck−1; r), before
we apply (*) to compute it, we first compute C(ci+1, . . . , ck−1; r) (which takes much less
time); if this turns out to be less or equal to ci, then C(ci, . . . , ck−1; r) = 0 anyway. To
determine whether [c̃0, . . . , c̃k−1; q] is losing (the only thing we are really interested in),
we compute C(c̃1, . . . , c̃k−1; q) in the above way and compare it with c̃0.

Many values C(ci, . . . , ck−1; r) will be needed several times in the computation, so each
time we compute such a value, we store it for later re-use.

When computing (*), we may save a lot of time by computing C(c′′i , . . . , c
′′
k−1; r

′′) only
when this is really necessary. Suppose that we already know that the minimum will be
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at most C0, that we now want to treat the pair of tuples (c′i)i, (c′′i )i, and that somehow
we got an estimate C(c′′i , . . . , c

′′
k−1; r

′′) > e. We first compute C(c′i, . . . , c
′
k−1; r

′); if it turns
out that C(c′i, . . . , c

′
k−1; r

′) + e > C0, then we skip the computation of C(c′′i , . . . , c
′′
k−1; r

′′).
Of course, we might always use the trivial estimate e = 0, but we can do better.

We iterate through the tuples (c′′j )j>i in an order such that tuples with larger en-
tries come first. Fix µ > i and consider the tuple (d′′

j )j>i, where d′′
j = c′′j + δjµ. We

get a first estimate from the obvious inequality C(c′′i , . . . , c
′′
k−1; r

′′) > C(d′′
i , . . . , d

′′
k−1; r

′′).
If C(c′′i , . . . , c

′′
k−1; r

′′) > 0, then indeed C(c′′i , . . . , c
′′
k−1; r

′′) > C(d′′
i , . . . , d

′′
k−1; r

′′) + 1 by
Lemma 17. Of course we do not know whether C(c′′i , . . . , c

′′
k−1; r

′′) > 0 or not as we didn’t
compute it yet but C(d′′

i , . . . , d
′′
k−1; r

′′) > 0 is a sufficient condition for C(c′′i , . . . , c
′′
k−1; r

′′) >
0. These are the estimates which we use. (When m > 0, it happens very often that we
have exactly C(c′i, . . . , c

′
k−1; r

′) + C(d′′
i , . . . , d

′′
k−1; r

′′) + 1 = C0; therefore, the additional
“+1” obtained using Lemma 17 reduces computation time extremly.)

Finally, there is one thing to note concerning the decompositions r = r′ + r′′. Of
course we may choose and fix those decompositions once and for all in the beginning in
an optimal way. However, due to the fact that all C(c′i, . . . , c

′
k−1; r

′) are computed but not
all C(c′′i , . . . , c

′′
k−1; r

′′), it is sometimes preferable to keep r′ small and instead need a few
more steps. One could probably write an algorithm which chooses a good decomposition
sequence, but as anyway the maximal number q of sets in a partition we are considering
is about 20, we just chose some (experimentally) good decompositions by hand.

The program implementing the above algorithm (in C++) can be obtained from the
authors. Maybe it could be further improved in the following way. In the manual compu-
tations in the example K9(7, 4) > 44, we significantly reduced the work by exploiting the
convexity of the sequence bi. In general, this sequence does not need to be convex, but it
seems to be close to convex most of the time. If this could be exploited by the computer,
this should yield a big gain of running time.

5 The results

In this section we list the results we obtained by applying our algorithm. All values in the
tables below are the best ones one can obtain by using the strategy given after Theorem 9.
The computations were performed on a cluster of standard PC’s. The range was limited
by both time and memory. In the simplest case k = 3 a very short program suffices to
calculate the new bounds for the usually tabulated range q 6 21 in total time of roughly
a minute. In case of k > 3 we had to implement the ideas mentioned in Section 4 and we
were restricted to q 6 16 in the case k = 4 and to q 6 9 in the case k = 5. For k > 5 the
computational effort became too large for a systematical treatment. Here we got only a
few sporadic new bounds: six bounds for k = 6, two bounds for k = 7 and still a new
bound for a ternary code in the case k = 8. In the most difficult case K9(10, 5), checking
a single game took about one week, and it takes about four games (with increasing m) to
verify Kq(n, R) > M when M is close to the best we can do. In several cases the memory
used almost reached the physical limit of 1GB.
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The results of the computations are compiled in the following tables. We included the
sphere-covering bound (2) and the upper bound for comparison as well as a column for
k, since this is the most important parameter for the computation time.

As can be seen from the tables, the bigger q and n are, the better our approach works.
If n is big but q is small, then the values of Kq(n, n − k) are known for small k, so our
method doesn’t help here, as for large k, it is too slow.

Table 1. q = 3

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K3(10, 4) 6 14 16 17 36
K3(11, 4) 7 26 28 30 81
K3(11, 5) 6 9 10 11 27
K3(13, 5) 8 29 32 33 108
K3(13, 6) 7 10 11 13 36

Table 2. q = 4

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K4(7, 2) 5 78 80 84 128
K4(7, 3) 4 15 16 19 32
K4(8, 3) 5 37 39 44 96
K4(9, 3) 6 101 108 110 256
K4(8, 4) 4 9 10 13∗ 28
K4(9, 4) 5 21 23 26 64
K4(10, 4) 6 51 55 59 208
K4(9, 5) 4 7 8 10 16
K4(10, 5) 5 13 15 18 54
K4(11, 5) 6 30 31 36 128
K4(11, 6) 5 9 11 14 32

∗The bound K4(8, 4) > 13 was very recently also obtained by Kéri
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Table 3. q = 5

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K5(5, 2) 3 18 21 22 35
K5(6, 2) 4 59 65 71 125
K5(7, 2) 5 215 222 225 525
K5(6, 3) 3 11 13 16 25
K5(7, 3) 4 30 34 38 100
K5(8, 3) 5 97 99 109 325
K5(7, 4) 3 7 11 12 21
K5(8, 4) 4 18 21 25 65
K5(9, 4) 5 52 55 64 255
K5(9, 5) 4 12 13 19 55
K5(10, 5) 5 31 34 41 175
K5(11, 5) 6 86 90 103 625
K5(10, 6) 4 9 11 16 45
K5(11, 6) 5 20 21 29 125
K5(11, 7) 4 7 11 12 25

Table 4. q = 6

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K6(5, 2) 3 29 33 36 66
K6(6, 2) 4 115 120 133 274
K6(6, 3) 3 17 19 24 41
K6(7, 3) 4 57 62 70 246
K6(8, 3) 5 217 234 246 1080
K6(7, 4) 3 11 13 18 36
K6(8, 4) 4 33 36 46 216
K6(9, 4) 5 112 114 136 738
K6(8, 5) 3 8 13 15 30†

K6(9, 5) 4 21 24 32 144
K6(10, 5) 5 65 71 83 615
K6(10, 6) 4 15 16 25 72

†A recent update in [5] from September 16, 2009
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Table 5. q = 7

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K7(5, 2) 3 43 47 55 97
K7(6, 2) 4 204 210 233 343
K7(6, 3) 3 25 28 36 77
K7(7, 3) 4 99 101 127 343
K7(7, 4) 3 16 19 25 49
K7(8, 4) 4 56 58 76 343
K7(9, 4) 5 221 227 264 1843
K7(8, 5) 3 11 17 20 49
K7(9, 5) 4 35 39 52 323
K7(10, 5) 5 126 131 160 1225
K7(9, 6) 3 8 14 17 37
K7(10, 6) 4 24 27 39 175

Table 6. q = 8

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K8(5, 2) 3 63 64 83 128
K8(6, 2) 4 337 354 382 512
K8(6, 3) 3 35 40 52 107
K8(7, 3) 4 161 171 196 512
K8(7, 4) 3 22 24 37 92
K8(8, 4) 4 89 96 118 512
K8(8, 5) 3 15 22 29 90‡

K8(9, 5) 4 55 58 80 384
K8(10, 5) 5 225 232 287 2461
K8(9, 6) 3 11 17 22 48
K8(10, 6) 4 37 40 58 342
K8(10, 7) 3 9 17 20 44‡

‡A recent update in [5] from September 16, 2009
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Table 7. q = 9

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K9(5, 2) 3 87 90 113 189
K9(6, 2) 4 527 546 585 729
K9(6, 3) 3 48 57 71 147
K9(7, 3) 4 248 252 308 729
K9(7, 4) 3 30 35 51 120
K9(8, 4) 4 136 144 181 729
K9(8, 5) 3 21 27 39 120
K9(9, 5) 4 83 88 120 729
K9(10, 5) 5 380 390 481 3969
K9(9, 6) 3 15 21 31 81
K9(10, 6) 4 55 60 87 477
K9(10, 7) 3 12 21 25 81

Table 8. q = 10

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K10(5, 2) 3 117 128 149 250
K10(6, 2) 4 788 800 890 1350
K10(6, 3) 3 64 74 92 209
K10(7, 3) 4 367 382 451 1350
K10(7, 4) 3 39 46 66 168
K10(8, 4) 4 200 210 265 1156
K10(8, 5) 3 27 34 48 168
K10(9, 5) 4 121 128 174 1088
K10(9, 6) 3 19 26 39 114
K10(10, 6) 4 79 85 122 826
K10(10, 7) 3 15 26 33 114

Table 9. q = 11

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K11(5, 2) 3 154 165 208 365
K11(6, 2) 4 1135 1174 1276 2343
K11(6, 3) 3 83 94 119 275
K11(7, 3) 4 525 539 636 2343
K11(7, 4) 3 51 59 84 216
K11(8, 4) 4 283 293 374 1681
K11(8, 5) 3 34 41 64 216
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Table 10. q = 12

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K12(5, 2) 3 197 216 256 468
K12(6, 2) 4 1587 1612 1764 3884
K12(6, 3) 3 105 120 144 384
K12(7, 3) 4 729 732 878 3456
K12(7, 4) 3 64 72 104 264
K12(8, 4) 4 390 406 513 2304
K12(8, 5) 3 43 48 78 264

Table 11. q = 13

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K13(5, 2) 3 248 278 311 583
K13(6, 3) 3 132 145 193 495
K13(7, 3) 4 987 1006 1198 4294
K13(7, 4) 3 80 91 132 356
K13(8, 4) 4 526 537 684 3249
K13(8, 5) 3 53 61 98 356

Table 12. q = 14

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K14(5, 2) 3 307 342 381 686
K14(6, 3) 3 162 175 235 610
K14(7, 3) 4 1309 1340 1570 4802
K14(7, 4) 3 98 112 162 448
K14(8, 4) 4 694 718 917 4356
K14(8, 5) 3 65 70 119 448

Table 13. q = 15

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K15(5, 2) 3 374 414 465 855
K15(6, 3) 3 197 209 291 730
K15(7, 4) 3 119 134 192 519
K15(8, 4) 4 900 932 1181 5625
K15(8, 5) 3 78 88 141 519
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Table 14. q = 16

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K16(5, 2) 3 451 491 576 1024
K16(6, 3) 3 237 248 344 896
K16(7, 4) 3 142 161 227 611
K16(8, 4) 4 1149 1180 1507 7569
K16(8, 5) 3 93 106 168 611

Table 15. q = 17

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K17(5, 2) 3 538 568 671 1241
K17(6, 3) 3 282 289 407 1241
K17(7, 4) 3 168 191 271 703
K17(8, 5) 3 110 121 198 703

Table 16. q = 18

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K18(5, 2) 3 635 646 807 1458
K18(6, 3) 3 332 342 471 1353
K18(7, 4) 3 198 223 316 774
K18(8, 5) 3 129 144 233 774

Table 17. q = 19

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K19(5, 2) 3 744 759 957 1779
K19(6, 3) 3 387 399 557 1568
K19(7, 4) 3 231 256 367 866
K19(8, 5) 3 150 167 271 866

Table 18. q = 20

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K20(5, 2) 3 864 896 1088 2000
K20(6, 3) 3 449 461 650 1600
K20(7, 4) 3 267 295 419 979
K20(8, 5) 3 173 191 312 979
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Table 19. q = 21

Kq(n, R) k Sph.-Cov. Old Lower New Lower Upper
Bound Bound [5] Bound Bound [5]

K21(5, 2) 3 996 1043 1257 2381
K21(6, 3) 3 517 542 738 2058
K21(7, 4) 3 306 336 497 1029
K21(8, 5) 3 199 221 354 1029

References

[1] W. Chen, I. S. Honkala, Lower bounds for q-ary covering codes, IEEE Trans.
Inform. Theory 36 (1990), 664-671.

[2] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering Codes, North Holland, Ams-
terdam, 1997.

[3] W. Haas, J. Quistorff, J.-C. Schlage-Puchta, Lower Bounds on Covering Codes via
Partition Matrices, J. Combin. Theory Ser. A 116 (2009), 478-484.

[4] W. Haas, J. Quistorff, J.-C. Schlage-Puchta, New Lower Bounds for Covering Codes,
preprint.

[5] G. Kéri, Tables for Covering Codes, http://www.sztaki.hu/∼keri/codes/, ac-
cessed 30 December 2008.

[6] W. Lang, J. Quistorff, E. Schneider, Integer Programming for Covering Codes, J.
Comb. and Comb. Comp. 66 (2008), 279-288.

[7] E.R. Rodemich, Coverings by rook domains, J. Combin. Theory Ser. A 9 (1970),
117-128.

the electronic journal of combinatorics 16 (2009), #R133 21


