
On two problems regarding the

Hamiltonian cycle game

Dan Hefetz
Institute of Theoretical Computer Science

ETH Zurich, CH-8092 Switzerland
dan.hefetz@inf.ethz.ch

Sebastian Stich
Department of Mathematics

ETH Zurich, CH-8092 Switzerland
sstich@student.ethz.ch

Submitted: Oct 24, 2008; Accepted: Feb 18, 2009; Published: Feb 27, 2009

Mathematics Subject Classification: 91A46, 05C45

Abstract

We consider the fair Hamiltonian cycle Maker-Breaker game, played on the edge
set of the complete graph Kn on n vertices. It is known that Maker wins this game
if n is sufficiently large. We are interested in the minimum number of moves needed
for Maker in order to win the Hamiltonian cycle game, and in the smallest n for
which Maker has a winning strategy for this game.

We prove the following results: (1) If n is sufficiently large, then Maker can win
the Hamiltonian cycle game within n + 1 moves. This bound is best possible and
it settles a question of Hefetz, Krivelevich, Stojaković and Szabó; (2) If n ≥ 29,
then Maker can win the Hamiltonian cycle game. This improves the previously best
bound of 600 due to Papaioannou.

1 Introduction

Let F be a hypergraph. In the fair Maker-Breaker game F two players, called Maker and
Breaker, take turns in claiming previously unclaimed vertices of F , with Breaker going
first. Each player claims one vertex per turn. Maker wins the game as soon as he claims
all the vertices of some hyperedge of F . If by the time every vertex of F is claimed by
some player, Maker was not able to fully claim any hyperedge of F , then Breaker wins
the game. The game which differs from F only in the fact that Maker is the first player
instead of Breaker, will be denoted by FM .

Let n be a positive integer, and let Hn be the hypergraph whose vertices are the edges
of Kn, and whose hyperedges are the edge sets of all Hamiltonian cycles of Kn. In this
paper we study the fair Maker-Breaker Hamiltonian cycle game Hn.
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Following [2], we define τ(Hn) to be the minimum number of moves needed for Maker in
order to win Hn (it follows from a result of Chvátal and Erdős [1] that τ(Hn) < ∞ for
sufficiently large n). It was proved in [2] that n+1 ≤ τ(Hn) ≤ n+2 holds for sufficiently
large n. It was also asked there, which of these two values is the correct answer. We settle
this question as follows:

Theorem 1.1 For sufficiently large n we have τ(Hn) = n + 1.

Note that, though this only improves the upper bound given in [2] by 1, the proof is much
more involved.

Another problem we address in this paper, is that of determining the smallest n for which
Maker has a winning strategy in HM

n . Though it seems plausible, it is not known that
if Maker wins HM

n for some integer n, then he also wins HM
n+1. Hence, we define κ(HM

n )
to be the smallest positive integer n0 such that Maker can win HM

n for every n ≥ n0.
Papaioannou [4] proved that κ(HM

n ) ≤ 600, and conjectured that in fact κ(HM
n ) = 8. We

improve his upper bound as follows:

Theorem 1.2 κ(HM
n ) ≤ 29.

2 Preliminaries

Our graph-theoretic notation is standard and follows that of [6]. In particular, we use
the following: for a graph G, denote its set of vertices by V (G), and its set of edges by
E(G). Moreover, let v(G) = |V (G)| and e(G) = |E(G)|. For a graph G = (V, E) and a
set A ⊆ V denote by G[A] the subgraph of G induced by A.

We will also need the following more specific terminology. An edge that was not previously
claimed by either player is called free. A graph is called a linear forest if each of its
connected components is a non-empty path. Let S ⊆ V (Kn) be an arbitrary set. Assume
that just before Maker’s (k + 1)st move, the subgraph of his graph which is induced on
the vertices of V (Kn) \ S, admits a linear forest. Let B ′

k(S) denote the current subgraph
of Breaker’s graph on Kn \ S, which is induced on the endpoints of Maker’s paths and
on the vertices which are isolated in Maker’s graph. Let Bk(S) be the subgraph of B ′

k(S)
which is obtained by removing all edges (x, y) such that x and y are endpoints of the
same path of Maker. Let B+

k (S) denote the graph whose vertex set is V (Bk(S)) ∪ S and
whose edges are the edges of Bk(S) and the edges of Breaker that connect a vertex of S
and a vertex of Bk(S). We abbreviate Bk(∅) to Bk.

Let G′
k(S) denote the subgraph of Kn which is induced on the vertices of Bk(S). Let

Gk(S) be the subgraph of G′
k(S) which is obtained by removing all edges (x, y) such that

x and y are endpoints of the same path of Maker. The free edges of Gk(S) are called
available.
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The rest of the paper is organized as follows. In Section 3 we prove Theorem 1.1 and
in Section 4 we prove Theorem 1.2. Finally, in Section 5 we present some concluding
remarks and related open problems.

3 Winning the Hamiltonian cycle game quickly

In this section we prove Theorem 1.1. In order to do so, we will first present a strategy for
Maker, then show that, using this strategy, Maker can win Hn in n+1 moves, and finally
prove that Maker can indeed follow this strategy. Throughout this section we assume
that n is as large as necessary.

3.1 Maker’s strategy

Phase 1. Maker starts by building two vertex disjoint paths, P = p0p1 . . . p5 and Q =
q0q1 . . . q5, such that just after his 10-th move, the following properties hold:

(i) every edge of Breaker is incident with some vertex of P ∪ Q;

(ii) at least one of the two edges (p0, p5) and (q0, q5) is free.

If possible, Maker claims either (p0, p5) or (q0, q5) in his 11th move and continues to
Phase X; otherwise he proceeds to Phase A.

Phase A. If there are no edges of Breaker that connect an endpoint of one of Maker’s
paths and some vertex of one of his other paths, then Maker goes directly to Phase
B.

Otherwise he chooses an arbitrary endpoint v of one of his paths which is incident
with such an edge of Breaker, and claims a free edge that is incident with v and
some arbitrary isolated vertex. If he can now close this longer path into a cycle
in his next move, then he does so and continues to Phase X. Otherwise he repeats
Phase A.

Phase B. If every vertex which is of positive degree in Breaker’s graph belongs to some
path of Maker, then Maker goes directly to Phase 2.

Otherwise, let v be an arbitrary vertex that is isolated in Maker’s graph but not in
Breaker’s graph. In his next move, Maker claims a free edge that connects v and
an endpoint of one of his paths, such that the edge that connects v and the other
endpoint of that path is still free. If he can now close this longer path into a cycle
in his next move, then he does so and continues to Phase X. Otherwise he repeats
Phase B.
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Phase 2. If Maker’s graph consists of at least 15 vertex disjoint paths, then he proceeds
to Phase 3.

Otherwise he builds a new path P = p0p1 . . . p5 which is vertex disjoint from all of
his other paths, such that just after building P the following properties hold:

(i) every edge of Breaker is incident with a vertex of some path of Maker;

(ii) the edge (p0, p5) is free.

If Maker can close the new path P into a cycle in his next move, then he does so
and continues to Phase X. Otherwise he proceeds to Phase A.

Phase 3. If there are at most 9 isolated vertices in Maker’s graph, then he goes directly
to Phase 4.

Otherwise he makes one of his paths (chosen arbitrarily) longer, by claiming in
his next move a free edge that connects an endpoint of this path and an arbitrary
isolated vertex. If he can now close this longer path into a cycle in his next move,
then he does so and continues to Phase X. Otherwise he repeats Phase 3.

Phase 4. Let I denote the set of isolated vertices in Maker’s graph. First, Maker builds
a Hamiltonian path P on Kn[I] (this is not a trivial task, the exact details of how
Maker can achieve this goal are given in Lemma 3.3). Then, he connects an endpoint
of P to an endpoint of some other path of his, such that the edge that connects
the endpoints of the new path is still free. If he can now close this longer path into
a cycle in his next move, then he does so and continues to Phase X. Otherwise he
proceeds to Phase 5.

Phase 5. If Maker’s graph consists of exactly 2 paths, then he goes directly to Phase 6.

Otherwise, in his next move, Maker claims an edge e = (x, y) such that the following
properties hold:

(i) x and y are endpoints of two distinct paths of Maker, denoted by Px and Py

respectively;

(ii) the edge (x′, y′), where x′ 6= x is an endpoint of Px and y′ 6= y is an endpoint
of Py, is free;

(iii) if there exists an edge of Breaker that connects endpoints of two different paths
of Maker, then (x, y) is adjacent to at least one such edge.

If Maker can now close this longer path into a cycle in his next move, then he does
so and continues to Phase X. Otherwise he repeats Phase 5.

Phase 6. Maker uses 3 more moves to turn his two paths into a Hamiltonian cycle (the
exact details of how Maker can achieve this goal are given in Lemma 3.6).
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Phase X. Let C denote Maker’s cycle. Maker builds a Hamiltonian path P on Kn \ C,
and then connects P and C to form a Hamiltonian cycle in Kn (the exact details of
how Maker can achieve these goals are given in Lemma 3.3 and Lemma 3.7). This
phase lasts exactly n + 1 − kX moves, where kX denotes the number of moves that
Maker has made before entering Phase X.

3.2 Proof of correctness

It is clear that if Maker can play according to this strategy, then he wins Hn in n + 1
moves. Hence, it suffices to prove that Maker can indeed follow his strategy. Before doing
so, we state and prove some auxiliary lemmas.

The first phase of Maker’s strategy consists of building two vertex disjoint paths. The
following lemma asserts that he can indeed do so.

Lemma 3.1 Let s ≥ 2 and let n > 4(s+1). Playing on Kn, Maker, as the second player,
has a strategy for building two vertex disjoint paths P = p0p1 . . . ps and Q = q0q1 . . . qs,
such that just after his (2s)-th move the following properties hold:

(i) every edge of Breaker is incident with some vertex of P ∪ Q;

(ii) at least one of the two edges (p0, ps) and (q0, qs) is free.

Proof We will prove this lemma by induction on the number of moves made by Maker.

For 1 ≤ i ≤ 2 and 2 ≤ j ≤ 2s, let P j
i denote the i-th path of Maker, just after his j-th

move. Let pj
i
′ and pj

i
′′ denote the endpoints of P j

i . Maker’s goal while building his paths
is to ensure that, for every 1 ≤ i ≤ 2 and 2 ≤ j ≤ 2s, the following properties hold after
his j-th move.

(a) If v(P j
i ) < s + 1, then pj

i
′ is incident with at most one edge of Breaker which is not

already incident with another vertex of P j
1 ∪ P j

2 .

(b) If v(P j
i ) < s + 1, then pj

i
′′ is not incident with any edge of Breaker which is not

incident with another vertex of P j
1 ∪ P j

2 .

(c) Every edge of Breaker is incident with a vertex of P j
1 ∪ P j

2 .

(d) At least one of the edges (pj
1
′, pj

1
′′) and (pj

2
′, pj

2
′′) does not belong to Breaker.

In his first two moves, Maker claims two independent edges e and f such that, when
viewed as paths P 2

1 = e, P 2
2 = f , they satisfy (a), (b), (c) and (d); it is straightforward

to verify that this can be done.
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Assume that properties (a), (b), (c) and (d) hold after Maker’s j-th move, for some
2 ≤ j < 2s. Let g = (g′, g′′) denote the edge claimed by Breaker in his (j + 1)st move.
We distinguish between the following three cases.

Case 1: g is not incident with any vertex of P j
1 ∪ P j

2 . Assume without loss of gen-
erality that the length of P j

1 is strictly less than s (otherwise this holds for P j
2 ). By

property (a), at least one of the edges (g′, pj
1
′), (g′′, pj

1
′) is still free. In his next move,

Maker claims one of these edges, entailing (a), (b), (c) and (d) for P j+1
1 and P j+1

2 .

Case 2.a: g is incident with P j
1 , but not with P j

2 . If P j
1 is already of length s, then

Maker claims an edge that connects pj
2
′′ and an arbitrary isolated vertex. Such an

isolated vertex exists by property (c), and since n > 4(s+1). Henceforth we assume
that v(P j

1 ) < s + 1.

If g is incident with both endpoints of P j
1 , then Maker claims an edge that connects

pj
1
′′ and an arbitrary isolated vertex.

If g is incident with exactly one endpoint of P j
1 , then Maker claims an edge between

this endpoint and an arbitrary isolated vertex.

If g is not incident with any endpoint of P j
1 , then Maker claims an edge that connects

pj
1
′′ and an arbitrary isolated vertex.

Clearly, after this move, (a), (b), (c) and (d) will hold for P j+1
1 and P j+1

2 .

Case 2.b: g is incident with P j
2 , but not with P j

1 . This case can be treated simi-
larly to Case 2.a.; we omit the straightforward details.

Case 3: g is incident with both paths P j
1 and P j

2 . Maker plays as in Case 2 for P j
i ,

where 1 ≤ i ≤ 2 is the smallest integer such that the length of P j
i is strictly smaller

than s.

Properties (i) and (ii) are clearly satisfied after Maker’s (2s)-th move, as he maintained
properties (c) and (d) respectively.

This concludes the proof of Lemma 3.1. 2

The following lemma asserts that Maker can continue to build more paths.

Lemma 3.2 Assume that some edges of Kn were already claimed by the players. Let r be
a positive integer, and let S denote the set of vertices of positive degree in Maker’s graph.
If all of the following properties hold:

(a) Maker is next to play;

(b) every edge of Breaker is incident with some vertex of S;

(c) n − |S| > 2(r + 1);

the electronic journal of combinatorics 16 (2009), #R28 6



then Maker can build a path P = p0p1 . . . pr, such that just after his r-th move the following
properties hold:

(i) P ∩ S = ∅;

(ii) every edge of Breaker is incident with some vertex of P ∪ S;

(iii) the edge connecting the endpoints of P is free.

The proof of Lemma 3.2 is very similar to that of Lemma 3.1. We omit the straightforward
details.

A central ingredient of Maker’s strategy is building a long path with some additional
properties. This is taken care of by the following lemma.

Lemma 3.3 Let S ⊆ V (Kn) be an arbitrary subset. Assume that just before Maker’s
(k0 + 1)st move, the edges with both endpoints in Kn \ S he has claimed so far, span a
linear forest F , consisting of f paths. Let I = V (Kn \F )\S, and let eb denote the number
of Breaker’s edges that are not incident with any vertex of S ∪ V (F ). If either

(i) |I| ≥ 9, eb ≤ 2 and e(B+
k0

(S)) ≤ 2f +
⌈

|I|
2

⌉

− 6; or

(ii) I = ∅ and e(B+
k0

(S)) ≤ 2f − 3;

then Maker can build a Hamiltonian path P on Kn \S in f + |I|−1 moves, while ensuring
that e(B+

k0+f+|I|−1(S)) ≤ 3.

The proof of Lemma 3.3 will rely on the following two lemmas:

Lemma 3.4 Let e1 and e2 be two arbitrary edges of Km. Let Fm(e1, e2) denote the
hypergraph whose vertices are the edges of Km \ {e1, e2} and whose hyperedges are the
spanning linear forests of Km \ {e1, e2}. If m ≥ 9, then

τ(FM
m (e1, e2)) =

⌊m

2

⌋

+ 1.

Proof For the sake of convenience, we will assume that both e1 and e2 were claimed by
Breaker.

Assume first that m is even. In the following, Maker ensures that for every 1 ≤ k < m
2
,

the following two properties hold after his k-th move:

(i) Maker’s graph is a matching consisting of k edges.

(ii) Every edge of Breaker is adjacent to some edge of Maker.
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First note, that if these properties hold for k = m
2
−1, then Maker can build the spanning

linear forest within two additional moves. This follows easily since there are only two
isolated vertices in Maker’s graph, Breaker has claimed 2+ m

2
− 1 edges (including e1 and

e2), and m ≥ 9.

It remains to show that Maker can indeed maintain properties (i) and (ii) for every
1 ≤ k < m

2
. For k = 1 this is clear, as Maker can claim an edge that is adjacent to

both e1 and e2. Assume now that (i) and (ii) hold for some 1 ≤ k < m
2
− 1. In his next

move, Breaker claims some edge e. If e is adjacent to some edge of Maker, then he claims
an arbitrary edge that connects two vertices that are isolated in his graph. If e is not
adjacent to any edge of Maker, then he claims an edge which is adjacent to e and which
connects two vertices that are isolated in his graph. It follows that properties (i) and (ii)
hold after his (k + 1)st move. In both cases, the required edge exists, because there are
m−2k > 3 isolated vertices in Maker’s graph, and, by property (ii), every edge of Breaker
(except possibly e) is adjacent to some edge of Maker.

If m is odd, then Maker’s strategy is essentially the same; we omit the straightforward
details. 2

Lemma 3.5 Assume that just before Maker’s (k0 + 1)st move, his graph admits a linear
forest F . Let f ≥ 1 denote the number of paths in F , and let S = V (Kn \ F ). If
e(B+

k0
(S)) ≤ v(Bk0

(S))− 3, then Maker can build a Hamiltonian path on Kn \ S in f − 1
moves, while ensuring that e(B+

k0+f−1(S)) ≤ 3.

Proof In each of his moves, Maker connects two endpoints of two different paths of his
graph on Kn \ S. Hence, after each move of Maker, the number of paths in his graph
decreases by one, and thus, after f − 1 moves, he will build a Hamiltonian path on
Kn \S. Of course one has to prove that this is indeed possible; that is, to prove that there
will always be an available edge for Maker to claim. In order to ensure this, for every
k0 ≤ k ≤ k0 + f − 2, Maker will claim an available edge while making sure that at least
one of the following properties is satisfied:

(a) e(B+
k (S)) ≤ v(Bk(S)) − 3;

(b) e(Bk(S)) ≤ 3 and e(B+
k (S)) ≤ v(Bk(S)) + 1.

We prove by induction on k that this is indeed possible, and guarantees the existence of
an available edge just before Maker’s (k + 1)st move.

For k = k0, property (a) holds because of the assumption of the lemma.

Let k0 ≤ k < k0 + f − 2; this ensures that v(Bk(S)) ≥ 6. Assume first that property (b)
holds for k; we prove that it will hold for k +1 as well. Since property (b) holds for k and
v(Bk(S)) ≥ 6, it follows that for every v ∈ V (Gk(S)), there exists an available edge which
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is incident with v. Maker plays as follows (note that the motivation behind certain parts
of his strategy described here, will become clear only when we consider his last move):

Case 1: e(Bk(S)) = 3. If e(B+
k (S)\Bk(S)) = 0, then Maker claims an arbitrary available

edge which is incident with some edge of Bk(S). It follows that e(Bk+1(S)) ≤ 3 and
e(B+

k+1(S)) ≤ e(B+
k (S)) − 1 + 1 ≤ 3 ≤ v(Bk(S)) − 1 = v(Bk+1(S)) + 1 after

Breaker’s next move. Hence, property (b) will hold for k +1. Hence, we can assume
that e(B+

k (S) \ Bk(S)) > 0.

If there exists a vertex of V (Bk(S)) which has degree at least 2 in B+
k (S), then Maker

claims an available edge (x, y) which is incident with such a vertex, is adjacent
to some edge of Bk(S), is adjacent to at least 3 edges of B+

k (S), and maximizes
degB+

k
(S)(x) + degB+

k
(S)(y) amongst all such edges. It is easy to see that this is

possible since e(Bk(S)) = 3 and e(B+
k (S)) ≥ 4. It follows that e(Bk+1(S)) ≤ 3 and

e(B+
k+1(S)) ≤ e(B+

k (S)) − 3 + 1 ≤ v(Bk(S)) − 1 = v(Bk+1(S)) + 1 after Breaker’s
next move. Hence, property (b) will hold for k + 1.

Otherwise, every vertex of Bk(S) has degree at most 1 in B+
k (S), and therefore

e(B+
k (S)) ≤ v(Bk(S))−3. Hence, Maker claims an arbitrary available edge which is

adjacent to some edge of Bk(S). It follows that e(Bk+1(S)) ≤ 3 and e(B+
k+1(S)) ≤

e(B+
k (S)) − 1 + 1 ≤ v(Bk(S)) − 1 = v(Bk+1(S)) + 1 after Breaker’s next move.

Hence, property (b) will hold for k + 1.

Case 2: 0 ≤ e(Bk(S)) ≤ 2. If there exists an available edge which is adjacent to at least
three edges of B+

k (S), then Maker claims an edge (x, y) that maximizes degB+

k
(S)(x)+

degB+

k
(S)(y) amongst all such edges. It follows that e(Bk+1(S)) ≤ 3 and e(B+

k+1(S))≤

e(B+
k (S))−3+1 ≤ v(Bk(S))−1 = v(Bk+1(S))+1 after Breaker’s next move. Hence,

property (b) will hold for k + 1.

If no available edge is adjacent to more than two edges of B+
k (S), then e(B+

k (S)) ≤
v(Bk(S)). Hence, if there exists an available edge which is incident with two edges of
B+

k (S), then Maker claims an edge (x, y) that maximizes degB+

k
(S)(x) + degB+

k
(S)(y)

among all such edges. It follows that e(Bk+1(S)) ≤ 3 and e(B+
k+1(S)) ≤ e(B+

k (S))−
2 + 1 ≤ v(Bk(S))− 1 = v(Bk+1(S)) + 1 after Breaker’s next move. Hence, property
(b) will hold for k + 1.

If every available edge is adjacent to at most one edge of B+
k (S), then e(B+

k (S)) ≤ 2.
Maker claims an arbitrary available edge. It follows that e(Bk+1(S)) ≤ 3 and
e(B+

k+1(S)) ≤ e(B+
k (S)) + 1 ≤ 3 ≤ v(Bk(S)) − 1 = v(Bk+1(S)) + 1 after Breaker’s

next move. Hence, property (b) will hold for k + 1.

If property (b) does not hold for k, then property (a) must hold. It follows that for every
v ∈ V (Gk(S)), there exists an available edge which is incident with v, since the degree of
any vertex in Gk(S) is v(Bk(S)) − 2, and there are at most v(Bk(S)) − 3 edges in Bk(S)
by assumption. Maker plays as follows (the analysis resembles the one in [2]):
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Case 1.i. (for every 0 ≤ i ≤ 3). If e(B+
k (S)) ≤ v(Bk(S))−3− i, and there is an available

edge which is adjacent to at least 3− i edges of B+
k (S), then Maker claims such an

edge, entailing e(B+
k+1(S)) ≤ e(B+

k (S))−(3−i)+1 ≤ v(Bk(S))−5 = v(Bk+1(S))−3.
It follows that property (a) will hold for k + 1.

Case 2. If there exists a vertex v ∈ V (Bk(S)) which is incident with at least 3 edges of
B+

k (S), then Maker plays according to Case 1.0.

Case 3. Assume that no vertex in V (Bk(S)) is incident with more than 2 edges of B+
k (S).

By Case 1.3 we may assume that e(B+
k (S)) > v(Bk(S))−6. Maker plays as follows:

Case 3.i. If e(B+
k (S)) = v(Bk(S)) − 5, then Maker claims an arbitrary available

edge which is adjacent to some edge of B+
k (S); this is clearly possible as

v(Bk(S)) ≥ 6. It follows by Case 1.2 that property (a) will hold for k + 1.

Case 3.ii. If e(B+
k (S)) = v(Bk(S))−4 and there is a vertex v ∈ V (Bk(S)) which is

incident with 2 edges of B+
k (S), then Maker claims an arbitrary available edge

which is incident with v. It follows by Case 1.1 that property (a) will hold for
k + 1.

Case 3.iii. If e+(Bk(S)) = v(Bk(S)) − 4 but no vertex of Bk(S) is incident with
2 edges of B+

k (S), then the edges of Bk(S) must form a matching. Moreover,
there are at least two of them as property (b) is not satisfied. In his next move,
Maker claims an available edge which is adjacent to two edges of Bk(S). It
follows by Case 1.1 that property (a) will hold for k + 1.

Case 3.iv. If e(B+
k (S)) = v(Bk(S))− 3, then, by our assumption that property (b)

does not hold, it follows that e(Bk(S)) ≥ 4. Hence, there is at least one vertex
v ∈ V (Bk(S)) that has degree 2 in B+

k (S).

If there exists a vertex v ∈ V (Bk(S)) of degree 2 in B+
k (S) which is not incident

with any edge of Bk(S), then Maker claims an available edge that is incident
with v and adjacent to an arbitrary edge of Bk(S). It follows by Case 1.0 that
property (a) will hold for k + 1.

If there exists a vertex w ∈ V (Bk(S)) of degree 2 in B+
k (S) which is incident

with one edge of B+
k (S) \Bk(S) and one edge of Bk(S), then Maker claims an

available edge that is incident with w and is adjacent to some edge of Bk(S)
which is not incident with w. It follows by Case 1.0 that property (a) will hold
for k + 1.

If all vertices of V (Bk(S)) which have degree 2 in B+
k (S) are incident only with

edges of Bk(S), then Maker claims an available edge which is incident with
a vertex of degree 2 in B+

k (S) and is adjacent to a third edge of B+
k (S). We

claim that this is always possible. Indeed, it is clear if e(B+
k (S)\Bk(S)) > 1, if

e(B+
k (S)\Bk(S)) = 1, then the existence of such an available edge follows since

property (b) does not hold and thus e(Bk(S)) ≥ 4, and if e(B+
k (S)\Bk(S)) = 0,

then the existence of such an available edge follows since 4 ≤ e(Bk(S)) =
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v(Bk(S)) − 3, and thus e(Bk(S)) ≥ 5. Either way, it follows by Case 1.0 that
property (a) will hold for k + 1.

This shows, that Maker can ensure that either property (a) or property (b) will hold
just before his last move. Since for k = k0 + f − 2 property (a) entails property (b), we
conclude that property (b) will hold just before Maker’s last move. Hence, there exists
some available edge for Maker to claim. Maker plays as follows:

Case 1. If e(B+
k (S)\Bk(S)) ≤ 2, then Maker claims an arbitrary available edge, entailing

e(B+
k+1(S)) ≤ e(B+

k (S) \ Bk(S)) + 1 ≤ 3. Hence, we can assume that e(B+
k (S) \

Bk(S)) ≥ 3, and thus e(Bk(S)) ≤ 2.

Case 2. If there exists an available edge which is adjacent to at least three edges of B+
k (S),

then Maker claims such an edge. It follows that e(B+
k+1(S)) ≤ e(B+

k (S)) − 3 + 1 ≤
v(Bk(S)) − 1 = v(Bk+1(S)) + 1 = 3. Hence, we can assume that there is no such
edge and thus e(B+

k (S) \Bk(S)) = 3, e(Bk(S)) = 2, and both edges in Bk(S) share
an endpoint. Let a, b and c, d denote the endpoints of Maker’s paths, and assume
without loss of generality that (b, c) and (b, d) are the edges of Bk(S).

Case 3. If there exists some edge of B+
k (S) \ Bk(S) which is not incident with b, then

Maker claims an available edge which is adjacent to such an edge. It follows that
e(B+

k+1(S)) ≤ e(B+
k (S) \ Bk(S)) − 1 + 1 ≤ 3 will hold after Breaker’s next move.

Case 4. Otherwise all 5 edges of B+
k (S) are incident with b. We claim that this cannot

happen if Maker follows his strategy. Indeed, let (e, f) denote the last edge claimed
by Maker, and assume that Maker’s paths in Bk−1(S) were (a, e), (f, b) and (c, d)
(the other possible case, in which those paths were (a, b), (c, e) and (f, d), can be
handled similarly). Since at least 4 of the 5 edges of B+

k (S) must have been present in
B+

k−1(S), we infer that property (b) was satisfied by B+
k−1(S). However, by Maker’s

strategy for this case, it follows that he would not have claimed the edge (e, f), as
it does not maximize degB+

k
(S)(x) + degB+

k
(S)(y) in any possible case.

It follows that Maker can indeed build a Hamiltonian path on Kn \ S in f − 1 moves,
while ensuring that e(B+

k0+f−1(S)) ≤ 3. This concludes the proof of Lemma 3.5. 2

Proof of Lemma 3.3

First, note that if condition (i) from Lemma 3.3 holds, then one can apply Lemma 3.4 to

prove that Maker can build a linear forest on Kn[I] in
⌊

|I|
2

⌋

+ 1 moves. This linear forest

will consist of
⌈

|I|
2

⌉

− 1 paths, and therefore Maker’s graph on Kn \ S will then consist of

f +
⌈

|I|
2

⌉

− 1 paths. It will then follow that

e(B+

k0+b |I|
2 c+1

(S)) ≤

(

2f +

⌈

|I|

2

⌉

− 6

)

+

(⌊

|I|

2

⌋

+ 1

)

≤ 2

(

f +

⌈

|I|

2

⌉

− 1

)

− 3.
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Hence, without loss of generality we can assume that condition (ii) holds.

Lemma 3.3 now follows directly from Lemma 3.5. 2

Finally, we need two more short lemmas that will allow us to build the Hamiltonian cycle
at the end of Maker’s strategy.

Lemma 3.6 Assume that just before Maker’s (k0 + 1)st move, his graph consists of two
spanning vertex disjoint paths P = p1p2 . . . pl and Q = q1q2 . . . qm, where l ≥ 4 and
m ≥ 2. If e(Bk0

) = 0 and there exists a 2 < j < l, such that the edges (p1, pj), (q1, pj−1)
and (qm, pj−1) are free, then Maker can build a Hamiltonian cycle in 3 moves.

Proof First Maker claims the edge (p1, pj). We distinguish between the following two
cases:

Breaker claims (pl, qb) where b ∈ {1, m}. In his next move, Maker claims (pl, qm+1−b).
Maker can win by claiming either (p1, qb) or (pj−1, qb) in his next move. Clearly,
Breaker cannot counter both threats in just one move.

Breaker claims some other edge e. Set b = m if e is incident with qm, and b = 1
otherwise. In his next move, Maker claims (pl, qb). Maker can win by claiming
either (p1, qm+1−b) or (pj−1, qm+1−b) in his next move. As before, Breaker cannot
counter both threats in just one move.

2

Lemma 3.7 Assume that just before Maker’s (k0 + 1)st move, his graph consists of a
cycle C and a Hamiltonian path P of Kn \ C. If v(C) ≥ 5 and e(B+

k0
(C)) ≤ 3, then

Maker can build a Hamiltonian cycle of Kn in 2 moves.

Proof Since v(C) ≥ 5 and e(B+
k0

(C)) ≤ 3, it follows that there exists a vertex u ∈ C for
which (u, p0), (v, p1), (w, p1) /∈ E(B+

k0
(C)), where p0, p1 are the endpoints of P and v, w

are the neighbors of u in C. In his (k0 + 1)st move, Maker claims the edge (u, p0). Maker
can win by claiming either (v, p1) or (w, p1) in his next move. Clearly, Breaker cannot
counter both threats in one move. It follows that Maker can indeed win in 2 moves. 2

We are now ready to prove that Maker can indeed follow his strategy; our proof will follow
its phases.

Phase 1. This follows immediately from Lemma 3.1 as n is sufficiently large.

Phases A and B. If at some point during Phase A or Phase B, Maker can close one of
his paths into a cycle, then he does so and continues to Phase X. Otherwise, in every
move of either phase, Maker tries to connect an endpoint of one of his paths and
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an isolated vertex. It is therefore sufficient to show that there are isolated vertices
at any point during those phases. Since Maker cannot close a path into a cycle,
the last edge claimed by Breaker must connect the two endpoints of one of Maker’s
paths. It follows that during Phase A, Maker claims at most one edge for every
endpoint of his paths. Since he enters Phase A at most 15 times, and at each such
time he has at most 15 paths, it follows that he claims at most 2 ·152 edges in Phase
A. In Phase B, Maker claims at most one edge for every vertex which is isolated in
his graph but not in Breaker’s. By Maker’s strategy for Phases 1 and 2, there are at
most 5 such vertices for every path of Maker and one more since Breaker starts the
game. Hence, Maker claims at most 1 + 5 · 15 edges in Phase B. Maker also claims
5 · 15 edges during Phases 1 and 2. It follows that whenever he is in Phase A or in
Phase B, there are at most

2 · 152 + 1 + 5 · 15 + 6 · 15 < n (1)

vertices in Kn that are not isolated.

Phase 2. Let S denote the set of all vertices of positive degree in Maker’s graph. All
edges of Breaker are between vertices of S (this was ensured in Phase B). Moreover,
|S| < 700 throughout this phase (recall (1)), and therefore there are more than 12
isolated vertices of Kn. Hence, Maker can build the required path by Lemma 3.2.

Phase 3. Throughout this phase, unless Maker builds a cycle and goes to Phase X,
Breaker claims only edges, both endpoints of which are incident with Maker’s paths.
It follows that there is always an isolated vertex that Maker can connect to an
endpoint of one of his paths.

Phase 4. Let I denote the set of isolated vertices in Maker’s graph; it follows from (1),
and from Maker’s strategy that |I| = 9 when Maker first enters Phase 4. Let
S = V (Kn) \ I and let k0 denote the number of moves that Maker has made so far.

First, we have to show that Maker can build the new path P in 8 moves. It follows
from Maker’s strategy for the previous phases that e(B+

k0
(S)) = 0. Hence, Maker

can build a linear forest on I in 5 moves by Lemma 3.4. It is therefore clear that
e(B+

k0+5(S)) ≤ 5 = v(Bk0+5(S)) − 3, and thus Maker can build a Hamiltonian path
on Kn[I] within 3 additional moves by Lemma 3.5.

Let p1, p2 denote the endpoints of P . Since Breaker claims exactly 9 edges during
Phase 4, and since there are 15 other paths of Maker, it follows that there is at least
one path Q of Maker, with endpoints q1, q2, such that both (p1, q1) and (p2, q2) are
free. Maker claims (p1, q1) in his last move of this phase.

Phase 5. By Maker’s strategy for the previous phases, it is clear that when he first enters
Phase 5, his graph consists of exactly 15 paths.

Let k0 denote the number of moves that Maker has made so far. Since Breaker has
claimed exactly 9 edges during Phase 4, and at least one of these edges connects the
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two endpoints of some path of Maker, it follows by Maker’s strategy for the previous
phases that e(Bk0

) ≤ 8. Assume that Maker has already made i ≥ 0 moves in this
phase, and has not yet built a cycle. Then, by his strategy, his graph consists of
15 − i paths, and e(Bk0+i) ≤ max{0, 8 − i}. It follows that in his (i + 1)st move of
this phase, Maker can either close one path into a cycle, or connect two of his paths
in the required form.

Phase 6. Just before his last move in Phase 5, Maker had three paths X = x0x1 . . . xa,
Y = y0y1 . . . yb and Z = z0z1 . . . zc. Moreover, all edges connecting endpoints of
different paths of Maker were free. Assume without loss of generality that, in his
last move of Phase 5, Maker has claimed the edge (xa, y0). Since we are in Phase
6 (and not in Phase X), it is clear that Breaker has claimed the edge (x0, yb) in his
last move of Phase 5. It follows that the edges (x0, y0), (z0, xa), (zc, xa), (x0, z0),
(x0, zc), (yb, z0) and (yb, zc) are still free after Breaker’s last move. Hence, one can
apply Lemma 3.6 to prove that Maker can build a Hamiltonian cycle in exactly 3
moves.

Phase X. Let kX denote the number of moves that Maker has made before entering
Phase X. Maker’s graph consists at this point of a cycle C, and a linear forest F
on Kn \ C that consists of f ≥ 1 paths. Let I = V (Kn \ (C ∪ F )). We will show
that Maker can build a Hamiltonian path P on Kn \C within n − 1− kX moves in
this phase, such that there are at most 3 edges of Breaker that connect an endpoint
of P and a vertex of C. It will then follows by Lemma 3.7 that Maker can indeed
build a Hamiltonian cycle on Kn within n + 1 − kX moves in this phase.

At any point during Phases 1, A, B or 2, there are at most 12 edges of Breaker,
such that at least one endpoint of each of these edges does not belong to a path of
Maker. Moreover, if Maker has built the cycle C in one of these Phases, then there
may be at most 2 edges of Breaker that are not incident with any vertex of Maker’s
graph just before Maker’s (kX + 1)st move. Indeed, Breaker may have claimed one
arbitrary edge just before Maker was able to build his cycle C and one arbitrary
edge just after Maker has built his cycle. It follows that

e(B+
kX

(C)) ≤ 12 ≤

⌈

|I|

2

⌉

− 6,

because there are clearly more than 50 isolated vertices in Maker’s graph during
any of these phases.

At any point during Phase 3, if Maker cannot build his cycle, then the endpoints of
all of Breaker’s edges must be covered by Maker’s paths. Moreover, if (x, y) is some
edge of Breaker and x is an endpoint of Maker’s path P , then y ∈ V (P ). If Maker
has built his cycle C in Phase 3, then just before his (kX +1)st move, there may be
at most 2 edges of Breaker that are not incident with any vertex of Maker’s graph.
Indeed, Breaker may have claimed one arbitrary edge just before Maker was able to
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build his cycle C and one arbitrary edge just after Maker built his cycle. It follows
that

e(B+
kX

(C)) ≤ 2 ≤ 2f +

⌈

|I|

2

⌉

− 6,

because, currently, Maker’s graph contains exactly 14 paths. Moreover, it is clear
that |I| ≥ 9 as we are in Phase 3.

If we are in Phase 5, then I = ∅. Let k0 denote the number of moves that Maker has
made, just before entering Phase 5 for the first time. Recall that e(Bk0+i) ≤ 8 − i
for the first 0 ≤ i ≤ 8 moves of this phase (assuming that Maker did not yet build
his cycle C). Thus, if kX = k0 + 1 + i for some 0 ≤ i ≤ 8, then

e(B+
kX

(C)) ≤ 10 − i ≤ 2(15 − i − 1) − 3,

as Breaker may have claimed one arbitrary edge just before Maker has built his
cycle, and one arbitrary edge just after Maker has built his cycle. Moreover, Maker
has exactly 15 − i − 1 paths at this moment.

If Maker has built his cycle C in his (i + 1)st move of Phase 5, for some 9 ≤ i ≤ 11,
then

e(B+
kX

(C)) ≤ 2 ≤ 2f − 3,

as at this moment we have f ≥ 3.

In all of those cases, we can apply Lemma 3.3 to conclude that Maker can build a
Hamiltonian path on Kn \ C, such that there are at most 3 edges of Breaker that
connect an endpoint of this path and some vertex of C. Moreover, he does so in
exactly n − 1 − kX moves.

Finally, assume that Maker has built his cycle C in Phase 5 such that, just after
doing so, his graph on Kn \ C consists of exactly two paths P and Q (note that
Maker has more than two paths when he first enters Phase 5). There are at least two
free edges among the four edges that connect the endpoints of P to the endpoints
of Q, as e(BkX

(C)) ≤ e(B+
kX

(C)) ≤ 2. Thus, Maker can claim one of these edges to
build a Hamiltonian path on Kn \ C. Moreover, it is clear that e(B+

kX+1(C)) ≤ 3.

Again, it follows by Lemma 3.3 that Maker can build a Hamiltonian path on Kn\C,
such that there are at most 3 edges of Breaker that connect an endpoint of this path
and some vertex of C. Moreover, he does so in exactly n − 1 − kX moves.

This concludes the proof of Theorem 1.1. 2
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4 Winning the Hamiltonian cycle game on a small

board

In this section we prove Theorem 1.2. In order to do so, we will present a strategy for
Maker and prove that Maker can follow this strategy.

Maker’s Strategy:

Phase 1. Maker builds a path P = p0p1 . . . p4 of length 4, such that just after his 4th
move, all edges of Breaker are incident with some vertex of P , and the edge (p0, p4)
is still free. If Maker can close P into a cycle C in his next move, then he does so
and continues to Phase 2. Otherwise he adds another edge to the path in his 5th
move and builds a cycle C of length at least 5 in his 6th move. He then proceeds
to Phase 2.

Phase 2. Maker builds a Hamiltonian path Q on Kn \ C, while making sure that just
before his next move, there are at most three edges of Breaker that connect an
endpoint of Q and a vertex of C; he then proceeds to Phase 3.

Phase 3. Maker builds a Hamiltonian cycle on Kn by connecting the endpoints of Q
with two consecutive vertices of C.

Proof of correctness In order to prove Theorem 1.2, it suffices to prove that Maker
can always follow the aforementioned strategy; our proof will follow its phases.

Phase 1. Since n > 10, Maker can build the path P with the required properties by
Lemma 3.2, with S = ∅.

If Breaker does not claim (p0, p4) in his next move, then Maker does and thus builds
a cycle C of size 5.

If on the other hand, Breaker does claim (p0, p4) in his next move, then Maker claims
(p4, p5), where p5 is an arbitrary isolated vertex. Such an isolated vertex exists, as
so far, both players have claimed 5 edges each and n > 20. Since p5 was isolated
before Maker’s 5th move, it follows that both (p0, p5) and (p1, p5) are free after this
move. Breaker can claim at most one of these edges in his next move, and therefore
Maker can build a cycle C of length either 5 or 6 in his 6th move.

Phase 2. Let k ∈ {5, 6} denote the number of moves that Maker has made during Phase
1. Maker’s graph consists at this point of a cycle C and a set I of vertices that are
not in C. Note that e(B+

k (C)) ≤ 6. Furthermore, it is straightforward to verify that
there are at most 2 edges of Breaker that are not incident with any vertex of C.
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As there are at most 6 vertices in the cycle C, the set I consists of at least 23 vertices

and therefore
⌈

|I|
2

⌉

≥ 12. This yields

e(B+
k (C)) ≤ 6 ≤

⌈

|I|

2

⌉

− 6.

Hence, we can apply Lemma 3.3 to conclude that Maker can build a Hamiltonian
path Q on Kn \ C, such that e(B+

k+n−1−v(C)(C)) ≤ 3.

Phase 3. As v(C) ≥ 5 and there are at most 3 edges of Breaker that connect an endpoint
of Q and a vertex of C, we can apply Lemma 3.7 to build a Hamiltonian cycle on
Kn.

This concludes the proof of Theorem 1.2. 2

5 Concluding remarks and open problems

• We have proved that κ(HM
n ) ≤ 29. It would be interesting to determine the value

of κ(HM
n ) precisely. Using a computer program we have verified that, contrary

to Papaioannou’s Conjecture, Breaker wins HM
n for every n ≤ 8. Unfortunately,

our program was too slow to analyze HM
n for n ≥ 9. The interested reader can

consult [5].

• A straightforward adaptation of our proof of Theorem 1.2, yields κ(Hn) ≤ 38 (the
only significant difference is that, in Phase 1, instead of using Lemma 3.2 to prove
that Maker can build one path with the desired properties, we use Lemma 3.1 to
prove that Maker can build two paths). Though this version is different than the
one addressed by Papaioannou, it is more useful in practice (see e.g. [3]).

• We have proved that Maker can win the fair Hamiltonian cycle game, played on the
edges of Kn, within n + 1 moves (and this is best possible). It would be interesting
to obtain an analogous result for a biased game (e.g. Breaker claims two edges of
Kn per move instead of just one), or for a fair game played on some subgraph of Kn

(e.g. G(n, 1/2)).
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[2] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, Fast winning strategies in
Maker-Breaker games, J. of Combinatorial Theory, Ser. B. 99 (2009), 39–47.

[3] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, Maker-Breaker games on
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