k-cycle free one-factorizations of complete graphs

Mariusz Meszka
Faculty of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
meszkaagh.edu.pl

Submitted: Dec 5, 2007; Accepted: Dec 10, 2008; Published: Jan 7, 2009
Mathematics Subject Classifications: 05C70

Abstract

It is proved that for every $n \geq 3$ and every even $k \geq 4$, where $k \neq 2 n$, there exists one-factorization of the complete graph $K_{2 n}$ such that any two one-factors do not induce a graph with a cycle of length k as a component. Moreover, some infinite classes of one-factorizations, in which lengths of cycles induced by any two one-factors satisfy a given lower bound, are constructed.

1 Introduction

A one-factor of a graph G is a regular spanning subgraph of degree one. A one-factorization of G is a set $F=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ of edge-disjoint one-factors such that $E(G)=$ $\bigcup_{i=1}^{n} E\left(F_{i}\right)$. Evidently, the union of two edge-disjoint one-factors is a two-factor consisting of cycles of even lengths.

The exact number $N(2 n)$ of all pairwise non-isomorphic one-factorizations of the complete graph $K_{2 n}$ is known only for $2 n \leq 14$; namely $N(4)=N(6)=1, N(8)=6, N(10)=$ 396, cf. [14], $N(12)=526,915,620$ [8], and $N(14)=1,132,835,421,602,062,347$ [10]. Moreover, Cameron [4] proved that $\ln N(2 n) \sim 2 n^{2} \ln (2 n)$ for sufficiently large n. Therefore, any investigations (including enumeration) regarding all one-factorizations of $K_{2 n}$ are deemed reasonable if they are restricted to a subclass which satisfies some additional properties. One of the obvious requirements concerns an isomorphism of graphs induced by pairs of one-factors. In this way, a question arises regarding the existence of uniform (perfect) one-factorizations. A one-factorization is uniform when the union of any two one-factors is isomorphic to the same graph H. In particular, if H is connected (i.e. a Hamiltonian cycle), then a one-factorization is called perfect.

Perfect one-factorizations of complete graphs were introduced by Kotzig [11] and in known notation by Anderson [2]. Only three infinite classes of perfect one-factorizations are known, namely when $2 n-1$ is prime $[11,3]$ and when n is prime [1]. All other known examples of perfect one-factorizations of $K_{2 n}$ have been found using various methods,
cf. [16, 17]. Perfect one-factorization conjecture, which claims the existence of perfect one-factorizations for every even order of the complete graph, is far from proven. Perfect one-factorizations are very rare among all one-factorizations; this argument is supported by a comparison of known numbers, $P(2 n)$, of all perfect pairwise non-isomorphic onefactorizations of $K_{2 n}$, with $N(2 n)$. There are $P(4)=P(6)=P(8)=P(10)=1, P(12)=$ 5, cf. [16, 17], $P(14)=23[7]$ and $P(16) \geq 88$ [15]. Uniform one-factorizations other than those which are perfect have been investigated far less, cf. [5, 14]. In fact, there are only three known infinite classes and several sporadic examples of uniform non-perfect one-factorizations.

In this context, weaker properties regarding lengths of cycles which are required to exist, or which are forbidden in the union of any two one-factors, may be considered. A one-factorization $F=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ of G is said to be k-cycle free if the union of any two one-factors does not include the cycle C_{k}. Consequently, F is S-cycle free if the union of any two one-factors does not include cycles of lengths from the set S. In particular, if $S=\{4,6, \ldots, k\}$, then F is called $k^{<}$-cycle free. It can be said that F has a cycle of length k if there are two one-factors in F, the union of which includes C_{k}.

The aim of this paper is to find, for each n and each even $k \geq 4$ such that $2 n \neq k$, a k-cycle free one-factorization of $K_{2 n}$. For $2 n \neq p+1$, where p is a prime, or $2 n \not \equiv 6,12,18$ $(\bmod 24)$, the existence of $2 n$-cycle free one-factorizations of $K_{2 n}$ is proven. Moreover, some infinite classes of $k^{<}$-cycle free one-factorizations are constructed.

2 Constructions and their properties

The following two facts are easily observed.
Claim 1 For $n \geq 2$, if l is the minimum positive integer such that $\operatorname{gcd}(l, n)>1$, then $\operatorname{gcd}(l, n)=l$. Moreover, for odd $n^{\prime} \geq 3$, if l^{\prime} is the minimum even positive integer such that $\operatorname{gcd}\left(l^{\prime}, n^{\prime}\right)>1$, then $\operatorname{gcd}\left(l^{\prime}, n^{\prime}\right)=l^{\prime} / 2$.

Claim 2 If $k>2 n \geq 4$, then any one-factorization of $K_{2 n}$ is k-cycle free.
The well-known canonical one-factorization $G K_{2 n}$ of $K_{2 n}$ has been published in Lucas' [13] and attributed to Walecki.

Construction A Let $V=\{\infty, 0,1, \ldots, 2 n-2\}$. Let $G K_{2 n}$ denote a one-factorization of $K_{2 n}$ which consists of one-factors $F_{i}=\{\{i-j, i+j\}: j=1,2, \ldots n-1\} \cup\{\infty, i\}$, for $i=0,1, \ldots 2 n-2$, where labels are taken modulo $2 n-1$.

It is well-known that $G K_{2 n}$ is perfect if and only if $2 n-1$ is prime [11]. Dinitz et. al. [6] investigated lengths of cycles which may appear in the union of any two one-factors in $G K_{2 n}$. Lemma 3 is a corollary to that result; a short proof is presented here in order to provide detailed constructions of cycles applied in further results.

Lemma 3 (cf. [6]) For $n \geq 3$ and even k such that $4 \leq k \leq 2 n$, the one-factorization $G K_{2 n}$ of $K_{2 n}$ contains a cycle of length k if and only if $k / 2 \mid 2 n-1$ or $k-1 \mid 2 n-1$.

Proof: Let $p=2 n-1$. Assume that $G K_{2 n}$ contains a cycle C_{k} of length k which appears in the union H of two one-factors F_{h} and F_{i}, where $h<i$ and $h, i \in\{0,1, \ldots, p-1\}$. Let $z=i-h$. Consider separately two cases.
Case I: C_{k} contains the vertex ∞. Then neighbors of ∞ in H are h and i. Consecutive vertices along the cycle C_{k} in H are: $\infty, i, h-z, i+2 z, h-3 z, i+4 z, h-5 z, \ldots, i+(k-2) z$, ∞, where k is the minimum even positive integer such that $i+(k-2) z \equiv h(\bmod p)$ (which is equivalent to $(k-1) z \equiv 0(\bmod p))$. Since $0<z<p, \operatorname{gcd}(k-1, p)=k-1$ follows by Claim 1.
Case II: C_{k} does not contain ∞. Let $h+x$ be a vertex of C_{k}. Then $x \neq 0$ and neighbors of $h+x$ in H are $h-x$ and $i+z-x$. Consecutive vertices along C_{k} in H are: $h+x$, $h-x, i+z+x, h-2 z-x, i+3 z+x, h-4 z-x, \ldots, h-(k-2) z-x, h+x$, where k is the minimum even positive integer such that $h-(k-2) z-x \equiv i+z-x \quad(\bmod p)$. Similarly to the above, since $0<z<p$, by the equivalence $k z \equiv 0(\bmod p)$ and Claim $1, \operatorname{gcd}(k, p)=k / 2$.

To prove sufficiency, suppose first that $k \leq 2 n$ and $k / 2 \mid p$. Then $k \equiv 2(\bmod 4)$. In order to find a cycle of length k, take two one-factors F_{0} and F_{i}, where $i=\frac{p}{k / 2}$. Let l be the length of a cycle which does not contain ∞ in the union of F_{0} and F_{i}. Then, repeating calculations of Case II, l is the minimum even positive integer such that $l i \equiv 0$ $(\bmod p)$. Then $\frac{l p}{k / 2} \equiv 0(\bmod p)$ and next, since $k / 2$ is odd, $l=k$. Similarly, for any even $k \leq 2 n$ where $k-1 \mid p$, two one-factors F_{0} and F_{j} are taken, where $j=\frac{p}{k-1}$. If l is the length of a cycle which contains ∞, then as in Case I, l is the minimum even positive integer such that $(l-1) j \equiv 0 \quad(\bmod p)$. Thus $l=k$.

The above Lemma 3 is equivalent to the following result.
Corollary 4 For $n \geq 3$ and even $k \geq 4$, the one-factorization $G K_{2 n}$ of $K_{2 n}$ is k-cycle free if and only if $k / 2 \nmid 2 n-1$ and $k-1 \nmid 2 n-1$.

By Lemma 3, the one-factorization $G K_{2 n}$ has a trivial lower bound on the minimum length of cycles it contains.

Corollary 5 Let r be the minimum prime factor of $2 n-1$. If $r \geq 5$, then the onefactorization $G K_{2 n}$ of $K_{2 n}$ is $(r-1)^{<}$-cycle free.

Lemma 3 immediately yields another property of $G K_{2 n}$. Namely, for any order $2 n$, $G K_{2 n}$ cannot be a non-perfect uniform one-factorization because $G K_{2 n}$ contains a cycle of length $2 n$.

Another well-known one-factorization of the complete graph of order $2 n$ for odd n is denoted by $G A_{2 n}[2]$.

Construction B Let n be odd. In what follows, labels of vertices are taken modulo n. Let $V=V_{0} \cup V_{1}$, where $V_{m}=\left\{0_{m}, 1_{m}, \ldots,(n-1)_{m}\right\}$ for $m=0,1$. Let $G A_{2 n}$ be a one-factorization of $K_{2 n}$ with one-factors $F_{0}, F_{1}, \ldots, F_{2 n-2}$. Let $F_{i}=\left\{\left\{(i-j)_{m},(i+\right.\right.$ $\left.\left.j)_{m}\right\}: j=1,2, \ldots(n-1) / 2, m=0,1\right\} \cup\left\{i_{0}, i_{1}\right\}$, for $i=0,1, \ldots n-1$. Moreover, let $F_{n+i}=\left\{\left\{j_{0},(j+i+1)_{1}\right\}: j=0,1, \ldots n-1\right\}$, for $i=0,1, \ldots n-2$.

It is well-known that $G A_{2 n}$ is perfect if and only if n is prime [1]. The following presents a stronger property of $G A_{2 n}$.

Lemma 6 For odd $n \geq 3$ and even k such that $4 \leq k \leq 2 n$, the one-factorization $G A_{2 n}$ of $K_{2 n}$ contains a cycle of length k if and only if $k / 2 \mid n$.

Proof: Assume first that $G A_{2 n}$ contains a cycle C_{k} which is included in the union H of two one-factors F_{h} and F_{i}, where $h<i$ and $h, i \in\{0,1, \ldots, 2 n-2\}$. Consider separately three cases.
Case I: $h<i \leq n-1$. Note that, if in the construction of $G K_{n+1}$ the vertex subset $V\left(K_{n+1}\right) \backslash\{\infty\}$ is replaced with V_{m}, for $m=0,1$, and moreover, $G K_{n+1}$ is restricted to the vertices of V_{m}, then a near one-factorization of K_{n} into near one-factors $F_{i}^{m}=$ $\left\{\left\{(i-j)_{m},(i+j)_{m}\right\}: j=1,2, \ldots(n-1) / 2\right\}$ is obtained, where $i=0,1, \ldots, n-1$. It is clear that $F_{i}^{m} \subset F_{i}$ (the one-factor of $G A_{2 n}$) for every admissible i and m. A cycle C_{k} in H has all vertices either in V_{0} or in V_{1} or in both subsets together. In the previous two cases C_{k} corresponds to a cycle of the same length either in $F_{h}^{0} \cup F_{i}^{0}$ or in $F_{h}^{1} \cup F_{i}^{1}$. Then, by Case II in the proof of Lemma $3, \operatorname{gcd}(k, n)=k / 2$. In the latter case, $k \equiv 2(\bmod 4)$ and C_{k} consists of two paths of length $k / 2-1$ (one of them with all vertices in V_{0} and the other one with all vertices in V_{1}) joint together by the edges $\left\{h_{0}, h_{1}\right\}$ (of F_{h}) and $\left\{i_{0}, i_{1}\right\}$ (of F_{i}). These two paths correspond to a path with endvertices h and i included in a cycle of length $k / 2+1$ (which contains the vertex ∞), induced by one-factors with indices h and i in $G K_{n+1}$. Thus, by Case I in the proof of Lemma $3, \operatorname{gcd}(k / 2, n)=k / 2$ holds.
Case II: $h<n \leq i$. Consider two subcases.
II.A: h_{0} is not a vertex of the cycle C_{k} in H. Then also h_{1} is not in C_{k}. Note that the length of C_{k} is divisible by 4 . Let $(h+x)_{0}$ be a vertex of C_{k} for some $x \neq 0$. Then neighbors of $(h+x)_{0}$ in H are $(h-x)_{0}$ and $(h+x+i+1)_{1}$. Consecutive vertices along the cycle C_{k} in H are: $(h+x)_{0},(h+x+i+1)_{1},(h-x-i-1)_{1},(h-x-2 i-2)_{0}$, $(h+x+2 i+2)_{0},(h+x+3 i+3)_{1},(h-x-3 i-3)_{1}, \ldots,\left(h-x-\frac{k(i+1)}{2}\right)_{0},(h+x)_{0}$, where k is the minimum even positive integer such that $h-x-\frac{k(i+1)}{2} \equiv h-x \quad(\bmod n)$. Since $n<i+1<2 n$, by the above equivalence $\frac{k}{2}(i+1) \equiv 0 \quad(\bmod n)$ and Claim 1, $\operatorname{gcd}(k / 2, n)=k / 2$.
II.B: h_{0} is a vertex of C_{k}. Then h_{1} is in C_{k} as well. Note that $k \equiv 2(\bmod 4)$. The neighbors of h_{0} in H are h_{1} and $(h+i+1)_{1}$. Consecutive vertices along the cycle C_{k} in H are: $h_{0},(h+i+1)_{1},(h-i-1)_{1},(h-2 i-2)_{0},(h+2 i+2)_{0},(h+3 i+3)_{1}$, $(h-3 i-3)_{1}, \ldots,\left(h+\frac{k(i+1)}{2}\right)_{1}, h_{0}$, where k is the minimum even positive integer such that $h+\frac{k(i+1)}{2} \equiv h \quad(\bmod n)$. Analogously to the previous case, since $n<i+1<2 n$, by Claim $1, \operatorname{gcd}(k / 2, n)=k / 2$ is easily observed.
Case III: $n \leq h<i$. Then neighbors of y_{0} in H are $(y+h+1)_{1}$ and $(y+i+1)_{1}$. Consecutive vertices along C_{k} in H are: $y_{0},(y+i+1)_{1},(y+i-h)_{0},(y+2 i-h+1)_{1}$, $(y+2 i-2 h)_{0}, \ldots,\left(y+\frac{k i-(k-2) h+2}{2}\right)_{1}, y_{0}$, where $y+\frac{k i-(k-2) h+2}{2} \equiv y+h+1 \quad(\bmod n)$. Similarly to the previous case, since $0<i-h<n$, by $\frac{k}{2}(i-h) \equiv 0(\bmod n)$ and Claim $1, \operatorname{gcd}(k / 2, n)=k / 2$ holds.

To show sufficiency, suppose that $k \leq 2 n$ and $k / 2 \mid n$. To find a cycle of length k, take one-factors F_{n} and F_{i} such that $i=n+\frac{n}{k / 2}$. Note that, if l is the length of a cycle in the
union of F_{n} and F_{i}, then l is the minimum even positive integer such that $\frac{l}{2}(i-n) \equiv 0$ $(\bmod n)\left(c f\right.$. calculations of Case III above). Thus $\frac{l}{2} \frac{n}{k / 2} \equiv 0(\bmod n)$, whence $l=k$.

Lemma 6 is equivalent to the following.
Corollary 7 For odd $n \geq 3$ and even $k \geq 4$, the one-factorization $G A_{2 n}$ of $K_{2 n}$ is k-cycle free if and only if $k / 2 \nmid n$.

Lemma 6 immediately provides a lower bound on the minimum length of cycles in $G A_{2 n}$.

Corollary 8 Let n be odd and $n \geq 3$. Let r be the minimum prime factor of n. Then the one-factorization $G A_{2 n}$ of $K_{2 n}$ is $(2 r-2)^{<}$-cycle free.

Lemma 6 also yields an obvious corollary that $G A_{2 n}$ cannot be a non-perfect uniform one-factorization.

Presented below is an inductive construction for another family of one-factorizations of $K_{2 n}$.

Construction C Let n be even. In what follows, labels of vertices are taken modulo n. Let $V=V_{0} \cup V_{1}$, where $V_{m}=\left\{0_{m}, 1_{m}, \ldots,(n-1)_{m}\right\}$ for $m=0,1$. Let $\bar{F}=\left\{\bar{F}_{0}, \bar{F}_{1}, \ldots, \bar{F}_{n-2}\right\}$ be a k-cycle free one-factorization of K_{n}, where $\bar{V}=V\left(K_{n}\right)=$ $\{0,1, \ldots, n\}$. Two copies of \bar{F} are taken by replacing \bar{V} with V_{0} and V_{1}, respectively. In this way, $n-1$ one-factors F_{i} of $K_{2 n}$ are obtained, $i=0,1, \ldots, n-2$. The nth one-factor is $F_{n-1}=\left\{\left\{j_{0}, j_{1}\right\}: j=0,1, \ldots n-1\right\}$. Remaining $n-1$ one-factors are built based on onefactors in \bar{F}; namely, if $\left\{v_{0}, u_{0}\right\}$ is the edge of one-factor \bar{F}_{h}, for some $h \in\{0,1, \ldots, n-2\}$, then $\left\{v_{0}, u_{1}\right\}$ and $\left\{v_{1}, u_{0}\right\}$ are the edges of one-factor F_{n+h}.

The above method allows for the construction of k-cycle free one-factorizations of $K_{2 n}$, where n is even and $k \not \equiv 4(\bmod 8)$.

Lemma 9 For even $n \geq 4$ and even $k \geq 6$ such that $k \not \equiv 4(\bmod 8)$, if there is a k-cycle free one-factorization of K_{n}, then a k-cycle free one-factorization of $K_{2 n}$ exists.

Proof: Assume that a k-cycle free one-factorization \bar{F} of K_{n} is given. Let H be the union of two one-factors F_{h} and F_{i} in the one-factorization of $K_{2 n}$ obtained by applying Construction C, where $h<i$ and $h, i \in\{0,1, \ldots, 2 n-2\}$. If both $h, i<n-1$, then H does not contain C_{k} because all cycles in H are, in fact, copies of cycles in the given one-factorization \bar{F} of K_{n} which is k-cycle free. If $i=n-1$ or $h=n-1$, one can see that every cycle in H has length 4 . In what follows, assume that $i \geq n$. If $i-$ $h=n$, it is evident that every cycle in H has length 4 as well. Otherwise $i-h \neq n$. Note that every cycle in H corresponds to a cycle in the union of one-factors \bar{F}_{h} and \bar{F}_{i-n} in K_{n}. Let C_{l} denote a cycle of length l in $\bar{F}_{h} \cup \bar{F}_{i-n}$ with consecutive vertices $v^{1}, v^{2}, v^{3}, \ldots, v^{l}$. Suppose that $h<n-1$. Note that C_{l} corresponds either to a cycle $C_{l}^{\prime}($ if $l \equiv 0 \quad(\bmod 4))$ of length l or to a cycle $C_{2 l}^{\prime \prime}($ if $l \equiv 2(\bmod 4))$ of length $2 l$ in
H; consecutive vertices of C_{l}^{\prime} are $v_{0}^{1}, v_{0}^{2}, v_{1}^{3}, v_{1}^{4}, v_{0}^{5}, v_{0}^{6}, \ldots, v_{1}^{l-1}, v_{1}^{l}$, while $C_{2 l}^{\prime}$ has vertices $v_{0}^{1}, v_{0}^{2}, v_{1}^{3}, v_{1}^{4}, \ldots, v_{0}^{l-1}, v_{0}^{l}, v_{1}^{l+1}, v_{1}^{l+2}, \ldots, v_{1}^{2 l-1}, v_{1}^{2 l}$. In the latter case, by the assumption, $k \neq 2 l$. Consider the last case $n \leq h$. Then C_{l} corresponds to a cycle $C_{l}^{\prime \prime \prime}$ of the same length l in H with consecutive vertices $v_{0}^{1}, v_{1}^{2}, v_{0}^{3}, v_{1}^{4}, \ldots, v_{0}^{l-1}, v_{1}^{l}$. Hence, since K_{n} is k-cycle free, $k \neq l$ and the assertion holds.

By the above Lemma 9 , if $2 n \equiv 0(\bmod 8)$, then a one-factorization built by applying Construction C does not contain a cycle of length $2 n$. Moreover, starting from $n=4$ and applying the above inductive construction for consecutive powers of 2 , a well-known class of uniform one-factorizations of complete graphs with all cycles of length 4 is easily obtained, cf. [4].

Construction C also enables the building of a $\{k / 2, k\}$-cycle free one-factorization of $K_{2 n}$, using a given $\{k / 2, k\}$-cycle free one-factorization of K_{n}.

Lemma 10 For even $n \geq 4$ and even $k \geq 12$ such that $k \equiv 4(\bmod 8)$, if there is a $\{k / 2, k\}$-cycle free one-factorization of K_{n}, then a $\{k / 2, k\}$-cycle free one-factorization of $K_{2 n}$ exists.

Proof: The assertion follows immediately from the proof of Lemma 9. Namely, by the assumption, a given one-factorization of K_{n} does not contain a cycle of length l such that $l \equiv 2 \quad(\bmod 4)$. Hence, by the proof of Lemma 9, every cycle in a one-factorization of $K_{2 n}$, obtained by applying Construction C, has either length 4 or has the same length as a corresponding cycle in a given one-factorization of K_{n}.

The next infinite class of one-factorizations yields further examples of k-cycle free and $k^{<}$-cycle free one-factorizations of complete graphs.

Construction D Let $p \geq 3$ be a prime and $r=(p-1) / 2$. Let n be an odd integer such that $n \geq p$ and $\operatorname{gcd}(n, r)=1$. Let r^{-1} be the inverse of r in \mathbb{Z}_{n}. In what follows, labels of vertices are taken modulo n, while indices are taken modulo p. Consider a onefactorization of $K_{p n+1}$ denoted by $H K_{p n+1}$. Let $V=V_{0} \cup V_{1} \cup \ldots \cup V_{p-1}$, where $V_{m}=$ $\left\{\infty, 0_{m}, 1_{m}, \ldots,(n-1)_{m}\right\}$ for $m=0,1, \ldots, p-1$. Thus $V_{0} \cap V_{1} \cap \ldots V_{p-1}=\{\infty\}$. Let $F_{m n+i}=\left\{\left\{(i-j)_{m},(i+j)_{m}\right\}: j=1,2, \ldots(n-1) / 2\right\} \cup\left\{i_{m}, \infty\right\} \cup\left\{\left\{j_{m-s},-(j+(i+\right.\right.$ $\left.\left.\left.m) r^{-1}\right)_{m+s}\right\}: j=0,1, \ldots n-1, s=1,2, \ldots, r\right\}$ for $i=0,1, \ldots n-1, m=0,1, \ldots, p-1$.

Note that $H K_{n p+1}$ is an extension of $G K_{p}$: one-factorization induced by every V_{i} is the one-factorization $G K_{n+1}$ of K_{n+1}. Moreover, if every set $V_{i} \backslash \infty$ is replaced by a single vertex u_{i}, and all edges with the same endvertices are contracted to a single edge, loops being removed, then the corresponding one-factorization $G K_{p+1}$ of K_{p+1} would be obtained.

Presented below are investigations into possible lengths of cycles in $H K_{p n+1}$.
Lemma 11 For odd prime p and for odd n such that $n \geq p$ and $\operatorname{gcd}(n,(p-1) / 2)=1$, and for even k such that $4 \leq k \leq p n+1$, the one-factorization $H K_{p n+1}$ of $K_{p n+1}$ contains a cycle of length k if and only if one of the following conditions holds:
(1) $k \leq n+1$ and $k-1 \mid n$,
(2) $k>n+1$ and $k-1 \mid n p$,
(3) $k \leq 2 n$ and $k / 2 \mid n$,
(4) $k>2 n$ and $k / 2 \mid n p$.

Proof: Assume that $H K_{p n+1}$ contains a cycle of length k which appears in the union H of one-factors F_{h} and F_{i}, where $h<i$ and $h, i \in\{0,1, \ldots, p n-1\}$. Consider separately two cases.
Case I: $m n \leq h<i<(m+1) n$ for some $m \in\{0,1, \ldots, p-1\}$. One-factorization induced by V_{m} is the one-factorization $G K_{n+1}$ of K_{n+1} and therefore, by Lemma 3, either condition (1) or (3) is satisfied when $k \leq n+1$ and all vertices of C_{k} come from V_{m}. Consider the case where all vertices of C_{k} are in $V \backslash V_{m}$. In fact, all vertices of C_{k} are in $V_{m-s} \cup V_{m+s}$ for some $s \in\{1,2 \ldots, r\}$. Then clearly $k \leq 2 n$. Let y_{m-s} be a vertex of C_{k}. Neighbors of the vertex y_{m-s} are $-\left(y+(h+m) r^{-1}\right)_{m+s}$ and $-\left(y+(i+m) r^{-1}\right)_{m+s}$. Consecutive vertices along the cycle C_{k} are: $y_{m-s},-\left(y+(h+m) r^{-1}\right)_{m+s},\left(y+(h-i) r^{-1}\right)_{m-s},-\left(y+(2 h-i+m) r^{-1}\right)_{m+s}$, $\left(y+(2 h-2 i) r^{-1}\right)_{m-s}, \ldots,-\left(y+\frac{k h-(k-2) i+2 m}{2} r^{-1}\right)_{m+s}, y_{m-s}$, where k is the minimum even positive integer such that $-y-\frac{k h-(k-2) i+2 m}{2} r^{-1} \equiv-y-(i+m) r^{-1} \quad(\bmod n)$. Since $0<i-h<n$, then $0<(i-h) r^{-1}<n$ and, by the equivalence $\frac{k}{2}(i-h) r^{-1} \equiv 0 \quad(\bmod n)$ and Claim 1, $\operatorname{gcd}\left(\frac{k}{2}, n\right)=\frac{k}{2}$ and then (3) holds.
Case II: $m n \leq h<(m+1) n$ and $q n \leq i<(q+1) n$ for some $m, q \in\{0,1, \ldots, p-1\}$, $m<q$. Let $z=q-m$. Consider two subcases.
II.A: ∞ is a vertex of C_{k}. Then $k \equiv p+1(\bmod 2 p)$. Neighbors of ∞ in H are h_{m} and i_{q}. Note that indices of consecutive vertices in the cycle C_{k} appear in the order according to the labels of vertices in Case I of the proof of Lemma 3. Thus the first $p+1$ consecutive vertices along C_{k} in H are: $\infty, i_{q}=i_{m+z},-(h+r i+m) r_{m-z}^{-1},(h+(r-$ 1) $i+m-q) r_{m+3 z}^{-1},-(2 h+(r-1) i+2 m-q) r_{m-3 z}^{-1},(2 h+(r-2) i+2 m-2 q) r_{m+5 z}^{-1}$, $\ldots,(r h+(r-r) i+r m-r q) r_{m+p z}^{-1}=(h-z)_{m}$. Note that $(h-z)_{m} \neq h_{m}$ because $0<z<p \leq n$. Thus the neighbor of $(h-z)_{m}$ in F_{h} is $(h+z)_{m}$. Moreover, $(i+2 z)_{m+z} \neq$ i_{m+z}. Then the next $2 p$ consecutive vertices along C_{k} in H are: $(h+z)_{m}=(h+z)_{q-z}$, $-(r z+r h+i+q) r_{q+z}^{-1},(r z+(r-1) h+i+q-m) r_{q-3 z}^{-1},-(r z+(r-1) h+2 i+2 q-m) r_{q+3 z}^{-1}$, $(r z+(r-2) h+2 i+2 q-2 m) r_{q-5 z}^{-1}, \ldots,(r z+(r-r) h+r i+r q-r m) r_{q-p z}^{-1}=(i+$ $2 z)_{m+z},(i-2 z)_{m+z},-(-2 r z+h+r i+m) r_{m-z}^{-1},(-2 r z+h+(r-1) i+m-q) r_{m+3 z}^{-1}$, $-(-2 r z+2 h+(r-1) i+2 m-q) r_{m-3 z}^{-1},(-2 r z+2 h+(r-2) i+2 m-2 q) r_{m+5 z}^{-1}, \ldots$, $(-2 r z+r h+(r-r) i+r m-r q) r_{m+p z}^{-1}=(h-3 z)_{m}$. Therefore, after the next $\frac{k-(3 p+1)}{2 p}$ segments, each of which contains $2 p$ vertices, the k th vertex in C_{k} is $\left(h-\frac{k-1}{p} z\right)_{m}=h_{m}$. Since $0<z<p \leq n$, if k is the minimum even positive integer such that $\frac{k-1}{p} z \equiv 0$ $(\bmod n)$, then $k-1>n$ and moreover, by Claim $1, \operatorname{gcd}\left(\frac{k-1}{p}, n\right)=\frac{k-1}{p}$. Thus (2) is satisfied.
II.B: ∞ is not a vertex of C_{k}. Then $k \equiv 0(\bmod 2 p)$. Let $(h+x)_{m}$ be a vertex of C_{k}. Then $x \neq 0$ and neighbors of $(h+x)_{m}$ in H are $(h-x)_{m}$ and $\left(-h+x-(i+q) r^{-1}\right)_{q+z}$. First segment of $2 p$ consecutive vertices along C_{k} is (cf. second segment of C_{k} in Subcase II.A): $(h+x)_{m}=(h+x)_{q-z},-(r x+r h+i+q) r_{q+z}^{-1},(r x+(r-1) h+i+q-m) r_{q-3 z}^{-1}$,
$\ldots,(i+x+z)_{q}=(i+x+z)_{m+z},(i-x-z)_{m+z},-(-r x+h+r i+(r+1) m-r q) r_{m-z}^{-1}$, $(-r x+h+(r-1) i+(r+1) m-(r+1) q) r_{m+3 z}^{-1}, \ldots,(h-x-2 z)_{m} \neq(h-x)_{m}$. After the next $\frac{k}{2 p}-1$ segments, each of which contains $2 p$ vertices, we end up at $\left(h-x-\frac{k}{p} z\right)_{m}=(h-x)_{m}$. Since $0<z<p \leq n$ and moreover, k is the minimum even positive integer such that $\frac{k}{p} z \equiv 0 \quad(\bmod n), k>2 n$ holds and, by Claim $1, \operatorname{gcd}\left(\frac{k}{p}, n\right)=\frac{k}{2 p}$. Hence (4) is satisfied.

To prove sufficiency, in order to find a cycle of length k, take the union of two onefactors F_{0} and F_{i}. Let $i=\frac{n}{k-1}$ if $k \leq n+1$ and $k-1 \mid n$. Thus $1 \leq i<n$. Let l be the length of a cycle in the union of F_{0} and F_{i} which contains ∞ and with all vertices in V_{0}. Then, by applying calculations of Case I in the proof of Lemma $3, l$ is the minimum even positive integer such that $(l-1) i \equiv 0(\bmod n)$. Thus $\frac{l-1}{k-1} n \equiv 0(\bmod n)$ and therefore $l=k$. Similarly, let $i=\frac{n r}{k / 2}(\bmod n)$ if $k \leq 2 n$ and $k / 2 \mid n$. Hence, if l is the length of a cycle in $F_{0} \cup F_{i}$ with all vertices in $V_{p-1} \cup V_{1}$, by calculations as in Case I above, l is the minimum even positive integer such that $\frac{l}{2} i r^{-1} \equiv 0(\bmod n)$. Hence $l=k$. Analogously, let $i=n \frac{n p}{k-1}(\geq n)$ if $k>n+1 \geq p+1$ and $k-1 \mid n p$. If l is the length of a cycle in $F_{0} \cup F_{i}$ which contains ∞, by calculations as in Subcase II.A above, l is the minimum even positive integer such that $\frac{l-1}{p} z \equiv 0(\bmod n)$, where $z=i / n=\frac{n p}{k-1}<n$. Then $\frac{l-1}{p} \frac{n p}{k-1} \equiv 0(\bmod n)$, whence $k=l$. In the last case, if $k>2 n \geq 2 p$ and $k / 2 \mid n p$, then $i=n \frac{n p}{k / 2}>n$. Note that $k \equiv 2(\bmod 4)$. If l is the length of a cycle in the union $F_{0} \cup F_{i}$ which does not contain ∞, then l is the minimum even positive integer such that $\frac{l}{p} z \equiv 0$ $(\bmod n)$, where $z=i / n=\frac{n p}{k / 2}<n$, cf. Subcase II.B. Hence $\frac{l}{p} \frac{n p}{k / 2} \equiv 0(\bmod n)$ and, since $k / 2$ is odd, $k=l$ holds.

Lemma 11 is equivalent to the following result.
Corollary 12 For odd prime p and for odd n such that $n \geq p$ and $\operatorname{gcd}(n,(p-1) / 2)=1$, and for even $k \geq 4$, the one-factorization $H K_{p n+1}$ of $K_{p n+1}$ is k-cycle free if and only if all of the following conditions hold:
(1) $k-1 \nmid n$ if $k \leq n+1$,
(2) $k-1 \nmid n p$ if $k>n+1$,
(3) $k / 2 \nmid n$ if $k \leq 2 n$,
(4) $k / 2 \nmid n p$ if $k>2 n$.

Lemma 11 yields a trivial lower bound on the minimum length of cycles in $H K_{p n+1}$.
Corollary 13 Let p be an odd prime and n be odd such that $n \geq p$ and $\operatorname{gcd}(n,(p-1) / 2)=$ 1. Let r be the minimum prime factor of n. If $r \geq 5$, then the one-factorization $H K_{p n+1}$ of $K_{p n+1}$ is $(r-1)^{<}$-cycle free.

It is clear that $H K_{p n+1}$ cannot be uniform. Taking two one-factors F_{0} and F_{1}, its union H has a cycle of length $n+1$ with all vertices in V_{0}, while one-factors F_{0} and F_{n} make a Hamiltonian cycle in $K_{p n+1}$.

The next inductive construction, similar to $H K_{p n+1}$, produces a one-factorization of $K_{p n+1}$ for odd n and odd prime p, which does not have cycles of even lengths k, where $k \not \equiv 0, p+1 \quad(\bmod 2 p)$ or $k=p+1$.

Construction E Let $p \geq 3$ be a prime and $r=(p-1) / 2$. Let n be an odd integer such that $n \geq p$ and $\operatorname{gcd}(n, r)=1$. Let r^{-1} be the inverse of r in \mathbb{Z}_{n}. In what follows, labels of vertices are taken modulo n, while indices are taken modulo p. Let $V=V_{0} \cup V_{1} \cup \ldots \cup V_{p-1}$, where $V_{m}=\left\{\infty, 0_{m}, 1_{m}, \ldots,(n-1)_{m}\right\}$ for $m=0,1, \ldots, p-1$. Let \tilde{F} be a k-cycle free onefactorization of K_{n+1}, where $\tilde{V}=V\left(K_{n+1}\right)=\{\infty, 0,1, \ldots, n-1\}$. Let \tilde{F}_{i} be a one-factor in $\tilde{F}, i=0,1, \ldots n-1$. To construct one-factor $F_{m n+i}$ of $K_{p n+1}$, for $m=0,1, \ldots, p-1$ and $i=0,1, \ldots, n-1$, copies of all edges of \tilde{F}_{i} are taken by replacing \tilde{V} with V_{m}, and moreover, the set of edges $\left\{\left\{j_{m-s},-\left(j+(i+m) r^{-1}\right)_{m+s}\right\}: j=0,1, \ldots n-1, s=1,2, \ldots, r\right\}$ is added.

Lemma 14 For odd prime p and for odd $n \geq p$ such that $\operatorname{gcd}(n,(p-1) / 2)=1$, and for even $k \geq 4$, where $k \not \equiv 0, p+1(\bmod 2 p)$ or $k=p+1$, and moreover, $k / 2 \nmid n$, if there is a k-cycle free one-factorization of K_{n+1}, then a k-cycle free one-factorization of $K_{p n+1}$ exists.

Proof: Assume that a k-cycle free one-factorization \tilde{F} of K_{n+1} is given. Let H be the union of two one-factors F_{h} and F_{i} in the one-factorization obtained by applying Construction E, where $h<i$ and $h, i \in\{0,1, \ldots, p n-1\}$.

Suppose that h and i satisfy $m n \leq h<i<(m+1) n$ for some $m \in\{0,1, \ldots, p-1\}$. Then H does not contain a cycle of length k with all vertices in V_{m} because onefactorization induced by V_{m} is the given k-cycle free one-factorization \tilde{F} of K_{n+1}. Moreover, let C_{l} be a cycle of H with all vertices in $V \backslash V_{m}$ and let y_{m-s} be a vertex of C_{l}, for some $s \in\{1,2 \ldots, r\}$. Note that C_{l} is exactly the same cycle as in Case I of the proof of Lemma 11 and, since $\operatorname{gcd}(k / 2, n)<k / 2$ by the assumption, $l \neq k$ is satisfied.

It remains to consider the case when $m n \leq h<(m+1) n$ and $q n \leq i<(q+1) n$ for some $m, q \in\{0,1, \ldots, p-1\}, m<q$. Let $z=q-m$. If ∞ is a vertex of a cycle C_{l} in H, then $l \equiv p+1 \quad(\bmod 2 p)$, cf. Subcase II.A in the proof of Lemma 11. Moreover, neighbors of ∞ in H are h_{m} and i_{q} and the first $p+1$ consecutive vertices along the cycle C_{l} in H (by Subcase II.A in the proof of Lemma 11) are: $\infty, i_{q}, \ldots,(h-z)_{m} \neq h_{m}$. Hence $l \neq p+1$. If ∞ is not a vertex of C_{l} in H, then $l \equiv 0(\bmod 2 p)$, cf. Subcase II.B in the proof of Lemma 11. Thus $l \neq k$.

To prove main results one more construction, slightly different from Construction E, is needed.

Construction \mathbf{F} Let $p \geq 3$ be a prime and $r=(p-1) / 2$. Let n be an odd integer such that $n \geq p$ and $\operatorname{gcd}(n, r)=1$. Let r^{-1} be the inverse of r in \mathbb{Z}_{n}. In what follows, labels of vertices are taken modulo n and moreover, indices are taken modulo p. Let $r=(p-1) / 2$. Let $V=V_{0} \cup V_{1} \cup \ldots \cup V_{p-1}$, where $V_{m}=\left\{\infty, 0_{m}, 1_{m}, \ldots,(n-1)_{m}\right\}$ for $m=0,1, \ldots, p-1$. Let \tilde{F} be a k-cycle free one-factorization of K_{n+1}, where $V=$ $V\left(K_{n+1}\right)=\{\infty, 0,1, \ldots, n-1\}$. Let \tilde{F}_{i} be a one-factor in $\tilde{F}, i=0,1, \ldots n-1$. To construct one-factor $F_{m n+i}$ of $K_{p n+1}$, for $m=0,1, \ldots, p-1$ and $i=0,1, \ldots, n-1$, copies of all edges of \tilde{F}_{i} are taken by replacing \tilde{V} with V_{m}, and the set of edges $\left\{\left\{j_{m-s},-\left(j+i r^{-1}\right)_{m+s}\right\}\right.$: $j=0,1, \ldots n-1, s=1,2, \ldots, r\}$ is added.

Lemma 15 For odd prime p and for odd $n \geq 3$ such that $\operatorname{gcd}(n,(p-1) / 2)=1$, and for even $k \geq 4$ where $k \neq 2 p, k \neq p+1$ and moreover, $k / 2 \nmid n$, if there is a k-cycle free one-factorization of K_{n+1}, then a k-cycle free one-factorization of $K_{p n+1}$ exists.

Proof: Assume that a k-cycle free one-factorization \tilde{F} of K_{n} is given. Let H be the union of two one-factors F_{h} and F_{i} in the one-factorization constructed according to Construction F, where $h<i$ and $h, i \in\{0,1, \ldots, p n-1\}$.

Suppose that h and i satisfy $m n \leq h<i<(m+1) n$ for some $m \in\{0,1, \ldots, p-1\}$. Then clearly H does not contain a cycle of length k with all vertices in V_{m} because onefactorization induced by V_{m} is the given one-factorization \tilde{F} of K_{n+1}, which is k-cycle free. Let C_{l} be a cycle of H with all vertices in $V \backslash V_{m}$. In fact, all vertices of C_{l} are in $V_{m-s} \cup V_{m+s}$ for some $s \in\{1,2 \ldots, r\}$. Clearly $l \leq 2 n$. Let y_{m-s} be a vertex of C_{l}. Neighbors of the vertex y_{m-s} in H are $-\left(y+h r^{-1}\right)_{m+s}$ and $-\left(y+i r^{-1}\right)_{m+s}$. Consecutive vertices along the cycle C_{l} are: $y_{m-s},-\left(y+h r^{-1}\right)_{m+s},\left(y+(h-i) r^{-1}\right)_{m-s}$, $-\left(y+(2 h-i) r^{-1}\right)_{m+s},\left(y+(2 h-2 i) r^{-1}\right)_{m-s}, \ldots,-\left(y+\frac{l h-(l-2) i}{2} r^{-1}\right)_{m+s}, y_{m-s}$, where l is the minimum even positive integer such that $-y-\frac{l h-(l-2) i}{2} r^{-1} \equiv-y-i r^{-1} \quad(\bmod n)$. Since $0<(i-h) r^{-1}<n$, by the equivalence $\frac{l}{2}(i-h) r^{-1} \equiv 0(\bmod n)$ and Claim 1, $\operatorname{gcd}\left(\frac{l}{2}, n\right)=l / 2$ holds. Thus $l \neq k$.

It remains to consider the case when $m n \leq h<(m+1) n$ and $q n \leq i<(q+1) n$ for some $m, q \in\{0,1, \ldots, p-1\}, m<q$. Let $z=q-m$. Assume that ∞ is a vertex of C_{l} in H. Neighbors of ∞ in H are h_{m} and i_{q}. Note that $p+1$ consecutive vertices along C_{l} in H are: $\infty, i_{q}=i_{m+z},-(h+r i) r_{m-z}^{-1},(h+(r-1) i) r_{m+3 z}^{-1},-(2 h+(r-1) i) r_{m-3 z}^{-1},(2 h+(r-2) i) r_{m+5 z}^{-1}$, $\ldots,(r h+(r-r) i) r_{m+p z}^{-1}=h_{m}$. Hence $l=p+1 \neq k$. Consider the case when ∞ is not a vertex of C_{l} in H. Let $(h+x)_{m}$ be a vertex of C_{l} for some $x \neq 0$. Then neighbors of $(h+x)_{m}$ in H are $(h-x)_{m}$ and $-\left(h+x+i r^{-1}\right)_{q+z}=-\left(h+x+i r^{-1}\right)_{m+2 z}$. Therefore, $2 p$ consecutive vertices along C_{l} are: $(h+x)_{m},-(r x+r h+i) r_{m+2 z}^{-1},(r x+(r-1) h+i) r_{m-2 z}^{-1}$, $\ldots,(r x+(r-r) h+r i) r_{m-(p-1) z}^{-1}=(i+x)_{m+z},(i-x)_{m+z},-(-r x+h+r i) r_{m-z}^{-1}$, $(-r x+h+(r-1) i) r_{m+3 z}^{-1}, \ldots,(-r x+r h+(r-r) i) r_{m+p z}^{-1}=(h-x)_{m}$. Thus $l=2 p$ and, by the assumption, $l \neq k$.

Note that a one-factorization made by Construction F does not contain a cycle of length $n p+1$. Moreover, if $n=p$ and $G K_{n+1}$ is taken as a one-factorization \tilde{F} of K_{n+1}, then one-factorization produced in this way is a known uniform one-factorization of $K_{p^{2}+1}$ with cycles of lengths $p+1,2 p, 2 p, \ldots 2 p$. Applying Construction F more than once for justobtained uniform one-factorization easily produces a series of uniform one-factorizations for all orders of the form $p^{x}+1, x \geq 2$, where every one-factor has one cycle of length $p+1$ and $\left(p^{x-1}-1\right) / 2$ cycles of length $2 p$, cf. [4].

3 Main results

The constructions presented in the previous section are used to prove general results on k-cycle free one-factorizations.

Theorem 16 For each n and each even $k \geq 4$ such that $k \neq 2 n$, the complete graph $K_{2 n}$ has a k-cycle free one-factorization.

Proof: Let $k=2^{\lambda_{0}} p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \ldots p_{w}^{\lambda_{w}}$ be the prime factorization of k into non-trivial factors, $\lambda_{j} \geq 1$ for each p_{j} and $p_{1}<p_{2}<\ldots<p_{w}$. Since k is even, $\lambda_{0} \geq 1$. If $k>2 n$, by Claim 2 the assertion is true. Thus, the result is trivial for $n=4$. In what follows, let $k<2 n$. For the induction, assume that a k-free one-factorization of $K_{2 m}$ exists for every m such that $2 \leq m<n$ and $2 m \neq k$. Consider separately two cases:
Case $I: k / 2 \nmid n$. Thus $k \neq n$. For odd n, by Corollary 7, the one-factorization $G A_{2 n}$ is k-cycle free. Assume that n is even. If $\lambda_{0} \neq 2$, then to find a required one-factorization of $K_{2 n}$ apply Lemma 9. Consider the case $\lambda_{0}=2$. Note that $k>4$ because otherwise $k / 2=2 \mid n$. Let $x=\max \left\{y: \operatorname{gcd}\left(2^{y}, n\right)=2^{y}\right\}$. Hence immediately $k \neq n / 2^{y}$ for every $y \leq x$. Let $n^{\prime}=n / 2^{x}$. Note that both $k / 2 \nmid n^{\prime}$ and $k / 4 \nmid n^{\prime}$. Thus, the one-factorization $G A_{2 n^{\prime}}$ of $K_{2 n^{\prime}}$, by Corollary 7, is $\{k / 2, k\}$-cycle free. In the next steps apply x times Construction C to get, by Lemma 10, one-factorizations of $K_{4 n^{\prime}}$, of $K_{8 n^{\prime}}, \ldots$, of $K_{2 n}$, respectively, which are $\{k / 2, k\}$-cycle free.
Case II: $k / 2 \mid n$. Hence, for every $j=1,2, \ldots, w, p_{j} \mid n$ and clearly $p_{j} \nmid 2 n-1$. Thus $\operatorname{gcd}(k / 2,2 n-1)=1$. If $\operatorname{gcd}(k-1,2 n-1)<k-1$, by Corollary 4 the one-factorization $G K_{2 n}$ is k-cycle free. Consider the opposite case $\operatorname{gcd}(k-1,2 n-1)=k-1$. Let f be the minimum nontrivial factor of $2 n-1$ and $e=\frac{2 n-1}{f}$. Thus $e \geq f \geq 3$ and $\operatorname{gcd}(e,(f-1) / 2)=1$. Moreover, since $\operatorname{gcd}(k / 2, e f)=1, \operatorname{gcd}(k / 2, e)=1$ and $f \nmid k / 2$ immediately follow, and then $k \not \equiv 0 \quad(\bmod 2 f)$. The aim is to show that $e \neq k-1$. Suppose to the contrary that $e=k-1$. Then $2 n-1=e f=(k-1) f$ and, since $n=z \frac{k}{2}$ for some integer z, $k(f-z)=f-1$. Thus, k is a divisor of $f-1$, whence $f \geq k+1=e+2$, which contradicts the fact that f is the minimum factor of $2 n-1$. By the inductive assumption there is a k-cycle free one-factorization of K_{e+1}. If f is not a factor of $k-1$ (it means $k \not \equiv f+1$ $(\bmod 2 f))$ or $f=k-1$, then to find a required one-factorization of $K_{e f+1}$ apply Lemma 14 (with $p:=f$). Otherwise $f \mid k-1$ and $f<k-1$. In this case, to find a k-cycle free one-factorization of $K_{e f+1}$, apply Lemma 15 (with $p:=f$).

The existence of 4 -cycle free one-factorizations of complete graphs has already been stated in [9].

For an infinite class of even orders $2 n$ of complete graphs, $2 n$-cycle free one-factorizations may be constructed. Note that all one-factorizations $G K_{2 n}, G A_{2 n}$, as well as $H K_{2 n}$, are not useful for this purpose since, as was noted earlier, they contain Hamiltonian cycles.

Theorem 17 Let $2 n \neq p+1$, where p is a prime, or $2 n \not \equiv 6,12,18(\bmod 24)$. Then the complete graph $K_{2 n}$ has a $2 n$-cycle free one-factorization.

Proof: Let $2 n \neq p+1$ for every prime p. Let f be the minimum prime factor of $2 n-1$ and $e=\frac{2 n-1}{f}$. Then $e \geq f \geq 3$ and to construct a $2 n$-cycle free one-factorization of $K_{e f+1}$ apply, by Lemma 15 , Construction F .

If $2 n \equiv 2,4 \quad(\bmod 6)$, then it is easily observed than any Steiner one-factorization of order $2 n$ (cf. [12]) is $2 n$-cycle free; in fact, the union of any two one-factors contains
the cycle C_{4}. If $2 n \equiv 0(\bmod 8)$, then n is even and, by Claim 2, any one-factorization of K_{n} is $2 n$-cycle free. Hence, by Lemma 9, Construction C produces a required onefactorization.

At present, the existence problem of k-cycle free one-factorizations when $k=2 n$ has been only partially solved. In contrast to perfect one-factorizations, orders of the form $2 n=p+1$, for p being prime, appear to be the most difficult regarding constructions of $2 n$-cycle free one-factorizations of $K_{2 n}$. However, the existence of n-cycle free onefactorization of K_{n} when $n \equiv 2(\bmod 4)$, by Lemma 10, immediately implies the existence of $2 n$-cycle free one-factorization of $K_{2 n}$. Moreover, known examples of non-perfect uniform one-factorizations of $K_{2 n}$ (cf. [5]), as well as the $2 n$-cycle free one-factorizations for $2 n=18$ given in the Appendix, cover all unsolved cases for orders less than 102.

The more general question concerns $k^{<}$-cycle free one-factorizations of the complete graph. This appears to be much more difficult. One obvious argument is that perfect one-factorizations of $K_{2 n}$ are simply $(2\lfloor n / 2\rfloor)^{<}$-cycle free one-factorizations. Even for $k=6$, all constructions presented in this paper are not sufficient to obtain a complete classification, i.e. the case $2 n=28$ remains unsolved. However, for every order $2 n \equiv 2$ $(\bmod 4)$, a $6^{<}$-cycle free one-factorization of $K_{2 n}$ may be constructed.

Theorem 18 For every odd $n \geq 5$, there exists one-factorization of $K_{2 n}$ which is $6^{<}$-cycle free.

Proof: Let q be the minimum prime factor of n. If $q \geq 5$, then the one-factorization $G A_{2 n}$, by Corollary 8 , is $8^{<}$-cycle free. Therefore, assume that $q=3$. Clearly, $3 \nmid 2 n-1$. If 5 is not a factor of $2 n-1$, then the one-factorization $G K_{2 n}$, by Corollary 5 , is $6^{<}$-cycle free. It remains to consider the case when $5 \mid 2 n-1$. Let $2 n-1=r_{1} r_{2} \ldots r_{v}$ be the prime factorization of $2 n-1$ into non-trivial factors, where $5=r_{1} \leq r_{2} \leq \ldots \leq r_{v}$ and $v \geq 2$. Note that for $r_{v} \geq 7$ there exists a $6^{<}$-cycle free one-factorization \hat{F} of $K_{r_{v}+1}$, namely, by Corollary 5, as \hat{F} the one-factorization $G K_{v+1}$ may be substituted. Otherwise $r_{v}=5$ and $2 n-1=5^{x}$ for some $x \geq 2$. Let \hat{F} be the one-factorization $G A_{5^{2}+1}$ of $K_{5^{2}+1}$ which is clearly perfect. In the next steps apply $v-1$ times $\left(v-2\right.$ times if $\left.r_{v}=5\right)$ the inductive Construction E, taking as p 's consecutive prime factors of $2 n-1$ in the non-increasing order. In this way, by Lemma 14, a series of $6^{<}$-cycle free one-factorizations is constructed, ending up at the order $2 n$.

Although it is not possible to construct $k^{<}$-cycle free one-factorizations for all orders $2 n \geq k \geq 6$, infinite families of orders may be provided, for which such one-factorizations do exist. Evidently, by Corollary 5, the one-factorization $G K_{2 n}$ is $k^{<}$-cycle free for every order $2 n$ such that the prime factorization of $2 n-1$ does not contain a factor less than k. Let $n \geq 3$ and let r be the minimum prime factor of $2 n-1$. Moreover, let $l=$ $\max \left\{r_{1}-1,2 r_{2}-2\right\}$, where r_{1} is the minimum prime factor of $\frac{2 n-1}{r}$ and r_{2} the minimum prime factor of n. If $r \geq 5$, then there exists an $l^{<}$-cycle free one-factorization of $K_{2 n}$ (which follows directly from Corollaries 8 and 13).

Acknowledgement The research was supported by the Foundation for Polish Science Grant for Young Scholars.

References

[1] B.A. Anderson, Finite topologies and Hamiltonian paths, J. Combin. Theory Ser. B 14 (1973) 87-93.
[2] B.A. Anderson, Symmetry groups of some perfect one-factorizations of complete graphs, Discrete Math. 18 (1977) 227-234.
[3] D. Bryant, B. Maenhaut, I.M. Wanless, New families of atomic Latin squares and perfect 1-factorizations, J. Combin. Theory Ser. A 113 (2006) 608-624.
[4] P.J. Cameron, Parallelisms of complete designs, London Mathematical Society Lecture Note Series No. 23 Cambridge University Press, Cambridge 1976.
[5] J.H. Dinitz, P. Dukes, On the structure of uniform one-factorizations from starters in finite fields, Finite Fields Appl. 12 (2006) 283-300.
[6] J.H. Dinitz, P. Dukes, D.R. Stinson, Sequentially perfect and uniform one-factorizations of the complete graph, Electron. J. Combin. 12 (2005) \# R1 12 pp.
[7] J.H. Dinitz, D.K. Garnick, There are 23 nonisomorphic perfect one-factorizations of K_{14}, J. Combin. Des. 4 (1996) 1-4.
[8] J.H. Dinitz, D.K. Garnick, B.D. McKay, There are 526, 915, 620 nonisomorphic onefactorizations of K_{12}, J. Combin. Des. 2 (1994) 273-285.
[9] D. Fronček, A. Rosa, Symmetric graph designs on friendship graphs, J. Combin. Des. 8 (2000) 201-206.
[10] P. Kaski, P.R.J. Östergård, There are 1, 132, 835, 421, 602, 062, 347 nonisomorphic one-factorizations of K_{14}, J. Combin. Des., in print.
[11] A. Kotzig, Hamilton graphs and Hamilton circuits, Theory of Graphs and Its Applications, Proc. Sympos. Smolenice 1963, Nakl. CSAV 1964, pp. 63-82.
[12] C.C. Lindner, E. Mendelsohn, A. Rosa, On the number of 1-factorizations of the complete graph, J. Combin. Theory Ser. B 20 (1976) 265-282.
[13] E.Lucas, Récréations Mathématiques vol. II, Gauthier-Villars, Paris 1883.
[14] E. Mendelsohn, A. Rosa, One-factorizations of the complete graph-a survey, J. Graph Theory 9 (1985) 43-65.
[15] M. Meszka, A. Rosa, Perfect 1-factorizations of K_{16} with nontrivial automorphism group, J. Combin. Math. Combin. Comput. 47 (2003) 97-111.
[16] E. Seah, Perfect one-factorizations of the complete graph-a survey, Bull. Inst. Combin. Appl. 1 (1991) 59-70.
[17] W.D. Wallis, One-factorizations of complete graphs, Contemporary Design Theory: A Collection of Surveys (Ed. J.H. Dinitz, D.R. Stinson), Wiley 1992, pp. 593-631.

Appendix

One-factors of 18-cycle free one-factorization of $K_{18}, V\left(K_{18}\right)=\{0,1, \ldots, 17\}$:

$0-1,2-3,4-5,6-7,8-17,9-10,11-12,13-14,15-16 ;$	$0-2,1-3,4-7,5-8,6-15,9-11,10-12,13-16,14-17 ;$
$0-3,1-2,4-13,5-6,7-8,9-12,10-11,14-15,16-17 ;$	$0-4,1-5,2-6,3-8,7-16,9-13,10-14,11-15,12-17 ;$
$0-5,1-4,2-11,3-7,6-8,9-14,10-13,12-16,15-17 ;$	$0-6,1-7,2-8,3-4,5-14,9-15,10-16,11-17,12-13 ;$
$0-7,1-6,2-5,3-12,4-8,9-16,10-15,11-14,13-17 ;$	$0-8,1-10,2-4,3-6,5-7,9-17,11-13,12-15,14-16 ;$
$0-9,1-8,2-7,3-5,4-6,10-17,11-16,12-14,13-15 ;$	$0-10,1-9,2-12,3-11,4-14,5-16,6-17,7-15,8-13 ;$
$0-11,1-17,2-16,3-9,4-15,5-12,6-13,7-14,8-10 ;$	$0-12,1-11,2-10,3-15,4-9,5-13,6-14,7-17,8-16 ;$
$0-13,1-14,2-15,3-17,4-16,5-10,6-11,7-12,8-9 ;$	$0-14,1-13,2-17,3-16,4-10,5-9,6-12,7-11,8-15 ;$
$0-15,1-12,2-9,3-10,4-11,5-17,6-16,7-13,8-14 ;$	$0-16,1-15,2-13,3-14,4-17,5-11,6-10,7-9,8-12 ;$
$0-17,1-16,2-14,3-13,4-12,5-15,6-9,7-10,8-11$.	

