k-cycle free one-factorizations of complete graphs

Mariusz Meszka

Faculty of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland meszkaagh.edu.pl

Submitted: Dec 5, 2007; Accepted: Dec 10, 2008; Published: Jan 7, 2009 Mathematics Subject Classifications: 05C70

Abstract

It is proved that for every $n \geq 3$ and every even $k \geq 4$, where $k \neq 2n$, there exists one-factorization of the complete graph K_{2n} such that any two one-factors do not induce a graph with a cycle of length k as a component. Moreover, some infinite classes of one-factorizations, in which lengths of cycles induced by any two one-factors satisfy a given lower bound, are constructed.

1 Introduction

A one-factor of a graph G is a regular spanning subgraph of degree one. A one-factorization of G is a set $F = \{F_1, F_2, \ldots, F_n\}$ of edge-disjoint one-factors such that $E(G) = \bigcup_{i=1}^n E(F_i)$. Evidently, the union of two edge-disjoint one-factors is a two-factor consisting of cycles of even lengths.

The exact number N(2n) of all pairwise non-isomorphic one-factorizations of the complete graph K_{2n} is known only for $2n \leq 14$; namely N(4) = N(6) = 1, N(8) = 6, N(10) = 396, cf. [14], N(12) = 526, 915, 620 [8], and N(14) = 1, 132, 835, 421, 602, 062, 347 [10]. Moreover, Cameron [4] proved that $\ln N(2n) \sim 2n^2 \ln (2n)$ for sufficiently large n. Therefore, any investigations (including enumeration) regarding all one-factorizations of K_{2n} are deemed reasonable if they are restricted to a subclass which satisfies some additional properties. One of the obvious requirements concerns an isomorphism of graphs induced by pairs of one-factorizations. A one-factorization is *uniform* when the union of any two one-factors is isomorphic to the same graph H. In particular, if H is connected (i.e. a Hamiltonian cycle), then a one-factorization is called *perfect*.

Perfect one-factorizations of complete graphs were introduced by Kotzig [11] and in known notation by Anderson [2]. Only three infinite classes of perfect one-factorizations are known, namely when 2n-1 is prime [11, 3] and when n is prime [1]. All other known examples of perfect one-factorizations of K_{2n} have been found using various methods, cf. [16, 17]. Perfect one-factorization conjecture, which claims the existence of perfect one-factorizations for every even order of the complete graph, is far from proven. Perfect one-factorizations are very rare among all one-factorizations; this argument is supported by a comparison of known numbers, P(2n), of all perfect pairwise non-isomorphic onefactorizations of K_{2n} , with N(2n). There are P(4) = P(6) = P(8) = P(10) = 1, P(12) =5, cf. [16, 17], P(14) = 23 [7] and $P(16) \geq 88$ [15]. Uniform one-factorizations other than those which are perfect have been investigated far less, cf. [5, 14]. In fact, there are only three known infinite classes and several sporadic examples of uniform non-perfect one-factorizations.

In this context, weaker properties regarding lengths of cycles which are required to exist, or which are forbidden in the union of any two one-factors, may be considered. A one-factorization $F = \{F_1, F_2, \ldots, F_n\}$ of G is said to be k-cycle free if the union of any two one-factors does not include the cycle C_k . Consequently, F is S-cycle free if the union of any two one-factors does not include cycles of lengths from the set S. In particular, if $S = \{4, 6, \ldots, k\}$, then F is called $k^{<}$ -cycle free. It can be said that F has a cycle of length k if there are two one-factors in F, the union of which includes C_k .

The aim of this paper is to find, for each n and each even $k \ge 4$ such that $2n \ne k$, a k-cycle free one-factorization of K_{2n} . For $2n \ne p+1$, where p is a prime, or $2n \ne 6, 12, 18 \pmod{24}$, the existence of 2n-cycle free one-factorizations of K_{2n} is proven. Moreover, some infinite classes of $k^{<}$ -cycle free one-factorizations are constructed.

2 Constructions and their properties

The following two facts are easily observed.

Claim 1 For $n \ge 2$, if l is the minimum positive integer such that gcd(l,n) > 1, then gcd(l,n) = l. Moreover, for odd $n' \ge 3$, if l' is the minimum even positive integer such that gcd(l',n') > 1, then gcd(l',n') = l'/2.

Claim 2 If $k > 2n \ge 4$, then any one-factorization of K_{2n} is k-cycle free.

The well-known canonical one-factorization GK_{2n} of K_{2n} has been published in Lucas' [13] and attributed to Walecki.

Construction A Let $V = \{\infty, 0, 1, \dots, 2n-2\}$. Let GK_{2n} denote a one-factorization of K_{2n} which consists of one-factors $F_i = \{\{i - j, i + j\} : j = 1, 2, \dots, n-1\} \cup \{\infty, i\}$, for $i = 0, 1, \dots, 2n-2$, where labels are taken modulo 2n-1.

It is well-known that GK_{2n} is perfect if and only if 2n - 1 is prime [11]. Dinitz et. al. [6] investigated lengths of cycles which may appear in the union of any two one-factors in GK_{2n} . Lemma 3 is a corollary to that result; a short proof is presented here in order to provide detailed constructions of cycles applied in further results.

Lemma 3 (cf. [6]) For $n \ge 3$ and even k such that $4 \le k \le 2n$, the one-factorization GK_{2n} of K_{2n} contains a cycle of length k if and only if $k/2 \mid 2n-1$ or $k-1 \mid 2n-1$.

Proof: Let p = 2n - 1. Assume that GK_{2n} contains a cycle C_k of length k which appears in the union H of two one-factors F_h and F_i , where h < i and $h, i \in \{0, 1, \ldots, p-1\}$. Let z = i - h. Consider separately two cases.

Case I: C_k contains the vertex ∞ . Then neighbors of ∞ in H are h and i. Consecutive vertices along the cycle C_k in H are: ∞ , $i, h-z, i+2z, h-3z, i+4z, h-5z, \ldots, i+(k-2)z$, ∞ , where k is the minimum even positive integer such that $i + (k-2)z \equiv h \pmod{p}$ (which is equivalent to $(k-1)z \equiv 0 \pmod{p}$). Since 0 < z < p, $\gcd(k-1,p) = k-1$ follows by Claim 1.

Case II: C_k does not contain ∞ . Let h + x be a vertex of C_k . Then $x \neq 0$ and neighbors of h + x in H are h - x and i + z - x. Consecutive vertices along C_k in H are: h + x, h - x, i + z + x, h - 2z - x, i + 3z + x, h - 4z - x, ..., h - (k - 2)z - x, h + x, where kis the minimum even positive integer such that $h - (k - 2)z - x \equiv i + z - x \pmod{p}$. Similarly to the above, since 0 < z < p, by the equivalence $kz \equiv 0 \pmod{p}$ and Claim 1, gcd(k, p) = k/2.

To prove sufficiency, suppose first that $k \leq 2n$ and $k/2 \mid p$. Then $k \equiv 2 \pmod{4}$. In order to find a cycle of length k, take two one-factors F_0 and F_i , where $i = \frac{p}{k/2}$. Let l be the length of a cycle which does not contain ∞ in the union of F_0 and F_i . Then, repeating calculations of Case II, l is the minimum even positive integer such that $li \equiv 0 \pmod{p}$. Then $\frac{lp}{k/2} \equiv 0 \pmod{p}$ and next, since k/2 is odd, l = k. Similarly, for any even $k \leq 2n$ where $k - 1 \mid p$, two one-factors F_0 and F_j are taken, where $j = \frac{p}{k-1}$. If l is the length of a cycle which contains ∞ , then as in Case I, l is the minimum even positive integer such that $(l-1)j \equiv 0 \pmod{p}$. Thus l = k.

The above Lemma 3 is equivalent to the following result.

Corollary 4 For $n \ge 3$ and even $k \ge 4$, the one-factorization GK_{2n} of K_{2n} is k-cycle free if and only if $k/2 \nmid 2n - 1$ and $k - 1 \nmid 2n - 1$.

By Lemma 3, the one-factorization GK_{2n} has a trivial lower bound on the minimum length of cycles it contains.

Corollary 5 Let r be the minimum prime factor of 2n - 1. If $r \ge 5$, then the one-factorization GK_{2n} of K_{2n} is $(r-1)^{<}$ -cycle free.

Lemma 3 immediately yields another property of GK_{2n} . Namely, for any order 2n, GK_{2n} cannot be a non-perfect uniform one-factorization because GK_{2n} contains a cycle of length 2n.

Another well-known one-factorization of the complete graph of order 2n for odd n is denoted by GA_{2n} [2].

Construction B Let *n* be odd. In what follows, labels of vertices are taken modulo *n*. Let $V = V_0 \cup V_1$, where $V_m = \{0_m, 1_m, ..., (n-1)_m\}$ for m = 0, 1. Let GA_{2n} be a one-factorization of K_{2n} with one-factors $F_0, F_1, ..., F_{2n-2}$. Let $F_i = \{\{(i-j)_m, (i+j)_m\}: j = 1, 2, ..., (n-1)/2, m = 0, 1\} \cup \{i_0, i_1\}$, for i = 0, 1, ..., n-1. Moreover, let $F_{n+i} = \{\{j_0, (j+i+1)_1\}: j = 0, 1, ..., n-1\}$, for i = 0, 1, ..., n-2. It is well-known that GA_{2n} is perfect if and only if n is prime [1]. The following presents a stronger property of GA_{2n} .

Lemma 6 For odd $n \ge 3$ and even k such that $4 \le k \le 2n$, the one-factorization GA_{2n} of K_{2n} contains a cycle of length k if and only if $k/2 \mid n$.

Proof: Assume first that GA_{2n} contains a cycle C_k which is included in the union H of two one-factors F_h and F_i , where h < i and $h, i \in \{0, 1, \ldots, 2n - 2\}$. Consider separately three cases.

Case I: $h < i \leq n-1$. Note that, if in the construction of GK_{n+1} the vertex subset $V(K_{n+1}) \setminus \{\infty\}$ is replaced with V_m , for m = 0, 1, and moreover, GK_{n+1} is restricted to the vertices of V_m , then a near one-factorization of K_n into near one-factors $F_i^m = \{\{(i-j)_m, (i+j)_m\}: j = 1, 2, \ldots (n-1)/2\}$ is obtained, where $i = 0, 1, \ldots, n-1$. It is clear that $F_i^m \subset F_i$ (the one-factor of GA_{2n}) for every admissible i and m. A cycle C_k in H has all vertices either in V_0 or in V_1 or in both subsets together. In the previous two cases C_k corresponds to a cycle of the same length either in $F_h^0 \cup F_i^0$ or in $F_h^1 \cup F_i^1$. Then, by Case II in the proof of Lemma 3, gcd(k, n) = k/2. In the latter case, $k \equiv 2 \pmod{4}$ and C_k consists of two paths of length k/2 - 1 (one of them with all vertices in V_0 and the other one with all vertices in V_1) joint together by the edges $\{h_0, h_1\}$ (of F_h) and $\{i_0, i_1\}$ (of F_i). These two paths correspond to a path with endvertices h and i included in a cycle of length k/2 + 1 (which contains the vertex ∞), induced by one-factors with indices h and i in GK_{n+1} . Thus, by Case I in the proof of Lemma 3, gcd(k/2, n) = k/2 holds. Case II: $h < n \leq i$. Consider two subcases.

II.A: h_0 is not a vertex of the cycle C_k in H. Then also h_1 is not in C_k . Note that the length of C_k is divisible by 4. Let $(h + x)_0$ be a vertex of C_k for some $x \neq 0$. Then neighbors of $(h + x)_0$ in H are $(h - x)_0$ and $(h + x + i + 1)_1$. Consecutive vertices along the cycle C_k in H are: $(h + x)_0$, $(h + x + i + 1)_1$, $(h - x - i - 1)_1$, $(h - x - 2i - 2)_0$, $(h + x + 2i + 2)_0$, $(h + x + 3i + 3)_1$, $(h - x - 3i - 3)_1$, ..., $(h - x - \frac{k(i+1)}{2})_0$, $(h + x)_0$, where k is the minimum even positive integer such that $h - x - \frac{k(i+1)}{2} \equiv h - x \pmod{n}$. Since n < i + 1 < 2n, by the above equivalence $\frac{k}{2}(i + 1) \equiv 0 \pmod{n}$ and Claim 1, $\gcd(k/2, n) = k/2$.

II.B: h_0 is a vertex of C_k . Then h_1 is in C_k as well. Note that $k \equiv 2 \pmod{4}$. The neighbors of h_0 in H are h_1 and $(h + i + 1)_1$. Consecutive vertices along the cycle C_k in H are: h_0 , $(h + i + 1)_1$, $(h - i - 1)_1$, $(h - 2i - 2)_0$, $(h + 2i + 2)_0$, $(h + 3i + 3)_1$, $(h - 3i - 3)_1$, ..., $(h + \frac{k(i+1)}{2})_1$, h_0 , where k is the minimum even positive integer such that $h + \frac{k(i+1)}{2} \equiv h \pmod{n}$. Analogously to the previous case, since n < i + 1 < 2n, by Claim 1, $\gcd(k/2, n) = k/2$ is easily observed.

Case III: $n \leq h < i$. Then neighbors of y_0 in H are $(y+h+1)_1$ and $(y+i+1)_1$. Consecutive vertices along C_k in H are: y_0 , $(y+i+1)_1$, $(y+i-h)_0$, $(y+2i-h+1)_1$, $(y+2i-2h)_0$, ..., $(y+\frac{ki-(k-2)h+2}{2})_1$, y_0 , where $y+\frac{ki-(k-2)h+2}{2} \equiv y+h+1 \pmod{n}$. Similarly to the previous case, since 0 < i-h < n, by $\frac{k}{2}(i-h) \equiv 0 \pmod{n}$ and Claim 1, $\gcd(k/2, n) = k/2$ holds.

To show sufficiency, suppose that $k \leq 2n$ and $k/2 \mid n$. To find a cycle of length k, take one-factors F_n and F_i such that $i = n + \frac{n}{k/2}$. Note that, if l is the length of a cycle in the union of F_n and F_i , then l is the minimum even positive integer such that $\frac{l}{2}(i-n) \equiv 0 \pmod{n}$ (mod n) (cf. calculations of Case III above). Thus $\frac{l}{2}\frac{n}{k/2} \equiv 0 \pmod{n}$, whence l = k. \Box

Lemma 6 is equivalent to the following.

Corollary 7 For odd $n \ge 3$ and even $k \ge 4$, the one-factorization GA_{2n} of K_{2n} is k-cycle free if and only if $k/2 \nmid n$.

Lemma 6 immediately provides a lower bound on the minimum length of cycles in GA_{2n} .

Corollary 8 Let n be odd and $n \ge 3$. Let r be the minimum prime factor of n. Then the one-factorization GA_{2n} of K_{2n} is $(2r-2)^{<}$ -cycle free.

Lemma 6 also yields an obvious corollary that GA_{2n} cannot be a non-perfect uniform one-factorization.

Presented below is an inductive construction for another family of one-factorizations of K_{2n} .

Construction C Let *n* be even. In what follows, labels of vertices are taken modulo *n*. Let $V = V_0 \cup V_1$, where $V_m = \{0_m, 1_m, \ldots, (n-1)_m\}$ for m = 0, 1. Let $\overline{F} = \{\overline{F}_0, \overline{F}_1, \ldots, \overline{F}_{n-2}\}$ be a *k*-cycle free one-factorization of K_n , where $\overline{V} = V(K_n) =$ $\{0, 1, \ldots, n\}$. Two copies of \overline{F} are taken by replacing \overline{V} with V_0 and V_1 , respectively. In this way, n-1 one-factors F_i of K_{2n} are obtained, $i = 0, 1, \ldots, n-2$. The *n*th one-factor is $F_{n-1} = \{\{j_0, j_1\} : j = 0, 1, \ldots, n-1\}$. Remaining n-1 one-factors are built based on onefactors in \overline{F} ; namely, if $\{v_0, u_0\}$ is the edge of one-factor \overline{F}_h , for some $h \in \{0, 1, \ldots, n-2\}$, then $\{v_0, u_1\}$ and $\{v_1, u_0\}$ are the edges of one-factor F_{n+h} .

The above method allows for the construction of k-cycle free one-factorizations of K_{2n} , where n is even and $k \not\equiv 4 \pmod{8}$.

Lemma 9 For even $n \ge 4$ and even $k \ge 6$ such that $k \not\equiv 4 \pmod{8}$, if there is a k-cycle free one-factorization of K_n , then a k-cycle free one-factorization of K_{2n} exists.

Proof: Assume that a k-cycle free one-factorization \overline{F} of K_n is given. Let H be the union of two one-factors F_h and F_i in the one-factorization of K_{2n} obtained by applying Construction C, where h < i and $h, i \in \{0, 1, \ldots, 2n - 2\}$. If both h, i < n - 1, then H does not contain C_k because all cycles in H are, in fact, copies of cycles in the given one-factorization \overline{F} of K_n which is k-cycle free. If i = n - 1 or h = n - 1, one can see that every cycle in H has length 4. In what follows, assume that $i \geq n$. If i - h = n, it is evident that every cycle in H has length 4 as well. Otherwise $i - h \neq n$. Note that every cycle in H corresponds to a cycle in the union of one-factors \overline{F}_h and \overline{F}_{i-n} in K_n . Let C_l denote a cycle of length l in $\overline{F}_h \cup \overline{F}_{i-n}$ with consecutive vertices $v^1, v^2, v^3, \ldots, v^l$. Suppose that h < n - 1. Note that C_l corresponds either to a cycle C'_l (if $l \equiv 0 \pmod{4}$) of length l or to a cycle C''_{2l} (if $l \equiv 2 \pmod{4}$) of length 2l in

H; consecutive vertices of C'_l are $v_0^1, v_0^2, v_1^3, v_1^4, v_0^5, v_0^6, \ldots, v_1^{l-1}, v_1^l$, while C'_{2l} has vertices $v_0^1, v_0^2, v_1^3, v_1^4, \ldots, v_0^{l-1}, v_0^l, v_1^{l+1}, v_1^{l+2}, \ldots, v_1^{2l-1}, v_1^{2l}$. In the latter case, by the assumption, $k \neq 2l$. Consider the last case $n \leq h$. Then C_l corresponds to a cycle C''_l of the same length l in H with consecutive vertices $v_0^1, v_1^2, v_0^3, v_1^4, \ldots, v_0^{l-1}, v_1^l$. Hence, since K_n is k-cycle free, $k \neq l$ and the assertion holds.

By the above Lemma 9, if $2n \equiv 0 \pmod{8}$, then a one-factorization built by applying Construction C does not contain a cycle of length 2n. Moreover, starting from n = 4and applying the above inductive construction for consecutive powers of 2, a well-known class of uniform one-factorizations of complete graphs with all cycles of length 4 is easily obtained, cf. [4].

Construction C also enables the building of a $\{k/2, k\}$ -cycle free one-factorization of K_{2n} , using a given $\{k/2, k\}$ -cycle free one-factorization of K_n .

Lemma 10 For even $n \ge 4$ and even $k \ge 12$ such that $k \equiv 4 \pmod{8}$, if there is a $\{k/2, k\}$ -cycle free one-factorization of K_n , then a $\{k/2, k\}$ -cycle free one-factorization of K_{2n} exists.

Proof: The assertion follows immediately from the proof of Lemma 9. Namely, by the assumption, a given one-factorization of K_n does not contain a cycle of length l such that $l \equiv 2 \pmod{4}$. Hence, by the proof of Lemma 9, every cycle in a one-factorization of K_{2n} , obtained by applying Construction C, has either length 4 or has the same length as a corresponding cycle in a given one-factorization of K_n .

The next infinite class of one-factorizations yields further examples of k-cycle free and $k^{<}$ -cycle free one-factorizations of complete graphs.

Construction D Let $p \geq 3$ be a prime and r = (p-1)/2. Let n be an odd integer such that $n \geq p$ and gcd(n,r) = 1. Let r^{-1} be the inverse of r in \mathbb{Z}_n . In what follows, labels of vertices are taken modulo n, while indices are taken modulo p. Consider a one-factorization of K_{pn+1} denoted by HK_{pn+1} . Let $V = V_0 \cup V_1 \cup \ldots \cup V_{p-1}$, where $V_m = \{\infty, 0_m, 1_m, \ldots, (n-1)_m\}$ for $m = 0, 1, \ldots, p-1$. Thus $V_0 \cap V_1 \cap \ldots V_{p-1} = \{\infty\}$. Let $F_{mn+i} = \{\{(i-j)_m, (i+j)_m\} : j = 1, 2, \ldots, (n-1)/2\} \cup \{i_m, \infty\} \cup \{\{j_{m-s}, -(j+(i+m)r^{-1})_{m+s}\} : j = 0, 1, \ldots, n-1, s = 1, 2, \ldots, r\}$ for $i = 0, 1, \ldots, n-1, m = 0, 1, \ldots, p-1$.

Note that HK_{np+1} is an extension of GK_p : one-factorization induced by every V_i is the one-factorization GK_{n+1} of K_{n+1} . Moreover, if every set $V_i \setminus \infty$ is replaced by a single vertex u_i , and all edges with the same endvertices are contracted to a single edge, loops being removed, then the corresponding one-factorization GK_{p+1} of K_{p+1} would be obtained.

Presented below are investigations into possible lengths of cycles in HK_{pn+1} .

Lemma 11 For odd prime p and for odd n such that $n \ge p$ and gcd(n, (p-1)/2) = 1, and for even k such that $4 \le k \le pn+1$, the one-factorization HK_{pn+1} of K_{pn+1} contains a cycle of length k if and only if one of the following conditions holds: (1) $k \le n+1$ and $k-1 \mid n$, (2) k > n+1 and $k-1 \mid np$, (3) $k \le 2n$ and $k/2 \mid n$, (4) k > 2n and $k/2 \mid np$.

Proof: Assume that HK_{pn+1} contains a cycle of length k which appears in the union H of one-factors F_h and F_i , where h < i and $h, i \in \{0, 1, \ldots, pn - 1\}$. Consider separately two cases.

Case I: $mn \leq h < i < (m+1)n$ for some $m \in \{0, 1, \ldots, p-1\}$. One-factorization induced by V_m is the one-factorization GK_{n+1} of K_{n+1} and therefore, by Lemma 3, either condition (1) or (3) is satisfied when $k \leq n+1$ and all vertices of C_k come from V_m . Consider the case where all vertices of C_k are in $V \setminus V_m$. In fact, all vertices of C_k are in $V_{m-s} \cup V_{m+s}$ for some $s \in \{1, 2..., r\}$. Then clearly $k \leq 2n$. Let y_{m-s} be a vertex of C_k . Neighbors of the vertex y_{m-s} are $-(y+(h+m)r^{-1})_{m+s}$ and $-(y+(i+m)r^{-1})_{m+s}$. Consecutive vertices along the cycle C_k are: $y_{m-s}, -(y+(h+m)r^{-1})_{m+s}, (y+(h-i)r^{-1})_{m-s}, -(y+(2h-i+m)r^{-1})_{m+s},$ $(y+(2h-2i)r^{-1})_{m-s}, \ldots, -(y+\frac{kh-(k-2)i+2m}{2}r^{-1})_{m+s}, y_{m-s}$, where k is the minimum even positive integer such that $-y - \frac{kh-(k-2)i+2m}{2}r^{-1} \equiv -y - (i+m)r^{-1} \pmod{n}$. Since 0 < i-h < n, then $0 < (i-h)r^{-1} < n$ and, by the equivalence $\frac{k}{2}(i-h)r^{-1} \equiv 0 \pmod{n}$ and Claim 1, $\gcd(\frac{k}{2}, n) = \frac{k}{2}$ and then (3) holds.

Case II: $mn \le h < (m+1)n$ and $qn \le i < (q+1)n$ for some $m, q \in \{0, 1, \dots, p-1\}$, m < q. Let z = q - m. Consider two subcases.

II.A: ∞ is a vertex of C_k . Then $k \equiv p+1 \pmod{2p}$. Neighbors of ∞ in H are h_m and i_q . Note that indices of consecutive vertices in the cycle C_k appear in the order according to the labels of vertices in Case I of the proof of Lemma 3. Thus the first p+1consecutive vertices along C_k in H are: ∞ , $i_q = i_{m+z}$, $-(h + ri + m)r_{m-z}^{-1}$, $(h + (r - r)r_{m-z})^{-1}$ $1)i + m - q)r_{m+3z}^{-1}, \ -(2h + (r - 1)i + 2m - q)r_{m-3z}^{-1}, \ (2h + (r - 2)i + 2m - 2q)r_{m+5z}^{-1}, \$..., $(rh + (r - r)i + rm - rq)r_{m+pz}^{-1} = (h - z)_m$. Note that $(h - z)_m \neq h_m$ because $0 < z < p \le n$. Thus the neighbor of $(h-z)_m$ in F_h is $(h+z)_m$. Moreover, $(i+2z)_{m+z} \ne j$ i_{m+z} . Then the next 2p consecutive vertices along C_k in H are: $(h+z)_m = (h+z)_{q-z}$, $-(rz+rh+i+q)r_{q+z}^{-1}, (rz+(r-1)h+i+q-m)r_{q-3z}^{-1}, -(rz+(r-1)h+2i+2q-m)r_{q+3z}^{-1}, -(rz+(r-1)h+2i+2q-m)r_{q+3$ $(rz + (r-2)h + 2i + 2q - 2m)r_{q-5z}^{-1}, \dots, (rz + (r-r)h + ri + rq - rm)r_{q-pz}^{-1} = (i + r)r_{q-pz}^{-1} =$ $2z)_{m+z}, (i-2z)_{m+z}, -(-2rz+h+ri+m)r_{m-z}^{-1}, (-2rz+h+(r-1)i+m-q)r_{m+3z}^{-1}, (-2rz+2h+(r-1)i+m-q)r_{m+3z}^{-1}, (-2rz+2h+(r-2)i+2m-2q)r_{m+5z}^{-1}, \dots, ((-2rz + rh + (r - r)i + rm - rq)r_{m+pz}^{-1} = (h - 3z)_m$. Therefore, after the next $\frac{k - (3p+1)}{2p}$ segments, each of which contains 2p vertices, the kth vertex in C_k is $(h - \frac{k-1}{p}z)_m = h_m$. Since $0 < z < p \le n$, if k is the minimum even positive integer such that $\frac{k-1}{p}z \equiv 0$ (mod n), then k-1 > n and moreover, by Claim 1, $gcd(\frac{k-1}{p}, n) = \frac{k-1}{p}$. Thus (2) is satisfied.

II.B: ∞ is not a vertex of C_k . Then $k \equiv 0 \pmod{2p}$. Let $(h+x)_m$ be a vertex of C_k . Then $x \neq 0$ and neighbors of $(h+x)_m$ in H are $(h-x)_m$ and $(-h+x-(i+q)r^{-1})_{q+z}$. First segment of 2p consecutive vertices along C_k is (cf. second segment of C_k in Subcase II.A): $(h+x)_m = (h+x)_{q-z}, -(rx+rh+i+q)r_{q+z}^{-1}, (rx+(r-1)h+i+q-m)r_{q-3z}^{-1},$ $\dots, (i+x+z)_q = (i+x+z)_{m+z}, (i-x-z)_{m+z}, -(-rx+h+ri+(r+1)m-rq)r_{m-z}^{-1}, \\ (-rx+h+(r-1)i+(r+1)m-(r+1)q)r_{m+3z}^{-1}, \dots, (h-x-2z)_m \neq (h-x)_m.$ After the next $\frac{k}{2p}-1$ segments, each of which contains 2p vertices, we end up at $(h-x-\frac{k}{p}z)_m = (h-x)_m.$ Since $0 < z < p \le n$ and moreover, k is the minimum even positive integer such that $\frac{k}{p}z \equiv 0 \pmod{n}, k > 2n$ holds and, by Claim 1, $\gcd(\frac{k}{p}, n) = \frac{k}{2p}.$ Hence (4) is satisfied.

To prove sufficiency, in order to find a cycle of length k, take the union of two onefactors F_0 and F_i . Let $i = \frac{n}{k-1}$ if $k \le n+1$ and $k-1 \mid n$. Thus $1 \le i < n$. Let l be the length of a cycle in the union of F_0 and F_i which contains ∞ and with all vertices in V_0 . Then, by applying calculations of Case I in the proof of Lemma 3, l is the minimum even positive integer such that $(l-1)i \equiv 0 \pmod{n}$. Thus $\frac{l-1}{k-1}n \equiv 0 \pmod{n}$ and therefore l = k. Similarly, let $i = \frac{nr}{k/2} \pmod{n}$ if $k \leq 2n$ and $k/2 \mid n$. Hence, if l is the length of a cycle in $F_0 \cup F_i$ with all vertices in $V_{p-1} \cup V_1$, by calculations as in Case I above, l is the minimum even positive integer such that $\frac{l}{2}ir^{-1} \equiv 0 \pmod{n}$. Hence l = k. Analogously, let $i = n \frac{np}{k-1}$ $(\geq n)$ if $k > n+1 \ge p+1$ and $k-1 \mid np$. If l is the length of a cycle in $F_0 \cup F_i$ which contains ∞ , by calculations as in Subcase II.A above, l is the minimum even positive integer such that $\frac{l-1}{p}z \equiv 0 \pmod{n}$, where $z = i/n = \frac{np}{k-1} < n$. Then $\frac{l-1}{p}\frac{np}{k-1} \equiv 0 \pmod{n}$, whence k = l. In the last case, if $k > 2n \ge 2p$ and $k/2 \mid np$, then $i = n \frac{np}{k/2} > n$. Note that $k \equiv 2 \pmod{4}$. If l is the length of a cycle in the union $F_0 \cup F_i$ which does not contain ∞ , then l is the minimum even positive integer such that $\frac{l}{n}z \equiv 0$ (mod n), where $z = i/n = \frac{np}{k/2} < n$, cf. Subcase II.B. Hence $\frac{l}{p} \frac{np}{k/2} \equiv 0 \pmod{n}$ and, since k/2 is odd, k = l holds.

Lemma 11 is equivalent to the following result.

Corollary 12 For odd prime p and for odd n such that $n \ge p$ and gcd(n, (p-1)/2) = 1, and for even $k \ge 4$, the one-factorization HK_{pn+1} of K_{pn+1} is k-cycle free if and only if all of the following conditions hold:

- (1) $k 1 \nmid n \text{ if } k \leq n + 1,$ (2) $k - 1 \nmid np \text{ if } k > n + 1,$ (3) $k/2 \nmid n \text{ if } k \leq 2n,$
- (4) $k/2 \nmid np \text{ if } k > 2n$.

Lemma 11 yields a trivial lower bound on the minimum length of cycles in HK_{pn+1} .

Corollary 13 Let p be an odd prime and n be odd such that $n \ge p$ and gcd(n, (p-1)/2) = 1. Let r be the minimum prime factor of n. If $r \ge 5$, then the one-factorization HK_{pn+1} of K_{pn+1} is $(r-1)^{<}$ -cycle free.

It is clear that HK_{pn+1} cannot be uniform. Taking two one-factors F_0 and F_1 , its union H has a cycle of length n + 1 with all vertices in V_0 , while one-factors F_0 and F_n make a Hamiltonian cycle in K_{pn+1} .

The next inductive construction, similar to HK_{pn+1} , produces a one-factorization of K_{pn+1} for odd n and odd prime p, which does not have cycles of even lengths k, where $k \neq 0, p+1 \pmod{2p}$ or k = p+1.

Construction E Let $p \geq 3$ be a prime and r = (p-1)/2. Let n be an odd integer such that $n \geq p$ and gcd(n, r) = 1. Let r^{-1} be the inverse of r in \mathbb{Z}_n . In what follows, labels of vertices are taken modulo n, while indices are taken modulo p. Let $V = V_0 \cup V_1 \cup \ldots \cup V_{p-1}$, where $V_m = \{\infty, 0_m, 1_m, \ldots, (n-1)_m\}$ for $m = 0, 1, \ldots, p-1$. Let \tilde{F} be a k-cycle free one-factorization of K_{n+1} , where $\tilde{V} = V(K_{n+1}) = \{\infty, 0, 1, \ldots, n-1\}$. Let \tilde{F}_i be a one-factor in \tilde{F} , $i = 0, 1, \ldots, n-1$. To construct one-factor F_{mn+i} of K_{pn+1} , for $m = 0, 1, \ldots, p-1$ and $i = 0, 1, \ldots, n-1$, copies of all edges of \tilde{F}_i are taken by replacing \tilde{V} with V_m , and moreover, the set of edges $\{\{j_{m-s}, -(j + (i + m)r^{-1})_{m+s}\}$: $j = 0, 1, \ldots, n-1$, $s = 1, 2, \ldots, r\}$ is added.

Lemma 14 For odd prime p and for odd $n \ge p$ such that gcd(n, (p-1)/2) = 1, and for even $k \ge 4$, where $k \not\equiv 0, p+1 \pmod{2p}$ or k = p+1, and moreover, $k/2 \nmid n$, if there is a k-cycle free one-factorization of K_{n+1} , then a k-cycle free one-factorization of K_{pn+1} exists.

Proof: Assume that a k-cycle free one-factorization \tilde{F} of K_{n+1} is given. Let H be the union of two one-factors F_h and F_i in the one-factorization obtained by applying Construction E, where h < i and $h, i \in \{0, 1, \ldots, pn - 1\}$.

Suppose that h and i satisfy $mn \leq h < i < (m+1)n$ for some $m \in \{0, 1, \ldots, p-1\}$. Then H does not contain a cycle of length k with all vertices in V_m because one-factorization induced by V_m is the given k-cycle free one-factorization \tilde{F} of K_{n+1} . Moreover, let C_l be a cycle of H with all vertices in $V \setminus V_m$ and let y_{m-s} be a vertex of C_l , for some $s \in \{1, 2, \ldots, r\}$. Note that C_l is exactly the same cycle as in Case I of the proof of Lemma 11 and, since gcd(k/2, n) < k/2 by the assumption, $l \neq k$ is satisfied.

It remains to consider the case when $mn \leq h < (m+1)n$ and $qn \leq i < (q+1)n$ for some $m, q \in \{0, 1, \ldots, p-1\}, m < q$. Let z = q - m. If ∞ is a vertex of a cycle C_l in H, then $l \equiv p+1 \pmod{2p}$, cf. Subcase II.A in the proof of Lemma 11. Moreover, neighbors of ∞ in H are h_m and i_q and the first p+1 consecutive vertices along the cycle C_l in H (by Subcase II.A in the proof of Lemma 11) are: ∞ , i_q , ..., $(h-z)_m \neq h_m$. Hence $l \neq p+1$. If ∞ is not a vertex of C_l in H, then $l \equiv 0 \pmod{2p}$, cf. Subcase II.B in the proof of Lemma 11. Thus $l \neq k$.

To prove main results one more construction, slightly different from Construction E, is needed.

Construction F Let $p \geq 3$ be a prime and r = (p-1)/2. Let n be an odd integer such that $n \geq p$ and gcd(n, r) = 1. Let r^{-1} be the inverse of r in \mathbb{Z}_n . In what follows, labels of vertices are taken modulo n and moreover, indices are taken modulo p. Let r = (p-1)/2. Let $V = V_0 \cup V_1 \cup \ldots \cup V_{p-1}$, where $V_m = \{\infty, 0_m, 1_m, \ldots, (n-1)_m\}$ for $m = 0, 1, \ldots, p-1$. Let \tilde{F} be a k-cycle free one-factorization of K_{n+1} , where $\tilde{V} =$ $V(K_{n+1}) = \{\infty, 0, 1, \ldots, n-1\}$. Let \tilde{F}_i be a one-factor in \tilde{F} , $i = 0, 1, \ldots, n-1$. To construct one-factor F_{mn+i} of K_{pn+1} , for $m = 0, 1, \ldots, p-1$ and $i = 0, 1, \ldots, n-1$, copies of all edges of \tilde{F}_i are taken by replacing \tilde{V} with V_m , and the set of edges $\{\{j_{m-s}, -(j + ir^{-1})_{m+s}\}$: $j = 0, 1, \ldots n - 1, s = 1, 2, \ldots, r\}$ is added. **Lemma 15** For odd prime p and for odd $n \ge 3$ such that gcd(n, (p-1)/2) = 1, and for even $k \ge 4$ where $k \ne 2p$, $k \ne p+1$ and moreover, $k/2 \nmid n$, if there is a k-cycle free one-factorization of K_{n+1} , then a k-cycle free one-factorization of K_{pn+1} exists.

Proof: Assume that a k-cycle free one-factorization \tilde{F} of K_n is given. Let H be the union of two one-factors F_h and F_i in the one-factorization constructed according to Construction F, where h < i and $h, i \in \{0, 1, \ldots, pn - 1\}$.

Suppose that h and i satisfy $mn \leq h < i < (m+1)n$ for some $m \in \{0, 1, \ldots, p-1\}$. Then clearly H does not contain a cycle of length k with all vertices in V_m because one-factorization induced by V_m is the given one-factorization \tilde{F} of K_{n+1} , which is k-cycle free. Let C_l be a cycle of H with all vertices in $V \setminus V_m$. In fact, all vertices of C_l are in $V_{m-s} \cup V_{m+s}$ for some $s \in \{1, 2, \ldots, r\}$. Clearly $l \leq 2n$. Let y_{m-s} be a vertex of C_l . Neighbors of the vertex y_{m-s} in H are $-(y + hr^{-1})_{m+s}$ and $-(y + ir^{-1})_{m+s}$. Consecutive vertices along the cycle C_l are: $y_{m-s}, -(y + hr^{-1})_{m+s}, (y + (h-i)r^{-1})_{m-s}, -(y + (2h-i)r^{-1})_{m+s}, (y + (2h-2i)r^{-1})_{m-s}, \ldots, -(y + \frac{h-(l-2)i}{2}r^{-1})_{m+s}, y_{m-s}$, where l is the minimum even positive integer such that $-y - \frac{h-(l-2)i}{2}r^{-1} \equiv -y - ir^{-1} \pmod{n}$. Since $0 < (i - h)r^{-1} < n$, by the equivalence $\frac{l}{2}(i - h)r^{-1} \equiv 0 \pmod{n}$ and Claim 1, $\gcd(\frac{l}{2}, n) = l/2$ holds. Thus $l \neq k$.

It remains to consider the case when $mn \leq h < (m+1)n$ and $qn \leq i < (q+1)n$ for some $m, q \in \{0, 1, \ldots, p-1\}, m < q$. Let z = q-m. Assume that ∞ is a vertex of C_l in H. Neighbors of ∞ in H are h_m and i_q . Note that p+1 consecutive vertices along C_l in H are: $\infty, i_q = i_{m+z}, -(h+ri)r_{m-z}^{-1}, (h+(r-1)i)r_{m+3z}^{-1}, -(2h+(r-1)i)r_{m-3z}^{-1}, (2h+(r-2)i)r_{m+5z}^{-1}, \ldots, (rh + (r-r)i)r_{m+pz}^{-1} = h_m$. Hence $l = p+1 \neq k$. Consider the case when ∞ is not a vertex of C_l in H. Let $(h+x)_m$ be a vertex of C_l for some $x \neq 0$. Then neighbors of $(h+x)_m$ in H are $(h-x)_m$ and $-(h+x+ir^{-1})_{q+z} = -(h+x+ir^{-1})_{m+2z}$. Therefore, 2pconsecutive vertices along C_l are: $(h+x)_m, -(rx+rh+i)r_{m+2z}^{-1}, (rx+(r-1)h+i)r_{m-2z}^{-1}, \ldots, (rx + (r-r)h + ri)r_{m-(p-1)z}^{-1} = (i+x)_{m+z}, (i-x)_{m+z}, -(-rx+h+ri)r_{m-z}^{-1}, (-rx+h+(r-1)i)r_{m+3z}^{-1}, \ldots, (-rx+rh+(r-r)i)r_{m+pz}^{-1} = (h-x)_m$. Thus l = 2p and, by the assumption, $l \neq k$.

Note that a one-factorization made by Construction F does not contain a cycle of length np + 1. Moreover, if n = p and GK_{n+1} is taken as a one-factorization \tilde{F} of K_{n+1} , then one-factorization produced in this way is a known uniform one-factorization of K_{p^2+1} with cycles of lengths $p+1, 2p, 2p, \ldots 2p$. Applying Construction F more than once for just-obtained uniform one-factorization easily produces a series of uniform one-factorizations for all orders of the form $p^x + 1$, $x \ge 2$, where every one-factor has one cycle of length p + 1 and $(p^{x-1}-1)/2$ cycles of length 2p, cf. [4].

3 Main results

The constructions presented in the previous section are used to prove general results on k-cycle free one-factorizations.

Theorem 16 For each n and each even $k \ge 4$ such that $k \ne 2n$, the complete graph K_{2n} has a k-cycle free one-factorization.

Proof: Let $k = 2^{\lambda_0} p_1^{\lambda_1} p_2^{\lambda_2} \dots p_w^{\lambda_w}$ be the prime factorization of k into non-trivial factors, $\lambda_j \geq 1$ for each p_j and $p_1 < p_2 < \dots < p_w$. Since k is even, $\lambda_0 \geq 1$. If k > 2n, by Claim 2 the assertion is true. Thus, the result is trivial for n = 4. In what follows, let k < 2n. For the induction, assume that a k-free one-factorization of K_{2m} exists for every m such that $2 \leq m < n$ and $2m \neq k$. Consider separately two cases:

Case I: $k/2 \nmid n$. Thus $k \neq n$. For odd n, by Corollary 7, the one-factorization GA_{2n} is k-cycle free. Assume that n is even. If $\lambda_0 \neq 2$, then to find a required one-factorization of K_{2n} apply Lemma 9. Consider the case $\lambda_0 = 2$. Note that k > 4 because otherwise k/2 = 2|n. Let $x = \max\{y : \gcd(2^y, n) = 2^y\}$. Hence immediately $k \neq n/2^y$ for every $y \leq x$. Let $n' = n/2^x$. Note that both $k/2 \nmid n'$ and $k/4 \nmid n'$. Thus, the one-factorization $GA_{2n'}$ of $K_{2n'}$, by Corollary 7, is $\{k/2, k\}$ -cycle free. In the next steps apply x times Construction C to get, by Lemma 10, one-factorizations of $K_{4n'}$, of $K_{8n'}, \ldots$, of K_{2n} , respectively, which are $\{k/2, k\}$ -cycle free.

Case II: $k/2 \mid n$. Hence, for every $j = 1, 2, ..., w, p_j \mid n$ and clearly $p_j \nmid 2n - 1$. Thus gcd(k/2, 2n-1) = 1. If gcd(k-1, 2n-1) < k-1, by Corollary 4 the one-factorization GK_{2n} is k-cycle free. Consider the opposite case gcd(k-1, 2n-1) = k-1. Let f be the minimum nontrivial factor of 2n - 1 and $e = \frac{2n-1}{f}$. Thus $e \geq f \geq 3$ and gcd(e, (f-1)/2) = 1. Moreover, since gcd(k/2, ef) = 1, gcd(k/2, e) = 1 and $f \nmid k/2$ immediately follow, and then $k \not\equiv 0 \pmod{2f}$. The aim is to show that $e \neq k-1$. Suppose to the contrary that e = k - 1. Then 2n - 1 = ef = (k - 1)f and, since $n = z\frac{k}{2}$ for some integer z, k(f-z) = f-1. Thus, k is a divisor of f-1, whence $f \geq k+1 = e+2$, which contradicts the fact that f is the minimum factor of 2n - 1. By the inductive assumption there is a k-cycle free one-factorization of K_{e+1} . If f is not a factor of k - 1 (it means $k \not\equiv f + 1 \pmod{2f}$) or f = k - 1, then to find a required one-factorization of K_{ef+1} apply Lemma 14 (with p := f). Otherwise $f \mid k - 1$ and f < k - 1. In this case, to find a k-cycle free one-factorization of K_{ef+1} , apply Lemma 15 (with p := f).

The existence of 4-cycle free one-factorizations of complete graphs has already been stated in [9].

For an infinite class of even orders 2n of complete graphs, 2n-cycle free one-factorizations may be constructed. Note that all one-factorizations GK_{2n} , GA_{2n} , as well as HK_{2n} , are not useful for this purpose since, as was noted earlier, they contain Hamiltonian cycles.

Theorem 17 Let $2n \neq p+1$, where p is a prime, or $2n \not\equiv 6, 12, 18 \pmod{24}$. Then the complete graph K_{2n} has a 2n-cycle free one-factorization.

Proof: Let $2n \neq p+1$ for every prime p. Let f be the minimum prime factor of 2n-1 and $e = \frac{2n-1}{f}$. Then $e \geq f \geq 3$ and to construct a 2*n*-cycle free one-factorization of K_{ef+1} apply, by Lemma 15, Construction F.

If $2n \equiv 2, 4 \pmod{6}$, then it is easily observed than any Steiner one-factorization of order 2n (cf. [12]) is 2n-cycle free; in fact, the union of any two one-factors contains

the cycle C_4 . If $2n \equiv 0 \pmod{8}$, then *n* is even and, by Claim 2, any one-factorization of K_n is 2n-cycle free. Hence, by Lemma 9, Construction C produces a required one-factorization.

At present, the existence problem of k-cycle free one-factorizations when k = 2n has been only partially solved. In contrast to perfect one-factorizations, orders of the form 2n = p + 1, for p being prime, appear to be the most difficult regarding constructions of 2n-cycle free one-factorizations of K_{2n} . However, the existence of n-cycle free onefactorization of K_n when $n \equiv 2 \pmod{4}$, by Lemma 10, immediately implies the existence of 2n-cycle free one-factorization of K_{2n} . Moreover, known examples of non-perfect uniform one-factorizations of K_{2n} (cf. [5]), as well as the 2n-cycle free one-factorizations for 2n = 18 given in the Appendix, cover all unsolved cases for orders less than 102.

The more general question concerns $k^{<}$ -cycle free one-factorizations of the complete graph. This appears to be much more difficult. One obvious argument is that perfect one-factorizations of K_{2n} are simply $(2\lfloor n/2 \rfloor)^{<}$ -cycle free one-factorizations. Even for k = 6, all constructions presented in this paper are not sufficient to obtain a complete classification, i.e. the case 2n = 28 remains unsolved. However, for every order $2n \equiv 2$ (mod 4), a 6[<]-cycle free one-factorization of K_{2n} may be constructed.

Theorem 18 For every odd $n \ge 5$, there exists one-factorization of K_{2n} which is 6[<]-cycle free.

Proof: Let q be the minimum prime factor of n. If $q \ge 5$, then the one-factorization GA_{2n} , by Corollary 8, is 8[<]-cycle free. Therefore, assume that q = 3. Clearly, $3 \nmid 2n - 1$. If 5 is not a factor of 2n - 1, then the one-factorization GK_{2n} , by Corollary 5, is 6[<]-cycle free. It remains to consider the case when $5 \mid 2n - 1$. Let $2n - 1 = r_1r_2 \ldots r_v$ be the prime factorization of 2n - 1 into non-trivial factors, where $5 = r_1 \le r_2 \le \ldots \le r_v$ and $v \ge 2$. Note that for $r_v \ge 7$ there exists a 6[<]-cycle free one-factorization \hat{F} of K_{r_v+1} , namely, by Corollary 5, as \hat{F} the one-factorization GK_{v+1} may be substituted. Otherwise $r_v = 5$ and $2n - 1 = 5^x$ for some $x \ge 2$. Let \hat{F} be the one-factorization GA_{5^2+1} of K_{5^2+1} which is clearly perfect. In the next steps apply v - 1 times (v - 2 times if $r_v = 5$) the inductive Construction E, taking as p's consecutive prime factors of 2n - 1 in the non-increasing order. In this way, by Lemma 14, a series of 6[<]-cycle free one-factorizations is constructed, ending up at the order 2n. □

Although it is not possible to construct k^{\leq} -cycle free one-factorizations for all orders $2n \geq k \geq 6$, infinite families of orders may be provided, for which such one-factorizations do exist. Evidently, by Corollary 5, the one-factorization GK_{2n} is k^{\leq} -cycle free for every order 2n such that the prime factorization of 2n - 1 does not contain a factor less than k. Let $n \geq 3$ and let r be the minimum prime factor of 2n - 1. Moreover, let $l = \max\{r_1 - 1, 2r_2 - 2\}$, where r_1 is the minimum prime factor of $\frac{2n-1}{r}$ and r_2 the minimum prime factor of n. If $r \geq 5$, then there exists an l^{\leq} -cycle free one-factorization of K_{2n} (which follows directly from Corollaries 8 and 13).

Acknowledgement The research was supported by the Foundation for Polish Science Grant for Young Scholars.

References

- B.A. Anderson, *Finite topologies and Hamiltonian paths*, J. Combin. Theory Ser. B 14 (1973) 87–93.
- B.A. Anderson, Symmetry groups of some perfect one-factorizations of complete graphs, Discrete Math. 18 (1977) 227–234.
- [3] D. Bryant, B. Maenhaut, I.M. Wanless, New families of atomic Latin squares and perfect 1-factorizations, J. Combin. Theory Ser. A 113 (2006) 608–624.
- [4] P.J. Cameron, Parallelisms of complete designs, London Mathematical Society Lecture Note Series No. 23 Cambridge University Press, Cambridge 1976.
- [5] J.H. Dinitz, P. Dukes, On the structure of uniform one-factorizations from starters in finite fields, Finite Fields Appl. 12 (2006) 283–300.
- [6] J.H. Dinitz, P. Dukes, D.R. Stinson, Sequentially perfect and uniform one-factorizations of the complete graph, Electron. J. Combin. 12 (2005) # R1 12 pp.
- J.H. Dinitz, D.K. Garnick, There are 23 nonisomorphic perfect one-factorizations of K₁₄, J. Combin. Des. 4 (1996) 1–4.
- [8] J.H. Dinitz, D.K. Garnick, B.D. McKay, There are 526, 915, 620 nonisomorphic onefactorizations of K₁₂, J. Combin. Des. 2 (1994) 273–285.
- [9] D. Fronček, A. Rosa, Symmetric graph designs on friendship graphs, J. Combin. Des. 8 (2000) 201–206.
- [10] P. Kaski, P.R.J. Ostergård, There are 1, 132, 835, 421, 602, 062, 347 nonisomorphic one-factorizations of K_{14} , J. Combin. Des., in print.
- [11] A. Kotzig, Hamilton graphs and Hamilton circuits, Theory of Graphs and Its Applications, Proc. Sympos. Smolenice 1963, Nakl. CSAV 1964, pp. 63–82.
- [12] C.C. Lindner, E. Mendelsohn, A. Rosa, On the number of 1-factorizations of the complete graph, J. Combin. Theory Ser. B 20 (1976) 265–282.
- [13] E.Lucas, *Récréations Mathématiques vol. II*, Gauthier-Villars, Paris 1883.
- [14] E. Mendelsohn, A. Rosa, One-factorizations of the complete graph—a survey, J. Graph Theory 9 (1985) 43–65.
- [15] M. Meszka, A. Rosa, Perfect 1-factorizations of K_{16} with nontrivial automorphism group, J. Combin. Math. Combin. Comput. 47 (2003) 97–111.
- [16] E. Seah, Perfect one-factorizations of the complete graph—a survey, Bull. Inst. Combin. Appl. 1 (1991) 59–70.
- [17] W.D. Wallis, One-factorizations of complete graphs, Contemporary Design Theory: A Collection of Surveys (Ed. J.H. Dinitz, D.R. Stinson), Wiley 1992, pp. 593–631.

Appendix

One-factors of 18-cycle free one-factorization of K_{18} , $V(K_{18}) = \{0, 1, \dots, 17\}$:

 $\begin{array}{l} 0-1,2-3,4-5,6-7,8-17,9-10,11-12,13-14,15-16;\\ 0-3,1-2,4-13,5-6,7-8,9-12,10-11,14-15,16-17;\\ 0-5,1-4,2-11,3-7,6-8,9-14,10-13,12-16,15-17;\\ 0-7,1-6,2-5,3-12,4-8,9-16,10-15,11-14,13-17;\\ 0-9,1-8,2-7,3-5,4-6,10-17,11-16,12-14,13-15;\\ 0-11,1-17,2-16,3-9,4-15,5-12,6-13,7-14,8-10;\\ 0-13,1-14,2-15,3-17,4-16,5-10,6-11,7-12,8-9;\\ 0-15,1-12,2-9,3-10,4-11,5-17,6-16,7-13,8-14;\\ 0-17,1-16,2-14,3-13,4-12,5-15,6-9,7-10,8-11. \end{array}$

 $\begin{array}{l} 0-2, 1-3, 4-7, 5-8, 6-15, 9-11, 10-12, 13-16, 14-17;\\ 0-4, 1-5, 2-6, 3-8, 7-16, 9-13, 10-14, 11-15, 12-17;\\ 0-6, 1-7, 2-8, 3-4, 5-14, 9-15, 10-16, 11-17, 12-13;\\ 0-8, 1-10, 2-4, 3-6, 5-7, 9-17, 11-13, 12-15, 14-16;\\ 0-10, 1-9, 2-12, 3-11, 4-14, 5-16, 6-17, 7-15, 8-13;\\ 0-12, 1-11, 2-10, 3-15, 4-9, 5-13, 6-14, 7-17, 8-16;\\ 0-14, 1-13, 2-17, 3-16, 4-10, 5-9, 6-12, 7-11, 8-15;\\ 0-16, 1-15, 2-13, 3-14, 4-17, 5-11, 6-10, 7-9, 8-12;\\ \end{array}$