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Abstract

Recently, Braunstein et al. introduced normalized Laplacian matrices of graphs
as density matrices in quantum mechanics and studied the relationships between
quantum physical properties and graph theoretical properties of the underlying
graphs. We provide further results on the multipartite separability of Laplacian
matrices of graphs. In particular, we identify complete bipartite graphs whose
normalized Laplacian matrix is multipartite entangled under any vertex labeling.
Furthermore, we give conditions on the vertex degrees such that there is a vertex
labeling under which the normalized Laplacian matrix is entangled. These results
address an open question raised in Braunstein et al. Finally, we show that the
Laplacian matrix of any product of graphs (strong, Cartesian, tensor, lexicograph-
ical, etc.) is multipartite separable, extending analogous results for bipartite and
tripartite separability.

1 Introduction

The objects of study in this paper are density matrices of quantum mechanics. Density
matrices are used to describe the state of a quantum system and are fundamental mathe-
matical constructs in quantum mechanics. They play a key role in the design and analysis
of quantum computing and information systems [1].

Definition 1 A complex matrix A is a density matrix if it is Hermitian, positive semidef-
inite and has unit trace.

Remark: In this paper we will often use the following simple fact: 1
tr(A)

A is a density
matrix if A is Hermitian, positive semidefinite and has a strictly positive trace. We will
refer to 1

tr(A)
A as a normalization of A.
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Definition 2 A complex matrix A is row diagonally dominant if Aii ≥
∑

j 6=i |Aij| for all
i.

By Gershgorin’s circle criterion, all the eigenvalues of a row diagonally dominant ma-
trix has nonnegative real parts. Thus a nonzero Hermitian row diagonally dominant ma-
trix is positive semidefinite and has a strictly positive trace, and such a matrix normalized
is a density matrix.

A key property of a density matrix is its separability. The property of nonseparabil-
ity plays an important role in generating the myriad of counterintuitive phenomena in
quantum mechanics.

Definition 3 A density matrix A is separable in Cp1×Cp2 ×· · ·×Cpm if it can be written
as A =

∑

i ciA
1
i ⊗· · ·⊗Am

i where ci ≥ 0,
∑

i c1 = 1 and A
j
i are density matrices in Cpj×pj .

A density matrix is entangled if it is not separable.

2 Laplacian matrices as density matrices

The Laplacian matrix of a graph is defined as L = D − A , where D is the diagonal
matrix of the vertex degrees and A is the adjacency matrix. The matrix L is symmetric
and row diagonally dominant, and therefore for a nonempty1 graph the matrix 1

trL
L is a

density matrix. In Ref. [2], such normalized Laplacian matrices are studied as density
matrices and quantum mechanical properties such as entanglement of various types of
graph Laplacian matrices are studied. This approach was further investigated in [3] where
it was shown that the Peres-Horodecki necessary condition for separability is equivalent
to a condition on the partial transpose graph, and that this condition is also sufficient for
separability of block tridiagonal Laplacian matrices and Laplacian matrices in C

2 × C
q.

In [4] the tripartite separability of normalized Laplacian matrices is studied. In [5] several
classes of graphs were identified whose separability are easily determined.

As noted in [2], the separability of a normalized Laplacian matrix of a graph depends
on the labeling of the vertices. In the sequel, unless otherwise noted (for example, in The-
orem 3), we will assume a specific Laplacian matrix (and thus a specific vertex labeling)
when we discuss separability of Laplacian matrices of graphs. A vertex labeling can be
defined as:

Definition 4 For n = p1p2 · · · pm, a vertex labeling is a bijection between {1, . . . , n} and
{1, . . . , p1} × {1, . . . , p2} × · · · × {1, . . . , pm}.

3 Conditions for multipartite entanglement

In this section, we consider unweighted graphs, i.e. the adjacency matrix is a 0-1 matrix.

1A graph is empty if it has no edges. In this case the Laplacian matrix is the zero matrix and has zero
trace.
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Definition 5 Given a graph G with vertices V ×W , the partial transpose graph GpT is a
graph with vertices V × W and edges defined by:

{(u, v), (w, y)} is an edge of G if and only if {(u, y), (w, v)} is an edge of GpT .

Note that the partial transpose graph depends on the specific labeling of the vertices.
The partial transpose graph is useful in determining separability of the Laplacian matrix
of a graph with the same vertex labeling. In [5, 3] the following necessary condition for
separability is shown:

Theorem 1 If the normalized Laplacian matrix of G is separable then each vertex of G
has the same degree as the same vertex of GpT .

Corollary 1 If the normalized Laplacian matrix of G is separable then each vertex of G

has the same degree as the same vertex of G
pT

.

Proof: Follows from the fact that the degree condition in Theorem 1 is true for a graph
G if and only if it is true for the complement graph G. 2

In [3] the following sufficient condition for separability is shown:

Theorem 2 For a graph G, if for all 1 ≤ i, j ≤ p1, 1 ≤ k ≤ p2, i 6= j, the number of
edges from vertex (vi, wk) to vertices of the form (vj , ·) is the same as the number of edges
from vertex (vj , wk) to vertices of the form (vi, ·), then the normalized Laplacian matrix
of G is separable in Cp1 × Cp2.

3.1 Complete bipartite graphs

Theorem 3 Let n = p1p2 · · ·pm, where pi ≥ 2. If there exists i such that 1 ≤ r < n
pi

and
r 6≡ 0 mod pi, then the normalized Laplacian matrices of the complete bipartite graph
Kr,n−r and its complement graph Kr,n−r are entangled in Cp1 × Cp2 × · · · × Cpm for all
vertex labelings.

Proof: If A is entangled in C
p1 ×C

p2p3, then it is entangled in C
p1 ×C

p2 ×C
p3. So we

only need to consider the case n = p1p2. Without loss of generality we assume 1 ≤ r < p1

and r 6≡ 0 mod p2. Let the vertices of Kr,n−r be partitioned into two disjoint sets of
vertices A and B, with edges from every member of A to every member of B and |A| = r.
Since r 6≡ 0 mod p2, there exists vu such that (vu, wa) and (vu, wb) are vertices in A and B

respectively. The degree of (vu, wb) is r in G. Let us look at the degree of (vu, wb) in GpT .
Consider the vertices (vy, wb) for vy 6= vu. If (vy, wb) ∈ A, then {(vu, wb), (vy, wb)} is an
edge of both G and GpT . If (vy, wb) ∈ B, then {(vu, wa), (vy, wb)} is an edge of G and thus
{(vu, wb), (vy, wa)} is an edge of GpT . Thus we have identified p1 − 1 edges connected to
(vu, wb) in GpT . Finally {(vu, wa), (vu, wb)} is an edge in both G and GpT . Thus the degree
of (vu, wb) in GpT is at least p1 > r and thus by Theorem 1 the normalized Laplacian
matrix is entangled. The part about Kr,n−r follows from Corollary 1. 2

Note that Kr,n−r = Kr∪Kn−r is the union of two complete graphs. Since the normalized
Laplacian matrix of a complete graph is separable [2], this means that the union of graphs
does not necessarily preserve separability of Laplacian matrices.

the electronic journal of combinatorics 16 (2009), #R61 3



Corollary 2 Let n = p1p2 · · · pm, where pi ≥ 2. If 1 ≤ r < mini pi, then the normalized
Laplacian matrices of the graph Kr,n−r and its complement graph Kr,n−r are entangled in
Cp1 × Cp2 × · · · × Cpm under all vertex labelings.

Ref. [2] shows that the bipartite separability of K1,n−1 and Kn do not depend on the
vertex labeling. The normalized Laplacian matrix of K1,n−1 is entangled for all vertex
labelings and the normalized Laplacian matrix of Kn is separable for all vertex labelings.
It was posed as an open question in Ref. [2] whether there are other classes of graphs
with this property. Theorem 3 and Corollary 2 list additional classes of graphs whose
normalized Laplacian matrices are entangled under any vertex labeling.

If r ≡ 0 mod p2, then it is easy to find a vertex labeling such that Kr,n−r is separable
in Cp1 × Cp2. In fact, since in this case r = kp2 for some integer k, we assign the set
A to be vertices with coordinates (i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ p2 and this vertex labeling
will result in a separable density matrix by Theorem 2. On the other hand, the following
result shows that for nontrivial graphs Kr,n−r of more than 4 vertices, there exists a vertex
labeling such that the normalized Laplacian matrix is entangled.

Theorem 4 Let n = p1p2 · · · pm > 4, where pi ≥ 2. For all nonempty complete bipartite
graphs Kr,n−r, there exists a vertex labeling such that the normalized Laplacian matrices
of Kr,n−r and Kr,n−r are entangled in C

p1 × C
p2 × · · · × C

pm.

Proof: As before, we only need to consider the case n = p1p2. Without loss of
generality, let us assume that p1 ≤ p2 and r ≤ n

2
. Since Kr,n−r is not empty, 0 < r < n.

Let A and B be defined as in Theorem 3. If r < p1, then the result follows from Corollary
2. Suppose r = p1. Assign to the elements of A the labeling (v1, w2), (v2, w1), · · · , (vp1

, w1).
Assign an element of B the labeling (v1, w1). This vertex has degree r in G. An edge
in G from this vertex to each of the vertices of A in will remain an edge in GpT . Since
p2 ≥ 3, we can assign another vertex in B to (v1, w3). There is an edge {(v2, w1), (v1, w3)}
in G, so there is an edge {(v1, w1), (v2, w3)} in GpT and (v1, w1) has degree at least r + 1
in GpT . By Theorem 1 the normalized Laplacian matrix is entangled. Suppose r > p1.
Let p1 elements from A be assigned the labeling (v1, w1), (v2, w1), · · · , (vp1

, w1). Since
n − r ≥ n

2
≥ p2 > p2 − 1, we can pick p2 − 1 elements from B and assign them the

labeling (v1, w2), · · · , (v1, wp2
). Since each element of A is connected to each element of

B, {(vi, w1), (v1, wj)} is an edge in G for 1 ≤ i ≤ p1, 2 ≤ j ≤ p2. Thus {(v1, w1), (vi, wj)}
is an edge in GpT which means that (v1, w1) is connected to p1(p2 − 1) = n − p1 nodes,
i.e. it has degree at least n − p1 in GpT . The vertex (v1, w1) is in A so it has degree
n − r < n − p1 in G. Again the normalized Laplacian matrix is entangled by Theorem 1.
The part about Kr,n−r follows from Corollary 1. 2

In Section 5 we will show that the normalized Laplacian matrix of the complete graph
Kn is multipartite separable under any vertex labeling (Corollary 7). Are there graphs
besides the complete graph whose Laplacian matrix is multipartite separable for all vertex
labeling? Theorem 4 shows that they will not be complete bipartite graphs nor their
complement graphs. The results in the following section identify other classes of graphs
whose normalized Laplacian matrix is entangled for some vertex labeling.
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3.2 Vertex degree conditions for multipartite entanglement

For a vertex v, let deg(v) denote its vertex degree.

Theorem 5 Let n = p1p2 · · · pm, where pi ≥ 2. Let G be a nonempty graph such that
minw deg(w) < n

pi
− 1 for some i. Then there is a vertex labeling such that the normalized

Laplacian matrix of the graph G is entangled in Cp1 × Cp2 × · · · × Cpm.

Proof: As in Theorem 3 we only need to consider the case n = p1p2. Suppose that w is
the vertex with minimal degree d in G and without loss of generality, d < p2 − 1. We will
construct a vertex labeling such that the normalized Laplacian matrix is entangled. Let
N(w) be the set of neighbors of w. By definition, |N(w)| = d. We assign w = (v1, w1),
and (v1, wi), 2 ≤ i ≤ d+1 for the vertices in N(w). Since {(v1, w1), (v1, wi)}, 2 ≤ i ≤ d+1
is an edge of both G and GpT , w has degree at least d in GpT . Finally for a vertex
u 6∈ {w} ∪ N(w), deg(u) ≥ d. Since the graph is not empty, we can find u such that
deg(u) > 0. We set u = (v2, w1). There are 2 cases to consider. In case 1, u is connected
to a vertex y 6∈ {w} ∪ N(w). We set y = (v1, wp2

). This means that {(v1, w1), (v2, wp2
)}

is an edge in GpT . In case 2, u is connected to a vertex in N(w), say (v1, wc). Then
{(v1, w1), (v2, wc)} is an edge in GpT . In either case w has degree strictly larger than d in
GpT and the result follows from Theorem 1. 2

Corollary 3 Let n = p1p2 · · · pm, where pi ≥ 2. Let G be a noncomplete graph such that
maxw deg(w) > n− n

pi
for some i. Then there is a vertex labeling such that the normalized

Laplacian matrix of the graph G is entangled in Cp1 × Cp2 × · · · × Cpm.

Proof: Follows from Theorem 5 and Corollary 1. 2

Theorem 6 Let n = p1p2 · · · pm > 4, where pi ≥ 2. Let G be a nonempty graph such
that minw deg(w) < pi + n

pi
− 2 for some i. Then there is a vertex labeling such that the

normalized Laplacian matrix of the graph G is entangled in Cp1 × Cp2 × · · · × Cpm.

Proof: We assume without loss of generality that n = p1p2 and p2 > 2. Suppose vertex
w has minimal degree d. If d < p2 − 1 then the result follows from Theorem 5. Therefore
we assume that d ≥ p2 − 1. Assign w to (v1, w1). Let N(w) be the neighbors of w which
we partition into two sets A and B of size p2 − 2 and d − p2 + 2 respectively. Since
d ≥ p2 − 1 and p2 > 2 the sets A and B are both nonempty. We assign vertices in A to
(v1, w2), · · · , (v1, wp2−1). We assign vertices in B to (v2, w1), · · · , (vd−p2+3, w1). Note that
d − p2 + 3 ≤ p1 by hypothesis. It is clear that an edge in G from w to the elements in
N(w) will remain an edge in GpT . Thus w has degree at least d in GpT . Consider the
vertex (v2, w1) in B. It has degree ≥ d ≥ p2 − 1 ≥ 2. This means that it is connected to
a vertex (vu, wu) 6= (v1, w1). There are 3 cases to consider. In case 1, (vu, wu) is in A, i.e.
vu = v1. Thus there is an edge {(v1, wu), (v2, w1)} in G and an edge {(v1, w1), (v2, wu)} in
GpT . In case 2, (vu, wu) is in B. In this case, switch the assignment with a vertex in A and
this reduces it to case 1. In case 3, (vu, wu) 6∈ A ∪ B. We reassign it to (v1, wp2

). Then
{(v2, w1), (v1, wp2

)} is an edge in G and {(v1, w1), (v2, wp2
)} is an edge in GpT . In all cases,

the degree of w is strictly larger than d in GpT and the result follows from Theorem 1. 2
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Corollary 4 Let n = p1p2 · · · pm > 4, where pi ≥ 2. Let G be a noncomplete graph such
that maxw deg(w) > n − pi −

n
pi

+ 1 for some i. Then there is a vertex labeling such that
the normalized Laplacian matrix of the graph G is entangled in Cp1 × Cp2 × · · · × Cpm.

Proof: Follows from Theorem 6 and Corollary 1. 2

3.3 Bipartite separability in C
2 × C

2 and C
2 × C

3

The criterion that each vertex of G has the same degree as the same vertex in GpT was
shown in [3] to be a necessary and sufficient condition for normalized Laplacian matrices
to be separable in C2 × Cq. Checking this vertex degree criterion on all graphs of 4
vertices shows that the complete graph K4 and the two graphs in Fig. 1 are separable in
C2×C2 for all vertex labelings. For the graphs in Fig. 2 the normalized Laplacian matrix
is entangled for all vertex labelings. For all other graphs2 with 4 vertices, there exists
a vertex labeling such that the normalized Laplacian matrix is entangled and a vertex
labeling such that it is separable in C2 × C2.

Figure 1: Noncomplete graphs on 4 vertices whose normalized Laplacian matrices are
separable C2 × C2 regardless of the vertex labeling.

Figure 2: Graphs on 4 vertices whose normalized Laplacian matrices are entangled C2×C2

regardless of the vertex labeling.

For the case C2 × C3, the complete graph K6 is the only graph with 6 vertices such
that its normalized Laplacian matrix is separable in C2 ×C3 for all vertex labelings. The
6 graphs in Fig. 3 and their complement graphs have normalized Laplacian matrices that
are entangled under all vertex labelings. For all other graphs with 6 vertices, there exists
vertex labelings which results in a separable normalized Laplacian matrix and vertex
labelings which results in an entangled normalized Laplacian matrix.

2We exclude the empty graph from consideration, since the Laplacian matrix is the zero matrix and
has zero trace.
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Figure 3: Graphs on 6 vertices whose normalized Laplacian matrices are entangled in
C2×C3 regardless of the vertex labeling. Their complement graphs also have this property.

3.4 Multipartite separability in C2 × Cp2 × · · · × Cpm, n > 4

Theorem 7 Let n = 2p2p3 · · · pm > 4. If G is a graph that is not complete nor empty,
then there is a vertex labeling such that the normalized Laplacian matrix is entangled in
C

2 × C
p2 × · · · × C

pm.

Proof: By Theorem 6 such a vertex labeling exists if minw deg(w) ≤ n
2
− 1. By Corollary

4 such a vertex labeling exists if maxw deg(w) ≥ n
2
. It is clear that one of these two

inequalities must be satisfied for any graph. 2

Is Theorem 7 true for the general case Cp1 ×Cp2 × · · ·×Cpm? Computer experiments
indicate that for 4 < n ≤ 9, n composite, for all noncomplete graphs there exists a vertex
labeling such that the normalized Laplacian matrix is entangled. It remains to be seen
whether this is true for all noncomplete graphs with n > 4.

4 A joint matrix decomposition result

Let I denote the identity matrix and J denote the matrix of all 1’s. The i-th unit vector
is denoted as ei.

Definition 6 For a complex matrix A, let |A| denote the real nonnegative matrix B such
that Bij = |Aij|. Let |A|∗ be the matrix B such that Bii = Aii and Bij = |Aij| for i 6= j.

Theorem 8 Let D be a diagonal real matrix and A be a Hermitian matrix. If D − A is
row diagonally dominant, then there exists λi, µi real numbers and vi n-vectors such that

D =
∑

i

µiviv
T
i

A =
∑

i

λiviv
T
i (1)

µi ≥ λi
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Proof: To prove that the pair (D, A) satisfy the conditions in Eqs. (1), we decompose A

and D into A = A1 + A2 and D = D1 + D2 such that the pairs (D1, A1) and (D2, A2)
each satisfies the conditions in Eqs. (1). Let r1, r2, · · · , rn be the row sums of |A|∗. Let
A1 = A − A2 where

A2 =















0
r2 − r1

r3 − r1

. . .

rn − r1















(2)

It is clear that all row sums of |A1|∗ is equal to r1. Let vi be the normalized eigenvectors
of A1 with eigenvalues λi. Thus A1 =

∑

i λiviv
T
i . Let D1 = r1I = r1

∑

i viv
T
i . By

Gershgorin’s circle criterion, λi ≤ r1, so (D1, A1) satisfies the conditons in Eqs. (1). Let
D2 = D − D1. The row diagonally dominant condition of D − A ensures that D2 is a
diagonal matrix such that (D2)ii ≥ (A2)ii. Since D2 and A2 can both be expressed as
D2 =

∑

i(D2)iieie
T
i and A2 =

∑

i(A2)iieie
T
i , the proof is complete. 2

Corollary 5 Let Dj be diagonal real matrices and Aj be Hermitian matrices. If Dj −Aj

is row diagonally dominant, then there exists λi, µi real numbers and vi n-vectors such
that

∑

j

Dj =
∑

i

µiviv
T
i

∑

j

Aj =
∑

i

λiviv
T
i (3)

µi ≥ λi

Theorem 9 Let Di be diagonal real matrices and Pi be Hermitian matrices in Cpi×pi.
Suppose Di −Pi is row diagonally dominant for 1 ≤ i ≤ m. If A = D1 ⊗ · · ·⊗Dm −P1 ⊗
· · ·⊗Pm, then 1

tr(A)
A is a separable density matrix in Cpi ×· · ·×Cpm, provided tr(A) 6= 0.

Proof: By Theorem 8 the matrices D1⊗· · ·⊗Dm and P1⊗· · ·⊗Pm can be decomposed

as ⊗j

∑

i µ
j
iv

j
i v

j
i

T
and ⊗j

∑

i λ
j
iv

j
i v

j
i

T
where µ

j
i ≥ λ

j
i . This means that A can be written

as A = ⊗j

∑

i

(

µ
j
i − λ

j
i

)

v
j
i v

j
i

T
, i.e. 1

tr(A)
A is separable. 2

Corollary 6 Let D
j
i be diagonal real matrices and P

j
i be Hermitian matrices for 1 ≤ i ≤

m, 1 ≤ j ≤ k. Suppose D
j
i − P

j
i is row diagonally dominant for 1 ≤ i ≤ m, 1 ≤ j ≤ k.

If A =
∑k

j=1 D
j
1 ⊗ · · · ⊗Dj

m − P
j
1 ⊗ · · · ⊗ P j

m, then 1
tr(A)

A is a separable density matrix in

Cpi × · · · × Cpm, provided tr(A) 6= 0.
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5 Multipartite separability of graph products

Definition 7 For a graph with adjacency matrix A, a matrix of the form L = D − A

where D is a diagonal real matrix such that L is row diagonally dominant is called a
generalized Laplacian matrix of the graph.

Definition 7 is different from the definition in [6] in that here we assume A to be
complex matrices and require row diagonal dominance. Clearly this definition does not
define L uniquely since there are many choices for the matrix D. However this will not
matter for the results in this section.

In the rest of this section we assume that the adjacency matrix A of a graph is a real
nonnegative matrix. In this case, a matrix element Aij > 0 can be considered as an edge
from vertex i to vertex j with weight Aij. Without loss of generality, we assume that
0 ≤ Aij ≤ 1.

Definition 8 For a complex matrix A, r(A) is the diagonal matrix such that r(A)ii =
∑

j Aij.

It is clear that r(|A|)−A is a Laplacian matrix of a graph with adjacency matrix A. The
following Lemma is easy to show.

Lemma 1 r(A ⊗ B) = r(A) ⊗ r(B), r(|A ⊗ B|) = r(|A|) ⊗ r(|B|)

A graph product of G and H (denoted as G ⋄ H) is defined as a graph with vertices
V (G) × V (H) and edges defined by:

{(u, v), (w, y)} is an edge if and only if Q is true. The relation Q is of the form
P1 ∨ P2 ∨ · · · , where each Pi is one of 8 conditions:

• R1 : (u adj w) ∧ (v adj y)

• R2 : (u adj w) ∧ (v = y)

• R3 : (u adj w) ∧ (v ¬adj y)

• R4 : (u = w) ∧ (v adj y)

• R5 : (u = w) ∧ (v ¬adj y)

• R6 : (u ¬adj w) ∧ (v adj y)

• R7 : (u ¬adj w) ∧ (v = y)

• R8 : (u ¬adj w) ∧ (v ¬adj y)

Thus there are 28 = 256 different types of graph products. Table 1 lists some possibilities
for Q and the common names associated to the corresponding graph product [7].

Let the adjacency matrices of G and H be G and H respectively. It is easy to show
that the adjacency matrix of a graph product G ⋄ H is

∑

i Ti where to each condition Pi

in Q corresponds a matrix Ti according to Table 2.
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Table 1: Commonly used graph products.
Condition Q name(s)

R1 tensor product, categorical product,
direct product, cardinal product

R1 ∨ R2 ∨ R4 strong product, normal product
R2 ∨ R4 Cartesian product

R1 ∨ R2 ∨ R3 ∨ R4 lexicographical product
R1 ∨ R2 ∨ R3 ∨ R4 ∨ R6 disjunctive product, co-normal product

Table 2: Matrices Ti corresponding to each of the 8 conditions Ri.
Condition Ti

(u adj w) ∧ (v adj y) G ⊗ H

(u adj w) ∧ (v = y) G ⊗ I

(u adj w) ∧ (v ¬adj y) G ⊗ (J − I − H)
(u = w) ∧ (v adj y) I ⊗ H

(u = w) ∧ (v ¬adj y) I ⊗ (J − I − H)
(u ¬adj w) ∧ (v adj y) (J − I − G) ⊗ H

(u ¬adj w) ∧ (v = y) (J − I − G) ⊗ I

(u ¬adj w) ∧ (v ¬adj y) (J − I − G) ⊗ (J − I − H)

Theorem 10 The complement graph of a graph product is another graph product.

Proof: We will prove this for a graph product of two graphs, as the general case is similar.
The adjacency matrix of G ⋄ H is

∑

i Ti. Its complement graph has adjacency matrix
J − I −

∑

i Ti = J ⊗ J − I ⊗ I −
∑

i Ti. Let c(P ) = J − I − P . The matrix J can be
decomposed as J = c(P )+I+P and J⊗J−I⊗I = (c(G)+I+G)⊗(c(H)+I+H)−I⊗I

is exactly the sum of the 8 possible Ti’s in Table 2. This means that the adjacency matrix
of the complement graph is also of the form

∑

i Ti and the proof is complete. 2

The following theorem shows that the normalized Laplacian matrix of a graph product
is multipartite separable.

Theorem 11 For a set of graphs Pi, if A is a Laplacian matrix of P1 ⋄ P2 ⋄ · · · ⋄ Pm

under the canonical vertex labeling, where ⋄ is a graph product and tr(A) 6= 0, then 1
tr(A)

A

is a separable density matrix in Cp1 × · · · × Cpm, where pi is the order of Pi.

Proof: Let B be the adjacency matrix of P1 ⋄ P2 ⋄ · · · ⋄ Pm. By Lemma 1, the diagonal
matrix of the row sums of |B| can be written as

∑

j ⊗iD
j
i and A can be written as

∑

j ⊗iD
j
i −

∑

j ⊗iT
j
i . The theorem is then a direct consequence of Corollary 6. 2

The special cases of tensor products (Q = R1) and m = 2 (bipartite separability),
m = 3 (tripartite separability) were proven in [2] and [4] respectively. The proof of
Theorem 11 can be used to show that Theorem 11 is true for generalized Laplacian
matrices of graph products even when the adjacency matrices are complex matrices.3

3In which case we define graph products via the matrices Ti’s.
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Note that the graphs in Fig. 1 are graph products.
The next result shows that the normalized Laplacian matrix of a complete graph is

multipartite separable.

Corollary 7 Let A = nI − J be the Laplacian matrix of the complete graph Kn, and
n = p1p2 · · · pm. Then 1

tr(A)
A is a separable density matrix in Cp1 × · · · × Cpm.

Proof: This follows from Theorem 11 and the fact that the complete graph Kpq is the
strong product of Kp and Kq. 2

Corollary 7 for the cases of m = 2 and m = 3 were proven in [2] and [4] respectively.

6 Conclusions

We continue the study of normalized Laplacian matrices of graphs as density matrices and
analyze their entanglement properties. In particular, we identify graphs whose normalized
Laplacian matrices are entangled for every vertex labeling or whose Laplacian matrices
are entangled for some vertex labeling. Furthermore, we show that normalized Laplacian
matrices of graph products are multipartite separable.
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