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Abstract

In this work we consider weighted lattice paths in the quarter planeN0 × N0. The
steps are given by(m,n) → (m − 1, n), (m,n) → (m,n − 1) and are weighted as
follows: (m,n) → (m − 1, n) by m/(m + n) and step(m,n) → (m,n − 1) by n/(m +
n). The considered lattice paths are absorbed at linesy = x/t − s/t with t ∈ N and
s ∈ N0. We provide explicit formulæ for the sum of the weights of paths, starting at
(m,n), which are absorbed at a certain heightk at linesy = x/t − s/t with t ∈ N and
s ∈ N0, using a generating functions approach. Furthermore theseweighted lattice paths
can be interpreted as probability distributions arising inthe context of Pólya-Eggenberger
urn models, more precisely, the lattice paths are sample paths of the well known sampling
without replacement urn. We provide limiting distributionresults for the underlying random
variable, obtaining a total of five phase changes.
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1 Introduction

1.1 Lattice paths

Let S ⊆ N0 × N0 denote a set of lattice points in the quarter plane1. We consider lattice paths
with steps(m, n) → (m − 1, n) and (m, n) → (m, n − 1), starting at(m, n) ∈ S. The
steps are weighted as follows: step(m, n) → (m − 1, n) is weighted bym/(m + n) and step
(m, n) → (m, n − 1) is weighted byn/(m + n). We are interested in weighted lattice paths
starting at(m, n) ∈ S, which touch or cross a certain liney = f(x) at heightk, with 0 ≤ k ≤ n
andS = Sy suitably defined. We consider the following types of lines:y = x/t − s/t, with
t ∈ N ands ∈ N0. In this case we haveS = {(m, n) |m ≥ tn + s, n ∈ N0}. We are interested
in the sum of the weights of all paths starting at(m, n) ∈ S and touchingy = x/t − s/t at
heightk, with 0 ≤ k ≤ n, not touching the liney before, which we callabsorption at liney.

From a probabilistic point of view we can interpret the desired numbers as probability dis-
tributions of a random variableYm,n, which can be described as follows. A particle is located
at a certain point(m, n) ∈ S, and moves randomly to the left or downwards with probabilities
depending on the actual position:

P{(m, n) → (m − 1, n)} =
m

m + n
, P{(m, n) → (m, n − 1)} =

n

m + n
.

The random variableYm,n describes the heightk at which a particle starting at(m, n) is ab-
sorbed, i.e., where it is touching or crossing a liney = f(x) for the first time. The searched
probabilityP{Ym,n = k} is then equal to the sum of the weights of all lattice paths, starting at
(m, n), which touch or cross the liney = f(x) at heightk. We can also formulate this problem
in the context of certain urn models.

1.2 Ṕolya-Eggenberger urn models and sampling without replacement

Pólya-Eggenberger urn models are defined as follows. We start with an urn containingn white
balls andm black balls. The evolution of the urn occurs in discrete timesteps. At every step
a ball is chosen at random from the urn. The color of the ball isinspected and then the ball is
reinserted into the urn. According to the observed color of the ball, balls are added/removed
due to the following rules. If we have chosen a white ball, we put into the urna white balls and
b black balls, but if we have chosen a black ball, we put into theurn c white balls andd black
balls. The valuesa, b, c, d ∈ Z are fixed integer values and the urn model is specified by the
2 × 2 ball replacement matrixM =

(

a b
c d

)

.
One of the most fundamental urn models is the so-calledsampling without replacement urn,

associated with the ball replacement matrixM =
( −1 0

0 −1

)

. In this urn model a parameter of
interest is the numberYm,n of remaining white balls, after all black balls have been removed,
starting withn white andm black balls. The formal setting is as follows. We have a statespace
S, which is given byS := {(m, n) | m, n ∈ N0}. Further we have a set of absorbing states
A := {(0, n) | n ∈ N0}, where the evolution of the urn stops.

1Throughout this work we use the notationsN := {1, 2, 3, . . .} andN0 := {0, 1, 2, . . .}.
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The problem of absorption at liney can also be formulated in the context of Pólya-Eggen-
berger urn models, where the state spaceS and the set of absorbing statesA are suitably
modified. E.g., fory = x/t − s/t we consider a sampling urn with ball replacement matrix
M =

(−1 0
0 −1

)

, where the state space is given byS = {(m, n) | m ≥ tn + s, n ∈ N0} and the
set of absorbing states byA = {(tm + s, m) | m ∈ N0}.

Figure 1: Sample paths for absorption atx = 0, y = x andy = x/2.

1.3 Motivation and related work

The main motivation for this study is to combine the different areas of lattice path enumeration,
see, e.g., Mohanty [11], Banderier and Flajolet [2], and Pólya-Eggenberger urn models, see
Flajolet et al. [3, 4], and Hwang et al. [6]. For the weighted lattice paths and absorbing lines
studied, we obtain closed formulæ for the probability of absorption at heightk. These explicit
results also allow a detailed study of the limiting behaviour of the random variableYm,n. We
can completely characterize the limit laws ofYm,n and phase changes appearing depending on
the growth behaviour ofm andn of the starting point(m, n).

The problem studied was also motivated by a combinatorial game involving card guessing,
which has been analyzed by Levasseur [10], Zagier [14], Sulanke [13] and Knopfmacher and
Prodinger [9]. One starts with a deck consisting ofm red andn black cards. A guess is made as
to the color of the top card, after which it is revealed and discarded. To maximize the number of
correct guesses one chooses the color corresponding to the majority of cards remaining in the
deck. We will revisit this problem and provide limiting distribution results.

Our analysis is based on a generating function approach: we will derive functional equations
for suitably defined generating functions and use argumentsof [1] in order to obtain explicit
formulæ for the probability functions of the considered random variables.

1.4 Results

Here we collect the exact and asymptotic results obtained for the weighted lattice paths studied.

Theorem 1. The probabilityP{Ym,n = k} that a particle starting at(m, n) is absorbed on the
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line y = x/t − s/t at heightk is given by the following explicit formula:

P{Ym,n = k} =

(

(t+1)k+s

k

)

(

(

m+n−1−s−(t+1)k
n−k

)

− t
(

m+n−1−s−(t+1)k
n−k−1

)

)

(

m+n

n

) ,

for m ≥ tn + s and0 ≤ k ≤ n, with t ∈ N, s ∈ N0.

In the next theorem we state the obtained limiting distribution results ofYm,n, depending on
the growth ofm andn, for absorbing linesy = x/t − s/t, with t ∈ N, s ∈ N0 fixed. We use

here the notationYn
L−→ Y for the weak convergence, i.e., the convergence in distribution, of a

sequence of random variablesYn to a random variableY . Furthermore we useY
L
= Z for the

equality in distribution of two random variablesY andZ.

Theorem 2. The limiting distribution behaviour ofYm,n is, for m → ∞ and depending on the
growth ofn = n(m), described as follows.

1. n = o(m): The random variableYm,n is asymptotically zero, asm tends to infinity:

P{Ym,n = 0} =
(m − s − tn)

(

m

s

)

(m + n − s)
(

m+n

s

) → 1.

2. n ∼ ρm, such that0 < ρ < 1
t
: The random variableYm,n weakly converges to a discrete

random variableXρ,

P{Yn,m = k} ∼ 1 − tρ

1 + ρ
·
(

(t + 1)k + s

k

)

ρk

(1 + ρ)(t+1)k+s
, k ∈ N0.

3. n ∼ m
t
, such thatn = m

t
− s

t
− ℓ, with m = o(ℓ2): The scaled random variableℓ

2t2

m2 Ym,n

is asymptotically Gamma distributed with shape parameter1
2

and scale parameter2(t+1)
t

,

m2

t2l2
P

{ℓ2t2Yn,m

m2
= x

}

∼
√

t
√

2(t + 1)
√

π
√

x
e
− xt

2(t+1) , x > 0.

4. n ∼ m
t
, such thatn = m

t
− s

t
− ℓ, with ℓ ∼ ρ

√
m andρ > 0: The scaled random variable

t
m

Ym,n weakly converges to a random variableYρ with densityfρ(x),

m

t
P

{ t

m
Ym,n = x

}

∼ fρ(x) =
ρt

√

2πx(1 + t) (1 − x)
3
2

e
− ρ2t2x

2(1+t)(1−x) , 0 < x < 1.

5. n ∼ m
t
, such thatn = m

t
− s

t
− ℓ, with ℓ → ∞ andℓ = o(

√
m): The shifted and scaled

random variable1
ℓ2

(m
t
− Ym,n) is asymptotically Ĺevy distributed with parametert

t+1
,

ℓ2
P

{ 1

ℓ2

(m

t
− Ym,n

)

= x
}

∼
√

t
√

2π(t + 1) x
3
2

e
− t

2x(t+1) , x > 0.
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6. n ∼ m
t
, such thatn ∼ m

t
− s

t
− ℓ, with ℓ ∈ N fixed: The shifted random variable

m
t
− s

t
− Ym,n weakly converges to a discrete random variableYℓ,

P

{m

t
− s

t
− Ym,n = k

}

∼ ttk

(1 + t)tk−ℓ

(

(t + 1)k − ℓ − 1

k − ℓ

)

ℓ

k
, k ≥ ℓ.

Remark 1. The Lévy distribution is a stable distribution. It is a special case of the Lévy skew
alpha-stable distribution, which in its general form does not have an analytically expressible
probability density. Furthermore the moments of the Lévy distribution do not exist. Hence, for
n ∼ m/t, such thatn = m/t − s/t − ℓ, with ℓ → ∞ andℓ = o(

√
m), the random variable

(m/t − Ym,n)/ℓ
2 converges in distribution, but without convergence of any integer moment.

The occurrence of the Lévy distribution was some kind of surprise for the authors. Note that in
the case of absorption at linex = 0 one can always prove moment convergence [3, 6, 7].

2 Linesy = x/t − s/t, with t ∈ N, s ∈ N0

2.1 Recurrences

Let ϕm,n(v) =
∑

k≥0 P{Ym,n = k}vk denote the probability generating function ofYm,n, where
Ym,n = Ym,n(s, t). We usually drop the dependence ofYm,n ons andt for the sake of simplicity.
By using the basic decomposition of the paths according to the first step and taking into account
the absorbing lines, the problem can be translated into the following recurrence:

ϕm,n(v) =
m

m + n
ϕm−1,n(v) +

n

m + n
ϕm,n−1(v), for m > tn + s, n ≥ 1,

ϕtm+s,m(v) = vm, for m ≥ 0, ϕm,0(v) = 1, for m ≥ s.

This recurrence will be treated by introducing the normalized functions

Φm,n(v) =

(

m + n

m

)

ϕm,n(v).

We obtain

Φm,n(v) = Φm−1,n(v) + Φm,n−1(v), for m > tn + s ≥ 1, (1a)

Φtm+s,m(v) =

(

(t + 1)m + s

m

)

vm, for m ≥ 0, Φm,0(v) = 1, for m ≥ s. (1b)

2.2 Generating functions

We introduce the trivariate generating function

F (z, u, v) =
∑

n≥0

∑

m≥tn+s

Φm,n(v)zmum−tn−s,
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and alsot + 1 auxiliary functionsFk(z, v) defined by

Fk(z, v) =
∑

n≥0

Φtn+s+k,n(v)ztn+s+k, for 0 ≤ k ≤ t.

Due to (1b) the generating functionF0(z, v) is already known:

F0(z, v) = zs
∑

n≥0

Φtn+s,n(v)ztn = zs
∑

n≥0

(

(t + 1)n + s

n

)

(vzt)n. (2)

Using (1a) we obtain the following functional equation forF (z, u, v):

(1 − zu − 1

ut
)F (z, u, v) = (1 − 1

ut
)F0(z, v) − 1

ut

t
∑

k=1

ukFk(z, v). (3)

It is advantageous to write equation (3) in the following form:

(zut+1 − ut + 1)F (z, u, v) = (1 − ut)F0(z, v) +

t
∑

k=1

ukFk(z, v). (4)

Remark 2. The standard approach for solving equation (4) is the kernelmethod2, we refer
to Prodinger [12] for a survey about this method, and the works of Banderier et al. [1, 2] for
applications. We will proceed in a slightly different way using a variation of the kernel method
based on arguments of Mireille Bousquet-Mélou [1].

2.3 Solving the functional equation

Equation (4) gives a simple relation between the unknown functionsF (z, u, v) andFk(z, v),
1 ≤ k ≤ t. In order to solve (4) we consider the so-called characteristic equation

P (z, u) = zut+1 − ut + 1 = 0.

By general considerations on the roots of the characteristic polynomialP (z, u), as figured out
in [2], it follows thatP (z, u) can be written in the following form:

P (z, u) = (zu − λt+1(z))(u − λ1(z))(u − λ2(z)) · · · (u − λt(z)),

with functionsλ1(z), . . . , λt+1(z) analytic aroundz = 0. In the following we use the abbrevia-
tion λi := λi(z), 1 ≤ i ≤ t + 1, where we do not express explicitly the dependence ofλi on z.
Now we use the fact thatF (z, u, v) is an analytic function in a neighbourhood ofz = 0. Thus
we can evaluateF (z, u, v) and therefore equation (4) atu = λ1(z), . . . , u = λt(z) for z in a

2A preliminary version of this work, where the kernel method has been used, can be found on the authors
websites and the arXiv.
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neighbourhood of0. SinceP (z, λi(z)) = 0, for 1 ≤ i ≤ t, we obtain from (4) after plugging in
u = λi, 1 ≤ i ≤ t, a system oft linear equations for the unknown functionsFk(z, v), 1 ≤ k ≤ t:

(1 − λt
1)F0(z, v) +

t
∑

k=1

λk
1Fk(z, v) = 0,

...
...

(1 − λt
t)F0(z, v) +

t
∑

k=1

λk
t Fk(z, v) = 0.

Applying Cramer’s rule we can write the solution of this linear system of equations as a quotient
of determinants, with1 ≤ k ≤ t:

Fk(z, v) = −

∣

∣

∣

∣

∣

∣

∣

λ1 ··· λk−1
1 1−λt

1 λk+1
1 ··· λt

1

λ2 ··· λk−1
2 1−λt

2 λk+1
2 ··· λt

2

...
...

...
...

...
...

λt ··· λk−1
t 1−λt

t λk+1
t ··· λt

t

∣

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

λ1 λ2
1 ··· λt

1

λ2 λ2
2 ··· λt

2

...
...

...
...

λt λ2
t ··· λt

t

∣

∣

∣

∣

∣

∣

−1

F0(z, v). (5)

By Bousquet-Mélou’s [1] observation we only need to deriveFt(z, v). In the casek = t we can
split thet-th row in the determinant appearing in the numerator of (5) and obtain easily:

Ft(z, v) =
( (−1)t

λ1λ2 · · ·λt

+ 1
)

F0(z, v). (6)

Now letN(z, u) denote the right-hand-side of the functional equation (4) for F (z, u, v):

N(z, u) := (1 − ut)F0(z, v) +
t

∑

k=1

ukFk(z, v).

The quantityN(z, u) is a polynomial inu with leading coefficientFt(z, v) − F0(z, v), whose
zeros are exactlyλ1, . . . , λt. Hence, after normalization, we have a leading monomialut, and
the normalized polynomial factors nicely into the following expression:

N(z, u)

Ft(z, v) − F0(z, v)
=

t
∏

k=1

(u − λk).

Since
(−1)t+1λ1 · · ·λtλt+1 = 1,

which is a direct consequence of the factorization ofP (z, u), we get

Ft(z, v) − F0(z, v) =
( (−1)t

λ1 · · ·λt

+ 1
)

F0(z, v) − F0(z, v) =
(−1)t

λ1 . . . λt

F0(z, v)

= −λt+1 F0(z, v).

Hence we finally obtain:

F (z, u, v) =
N(z, u)

P (z, u)
=

−λt+1F0(z, v)
∏t

k=1(u − λk)

(zu − λt+1)
∏t

k=1(u − λk)
=

λt+1

λt+1 − zu
F0(z, v). (7)
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2.4 Extracting coefficients

To obtain the required probabilities we only have to extractcoefficients of (7). By using the
definition ofF (z, u, v) we get

P{Ym,n = k} =
1

(

m+n

m

) [zmum−tn−svk]F (z, u, v) =
1

(

m+n

m

) [ztn+s(uz)m−tn−svk]
F0(z, v)

1 − zu
λt+1

=
1

(

m+n

m

) [ztn+svk]
F0(z, v)

λm−tn−s
t+1

=
1

(

m+n

m

) [ztnvk]

∑

l≥0

(

(t+1)l+s

l

)

(vzt)l

λm−tn−s
t+1

=

(

(t+1)k+s

k

)

(

m+n

m

) [zt(n−k)]
1

λt+1(z)m−tn−s
.

To extract coefficients from this expression we consider thecharacteristic equationzut+1 −
ut + 1 = 0. Multiplying with zt and using the substitutionλ := zu leads then to the equation

zt = λt(1 − λ).

Of course,λ = λt+1(z) is exactly the function implicitly defined by this equation,which sat-
isfiesλt+1(0) = 1. To apply the Lagrange inversion formula we introduce the substitutions
z̃ := zt andw := λ − 1 leading to the following equation, which is suitable for that:

z̃ = −(1 + w)tw.

Thus we obtain further:

P{Ym,n = k} =

(

(t+1)k+s

k

)

(

m+n

m

) [z̃n−k]
1

(1 + w)m−tn−s

=

(

(t+1)k+s

k

)

(

m+n

m

)

1

n − k
[wn−k−1]

( 1

(1 + w)m−tn−s

)′(
− 1

(1 + w)t

)n−k

=

(

(t+1)k+s

k

)

(

m+n

m

)

(−1)n−k−1(m − s − tn)

n − k
[wn−k−1]

1

(1 + w)m+1−tk−s

=

(

(t+1)k+s

k

)

(

m+n

m

)

m − s − tn

n − k

(

m − s + n − 1 − (t + 1)k

n − k − 1

)

=

(

(t+1)k+s

k

)

(

m+n

m

)

m − s − tn

m − s + n − (t + 1)k

(

m − s + n − (t + 1)k

n − k

)

,

for m ≥ tn + s and0 ≤ k ≤ n. Now we rewrite the probabilities obtained in the following
form, which is given in Theorem 1:

P{Ym,n = k} =

(

(t+1)k+s

k

)

(

(

m+n−1−s−(t+1)k
n−k

)

− t
(

m+n−1−s−(t+1)k
n−k−1

)

)

(

m+n

n

) ,

for m ≥ tn + s, with 0 ≤ k ≤ n.
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Remark 3. Due to the simplicity of the result concerning the linesy = x/t − s/t it is natural
to ask for a more direct derivation of the probabilities. In the following we will sketch such an
alternative combinatorial derivation. It is well known that the number of (unweighted) lattice
paths from(m, n) to the origin(0, 0) with unit steps to the left or downwards is given by

(

m+n

m

)

.
We need the following result, which can be found in Mohanty [11].

Lemma 1. The number of (unweighted) lattice paths from the origin to(m, n), which never
pass above the liney = x/t, is given by

m − tn + 1

m + n + 1

(

m + n + 1

n

)

=

(

m + n

n

)

− t

(

m + n

n − 1

)

.

Now we obtain the probabilitiesP{Ym,n = k} by fixing the last step and using Lemma 1:

P{Ym,n = k} = P{(m, n) → (tk + s, k) | y = (x − s)/t is not touched}.

By fixing the last step we get further

P{Ym,n = k} = P{(m, n) → (tk + s + 1, k) | y = (x − s)/t is not touched}
× P{(tk + s + 1, k) → (tk + s, k)}.

Furthermore,

P{Ym,n = k} =
#Paths

(

(m − tk − s − 1, n − k) → (0, 0) | y = x/t is not passed
)

#Paths

(

(m, n) → (0, 0)
)

× #Paths

(

(tk + s + 1, k) → (0, 0)
)

· tk + s + 1

(t + 1)k + s + 1

=

(

(

m+n−1−s−(t+1)k
n−k

)

− t
(

m+n−1−s−(t+1)k
n−k−1

)

)

(

(t+1)k+s+1
k

)

(

m+n

m

) · tk + s + 1

(t + 1)k + s + 1

=

(

(

m+n−1−s−(t+1)k
n−k

)

− t
(

m+n−1−s−(t+1)k
n−k−1

)

)

(

(t+1)k+s

k

)

(

m+n

m

) .

2.5 Deriving the limiting distributions

The main results of this paper, which describe the limiting distribution of Ym,n depending on
the growth behaviour ofm andn, are obtained from the probability mass function given in
Theorem 1 after a careful application of Stirling’s formula

n! =
√

2πn
(n

e

)n(

1 + O
( 1

n

)

)

. (8)

Note that one main difficulty is to “guess” the right normalizations required. Once the right
guess was made, we still had to carry out quite lengthy and tedious calculations in order to
obtain the stated results. Since these calculations are very lengthy, we will only present as an
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example the derivation of the local limit for the cases = 0 andn ∼ m
t
, such thatn = m

t
− ℓ,

with ℓ ∼ ρ
√

m andρ > 0. Other computations are carried out in a similar manner.

m

t
P{tYm,n

m
= x} ∼ ρt

√

2π(t + 1)x (1 − x)
3
2

(1 − ρ√
m(1+ 1

t
)(1−x)

)(1+ 1
t
)(1−x)m−ρ

√
m

(1 − ρt√
m(1−x)

)(1−x)m
t
−ρ

√
m

×
(1 − ρt√

m
)

m
t
−ρ

√
m

(1 − ρ√
m(1+ 1

t
)
)(1+ 1

t
)m−ρ

√
m

∼ ρt
√

2π(t + 1)x (1 − x)
3
2

((1 − ρt√
m(1−x)

)(1 − ρt√
m(1+t)

)

(1 − ρt√
m

)(1 − ρt√
m(1−x)(1+t)

)

)ρ
√

m

×

×
((1 − ρt√

m(1+t)(1−x)
)t+1

(1 − ρt√
m(1−x)

)

)
m
t

(1−x)( (1 − ρt√
m

)

(1 − ρt√
m(1+t)

)t+1

)
m
t

∼ ρt
√

2π(t + 1)x (1 − x)
3
2

e−
ρ2t

1−x e−
ρ2t

1+t

e−ρ2te−
ρ2t

(1+t)(1−x)

e
ρ2t(t+1

2 )
(1+t)2(1−x) e

−ρ2t(t+1
2 )

(1+t)2

∼ ρt
√

2πx(1 + t) (1 − x)
3
2

e
− ρ2t2x

2(1+t)(1−x) .

3 Limit laws for the card guessing game again revisited

One starts with a deck consisting ofm red andn black cards. A guess is made as to the color
of the top card, after which it is revealed and discarded. To maximize the number of correct
guesses one chooses the color corresponding to the majorityof cards remaining in the deck. Let
Zm,n denote the random variable counting the number of correct guesses starting withm red and
n black cards. The following result was obtained by Sulanke [13], and also by Knopfmacher
and Prodinger [9].

Theorem 3(Sulanke; Knopfmacher and Prodinger). The exact distribution of the random vari-
ableZm,n counting the number of correct guesses in the card guessing game starting withm
red andn black cards is given as follows:

P{Zm,n = k} =

(

m+n

k

)

−
(

m+n

k+1

)

(

m+n

m

) , for m ≤ k ≤ m + n.

Since no limit laws were derived in [9, 13], we complete the analysis by stating the limit
laws forZm,n.

Corollary 1. The random variableZm,n counting the number of correct guesses in the card
guessing game starting withm red andn black cards satisfies, form → ∞ and depending on
the growth ofn = n(m), the following limit laws.
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• The regionn = o(m): the centered random variableZ∗
m,n = Zm,n −m is asymptotically

zero:
P{Z∗

m,n = 0} = 1 − n

m + 1
∼ 1.

• The regionn ∼ ρm, with 0 < ρ < 1: the centered random variableZ∗
m,n = Zm,n − m is

asymptotically geometrically distributed with parameterρ:

P{Z∗
m,n = k} ∼ (1 − ρ)ρk, k ∈ N0.

• The regionn = m − ℓ, with m = o(ℓ2): the centered and scaled random variable
Z∗

m,n = ℓ
m

(Zm,n − m) is asymptotically exponential distributed:

m

ℓ
P{Z∗

m,n = x} ∼ e−x, x ≥ 0.

• The regionn = m − ℓ, with ℓ ∼ ρ
√

m and ρ > 0: the centered and scaled random
variableZ∗

m,n = (Zm,n − m)/
√

m weakly converges toZρ with densityfZρ
(x),

√
m P{Z∗

m,n = x} ∼ (ρ + 2x)e−x(ρ+x), x ≥ 0.

• The regionn = m − ℓ, with ℓ = o(
√

m): the centered and scaled random variable
Z∗

m,n = (Zm,n − m)/
√

m is asymptotically Rayleigh distributed:

√
m P{Z∗

m,n = x} ∼ 2te−t2 , x ≥ 0.

Proof sketch.The limiting distributions can be derived by an applicationof Stirling’s formula.
The calculations are again quite lengthy, so we leave the details to the interested reader.

Conclusion and Acknowledgement

We have analysed the distribution of weighted lattice pathsabsorbed at certain lines using a
generating function approach. Moreover, we have derived limiting distributions for the under-
lying random variable. A wealth of different distributionsarises in the limit depending on the
starting position. In one case we obtained the Lévy distribution, which implies that for this case
moment convergence does not hold. We address here the interesting open problem of extending
the studies of the limiting distribution behaviour of the height of the absorption to other absorb-
ing lines, and also to other classes of weighted lattice paths, or equivalently to other types of
Pólya-Eggenberger urn models, such as the OK-Corral urn model [3, 8] with ball replacement
matrixM =

(

0 −1
−1 0

)

.

The authors thank the referee for valuable remarks improving the presentation of this work.
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