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Abstract

An abelian square is a nonempty string of length 2n where the last n symbols

form a permutation of the first n symbols. Similarly, an abelian r’th power is a

concatenation of r blocks, each of length n, where each block is a permutation of

the first n symbols. In this note we point out that some familiar combinatorial

identities can be interpreted in terms of abelian powers. We count the number of

abelian squares and give an asymptotic estimate of this quantity.

1 Introduction

An abelian square of length 2n is a nonempty string of the form xx′, where |x| = |x′| =
n > 0 and x′ is a permutation of x. Two abelian squares in English are reappear and
intestines. Of course, the permutation can be the identity, so ordinary squares such as
murmur and hotshots are also considered to be abelian squares. Similarly, an abelian r’th
power is a concatenation of r blocks, each of length n, where each block is a permutation
of the first n symbols. For example, deeded is an abelian cube.

Abelian squares were introduced by Erdős [10, p. 240] and since then have been ex-
tensively studied in the combinatorics on words literature (see, for example, [1, p. 37]).
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In this note we point out that some familiar combinatorial identities can be interpreted
in terms of counting abelian powers. We discuss enumerating the abelian squares over an
alphabet of size k and give an asymptotic estimate for this quantity.

2 Preliminaries

Let fk(n) be the number of abelian squares of length 2n over an alphabet Σ with k letters.
Without loss of generality, we assume that Σ = {1, 2, . . . , k}.

Given a string x with |x| = n, the signature of x is defined to be the vector enumerating
the number of 1’s, 2’s, etc. in x. (In computer science, this vector is sometimes called the
Parikh vector.) For example, the signature of 213313 is (2, 1, 3). Hence a string xx′ is an
abelian square iff the signatures of x and x′ are the same.

The following table enumerates fk(n) for the first few values of k and n, together with
the sequence numbers from Sloane’s Encyclopedia [18].

k\n 0 1 2 3 4 5 6 Sloane
1 1 1 1 1 1 1 1 A000012
2 1 2 6 20 70 252 924 A000984
3 1 3 15 93 639 4653 35169 A002893
4 1 4 28 256 2716 31504 387136 A002895
5 1 5 45 545 7885 127905 2241225
6 1 6 66 996 18306 384156 8848236

Sloane A000012 A000027 A000384

Examination of this table suggests that f2(n) =
(
2n
n

)
, and indeed, this can be proved

as follows. Suppose we choose the positions of the 1’s in the first n symbols; if there are
i of them, this can be done in

(
n
i

)
ways. Once we choose these, the remaining symbols of

the first n must be 2’s. The last n symbols must have the same signature as the first n,
and this can be done in

(
n
i

)
ways. So we get

f2(n) =
∑

0≤i≤n

(
n

i

)2

.

The sequence f2(n) is sequence A000984 in Sloane’s On-line Encyclopedia of Integer Se-

quences [18].
There is a nice combinatorial proof that this sum is actually

(
2n
n

)
. Consider a string

of length 2n, and choose n positions in it. If a position falls in the first half of the string,
make it 1; if a position falls in the last half of the string, make it 2. Of the remaining
unchosen positions, make them 2 if they fall in the first half and 1 if they fall in the last
half. It is easy to see that this gives a bijection with the set of abelian squares. Thus we
obtain f2(n) =

(
2n
n

)
.
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We can now use this idea to evaluate fk(n) in terms of fk−1(n). Choose the positions

of the 1’s in the first and last halves of the string; this can be done in
(

n
i

)2
ways. Now fill

in the remaining n − 2i positions with k − 1 symbols in fk−1(n − i) ways. Thus

fk(n) =
∑

0≤i≤n

(
n

i

)2

fk−1(n − i) =
∑

0≤i≤n

(
n

n − i

)2

fk−1(n − i) =
∑

0≤j≤n

(
n

j

)2

fk−1(j).

For k = 3 this gives

f3(n) =
∑

0≤i≤n

(
n

i

)2(
2i

i

)

.

The sequence f3(n) is sequence A002893 in Sloane’s On-line Encyclopedia of Integer Se-

quences.
More generally, we can write fk1+k2

(n) in terms of fk1
(n) and fk2

(n). We have

fk1+k2
(n) =

∑

0≤i≤n

(
n

i

)2

fk1
(i)fk2

(n − i), (1)

a formula originally given by Barrucand [3, 4, 17]. We can prove the formula by counting
abelian squares of length kn over an alphabet of size k = k1 + k2, in two different ways.

To see this, suppose the first n symbols have i occurrences of the symbols 1, 2, . . . , k1.
Note that we can choose the positions where the symbols 1, . . . , k1 will go in the first n
symbols in

(
n
i

)
ways, and where they will go in the last n symbols in

(
n
i

)
ways. Once

the positions are chosen, we can fill them in with 1, . . . , k1 in fk1
(i) ways. The remaining

positions can be filled with the remaining symbols k1 + 1, k1 + 2, . . . , k1 + k2 in fk2
(n− i)

ways.
For k1 = k2 = 2, we get

f4(n) =
∑

0≤i≤n

(
n

i

)2(
2i

i

)(
2n − 2i

n − i

)

.

The sequence f4(n) is sequence A002895 in Sloane’s On-line Encyclopedia of Integer Se-

quences.
A general formula is

fk(n) =
∑

n1+···+nk=n

(
n

n1 n2 · · · nk

)2

, (2)

which follows from choosing the signature of the first half of the string and then matching
it in the second. Here ni counts the number of occurrences of i, and

(
n

n1 n2 ··· nk

)
is the

multinomial coefficient n!
n1!n2!···nk!

.

For k = 3, the formula (2) was studied by Barrucand [5, 6]; also see the paper of Callan
[7]. More recently, Callan [8] has given some beautiful combinatorial interpretations that
can be viewed in terms of abelian powers.
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Finding a closed form for the sum in (2) was stated as a problem by Richards and
Cambanis [15]. Our Theorem 4 was first conjectured (with a typographical error) by
Ruehr [17]. The first author and Rousseau [16] gave a derivation of this formula based on
work of Barrucand [3] and Hayman [12]. In this paper we give another derivation of this
formula. Cioabă [9] mentioned the sum in (2) and say that “obtaining a closed formula
... seems to be an interesting and difficult combinatorial problem in itself”.

3 Asymptotics

In this section we use the formula (2) to obtain the asymptotic behavior of fk(n) as n → ∞.
In what follows we shamelessly apply the factorial function to noninteger arguments, using
the standard definition x! = Γ(x + 1), where Γ is the well-known gamma function.

First, let’s consider the asymptotics of

(
n

n1 n2 · · · nk

)

. (3)

We use an idea that is due (more or less) to Lagrange [13]. The maximum of the multi-
nomial coefficient (3) occurs when ni = n

k
, so write ni = n

k
+ xi

√
n. Thus

n =
∑

1≤i≤k

ni = n +
∑

1≤i≤k

xi

√
n,

and so
∑

1≤i≤k xi = 0.
Stirling’s formula states that

n! = en log n−n
√

2πn
(
1 + O(n−1)

)
as n → ∞. (4)

Using Taylor’s formula

log(1 + y) = y − y2

2
+ O(y3) with y :=

xik√
n

, (5)

we get

log ni = log
(n

k
+ xi

√
n
)

= log

(
n

k

(

1 +
xik√

n

))

= log
n

k
+ log

(

1 +
xik√

n

)

= log
n

k
+

xik√
n
− 1

2

x2
i k

2

n
+ O(x3

i n
−3/2).
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Hence

ni log ni =
(n

k
+ xi

√
n
)(

log
n

k
+

xik√
n
− 1

2

x2
i k

2

n
+ O(x3

i n
−3/2)

)

=
(n

k
+ xi

√
n
)

log
n

k
+
√

nxi +
1

2
kx2

i + O(x3
i n

−1/2).

Thus,

ni log ni − ni =
(n

k
+ xi

√
n
)

log
n

k
+

1

2
kx2

i −
n

k
+ O(x3

i n
−1/2) (6)

and hence if |xi| ≤ nǫ for some 0 < ǫ < 1
6
, we get

∑

1≤i≤k

(ni log ni − ni) = n log
n

k
− n +

(

1

2
k
∑

1≤i≤k

x2
i

)

+ O(n−1/2+3ǫ), (7)

where we have used the fact that
∑

1≤i≤k xi = 0.
Thus

∏

1≤i≤k

(n

k
+ xi

√
n
)

! ∼ exp

(

n log
n

k
− n +

(

1

2
k
∑

1≤i≤k

x2
i

)

+ O(n−1/2+3ǫ)

)
(

2π
n

k

)k/2

. (8)

Hence for |xi| ≤ nǫ we get
(

n

n1 n2 · · · nk

)

=
n!

∏

1≤i≤k(
n
k

+ xi

√
n)!

∼ exp

(

n log k − k

2

∑

1≤i≤k

x2
i

)

(2πn)(1−k)/2kk/2

= kn exp

(

−k

2

∑

1≤i≤k

x2
i

)

(2πn)(1−k)/2kk/2,

and hence
(

n

n1 n2 · · · nk

)2

∼ k2n exp

(

−k
∑

1≤i≤k

x2
i

)

(2πn)1−kkk. (9)

Now let’s approximate the sum

∑

n1+n2+···+nk=n

(
n

n1 n2 · · · nk

)2

with the multiple integral

k2n(2πn)1−kkk

∫ n

0

∫ n

0

· · ·
∫ n

0
︸ ︷︷ ︸

k−1

exp

(

−k
∑

1≤i≤k

x2
i

)

dn1dn2 · · ·dnk−1 =
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k2n(2πn)1−kkkn(k−1)/2 ×
∫ ∞

−∞

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

k−1

exp



−k
∑

1≤i≤k−1

x2
i − k

(
∑

1≤i≤k−1

xi

)2


 dx1dx2 · · · dxk−1. (10)

where we have used the fact that dni =
√

n dxi and xk = −x1 − x2 − · · · − xk−1.
Note that the integrand is guaranteed to be asymptotic to the quantity we want only

if |xi| ≤ nǫ, but outside this region the integrand is exponentially small.
In order to evaluate the multiple integral (10), we need three lemmas.

Lemma 1. If a > 0, then

∫ ∞

−∞

exp
(
−(ax2 + bx + c)

)
dx = exp

(
b2

4a
− c

)

π1/2a−1/2.

Proof. This can essentially be found, for example, in [11, Eq. 3.323.2], but for completeness
we give the proof (also see [14]).

Complete the square, writing

ax2 + bx + c = a

(

x +
b

2a

)2

+ c − b2

4a
.

Make the substitution u = x + b
2a

to get

∫ ∞

−∞

exp
(
−(ax2 + bx + c)

)
dx = exp

(
b2

4a
− c

)∫ ∞

−∞

exp(−au2)du.

Now make the substitution v = a1/2u to get

∫ ∞

−∞

exp(−au2)du = a−1/2

∫ ∞

−∞

exp(−v2)dv.

The result now follows from the well-known evaluation
∫∞

−∞
exp(−v2)dv = π1/2.

Lemma 2. Let Sm,0 =
(∑

1≤i≤m x2
i

)
+
(∑

1≤i≤m xi

)2
, and for 1 ≤ l ≤ m define Sm,l by

π1/2

(
l

l + 1

)1/2

exp(−Sm,l) =

∫ ∞

−∞

exp(−Sm,l−1)dxl. (11)

Then

Sm,l =
l + 2

l + 1

∑

l+1≤j≤m

x2
j +

2

l + 1

∑

l+1≤i<j≤m

xixj .
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Proof. By induction on l. Clearly the result is true for l = 0. Now apply Lemma 1, with
a = l+2

l+1
, b = 2

l+1

∑

l+2≤j≤m xj , and c = l+2
l+1

∑

l+2≤j≤m x2
j + 2

l+1

∑

l+2≤i<j≤m xixj . We now
have

c − b2

4a
=

l + 2

l + 1

∑

l+2≤j≤m

x2
j +

2

l + 1

∑

l+2≤i<j≤m

xixj −
4

(l+1)2

(
∑

l+2≤j≤m xj

)2

4 l+2
l+1

=
l + 2

l + 1

∑

l+2≤j≤m

x2
j +

2

l + 1

∑

l+2≤i<j≤m

xixj −
∑

l+2≤j≤m x2
j

(l + 1)(l + 2)

− 2

∑

l+2≤i<j≤m xixj

(l + 1)(l + 2)

=
(l + 2)2 − 1

(l + 1)(l + 2)

∑

l+2≤j≤m

x2
j +

2(l + 2) − 2

(l + 1)(l + 2)

∑

l+2≤i<j≤m

xixj

=
l + 3

l + 2

∑

l+2≤j≤m

x2
j +

2

l + 2

∑

l+2≤i<j≤n

xixj

= Sm,l+1.

Thus we get

Lemma 3.
∫ ∞

−∞

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

m

exp (−Sm,0) dx1dx2 · · · dxm = πm/2(m + 1)−1/2.

Proof. Apply Lemma 2 iteratively, obtaining

∫ ∞

−∞

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

m

exp(−Sm,0)dx1dx2 · · · dxm

= π1/2

(
1

2

)1/2

π1/2

(
2

3

)1/2

· · · π1/2

(
m

m + 1

)1/2

= πm/2(m + 1)−1/2,

where we have used telescoping cancellation.

It now follows (by a change of variables), that

∫ ∞

−∞

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

k−1

exp (−kSk−1,0) dx1dx2 · · ·dxk−1 = π(k−1)/2k−k/2, (12)
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and so

∑

n1+n2+···+nk=n

(
n

n1 n2 · · · nk

)2

∼ k2n(2πn)1−kkkn(k−1)/2k−k/2π(k−1)/2

= k2n+k/221−kπ(1−k)/2n(1−k)/2.

We have proved

Theorem 4. Let k be an integer ≥ 2. Then, as n → ∞, we have

fk(n) ∼ k2n+k/2(4πn)(1−k)/2.

4 Remark

Our original motivation for estimating the number of abelian squares of length 2n over an
alphabet of size k was an attempt to use the Lovász local lemma [2, Chap. 5] to prove the
existence of an infinite word avoiding abelian squares. However, since by Theorem 4 the
chance that a randomly chosen string of length 2n is an abelian square is asymptotically

fk(n)/k2n ∼ kk/2(4πn)(1−k)/2 = Θ(n(1−k)/2),

this approach seems unlikely to work.
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