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Abstract

Let r, m, and n be positive integers such that rm = n. For each i ∈ {1, . . . ,m}
let Bi = {r(i − 1) + 1, . . . , ri}. The r-block connectivity of a tree on n labelled
vertices is the vertex connectivity of the graph obtained by collapsing the vertices
in Bi, for each i, to a single (pseudo-)vertex vi. In this paper we prove that, for
fixed values of r, with r ≥ 2, the r-block connectivity of a random tree on n vertices,
for large values of n, is likely to be either r − 1 or r, and furthermore that r − 1 is
the right answer for a constant fraction of all trees on n vertices.

1 Introduction

A random tree on n vertices, Tn, is the typical element of the probability space defined
over the nn−2 labelled trees on n vertices, assigning the uniform measure to each of its
elements (see for instance [5] and references therein).

Let r be a positive integer and define m such that rm = n. Consider the partition
B1, . . . , Bm of {1, . . . , n} such that Bi = {r(i− 1) + 1, . . . , ri}, for each i ∈ {1, . . . , m}. If
Tn is a tree on n vertices then its r-reduced graph Rr(Tn) is a graph on m vertices labelled
1, 2, . . . , m having an edge connecting vertices i and j for each edge in Tn connecting
a vertex u ∈ Bi to a vertex v ∈ Bj. We will also say that Tn r-reduces to graph G if
G = Rr(Tn). Note that Rr(Tn), in general, may contain cycles. In what follows, Rr(Tn)
will denote the r-reduced graph of a random tree on n vertices. In a companion paper [4]
we used random trees and their reduced graphs to study particular random instances of
the empire colouring problem (a variant of the classical planar graph colouring problem
defined by Heawood [2]). Here we are interested in the vertex connectivity of these graphs,
for each fixed value of r ≥ 2. Following [1, p. 9 – 10], a non-empty graph G is connected if
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any two of its vertices are linked by a path and for any positive integer d, it is d-connected
if |V (G)| > d and G−X is connected for any set X ⊆ V (G) with |X| < d. Obviously, for
each r ≥ 1, Rr(Tn) is connected since the original tree is connected and any path in that
graph is preserved in Rr(Tn). In fact, for r ≥ 2, there may be multiple paths between
any two vertices u, v ∈ R(Tn) since each consists of r vertices in the underlying tree and
each of the r2 pairs of vertices ui ∈ Bu, vi ∈ Bv are connected by a path in the tree.
This suggests that Rr(Tn) will be d-connected for some d depending on r. In the rest
of this paper we make this intuition more precise. More specifically, first we argue that
asymptotically almost surely (a.a.s.), that is with probability tending to one as n tends to
infinity, the connectivity of Rr(Tn) cannot be more than r. Then we show that, for each
fixed r ≥ 2, the probability that Rr(Tn) is not r-connected is lower bounded by a quantity
that approaches a positive value, dependent on r (but independent of n), as n tends to
infinity. Finally we argue that, a.a.s. the connectivity of Rr(Tn) is at least r − 1. The
first two results follow from a careful analysis of the properties of the vertices of degree
r in Rr(Tn). The last one, for r ≥ 3, will be proved by estimating the number of trees
whose r-reduced graph would be disconnected by the removal of a set S of (at most) r−2
vertices and showing that this number is o(nn−2).

2 Connectivity Upper Bounds

Let v be a vertex in Rr(Tn), we call v a funny vertex if the degree of v is r and v is incident
to a pair of edges incident to the same two distinct vertices of Rr(Tn) (one of them being
v). From now on any such pair of edges will be called a double edge. In this section
we study the number of vertices of degree r in Rr(Tn), and among those, the number of
funny vertices. Notice that the existence of a vertex v of degree r (resp. a funny vertex)
immediately implies that the connectivity of Rr(Tn) cannot be larger than r (resp. r− 1)
as in such case the removal of the neighbours of v would leave v as an isolated vertex.

2.1 The Number of Vertices of Degree r in Rr(Tn)

In this section we will use Chebyshev’s inequality to prove that, for fixed values of r ≥ 1,
Nr,n the number of vertices of degree r in Rr(Tn) is well approximated by its expected
value, in the sense that the probability that the (random) value of Nr,n is far from ENr,n

tends to zero, as n tends to infinity.

Lemma 1 Let positive integers r, and n be given, with r ≤ n. Then

ENr,n =
n

r

(

1 −
r

n

)n−2

EN2
r,n = ENr,n +

[

(

n

r

)2

−
n

r

]

(

1 −
2r

n

)n−2

.
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Proof. Let Er(v) denote the event “degRr(Tn)(v) = r”. We can write

Nr,n =
m
∑

v=1

IEr(v)

where IEr(v) is the random indicator for Er(v). The number of labelled trees on n vertices
in which r specific vertices are leaves is exactly (n− r)n−2 (this is easily understood, say,
via the correspondence between labelled trees and Prüfer codes [5]). Thus Pr[IEr(v) = 1] =
(

1 − r
n

)n−2
. The result on ENr,n follows.

Also we may write

EN2
r,n =

m
∑

u,v=1

Pr[IEr(v) = 1, IEr(u) = 1].

Given two distinct vertices u, v ∈ V (Rr(Tn)), the number of trees reducing to graphs in
which both u and v have degree r is equal to (n − 2r)n−2. Hence

EN2
r,n = ENr,n +

[

(

n

r

)2

−
n

r

]

(

1 −
2r

n

)n−2

.

Theorem 1 Let r be a fixed positive integer. Then

Nr,n =
n

r

(

1 −
r

n

)n−2

+ o(n) a.a.s.

Proof. For positive integers r and n, with n > r,

(

1 −
2r

n

)n−2

≤
(

1 −
r

n

)2(n−2)

.

From this and Lemma 1, it is easy to see that

VarNr,n ≤ ENr,n.

The result now follows readily from Chebyshev’s inequality.

2.2 The Asymptotic Distribution of the Funny Vertices in Rr(Tn)

The result in Theorem 1 implies that the connectivity of Rr(Tn) is a.a.s. at most r. In this
section we will further improve on this. Using the method of moments (see [3]) we find the
asymptotic distribution of the number of funny vertices in Rr(Tn). This, in turns, implies
that a simple upper bound on the probability that Rr(Tn) is r-connected approaches, as
n tends to infinity, a positive value smaller than one, dependent on r (but independent of
n).

We start by stating a simple Lemma regarding the exponential function that will be
used later.
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Lemma 2 For any real number z such that |z| ≤ 4
7
,

ez−z2

≤ 1 + z ≤ ez.

Proof. The upper bound is obvious. For the other inequality, if z > 0, note that, since
z < 1,

ez ≤ 1 + z +
z2

2
+ z3

(

1

3!
+

1

4!
+ . . .

)

= 1 + z +
z2

2
+ z3

(

e −
(

1 +
1

1!
+

1

2!

))

.

Hence,

ez ≤ 1 + z +
z2

2
+ (e − 2.5)z3

≤ (1 + z) + (1 + z)
z2

2
.

If z < 0 we can write ez as e−|z| and set x = |z|. We can thus write

e−x ≤ 1 − x +
x2

2
−

x3

3!
+

x4

4!
.

Now, since 1 − x
4
≥ 3

4
for x < 1, we can write

x3

3!
−

x4

4!
=

x3

3!

(

1 −
x

4

)

≥
x3

8
.

Therefore,

e−x ≤ 1 − x +
x2

2
−

x3

8
= 1 − x + x2

(

1

2
−

x

8

)

.

Since x ≤ 4
7
,
(

1
2
− x

8

)

≤ (1 − x) and so

e−x ≤ 1 − x + x2(1 − x).

In other words, since z = −x, we can write e−x = ez ≤ (1 + z)(1 + z2). Along with the
upper bound, this implies that ez ≤ (1+ z)ez2

. The lower bound follows by dividing both
sides by ez2

In what follows, Po(λ) will denote the Poisson probability law with average λ, and

expressions like Sn
D
→ Po(λ), describe the fact that, as n tends to infinity, the random

variable Sn converges in distribution to (a random variable with distribution) Po(λ). Let
Fr,n be the number of funny vertices in Rr(Tn). The following Lemma is key to our tight
estimates of the tth factorial moment of Fr,n, which in turn allow us to estimate the full
distribution of Fr,n.
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Lemma 3 Let r be a fixed positive integer with r ≥ 2. For any set of t > 0 vertices

v1, . . . , vt ∈ V (Rr(Tn)), the probability that v1, . . . , vt are funny vertices is

(

r

2

)t

rt (n − rt)n−2−t

nn−2
(1 + o(1))

as n tends to infinity.

Proof. For a vertex in Rr(Tn) to have minimum degree, each of its component tree
vertices must be a leaf in Tn, the number of trees in which v1, . . . , vt are funny is therefore
equal to the number of trees on n − rt vertices

(n − rt)n−rt−2

multiplied by the number of ways to add t groups of r vertices as leaves such that in each
group two vertices have parents in the same empire. For each group there are

(

r

2

)

choices

for the two vertices that are to have parents in the same empire, and r(n− rt) choices for
the parent vertices. For each 1 ≤ j ≤ t the number of ways to choose the vertices within
vj and their parents is therefore

(

r

2

)

r(n − rt).

We now must count the number of ways to choose parents for the remaining r−2 vertices
in each group, we can give an upper bound by allowing any remaining vertex in vj to
choose any of the (n − rt) vertices in the tree as its parent, giving a total of

(

r

2

)

r(n − rt)r−1 (1)

choices. This however, may overcount by counting trees more than once if there is more
than one double edge incident to vj. We therefore give a lower bound by counting only
trees in which there is only one double edge and all other vertices have parents in different
empires

(

r

2

)

r(n − rt)
r−2
∏

l=1

(n − rt − l) =

(

r

2

)

r(n − rt)r−1(1 + o(1)). (2)

It follows from (1) and (2) that the number of ways to add the rt vertices such that
v1, . . . , vt are funny is

(

r

2

)t

rt(n − rt)rt−t(1 + o(1)),

the result follows by multiplying this by the number of trees on n−rt vertices and dividing
by nn−2.

We are ready to state the main result of this section.
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Theorem 2 Let r be a fixed positive integer, with r ≥ 2. Then

Fr,n
D
→ Po

((

r

2

)

e−r

)

as n tends to infinity.

Proof. For integer t ≥ 1, let E(Fr,n)t be the tth factorial moment of Fr,n. Then

E(Fr,n)t =
∗
∑

v1,...,vt

Pr[v1, . . . , vt are funny vertices],

where the sum is over all t-tuples of distinct vertices v1, . . . , vt ∈ V (Rr(Tn)). We can see

that the number of ordered t-tuples is
(

n
r

)

t
, and by Lemma 3 the probability that all

vertices are funny is
(

r

2

)t

rt (n − rt)n−2−t

nn−2
(1 + o(1)).

The tth factorial moment of Fr,n is therefore

E(Fr,n)t =

(

r

2

)t
(n − rt)n−2−t

nn−2−t
(1 + o(1)). (3)

Using Lemma 2, we can bound (3) above by
((

r

2

)

e−r

)t

(1 + o(1)),

and below by
((

r

2

)

e−r− r
2

n

)t

(1 + o(1)).

The result follows, recalling that for a random variable Sn depending on n, if λ ≥ 0 is
such that

E(Sn)t → λt,

for all t ≥ 1 as n tends to infinity, then Sn
D
→ Po(λ) (see [3, Corollary 6.8]).

Let φr,n(k) denote the probability that Rr(Tn) contains k ≥ 0 funny vertices. If Rr(Tn)
contains one or more funny vertices, then the removal of the r − 1 neighbours of one of
these vertices would disconnect the graph. The probability that Rr(Tn) is r-connected can
therefore be bounded above by φr,n(0). The following result now is a direct consequence
of Theorem 2.

Corollary 1 Let r be a fixed positive integer with r ≥ 2, and n be a positive integer. Then

the probability that the graph Rr(Tn) is r-connected is at most φr,n(0) and furthermore

φr,n(0) → exp

{

−

(

r

2

)

e−r

}

as n tends to infinity.
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Figure 1: An example of (A,B, S)-arborescence (left) obtained from the
r-reduced graph of a tree, with r = 2, d = 4, and m = 20. The
sets of blocks S, A, and B are represented as sets of vertices. To
avoid cluttering the picture only the four blocks of S have been
represented as rectangles enclosing two vertices each. The vertices
of all blocks in A are to the left of S, those blocks in B are to the
right of S. The example on the right-hand side describes a more
general case in which FA ∪ FB is not a tree.

3 Connectivity Lower Bound

Let m, r and d be fixed positive integers and set n = mr. Let G be a connected graph1

on m vertices. If, for some d < m − 1, G is not (d + 1)-connected, then there exists a
partition of V (G) into non-empty sets A, B, and S, such that2 |S| = d and all edges
in the graph are either internal to one of the blocks or join a vertex in S to a vertex in
either A or B. If G is the r-reduced graph of some graph H (the definition of r-reduced
graph, given for trees in Section 1, readily generalizes to arbitrary graphs on n vertices)
and G is not d + 1-connected, the subgraph of H induced by the vertices in the blocks in
A ∪ S (resp. B ∪ S) will be denoted by FA (resp. FB) and will be such that each of its
components contains at least one vertex in one of the blocks of S. Note that FA ∪ FB is
not necessarily either connected or simple (see example on the right-hand side of Figure
1), however if FA ∪ FB is a tree (this is the case when G = Rr(Tn)), we call the pair
(FA, FB) an (A, B, S)-arborescence. We obtain an upper bound on the number of trees
on n vertices whose r-reduced graph would be disconnected by the removal of a set S of
vertices of size d by estimating the total number of (A, B, S)-arborescences definable on
a set of n vertices.

Given positive integers d, k, and n, and positive integers c1, . . . , ck with
∑k

i=1 ci = d,

1As we mentioned before, the r-reduced graph of a tree is always connected.
2We will only consider sets S containing exactly d vertices since if there is a smaller cut-set then any

set formed from this by adding more vertices to it while leaving A and B non-empty will also disconnect
the graph.
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let hn,d(c1, . . . , ck) be the number of forests spanning a set V of n + d vertices with k

components such that, for each i ∈ {1, . . . , k}, the ith component contains ci > 0 vertices
in a given set S ⊆ V of size d and xi other vertices in V \ S. Then

hn,d(c1, . . . , ck) ≤ d!
∑

x1,...,xk

((

n

x1, . . . , xk

)

k
∏

i=1

(xi + ci)
xi+ci−2

)

, (4)

where the sum is over all k-tuples of non-negative integers x1, . . . , xk summing to n.
The total number of (A, B, S)-arborescences on a set of n vertices is at most

Zn,r,d =

1

2
bn

r
−dc

∑

b=1





(

n
r

n
r
− b − d, b, d

)

∑

c
A,cB

hn−br−dr,dr(c
A
1 , . . . , cA

kA
)hbr,dr(c

B
1 , . . . , cB

kB
)



 , (5)

where the inner sum is over all ways to choose two non-empty sequences of positive integers
cA
1 , . . . , cA

kA
and cB

1 , . . . , cB
kB

adding up to dr. In the next section we will prove an upper
bound on this quantity that is valid for fixed values of r ≥ 2 and d < r, and sufficiently
large values of n. This in turn leads to the following result, bounding the number of trees
on n = mr vertices whose r-reduced graph is (r − 1)-connected. Its proof is deferred to
the end of the forthcoming section.

Theorem 3 Let r be a fixed positive integer with r > 1. There exists a positive constant

C ≤ ((r − 2)!)222r(r−2)(r − 1)(r−1)r−2r(r−1)2−1 such that, for any fixed ε ∈
(

0, r−1
r

)

, if n is

sufficiently large, then the number of trees Tn for which Rr(Tn) is not (r − 1)-connected

is at most Cnn−3+ε.

From Theorem 3, our result on the typical connectivity of Rr(Tn) follows as a simple
corollary.

Corollary 2 For any fixed integer r > 1, the r-reduced graph of a random tree on n

vertices is a.a.s. (r − 1)-connected.

Proof. By the previous Theorem, the number of trees on n vertices with r-reduced
graphs that are not (r − 1)-connected is at most Cnn−3+ε for some constant C. The
probability that a random tree will have an (r−1)-connected r-reduced graph is therefore
at least

1 −
C

n1−ε
.

3.1 Approximations and Proof Details

To complete our proofs we need to work on hn,d(c1, . . . , ck) first.
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Lemma 4 Let k and d be fixed positive integers. Then for any positive integer n, for all

positive integers c1, . . . , ck with
∑k

i=1 ci = d,

∑

x1,...,xk

(

n

x1, . . . , xk

)

k
∏

i=1

(xi + ci)
xi+ci−2 ≤ (n + d)n+d−2.

Proof. Consider the sets of vertices W = {w1, . . . , wn}, S = {u1, . . . , ud} and for
0 ≤ i ≤ d let di =

∑i
j=1 cj. Then,

(

n

x1, . . . , xk

)

k
∏

i=1

(xi + ci)
xi+ci−2

counts the number of trees T1, . . . , Tk, where for 1 ≤ i ≤ k, the tree Ti contains the vertices
udi−1+1, . . . , udi

and all vertices in Wi, given some arbitrary partition of W into k (possibly
empty) subsets Wi. By summing over all x1, . . . , xk we consider all such partitions.

We can connect this sequence of trees by adding an edge (udi−1+1, udi+1) for every
1 ≤ i ≤ k−1 to obtain a tree T with n+d vertices. By construction, a different sequence
of trees T1, . . . , Tk leads to a different tree T . Thus we obtain that the number of different
sequences of such trees T1, . . . , Tk is less than or equal to the number of different trees T

with n + d vertices, which is
(n + d)n+d−2.

Let r and d be fixed positive integers, with r > 1. For any positive integer n define

Yn,r,d(a, b) =

(

n
r

a, b, d

)

(ar + dr)ar+dr−2(br + dr)br+dr−2.

By (4) and Lemma 4,





(

n
r

n
r
− b − d, b, d

)

∑

c
A,cB

hn−br−dr,dr(c
A
1 , . . . , cA

kA
)hbr,dr(c

B
1 , . . . , cB

kB
)





is at most (d!)2Yn,r,d(a, b). In what follows we will consider Yn,r,d(a, b) as defined on the
set of positive integers a and b satisfying a + b = n

r
− d.

Lemma 4 enables us to simplify our counting. Zn,r,d can be bounded above by

Xn,r,d

(

1, n
2r

− d
2

)

where

Xn,r,d(b1, b2) = (d!)2C
b2
∑

b=b1

Yn,r,d

(

n

r
− b − d, b

)

,

and the positive constant C is the number of ways to choose two non-empty sequences of
positive integers cA, cB each summing to dr, this is 22dr by the binomial theorem. The
remainder of our argument is a proof that this quantity is small compared with nn−2.
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To prove Theorem 3 we will split Xn,r,r−2

(

1, 1
2
bn

r
− r + 2c

)

into two parts:

Xn,r,r−2

(

1,
1

2

⌊

n

r
− r + 2

⌋)

≤ Xn,r,r−2(1, bn
εc) + Xn,r,r−2

(

bnεc,
1

2

⌊

n

r
− r + 2

⌋)

for some ε ∈ (0, 1) to be chosen later. The following lemma shows that, for sufficiently
large n, Yn,r,d(a, b) is maximised when either a or b is as large as possible. This fact will

be used in turns to prove upper bounds on the two parts of Xn,r,r−2

(

1, 1
2
bn

r
− r + 2c

)

.

Lemma 5 Let n be a positive integer, and d and r be fixed positive integers with r > 1.
Then,

Yn,r,d(a + 1, b − 1) > Yn,r,d(a, b)

for any integer a and b with a > b ≥ 1, such that a + b = n
r
− d.

Proof. For a fixed positive d,

Yn,r,d(a + 1, b − 1)

Yn,r,d(a, b)
=

(

n

r

a+1,b−1,d

)

(

n

r

a,b,d

)

(ar + dr + r)ar+dr+r−2

(ar + dr)ar+dr−2

(br + dr − r)br+dr−r−2

(br + dr)br+dr−2

=
1

a + 1

(a + d + 1)(a+1)r+dr−2

(a + d)ar+dr−2
b
(b + d − 1)(b−1)r+dr−2

(b + d)br+dr−2
. (6)

Define the function f(x), for x ≥ 0, as

f(x) =
1

x + 1

(x + d + 1)(x+1)r+dr−2

(x + d)xr+dr−2
,

then (6) is equal to
f(a)f(b − 1)−1.

The statement of this Lemma therefore holds if f(x) is strictly monotone increasing for
x > 0. The first derivative of f(x) has the same sign as

r log
(

1 +
1

x + d

)

+
1 − d − dx − x2

(x + d + 1)(x + d)(x + 1)
.

Using Lemma 2 we can bound this below by

(r − 1)x3 + (r + 2(r − 1)d)x2 + (2d − 1)(r − 1)x + (d2 − 1)r + d

(x + d + 1)(x + d)(x + 1)
.

For positive x, d and r, every bracketed term in the last expression is non-negative and
so f ′(x) > 0 for all x > 0. Hence f(x) is strictly monotone increasing for x > 0 and the
result follows.
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Proof of Theorem 3. For r = 2 the result is obvious since trees are connected graphs.
For r > 2, we give an upper bound on Zn,r,d and hence on the number of trees Tn for
which the vertex set of Rr(Tn) can be split in three sets A, B and S with |S| = r − 2,

|B| = b for some b ∈
{

1, . . . , 1
2
bn

r
− r + 2c

}

, and |A| = n
r
− b− (r−2), and such that there

are no edges connecting A to B. First note that

Xn,r,r−2

(

1,
1

2

⌊

n

r
− r + 2

⌋)

≤ Xn,r,r−2(1, bn
εc) + Xn,r,r−2

(

bnεc,
1

2

⌊

n

r
− r + 2

⌋)

.

Lemma 5 allows us to bound Xn,r,r−2(1, bn
εc) above by making A as large as possible in

each term

Xn,r,r−2(1, bn
εc) ≤ Cnε

((

n
r

n
r
− r + 1, 1, r − 2

)

(n − r)n−r−2((r − 1)r)(r−1)r−2

)

.

The multinomial coefficient
(

n

r
n

r
−r+1,1,r−2

)

is at most
(

n
r

)r−1
, thus

Xn,r,r−2(1, bn
εc) ≤ ((r − 2)!)222r(r−2)nε

(

(

n

r

)r−1

(n − r)n−r−2((r − 1)r)(r−1)r−2

)

≤ C ′nn−3+ε (7)

for some constant 0 < C ′ ≤ ((r − 2)!)222r(r−2)(r − 1)(r−1)r−2r(r−1)2−1.

Next we look at Xn,r,r−2

(

bnεc, 1
2
bn

r
− r + 2c

)

. This part of Xn,r,r−2

(

1, 1
2
bn

r
− r + 2c

)

still contains a large number of terms, but each term is relatively small. By Lemma 5
moving vertices from B to A will increase the size of Yn,r

(

n
r
− b − (r − 2), b, r − 2

)

. We

can therefore bound Xn,r,r−2

(

bnεc, 1
2
bn

r
− r + 2c

)

above by

((r − 2)!)222r(r−2) n

2r
×

((

n
r

n
r
− r − bnεc + 2, bnεc, r − 2

)

(n − rbnεc)n−rbnεc−2(rbnεc + r2 − r)rbnεc+r2−r−2

)

.

In the expression above, the multinomial coefficient is at most
(

n
r

)bnεc+r−2
, and thus we

get (for n sufficiently large)

Xn,r,r−2

(

bnεc,
1

2

⌊

n

r
− r + 2

⌋)

≤ ((r − 2)!)222r(r−2)rr2

r(r−1)nε

nn−2+ε(r2−r−2)−(r−1−εr)nε

.

For r ≥ 2 and ε < r−1
r

, this means that

Xn,r,r−2

(

bnεc,
1

2

⌊

n

r
− r + 2

⌋)

≤ C ′′nn−3. (8)

for some constant 0 < C ′′ ≤ ((r − 2)!)222r(r−2)rr2

. The result follows by adding together
(7) and (8).
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