The Block Connectivity of Random Trees

Andrew R. A. McGrae Michele Zito
Department of Computer Science, University of Liverpool
Ashton Street, Liverpool L69 3BX (UK).
e-mail: (andrew|michele)@liverpool.ac.uk

Submitted: Aug 27, 2008; Accepted: Dec 29, 2008; Published: Jan 7, 2009
Mathematics Subject Classification: 05C80

Abstract

Let r, m, and n be positive integers such that $r m=n$. For each $i \in\{1, \ldots, m\}$ let $B_{i}=\{r(i-1)+1, \ldots, r i\}$. The r-block connectivity of a tree on n labelled vertices is the vertex connectivity of the graph obtained by collapsing the vertices in B_{i}, for each i, to a single (pseudo-)vertex v_{i}. In this paper we prove that, for fixed values of r, with $r \geq 2$, the r-block connectivity of a random tree on n vertices, for large values of n, is likely to be either $r-1$ or r, and furthermore that $r-1$ is the right answer for a constant fraction of all trees on n vertices.

1 Introduction

A random tree on n vertices, \mathcal{T}_{n}, is the typical element of the probability space defined over the n^{n-2} labelled trees on n vertices, assigning the uniform measure to each of its elements (see for instance [5] and references therein).

Let r be a positive integer and define m such that $r m=n$. Consider the partition B_{1}, \ldots, B_{m} of $\{1, \ldots, n\}$ such that $B_{i}=\{r(i-1)+1, \ldots, r i\}$, for each $i \in\{1, \ldots, m\}$. If T_{n} is a tree on n vertices then its r-reduced graph $R_{r}\left(T_{n}\right)$ is a graph on m vertices labelled $1,2, \ldots, m$ having an edge connecting vertices i and j for each edge in T_{n} connecting a vertex $u \in B_{i}$ to a vertex $v \in B_{j}$. We will also say that $T_{n} r$-reduces to graph G if $G=R_{r}\left(T_{n}\right)$. Note that $R_{r}\left(T_{n}\right)$, in general, may contain cycles. In what follows, $R_{r}\left(\mathcal{T}_{n}\right)$ will denote the r-reduced graph of a random tree on n vertices. In a companion paper [4] we used random trees and their reduced graphs to study particular random instances of the empire colouring problem (a variant of the classical planar graph colouring problem defined by Heawood [2]). Here we are interested in the vertex connectivity of these graphs, for each fixed value of $r \geq 2$. Following [1, p. 9-10], a non-empty graph G is connected if
any two of its vertices are linked by a path and for any positive integer d, it is d-connected if $|V(G)|>d$ and $G-X$ is connected for any set $X \subseteq V(G)$ with $|X|<d$. Obviously, for each $r \geq 1, R_{r}\left(\mathcal{T}_{n}\right)$ is connected since the original tree is connected and any path in that graph is preserved in $R_{r}\left(\mathcal{T}_{n}\right)$. In fact, for $r \geq 2$, there may be multiple paths between any two vertices $u, v \in R\left(\mathcal{T}_{n}\right)$ since each consists of r vertices in the underlying tree and each of the r^{2} pairs of vertices $u_{i} \in B_{u}, v_{i} \in B_{v}$ are connected by a path in the tree. This suggests that $R_{r}\left(\mathcal{T}_{n}\right)$ will be d-connected for some d depending on r. In the rest of this paper we make this intuition more precise. More specifically, first we argue that asymptotically almost surely (a.a.s.), that is with probability tending to one as n tends to infinity, the connectivity of $R_{r}\left(\mathcal{T}_{n}\right)$ cannot be more than r. Then we show that, for each fixed $r \geq 2$, the probability that $R_{r}\left(\mathcal{T}_{n}\right)$ is not r-connected is lower bounded by a quantity that approaches a positive value, dependent on r (but independent of n), as n tends to infinity. Finally we argue that, a.a.s. the connectivity of $R_{r}\left(\mathcal{T}_{n}\right)$ is at least $r-1$. The first two results follow from a careful analysis of the properties of the vertices of degree r in $R_{r}\left(\mathcal{T}_{n}\right)$. The last one, for $r \geq 3$, will be proved by estimating the number of trees whose r-reduced graph would be disconnected by the removal of a set S of (at most) $r-2$ vertices and showing that this number is $o\left(n^{n-2}\right)$.

2 Connectivity Upper Bounds

Let v be a vertex in $R_{r}\left(\mathcal{T}_{n}\right)$, we call v a funny vertex if the degree of v is r and v is incident to a pair of edges incident to the same two distinct vertices of $R_{r}\left(\mathcal{T}_{n}\right)$ (one of them being v). From now on any such pair of edges will be called a double edge. In this section we study the number of vertices of degree r in $R_{r}\left(\mathcal{T}_{n}\right)$, and among those, the number of funny vertices. Notice that the existence of a vertex v of degree r (resp. a funny vertex) immediately implies that the connectivity of $R_{r}\left(\mathcal{T}_{n}\right)$ cannot be larger than $r($ resp. $r-1)$ as in such case the removal of the neighbours of v would leave v as an isolated vertex.

2.1 The Number of Vertices of Degree r in $R_{r}\left(\mathcal{T}_{n}\right)$

In this section we will use Chebyshev's inequality to prove that, for fixed values of $r \geq 1$, $N_{r, n}$ the number of vertices of degree r in $R_{r}\left(\mathcal{T}_{n}\right)$ is well approximated by its expected value, in the sense that the probability that the (random) value of $N_{r, n}$ is far from $\mathbf{E} N_{r, n}$ tends to zero, as n tends to infinity.

Lemma 1 Let positive integers r, and n be given, with $r \leq n$. Then

$$
\begin{aligned}
& \mathbf{E} N_{r, n}=\frac{n}{r}\left(1-\frac{r}{n}\right)^{n-2} \\
& \mathbf{E} N_{r, n}^{2}=\mathbf{E} N_{r, n}+\left[\left(\frac{n}{r}\right)^{2}-\frac{n}{r}\right]\left(1-\frac{2 r}{n}\right)^{n-2}
\end{aligned}
$$

Proof. Let $\mathcal{E}_{r}(v)$ denote the event ${ }^{\operatorname{deg}} \operatorname{Re}_{R_{r}\left(\mathcal{I}_{n}\right)}(v)=r "$. We can write

$$
N_{r, n}=\sum_{v=1}^{m} I_{\mathcal{E}_{r}(v)}
$$

where $I_{\mathcal{E}_{r}(v)}$ is the random indicator for $\mathcal{E}_{r}(v)$. The number of labelled trees on n vertices in which r specific vertices are leaves is exactly $(n-r)^{n-2}$ (this is easily understood, say, via the correspondence between labelled trees and Prüfer codes [5]). Thus $\operatorname{Pr}\left[I_{\mathcal{E}_{r}(v)}=1\right]=$ $\left(1-\frac{r}{n}\right)^{n-2}$. The result on $\mathbf{E} N_{r, n}$ follows.

Also we may write

$$
\mathbf{E} N_{r, n}^{2}=\sum_{u, v=1}^{m} \operatorname{Pr}\left[I_{\mathcal{E}_{r}(v)}=1, I_{\mathcal{E}_{r}(u)}=1\right]
$$

Given two distinct vertices $u, v \in V\left(R_{r}\left(\mathcal{T}_{n}\right)\right)$, the number of trees reducing to graphs in which both u and v have degree r is equal to $(n-2 r)^{n-2}$. Hence

$$
\mathbf{E} N_{r, n}^{2}=\mathbf{E} N_{r, n}+\left[\left(\frac{n}{r}\right)^{2}-\frac{n}{r}\right]\left(1-\frac{2 r}{n}\right)^{n-2}
$$

Theorem 1 Let r be a fixed positive integer. Then

$$
N_{r, n}=\frac{n}{r}\left(1-\frac{r}{n}\right)^{n-2}+o(n) \quad \text { a.a.s. }
$$

Proof. For positive integers r and n, with $n>r$,

$$
\left(1-\frac{2 r}{n}\right)^{n-2} \leq\left(1-\frac{r}{n}\right)^{2(n-2)}
$$

From this and Lemma 1, it is easy to see that

$$
\operatorname{Var} N_{r, n} \leq \mathbf{E} N_{r, n}
$$

The result now follows readily from Chebyshev's inequality.

2.2 The Asymptotic Distribution of the Funny Vertices in $R_{r}\left(\mathcal{T}_{n}\right)$

The result in Theorem 1 implies that the connectivity of $R_{r}\left(\mathcal{T}_{n}\right)$ is a.a.s. at most r. In this section we will further improve on this. Using the method of moments (see [3]) we find the asymptotic distribution of the number of funny vertices in $R_{r}\left(\mathcal{T}_{n}\right)$. This, in turns, implies that a simple upper bound on the probability that $R_{r}\left(\mathcal{T}_{n}\right)$ is r-connected approaches, as n tends to infinity, a positive value smaller than one, dependent on r (but independent of $n)$.

We start by stating a simple Lemma regarding the exponential function that will be used later.

Lemma 2 For any real number z such that $|z| \leq \frac{4}{7}$,

$$
\mathrm{e}^{z-z^{2}} \leq 1+z \leq \mathrm{e}^{z}
$$

Proof. The upper bound is obvious. For the other inequality, if $z>0$, note that, since $z<1$,

$$
\begin{aligned}
\mathrm{e}^{z} & \leq 1+z+\frac{z^{2}}{2}+z^{3}\left(\frac{1}{3!}+\frac{1}{4!}+\ldots\right) \\
& =1+z+\frac{z^{2}}{2}+z^{3}\left(\mathrm{e}-\left(1+\frac{1}{1!}+\frac{1}{2!}\right)\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathrm{e}^{z} & \leq 1+z+\frac{z^{2}}{2}+(\mathrm{e}-2.5) z^{3} \\
& \leq(1+z)+(1+z) \frac{z^{2}}{2} .
\end{aligned}
$$

If $z<0$ we can write e^{z} as $\mathrm{e}^{-|z|}$ and set $x=|z|$. We can thus write

$$
\mathrm{e}^{-x} \leq 1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}
$$

Now, since $1-\frac{x}{4} \geq \frac{3}{4}$ for $x<1$, we can write

$$
\frac{x^{3}}{3!}-\frac{x^{4}}{4!}=\frac{x^{3}}{3!}\left(1-\frac{x}{4}\right) \geq \frac{x^{3}}{8} .
$$

Therefore,

$$
\mathrm{e}^{-x} \leq 1-x+\frac{x^{2}}{2}-\frac{x^{3}}{8}=1-x+x^{2}\left(\frac{1}{2}-\frac{x}{8}\right)
$$

Since $x \leq \frac{4}{7},\left(\frac{1}{2}-\frac{x}{8}\right) \leq(1-x)$ and so

$$
\mathrm{e}^{-x} \leq 1-x+x^{2}(1-x)
$$

In other words, since $z=-x$, we can write $\mathrm{e}^{-x}=\mathrm{e}^{z} \leq(1+z)\left(1+z^{2}\right)$. Along with the upper bound, this implies that $\mathrm{e}^{z} \leq(1+z) \mathrm{e}^{z^{2}}$. The lower bound follows by dividing both sides by $\mathrm{e}^{z^{2}}$

In what follows, $\operatorname{Po}(\lambda)$ will denote the Poisson probability law with average λ, and expressions like $S_{n} \xrightarrow{\mathrm{D}} \operatorname{Po}(\lambda)$, describe the fact that, as n tends to infinity, the random variable S_{n} converges in distribution to (a random variable with distribution) $\operatorname{Po}(\lambda)$. Let $F_{r, n}$ be the number of funny vertices in $R_{r}\left(\mathcal{T}_{n}\right)$. The following Lemma is key to our tight estimates of the $t^{t h}$ factorial moment of $F_{r, n}$, which in turn allow us to estimate the full distribution of $F_{r, n}$.

Lemma 3 Let r be a fixed positive integer with $r \geq 2$. For any set of $t>0$ vertices $v^{1}, \ldots, v^{t} \in V\left(R_{r}\left(\mathcal{T}_{n}\right)\right)$, the probability that v^{1}, \ldots, v^{t} are funny vertices is

$$
\binom{r}{2}^{t} r^{t} \frac{(n-r t)^{n-2-t}}{n^{n-2}}(1+o(1))
$$

as n tends to infinity.
Proof. For a vertex in $R_{r}\left(\mathcal{T}_{n}\right)$ to have minimum degree, each of its component tree vertices must be a leaf in \mathcal{T}_{n}, the number of trees in which v^{1}, \ldots, v^{t} are funny is therefore equal to the number of trees on $n-r t$ vertices

$$
(n-r t)^{n-r t-2}
$$

multiplied by the number of ways to add t groups of r vertices as leaves such that in each group two vertices have parents in the same empire. For each group there are $\binom{r}{2}$ choices for the two vertices that are to have parents in the same empire, and $r(n-r t)$ choices for the parent vertices. For each $1 \leq j \leq t$ the number of ways to choose the vertices within v^{j} and their parents is therefore

$$
\binom{r}{2} r(n-r t)
$$

We now must count the number of ways to choose parents for the remaining $r-2$ vertices in each group, we can give an upper bound by allowing any remaining vertex in v^{j} to choose any of the $(n-r t)$ vertices in the tree as its parent, giving a total of

$$
\begin{equation*}
\binom{r}{2} r(n-r t)^{r-1} \tag{1}
\end{equation*}
$$

choices. This however, may overcount by counting trees more than once if there is more than one double edge incident to v^{j}. We therefore give a lower bound by counting only trees in which there is only one double edge and all other vertices have parents in different empires

$$
\begin{equation*}
\binom{r}{2} r(n-r t) \prod_{l=1}^{r-2}(n-r t-l)=\binom{r}{2} r(n-r t)^{r-1}(1+o(1)) . \tag{2}
\end{equation*}
$$

It follows from (1) and (2) that the number of ways to add the $r t$ vertices such that v^{1}, \ldots, v^{t} are funny is

$$
\binom{r}{2}^{t} r^{t}(n-r t)^{r t-t}(1+o(1))
$$

the result follows by multiplying this by the number of trees on $n-r t$ vertices and dividing by n^{n-2}.

We are ready to state the main result of this section.

Theorem 2 Let r be a fixed positive integer, with $r \geq 2$. Then

$$
F_{r, n} \xrightarrow{\mathrm{D}} \mathrm{Po}\left(\binom{r}{2} \mathrm{e}^{-r}\right)
$$

as n tends to infinity.
Proof. For integer $t \geq 1$, let $\mathbf{E}\left(F_{r, n}\right)_{t}$ be the $t^{t h}$ factorial moment of $F_{r, n}$. Then

$$
\mathbf{E}\left(F_{r, n}\right)_{t}=\sum_{v^{1}, \ldots, v^{t}}^{*} \operatorname{Pr}\left[v^{1}, \ldots, v^{t} \text { are funny vertices }\right]
$$

where the sum is over all t-tuples of distinct vertices $v^{1}, \ldots, v^{t} \in V\left(R_{r}\left(\mathcal{T}_{n}\right)\right)$. We can see that the number of ordered t-tuples is $\left(\frac{n}{r}\right)_{t}$, and by Lemma 3 the probability that all vertices are funny is

$$
\binom{r}{2}^{t} r^{t} \frac{(n-r t)^{n-2-t}}{n^{n-2}}(1+o(1)) .
$$

The $t^{t h}$ factorial moment of $F_{r, n}$ is therefore

$$
\begin{equation*}
\mathbf{E}\left(F_{r, n}\right)_{t}=\binom{r}{2}^{t} \frac{(n-r t)^{n-2-t}}{n^{n-2-t}}(1+o(1)) . \tag{3}
\end{equation*}
$$

Using Lemma 2, we can bound (3) above by

$$
\left(\binom{r}{2} \mathrm{e}^{-r}\right)^{t}(1+o(1))
$$

and below by

$$
\left(\binom{r}{2} \mathrm{e}^{-r-\frac{r^{2}}{n}}\right)^{t}(1+o(1))
$$

The result follows, recalling that for a random variable S_{n} depending on n, if $\lambda \geq 0$ is such that

$$
\mathbf{E}\left(S_{n}\right)_{t} \rightarrow \lambda^{t}
$$

for all $t \geq 1$ as n tends to infinity, then $S_{n} \xrightarrow{\mathrm{D}} \operatorname{Po}(\lambda)$ (see [3, Corollary 6.8]).
Let $\phi_{r, n}(k)$ denote the probability that $R_{r}\left(\mathcal{T}_{n}\right)$ contains $k \geq 0$ funny vertices. If $R_{r}\left(\mathcal{T}_{n}\right)$ contains one or more funny vertices, then the removal of the $r-1$ neighbours of one of these vertices would disconnect the graph. The probability that $R_{r}\left(\mathcal{T}_{n}\right)$ is r-connected can therefore be bounded above by $\phi_{r, n}(0)$. The following result now is a direct consequence of Theorem 2.

Corollary 1 Let r be a fixed positive integer with $r \geq 2$, and n be a positive integer. Then the probability that the graph $R_{r}\left(\mathcal{T}_{n}\right)$ is r-connected is at most $\phi_{r, n}(0)$ and furthermore

$$
\phi_{r, n}(0) \rightarrow \exp \left\{-\binom{r}{2} \mathrm{e}^{-r}\right\}
$$

as n tends to infinity.

Figure 1: An example of (A, B, S)-arborescence (left) obtained from the r-reduced graph of a tree, with $r=2, d=4$, and $m=20$. The sets of blocks S, A, and B are represented as sets of vertices. To avoid cluttering the picture only the four blocks of S have been represented as rectangles enclosing two vertices each. The vertices of all blocks in A are to the left of S, those blocks in B are to the right of S. The example on the right-hand side describes a more general case in which $F_{A} \cup F_{B}$ is not a tree.

3 Connectivity Lower Bound

Let m, r and d be fixed positive integers and set $n=m r$. Let G be a connected graph ${ }^{1}$ on m vertices. If, for some $d<m-1, G$ is not $(d+1)$-connected, then there exists a partition of $V(G)$ into non-empty sets A, B, and S, such that ${ }^{2}|S|=d$ and all edges in the graph are either internal to one of the blocks or join a vertex in S to a vertex in either A or B. If G is the r-reduced graph of some graph H (the definition of r-reduced graph, given for trees in Section 1, readily generalizes to arbitrary graphs on n vertices) and G is not $d+1$-connected, the subgraph of H induced by the vertices in the blocks in $A \cup S$ (resp. $B \cup S$) will be denoted by $F_{A}\left(\right.$ resp. $\left.F_{B}\right)$ and will be such that each of its components contains at least one vertex in one of the blocks of S. Note that $F_{A} \cup F_{B}$ is not necessarily either connected or simple (see example on the right-hand side of Figure 1), however if $F_{A} \cup F_{B}$ is a tree (this is the case when $G=R_{r}\left(T_{n}\right)$), we call the pair $\left(F_{A}, F_{B}\right)$ an (A, B, S)-arborescence. We obtain an upper bound on the number of trees on n vertices whose r-reduced graph would be disconnected by the removal of a set S of vertices of size d by estimating the total number of (A, B, S)-arborescences definable on a set of n vertices.

Given positive integers d, k, and n, and positive integers c_{1}, \ldots, c_{k} with $\sum_{i=1}^{k} c_{i}=d$,

[^0]let $h_{n, d}\left(c_{1}, \ldots, c_{k}\right)$ be the number of forests spanning a set V of $n+d$ vertices with k components such that, for each $i \in\{1, \ldots, k\}$, the $i^{\text {th }}$ component contains $c_{i}>0$ vertices in a given set $S \subseteq V$ of size d and x_{i} other vertices in $V \backslash S$. Then
\[

$$
\begin{equation*}
h_{n, d}\left(c_{1}, \ldots, c_{k}\right) \leq d!\sum_{x_{1}, \ldots, x_{k}}\left(\binom{n}{x_{1}, \ldots, x_{k}} \prod_{i=1}^{k}\left(x_{i}+c_{i}\right)^{x_{i}+c_{i}-2}\right), \tag{4}
\end{equation*}
$$

\]

where the sum is over all k-tuples of non-negative integers x_{1}, \ldots, x_{k} summing to n.
The total number of (A, B, S)-arborescences on a set of n vertices is at most

$$
\begin{equation*}
Z_{n, r, d}=\sum_{b=1}^{\frac{1}{2}\left\lfloor\frac{n}{r}-d\right\rfloor}\left(\binom{\frac{n}{r}}{\frac{n}{r}-b-d, b, d} \sum_{\mathbf{c}^{A}, \mathbf{c}^{B}} h_{n-b r-d r, d r}\left(c_{1}^{A}, \ldots, c_{k_{A}}^{A}\right) h_{b r, d r}\left(c_{1}^{B}, \ldots, c_{k_{B}}^{B}\right)\right), \tag{5}
\end{equation*}
$$

where the inner sum is over all ways to choose two non-empty sequences of positive integers $c_{1}^{A}, \ldots, c_{k_{A}}^{A}$ and $c_{1}^{B}, \ldots, c_{k_{B}}^{B}$ adding up to $d r$. In the next section we will prove an upper bound on this quantity that is valid for fixed values of $r \geq 2$ and $d<r$, and sufficiently large values of n. This in turn leads to the following result, bounding the number of trees on $n=m r$ vertices whose r-reduced graph is $(r-1)$-connected. Its proof is deferred to the end of the forthcoming section.

Theorem 3 Let r be a fixed positive integer with $r>1$. There exists a positive constant $C \leq((r-2)!)^{2} 2^{2 r(r-2)}(r-1)^{(r-1) r-2} r^{(r-1)^{2}-1}$ such that, for any fixed $\epsilon \in\left(0, \frac{r-1}{r}\right)$, if n is sufficiently large, then the number of trees T_{n} for which $R_{r}\left(T_{n}\right)$ is not $(r-1)$-connected is at most $\mathrm{Cn}^{n-3+\epsilon}$.

From Theorem 3, our result on the typical connectivity of $R_{r}\left(\mathcal{T}_{n}\right)$ follows as a simple corollary.

Corollary 2 For any fixed integer $r>1$, the r-reduced graph of a random tree on n vertices is a.a.s. $(r-1)$-connected.

Proof. By the previous Theorem, the number of trees on n vertices with r-reduced graphs that are not $(r-1)$-connected is at most $C n^{n-3+\epsilon}$ for some constant C. The probability that a random tree will have an $(r-1)$-connected r-reduced graph is therefore at least

$$
1-\frac{C}{n^{1-\epsilon}}
$$

3.1 Approximations and Proof Details

To complete our proofs we need to work on $h_{n, d}\left(c_{1}, \ldots, c_{k}\right)$ first.

Lemma 4 Let k and d be fixed positive integers. Then for any positive integer n, for all positive integers c_{1}, \ldots, c_{k} with $\sum_{i=1}^{k} c_{i}=d$,

$$
\sum_{x_{1}, \ldots, x_{k}}\binom{n}{x_{1}, \ldots, x_{k}} \prod_{i=1}^{k}\left(x_{i}+c_{i}\right)^{x_{i}+c_{i}-2} \leq(n+d)^{n+d-2} .
$$

Proof. Consider the sets of vertices $W=\left\{w_{1}, \ldots, w_{n}\right\}, S=\left\{u_{1}, \ldots, u_{d}\right\}$ and for $0 \leq i \leq d$ let $d_{i}=\sum_{j=1}^{i} c_{j}$. Then,

$$
\binom{n}{x_{1}, \ldots, x_{k}} \prod_{i=1}^{k}\left(x_{i}+c_{i}\right)^{x_{i}+c_{i}-2}
$$

counts the number of trees T_{1}, \ldots, T_{k}, where for $1 \leq i \leq k$, the tree T_{i} contains the vertices $u_{d_{i-1}+1}, \ldots, u_{d_{i}}$ and all vertices in W_{i}, given some arbitrary partition of W into k (possibly empty) subsets W_{i}. By summing over all x_{1}, \ldots, x_{k} we consider all such partitions.

We can connect this sequence of trees by adding an edge ($u_{d_{i-1}+1}, u_{d_{i}+1}$) for every $1 \leq i \leq k-1$ to obtain a tree T with $n+d$ vertices. By construction, a different sequence of trees T_{1}, \ldots, T_{k} leads to a different tree T. Thus we obtain that the number of different sequences of such trees T_{1}, \ldots, T_{k} is less than or equal to the number of different trees T with $n+d$ vertices, which is

$$
(n+d)^{n+d-2}
$$

Let r and d be fixed positive integers, with $r>1$. For any positive integer n define

$$
Y_{n, r, d}(a, b)=\binom{\frac{n}{r}}{a, b, d}(a r+d r)^{a r+d r-2}(b r+d r)^{b r+d r-2} .
$$

By (4) and Lemma 4,

$$
\left(\binom{\frac{n}{r}}{\frac{n}{r}-b-d, b, d} \sum_{\mathbf{c}^{A}, \mathbf{c}^{B}} h_{n-b r-d r, d r}\left(c_{1}^{A}, \ldots, c_{k_{A}}^{A}\right) h_{b r, d r}\left(c_{1}^{B}, \ldots, c_{k_{B}}^{B}\right)\right)
$$

is at most $(d!)^{2} Y_{n, r, d}(a, b)$. In what follows we will consider $Y_{n, r, d}(a, b)$ as defined on the set of positive integers a and b satisfying $a+b=\frac{n}{r}-d$.

Lemma 4 enables us to simplify our counting. $Z_{n, r, d}$ can be bounded above by $X_{n, r, d}\left(1, \frac{n}{2 r}-\frac{d}{2}\right)$ where

$$
X_{n, r, d}\left(b_{1}, b_{2}\right)=(d!)^{2} C \sum_{b=b_{1}}^{b_{2}} Y_{n, r, d}\left(\frac{n}{r}-b-d, b\right),
$$

and the positive constant C is the number of ways to choose two non-empty sequences of positive integers $\mathbf{c}^{A}, \mathbf{c}^{B}$ each summing to $d r$, this is $2^{2 d r}$ by the binomial theorem. The remainder of our argument is a proof that this quantity is small compared with n^{n-2}.

To prove Theorem 3 we will split $X_{n, r, r-2}\left(1, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right)$ into two parts:

$$
X_{n, r, r-2}\left(1, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right) \leq X_{n, r, r-2}\left(1,\left\lfloor n^{\epsilon}\right\rfloor\right)+X_{n, r, r-2}\left(\left\lfloor n^{\epsilon}\right\rfloor, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right)
$$

for some $\epsilon \in(0,1)$ to be chosen later. The following lemma shows that, for sufficiently large $n, Y_{n, r, d}(a, b)$ is maximised when either a or b is as large as possible. This fact will be used in turns to prove upper bounds on the two parts of $X_{n, r, r-2}\left(1, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right)$.

Lemma 5 Let n be a positive integer, and d and r be fixed positive integers with $r>1$. Then,

$$
Y_{n, r, d}(a+1, b-1)>Y_{n, r, d}(a, b)
$$

for any integer a and b with $a>b \geq 1$, such that $a+b=\frac{n}{r}-d$.
Proof. For a fixed positive d,

$$
\begin{align*}
\frac{Y_{n, r, d}(a+1, b-1)}{Y_{n, r, d}(a, b)} & =\frac{\binom{\frac{n}{r}}{a+1, b-1, d}}{\binom{\frac{n}{n}}{a, b, d}} \frac{(a r+d r+r)^{a r+d r+r-2}}{(a r+d r)^{a r+d r-2}} \frac{(b r+d r-r)^{b r+d r-r-2}}{(b r+d r)^{b r+d r-2}} \\
& =\frac{1}{a+1} \frac{(a+d+1)^{(a+1) r+d r-2}}{(a+d)^{a r+d r-2}} b \frac{(b+d-1)^{(b-1) r+d r-2}}{(b+d)^{b r+d r-2}} \tag{6}
\end{align*}
$$

Define the function $f(x)$, for $x \geq 0$, as

$$
f(x)=\frac{1}{x+1} \frac{(x+d+1)^{(x+1) r+d r-2}}{(x+d)^{x r+d r-2}}
$$

then (6) is equal to

$$
f(a) f(b-1)^{-1}
$$

The statement of this Lemma therefore holds if $f(x)$ is strictly monotone increasing for $x>0$. The first derivative of $f(x)$ has the same sign as

$$
r \log \left(1+\frac{1}{x+d}\right)+\frac{1-d-d x-x^{2}}{(x+d+1)(x+d)(x+1)}
$$

Using Lemma 2 we can bound this below by

$$
\frac{(r-1) x^{3}+(r+2(r-1) d) x^{2}+(2 d-1)(r-1) x+\left(d^{2}-1\right) r+d}{(x+d+1)(x+d)(x+1)}
$$

For positive x, d and r, every bracketed term in the last expression is non-negative and so $f^{\prime}(x)>0$ for all $x>0$. Hence $f(x)$ is strictly monotone increasing for $x>0$ and the result follows.

Proof of Theorem 3. For $r=2$ the result is obvious since trees are connected graphs. For $r>2$, we give an upper bound on $Z_{n, r, d}$ and hence on the number of trees T_{n} for which the vertex set of $R_{r}\left(T_{n}\right)$ can be split in three sets A, B and S with $|S|=r-2$, $|B|=b$ for some $b \in\left\{1, \ldots, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right\}$, and $|A|=\frac{n}{r}-b-(r-2)$, and such that there are no edges connecting A to B. First note that

$$
X_{n, r, r-2}\left(1, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right) \leq X_{n, r, r-2}\left(1,\left\lfloor n^{\epsilon}\right\rfloor\right)+X_{n, r, r-2}\left(\left\lfloor n^{\epsilon}\right\rfloor, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right) .
$$

Lemma 5 allows us to bound $X_{n, r, r-2}\left(1,\left\lfloor n^{\epsilon}\right\rfloor\right)$ above by making A as large as possible in each term

$$
X_{n, r, r-2}\left(1,\left\lfloor n^{\epsilon}\right\rfloor\right) \leq C n^{\epsilon}\left(\binom{\frac{n}{r}}{\frac{n}{r}-r+1,1, r-2}(n-r)^{n-r-2}((r-1) r)^{(r-1) r-2}\right) .
$$

The multinomial coefficient $\binom{\frac{n}{r}}{\frac{n}{r}-r+1,1, r-2}$ is at most $\left(\frac{n}{r}\right)^{r-1}$, thus

$$
\begin{align*}
X_{n, r, r-2}\left(1,\left\lfloor n^{\epsilon}\right\rfloor\right) & \leq((r-2)!)^{2} 2^{2 r(r-2)} n^{\epsilon}\left(\left(\frac{n}{r}\right)^{r-1}(n-r)^{n-r-2}((r-1) r)^{(r-1) r-2}\right) \\
& \leq C^{\prime} n^{n-3+\epsilon} \tag{7}
\end{align*}
$$

for some constant $0<C^{\prime} \leq((r-2)!)^{2} 2^{2 r(r-2)}(r-1)^{(r-1) r-2} r^{(r-1)^{2}-1}$.
Next we look at $X_{n, r, r-2}\left(\left\lfloor n^{\epsilon}\right\rfloor, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right)$. This part of $X_{n, r, r-2}\left(1, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right)$ still contains a large number of terms, but each term is relatively small. By Lemma 5 moving vertices from B to A will increase the size of $Y_{n, r}\left(\frac{n}{r}-b-(r-2), b, r-2\right)$. We can therefore bound $X_{n, r, r-2}\left(\left\lfloor n^{\epsilon}\right\rfloor, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right)$ above by

$$
\begin{aligned}
& ((r-2)!)^{2} 2^{2 r(r-2)} \frac{n}{2 r} \times \\
& \quad\left(\binom{\frac{n}{r}}{\frac{n}{r}-r-\left\lfloor n^{\epsilon}\right\rfloor+2,\left\lfloor n^{\epsilon}\right\rfloor, r-2}\left(n-r\left\lfloor n^{\epsilon}\right\rfloor\right)^{n-r\left\lfloor n^{\epsilon}\right\rfloor-2}\left(r\left\lfloor n^{\epsilon}\right\rfloor+r^{2}-r\right)^{r\left\lfloor n^{\epsilon}\right\rfloor+r^{2}-r-2}\right) .
\end{aligned}
$$

In the expression above, the multinomial coefficient is at most $\left(\frac{n}{r}\right)^{\left\lfloor n^{\epsilon}\right\rfloor+r-2}$, and thus we get (for n sufficiently large)

$$
X_{n, r, r-2}\left(\left\lfloor n^{\epsilon}\right\rfloor, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right) \leq((r-2)!)^{2} 2^{2 r(r-2)} r^{r^{2}} r^{(r-1) n^{\epsilon}} n^{n-2+\epsilon\left(r^{2}-r-2\right)-(r-1-\epsilon r) n^{\epsilon}}
$$

For $r \geq 2$ and $\epsilon<\frac{r-1}{r}$, this means that

$$
\begin{equation*}
X_{n, r, r-2}\left(\left\lfloor n^{\epsilon}\right\rfloor, \frac{1}{2}\left\lfloor\frac{n}{r}-r+2\right\rfloor\right) \leq C^{\prime \prime} n^{n-3} \tag{8}
\end{equation*}
$$

for some constant $0<C^{\prime \prime} \leq((r-2)!)^{2} 2^{2 r(r-2)} r^{r^{2}}$. The result follows by adding together (7) and (8).

Acknowledgements. The authors are endebted to the anonymous referees for pointing out a mistake in our original counting of the number of (A, B, S)-arborescences, and, in general, for the thorough reading of the manuscript that lead to a number of comments that have helped to significantly improve the quality of the presentation.

References

[1] R. Diestel. Graph Theory 2nd edition, Springer-Verlag, New York, 2000.
[2] P. J. Heawood. Map colour theorem, Quarterly Journal of Pure and Applied Mathematics, 24:332-338, 1890.
[3] S. Janson, T. Luczak, A. Ruciński. Random Graphs, John Wiley \& Sons, 2000.
[4] A. R. A. McGrae, M. Zito. Colouring Random Empire Trees, In E. Ochmański and J. Tyszkiewicz, editors, Mathematical Foundations of Computer Science 2008, volume 5162 of Lecture Notes in Computer Science, pages 515-526. Springer-Verlag, 2008.
[5] J. W. Moon. Counting Labelled Trees, volume 1 of Canadian Mathematical Monographs, Canadian Mathematical Congress, 1970.

[^0]: ${ }^{1}$ As we mentioned before, the r-reduced graph of a tree is always connected.
 ${ }^{2}$ We will only consider sets S containing exactly d vertices since if there is a smaller cut-set then any set formed from this by adding more vertices to it while leaving A and B non-empty will also disconnect the graph.

