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Abstract

Let In be the ideal of all algebraic relations on the slopes of the
(

n
2

)

lines formed
by placing n points in a plane and connecting each pair of points with a line.
Under each of two natural term orders, the ideal of In is generated by monomials
corresponding to permutations satisfying a certain pattern-avoidance condition. We
show bijectively that these permutations are enumerated by the updown (or Euler)
numbers, thereby obtaining a formula for the number of generators of the initial
ideal of In in each degree.

The symbol N will denote the set of positive integers. For integers m ≤ n, we put
[n] = {1, 2, . . . , n} and [m,n] = {m,m + 1, . . . , n}. The set of all permutations of an
integer set P will be denoted SP , and the nth symmetric group is Sn (= S[n]). We will
write each permutation w ∈ SP as a word with n = |P | digits, w = w1 . . . wn, where
{w1, . . . , wn} = P . If necessary for clarity, we will separate the digits with commas.
Concatenation will also be denoted with commas; for instance, if w = 12 and w′ = 34,
then (w,w′, 5) = 12345. The reversal w∗ of w1w2 . . . wn−1wn is the word wnwn−1 . . . w2w1.
A subword of a permutation w ∈ SP is a word w[i, j] = wiwi+1 · · ·wj, where [i, j] ⊆ [n].
The subword is proper if w[i, j] 6= w. We write w ≈ w′ if the digits of w are in the same
relative order as those of w′; for instance, 58462 ≈ 35241.

Definition 1. Let P ⊂ N with n = |P | ≥ 2. A permutation w ∈ SP is a G-word if it
satisfies the two conditions

(G1) w1 = max(P ) and wn = max(P \ {w1}); and
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(G2) If n ≥ 4, then w2 > wn−1.

It is an R-word if it satisfies the two conditions

(R1) w1 = max(P ) and wn = max(P \ {w1}); and

(R2) If n ≥ 4, then w2 < wn−1.

A G-word (resp., an R-word) is primitive if for every proper subword x of length ≥ 4,
neither x nor x∗ is a G-word (resp., an R-word). The set of all primitive G-words (resp.,
on P ⊂ N, or on [n]) is denoted G (resp., GP , or Gn). The sets R, RP , Rn are defined
similarly.

For example, the word 53124 is a G-word, but not a primitive one, because it contains
the reverse of the G-word 4213 as a subword. The primitive G- and R-words of lengths
up to 6 are as follows:

G2 = {21},

G3 = {312},

G4 = {4213},

G5 = {52314, 53214},

G6 = {623415, 624315, 642315, 634215, 643215},

R2 = {21},

R3 = {312},

R4 = {4123},

R5 = {51324, 52134},

R6 = {614235, 624135, 623145, 621435, 631245}.

(1)

Clearly, if w ≈ w′, then either both w and w′ are (primitive) G- (R-)words, or neither
are; therefore, for all P ⊂ N, the set GP is determined by (and in bijection with) G|P |.

These permutations arose in [3] in the following way. Let p1 = (x1, y1), . . . , pn =
(xn, yn) be points in C2 with distinct x-coordinates, let ℓij be the unique line through pi

and pj , and let mij = (yj − yi)/(xj − xi) ∈ C be the slope of ℓij . Let A = C[mij ], and let
In ⊂ A be the ideal of algebraic relations on the slopes mij that hold for all choices of the
points pi. Order the variables of A lexicographically by their subscripts: m12 < m13 <
· · · < m1n < m23 < · · · . Then [3, Theorem 4.3], with respect to graded lexicographic order
on the monomials of A, the initial ideal of In is generated by the squarefree monomials
mw1,w2

mw2w3
· · ·mwr−1wr

, where {w1, . . . , wr} ⊆ [n], r ≥ 4, and w = (w1, w2, . . . , wr) is a
primitive G-word. Consequently, the number of degree-d generators of the initial ideal of
In is

(

n

d+ 1

)

|Gd+1|. (2)

Similarly, under reverse lex order (rather than graded lex order) on A, the initial ideal of In
is generated by the squarefree monomials corresponding to primitive R-words. Our terms
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“G-word” and “R-word” denote the relationships to graded lexicographic and reverse
lexicographic orders.

It was noted in [3, p. 134] that the first several values of the sequence |G3|, |G4|, . . .
coincide with the updown numbers (or Euler numbers):

1, 1, 2, 5, 16, 61, 272, . . . .

This is sequence A000111 in the Online Encyclopedia of Integer Sequences [4]. The
updown numbers enumerate (among other things) the decreasing 012-trees [1, 2], which
we now define.

Definition 2. A decreasing 012-tree is a rooted tree, with vertices labeled by distinct pos-
itive integers, such that (i) every vertex has either 0, 1, or 2 children; and (ii) x < y when-
ever x is a descendant of y. The set of all decreasing 012-trees with vertex set P will be
denoted DP . We will represent rooted trees by the recursive notation T = [v, T1, . . . , Tn],
where the Ti are the subtrees rooted at the children of v. Note that reordering the Ti

in this notation does not change the tree T . For instance, [6, [5, [4], [2]], [3, [1]]] represents
the decreasing 012-tree shown below.

4 2 1

6

5 3

This notation differs slightly from [1] in that we do not require the largest or smallest
vertex to belong to the last subtree listed. The reason for this is we would need one such
convention in the context of G-words and a different one in the context of R-words, so we
keep the notation more fluid here.

Our main result is that the updown numbers do indeed enumerate both primitive
G-words and primitive R-words. Specifically:

Theorem 1. Let n ≥ 2. Then:

1. The primitive G-words on [n] are equinumerous with the decreasing 012-trees on

vertex set [n− 2].

2. The primitive R-words on [n] are equinumerous with the decreasing 012-trees on

vertex set [n− 2].

Together with (2), Theorem 1 enumerates the generators of the graded-lex and reverse-
lex initial ideals of In degree by degree. For instance, I6 is generated by

(

6
4

)

· 1 = 15 cubic

monomials,
(

6
5

)

· 2 = 12 quartics, and
(

6
6

)

· 5 = 5 quintics.
To prove Theorem 1, we construct explicit bijections between G-words and decreasing

012-trees (Theorem 7) and between R-words and decreasing 012-trees (Theorem 8). Our
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constructions are of the same ilk as Donaghey’s bijection [2] between decreasing 012-
trees on [n] and updown permutations, i.e., permutations w = w1w2 · · ·wn ∈ Sn such
that w1 < w2 > w3 < · · · . In order to do so, we characterize primitive G-words by the
following theorem. (Here and subsequently, the notation (a, b) ∈ SP serves as a convenient
shorthand for the condition that a and b are (possibly empty) words on disjoint sets of
letters whose union is P .)

Theorem 2. Let n ≥ 2, and let a, b be words such that (a, b) ∈ Sn−1. Then the word

(n+2, a, n, b, n+1) ∈ Sn+2 is a primitive G-word if and only if 1 ∈ b and both (n+1, a∗, n)
and (n + 1, b, n) are primitive G-words.

In principle, there is a similar characterization for primitive R-words: if (a, b) ∈ Sn−1

and (n+ 1, a∗, n) and (n+ 1, b, n) are primitive R-words, then either (n+ 2, a, n, b, n+ 1)
or (n + 2, b, n, a, n + 1) is a primitive R-word; however, it is not so easy to tell which of
these two is genuine and which is the impostor. (In the setting of G-words, the condition
1 ∈ b tells us which is which.)

Theorem 2 follows immediately from Lemmas 3–6, which describe the recursive struc-
ture of primitive G- and R-words.

Lemma 3. Let n ≥ 3 and let w = (w1, a, n− 2, b, wn) ∈ Sn. Define words wL, wR by

wL = (w1, a
∗, n− 2), wR = (wn, b, n− 2).

Then:

1. If w is a primitive G-word, then so are wL and wR.

2. If w is a primitive R-word, then so are wL and wR.

Proof. We will show that if w is a primitive G-word, then so is wL; the other cases are
all analogous. If n = 3, then the conclusion is trivial. Otherwise, let k be such that
wk = n − 2. Then 2 ≤ k ≤ n − 2 by definition of a G-word. If k = 2, then wL = w1w2,
while if k = 3, then wL = w1w3w2; in both cases the conclusion follows by inspection.
Now suppose that k ≥ 4. Then the definition of k implies that wL satisfies (G1), and if
wk−1 < w2 then w[1, k] is a G-word, contradicting the assumption that w is a primitive
G-word. Therefore wL is a G-word. Moreover, wL[i, j] ≈ w[k+ 1− j, k+ 1− i]∗ for every
[i, j] ( [k]. No such subword of w is a G-word, so wL is a primitive G-word as desired.

Lemma 4. Let n ≥ 3 and x = (x1, b, xn−1) ∈ Sn−1.

1. If x is a primitive G-word, then so is

w = (n, n− 2, b, n− 1).

2. If x is a primitive R-word, then so is

w = (n, b∗, n− 2, n− 1).
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Proof. Suppose that x is a primitive G-word. By construction, w is a G-word in Sn. Let
w[i, j] be any proper subword of w. Then:

• If i ≥ 3, or if i = 2 and j < n, then w[i, j] = x[i− 1, j − 1] is not a G-word.

• If i = 2 and j = n, then wi < wj but wi+1 = x2 > wj−1 = xn−2 (because x is a
G-word), so w[i, j] is not a G-word.

• If i = 1, then j < n, but then wi+1 ≥ wj , so w[i, j] is not a G-word.

Therefore w is a primitive G-word. The proof of assertion (2) is similar.

Lemma 5. Let n ≥ 5, and let P,Q be subsets of [n] such that

p = |P | ≥ 3, q = |Q| ≥ 3, P ∪Q = [n], and P ∩Q = {n− 2}.

Let x = (x1, a, xp) ∈ SP and y = (y1, b, yq) ∈ SQ such that xp = n − 2 = yq and

xp−1 > yq−1. Then:

1. If x and y are primitive G-words, then so is

w = (n, a∗, n− 2, b, n− 1).

2. If x and y are primitive R-words, then so is

w = (n, b∗, n− 2, a, n− 1).

Proof. Suppose that x and y are primitive G-words. By construction, w is a G-word. We
will show that no proper subword w[i, j] of w is a G-word. Indeed:

• If i < p < j, then w[i, j] cannot satisfy (G1).

• If i ≥ p, then either [i, j] = [p, n], when wi = n − 2 < wj = n − 1 and wi+1 =
y2 ≥ wj−1 = yq−1 (because y is a G-word), or else [i, j] ( [p, n], when w[i, j] ≈
y[i− p+ 1, j − p + 1]. In either case, w[i, j] is not a G-word.

• Similarly, if j ≤ p, then either [i, j] = [1, p], when wi > wj and wi+1 = xp−1 ≤ wj−1 =
x2 (because x is a G-word), or else [i, j] ( [1, p], when w[i, j]∗ ≈ x[p−j+1, p−i+1].
In either case, w[i, j] is not a G-word.

Therefore, w is a primitive G-word. The proof of assertion (2) is similar.

The following and last lemma applies only to G-words and has no easy analogue for
R-words. As mentioned in the earlier footnote, this is why we characterize only primitive
G-words and not primitive R-words in Theorem 2.

Lemma 6. Let n ≥ 2 and let w ∈ Gn. Then wn−1 = 1.
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Proof. For n ≤ 4, the result is easy to check due to the small number of G-words (see
also (1)). Otherwise, let i be such that wi = 1. Note that i 6∈ {1, 2, n} by the definition
of G-word. Suppose that i 6= n − 1 as well. First, assume that wi−1 < wi+1. Let
P = {j ∈ [1, i − 2] | wj > wi+1}. In particular {1} ⊆ P ⊆ [1, i − 2]. Let k = max(P ).
Then

wk = max{wk, wk+1, . . . , wi+1},

wi+1 = max{wk+1, . . . , wi+1},

wk+1 > wi = 1.

So w[k, i + 1] is a G-word. It is a proper subword of w because i + 1 ≤ n − 1, and its
length is i+ 2 − k ≥ i+ 2 − (i− 2) = 4. Therefore w 6∈ Gn. If instead, wi−1 > wi+1, then
a similar argument shows that w has a subword w[i − 1, k], where i+ 2 ≤ k ≤ n, whose
reverse is a G-word.

For the rest of the paper, let P be a finite subset of N, let n = |P |, and let m = max(P ).
Define

G′
P = {w ∈ SP | (m+ 2, w,m+ 1) ∈ G},

R′
P = {w ∈ SP | (m+ 2, w,m+ 1) ∈ R}.

The elements of G′
P (resp., R′

P ) should be regarded as primitive G-words (resp., primitive
R-words) on P ∪ {m+ 1, m+ 2}, from which the first and last digits have been removed.

We now construct a bijection between G ′
P and the decreasing 012-trees Dn on vertex

set [n]. If P = ∅, then both these sets trivially have cardinality 1, so we assume henceforth
that P 6= ∅. Since the cardinalities of G ′

P and DP depend only on |P |, this theorem is
equivalent to the statement that the primitive G-words on [n] are equinumerous with the
decreasing 012-trees on vertex set [n− 2], which is the first assertion of Theorem 1.

Let w ∈ G′
P and k be such that wk = m. Note that if n > 1, then wn < w1 ≤ m, so

k 6= n. Define a decreasing 012-tree φG(w) recursively (using the notation of Definition 2)
by

φG(w) =











[m] if n = 1;

[m,φG(w[2, n])] if n > 1 and k = 1;

[m,φG(w[1, k − 1]∗), φG(w[k + 1, n])] if n > 1 and 2 ≤ k ≤ n− 1.

Now, given T ∈ DP , recursively define a word ψG(T ) ∈ SP as follows.

• If T consists of a single vertex v, then ψG(T ) = m.

• If T = [m,T ′], then ψG(T ) = (m,ψG(T ′)).

• If T = [m,T ′, T ′′] with min(P ) ∈ T ′′, then ψG(T ) = (ψG(T ′)∗, m, ψG(T ′′)).
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For example, let T be the decreasing 012-tree shown in Definition 2. Then

ψG(T ) = ψG ([6, [5, [4], [2]], [3, [1]]])

= (ψG([5, [4], [2]])∗, 6, ψG([3, [1]]))

= ((452)∗, 6, 31)

= 254631

which is an element of G6 because, as one may verify, 82546317 is a primitive G-word.
Meanwhile, φG(254631) = T .

Theorem 7. The functions φG and ψG are bijections G′
n → Dn and Dn → G′

n respectively.

Proof. First, we show by induction on n = |P | that ψG(T ) ∈ G′
P . This is clear if n = 1;

assume that it is true for all decreasing 012-trees on fewer than n vertices.
If T = [m,T ′], then ψG(T ) = (m,ψG(T ′)) ≈ (n−2, a), where a ∈ Sn−3 and a ≈ ψG(T ′).

By Lemma 4, (n, n− 2, a, n− 1) ≈ (m+ 2, m, ψG(T ′), m+ 1) is a primitive G-word, and
therefore ψG(T ) ∈ G′

P .
If T = [m,T ′, T ′′], then ψG(T ) = (ψG(T ′)∗, m, ψG(T ′′)) ≈ (a∗, n− 2, b), where (a, b) ∈

Sn−3, with a ≈ ψG(T ′) and b ≈ ψG(T ′′). By Lemma 5, therefore, (n, a∗, n− 2, b, n− 1) ≈
(m+ 2, ψG(T ′)∗, m, ψG(T ′′), m+ 1) is a primitive G-word, and so ψG(T ) ∈ G′

P .
Finally, showing that φG and ψG are mutual inverses requires a technical but straight-

forward calculation, which we omit.

Next, we construct the analogous bijections for primitive R-words. Let w ∈ R′
P with

k such that wk = m. Note that if n > 1, then w1 < wn ≤ m, so k 6= 1. Define a decreasing
012-tree φR(w) recursively by

φR(w) =











[m] if n = 1;

[m,φR(w[1, n− 1]∗)] if n > 1 and k = n;

[m,φR(w[1, k − 1]∗), φR(w[k + 1, n])] if n > 1 and 2 ≤ k ≤ n− 1.

Now, given T ∈ DP , we recursively define a word ψR(T ) ∈ SP as follows.

• If T consists of a single vertex v, then ψR(T ) = v.

• If T = [v, T ′], then ψR(T ) = (ψR(T ′)∗, v).

• If T = [v, T ′, T ′′], and the last digit of ψR(T ′) is less than the last digit of ψR(T ′′),
then ψR(T ) = (ψR(T ′)∗, v, ψR(T ′′)).

Again, if T is the decreasing 012-tree shown in Definition 2, then

ψR(T ) = ψR ([6, [3, [1]], [5, [4], [2]]])

= (ψR([3, [1]])∗, 6, ψR([5, [2], [4]]))

= ((13)∗, 6, 254)

= 316254

which is an element of R6 because, as one may verify, 83162547 is a primitive R-word.
Meanwhile, φR(316254) = T .
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Theorem 8. The functions φR and ψR are bijections R′
n → Dn and Dn → R′

n respec-

tively.

Proof. First, we show by induction on n = |P | that ψR(T ) ∈ R′
P . This is clear if n = 1,

so assume that it is true for all decreasing 012-trees on fewer than n vertices.
If T = [v, T ′], then ψR(T ) = (ψR(T ′), v) ≈ (a∗, n−2), where a ∈ Sn−3 and a ≈ ψR(T ′).

By Lemma 4, (n, a∗, n − 2, n − 1) ≈ (v + 2, ψR(T ′), v, v + 1) is a primitive R-word, and
therefore ψR(T ) ∈ R′

P .
If T = [v, T ′, T ′′], then ψR(T ) = (ψR(T ′)∗, v, ψR(T ′′)) ≈ (b∗, n − 2, a), where (a, b) ∈

Sn−3 with a ≈ ψR(T ′′) and b ≈ ψR(T ′). By Lemma 5, therefore, (n, b∗, n− 2, a, n− 1) ≈
(v + 2, ψR(T ′)∗, v, ψR(T ′′), v + 1) is a primitive R-word, and so ψR(T ) ∈ R′

P .
We have now constructed functions φR : R′

n → Dn, ψR : Dn → R′
n. As in Theorem 7,

we omit the straightforward proof that they are in fact mutual inverses.
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