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Abstract

An edge-colored graph is called rainbow if all the colors on its edges are distinct.
Let G be a family of graphs. The anti-Ramsey number AR(n,G) for G, introduced
by Erdős et al., is the maximum number of colors in an edge coloring of Kn that
has no rainbow copy of any graph in G. In this paper, we determine the anti-
Ramsey number AR(n,Ω2), where Ω2 denotes the family of graphs that contain
two independent cycles.

1 Introduction

An edge-colored graph is called rainbow if any of its two edges have distinct colors. Let G
be a family of graphs. The anti-Ramsey number AR(n,G) for G is the maximum number
of colors in an edge coloring of Kn that has no rainbow copy of any graph in G. The
Turán number ex(n,G) is the maximum number of edges of a simple graph without a
copy of any graph in G. Clearly, by taking one edge of each color in an edge coloring of
Kn, one can show that AR(n,G) ≤ ex(n,G). When G consists of a single graph H , we
write AR(m, H) and ex(n, H) for AR(m, {H}) and ex(n, {H}), respectively.

Anti-Ramsey numbers were introduced by Erdős et al. in [5], and showed to be
connected not so much to Ramsey theory than to Turán numbers. In particular, it was
proved that AR(n, H) − ex(n, H ) = o(n2), where H = {H − e : e ∈ E(H)}. By
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the asymptotic of Turán numbers, we have AR(n, H)/
(

n

2

)

→ 1 − (1/d) as n → ∞,
where d + 1 = min{χ(H − e) : e ∈ E(H)}. So the anti-Ramsey number AR(n, H) is
determined asymptotically for graphs H with min{χ(H − e) : e ∈ E(H)} ≥ 3. The case
min{χ(H − e) : e ∈ E(H)} = 2 remains harder.

The anti-Ramsey numbers for some special graph classes have been determined. As
conjectured by Erdős et al. [5], the anti-Ramsey number for cycles, AR(n, Ck), was
determined for k ≤ 6 in [1, 5, 8], and later completely solved in [11]. The anti-Ramsey
number for paths, AR(n, Pk+1), was determined in [13]. Independently, the authors of
[10] and [12] considered the anti-Ramsey number for complete graphs. The anti-Ramsey
numbers for other graph classes have been studied, including small bipartite graphs [2],
stars [6], subdivided graphs [7], trees of order k [9], and matchings [12]. The bipartite
analogue of the anti-Ramsey number was studied for even cycles [3] and for stars [6].

Denote by Ωk the family of (multi)graphs that contain k vertex disjoint cycles. Vertex
disjoint cycles are said to be independent cycles. The family of (multi)graphs not belonging
to Ωk is denoted by Ωk. Clearly, Ω1 is just the family of forests. In this paper, we consider
the anti-Ramsey numbers for the family Ωk. It was proved in [5] that AR(n, C3) = n− 1.
In fact, from the appendix of [5], we have AR(n, Ω1) = n−1. Using the extremal structures
theorem for graphs in Ω2 [4], we determine the anti-Ramsey number AR(n, Ω2) for n ≥ 6.
The bounds of AR(n, Ωk), k ≥ 3, are discussed.

Let G be a graph and c be an edge coloring of G. A representing subgraph of c is a
spanning subgraph of G, such that any two edges of which have distinct colors and every
color of G is in the subgraph. For an edge e ∈ E(G), denote by c(e) the color assigned to
the edge e.

2 Extremal structures theorem for graphs in Ω2

First, we present extremal structures for the graphs which do not contain two independent
cycles.

Theorem 2.1 [4] Let G be a multigraph without two independent cycles. Suppose that
δ(G) ≥ 3 and there is no vertex contained in all the cycles of G. Then one of the following
six assertions holds (see Figure 1).

(1) G has three vertices and multiple edges joining every pair of the vertices.

(2) G is a K4 in which one of the triangles may have multiple edges.

(3) G ∼= K5.

(4) G is K−

5 such that some of the edges not adjacent to the missing edge may be multiple
edges.

(5) G is a wheel whose spokes may be multiple edges.

(6) G is obtained from K3,p by adding edges or multiple edges joining vertices in the first
class.
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Figure 1: The graphs Ga, Gb, Gc, Gd, Ge and Gf

In general, we have the following result.

Theorem 2.2 [4] A multigraph G does not contain two independent cycles if and only
if either it contains a vertex x0 such that G − x0 is a forest, or it can be obtained from
a subdivision G0 of a graph listed in Figure 1 by adding a forest and at most one edge
joining each tree of the forest to G0.

More precisely, from the theorem above, we have the following lemmas.

Lemma 2.3 Let G be a simple graph of order n and size m. If G contains a vertex x0

such that G − x0 is a forest, then m ≤ 2n − 3.

Lemma 2.4 Let G be a simple graph of order n and size m. Suppose that G can be
obtained from a subdivision G0 of a graph listed in Figure 1 by adding a forest and at
most one edge joining each tree of the forest to G0. Then
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(1). if G0 is a subdivision of Ga, m ≤ 2n − 3.

(2). if G0 is a subdivision of Gb, m ≤ 2n − 2.

(3). if G0 is a subdivision of Gc, m ≤ n + 5.

(4). if G0 is a subdivision of Gd, m ≤ 2n − 1. Furthermore, the equality holds if
and only if G contains five distinct vertices u, v, w, x, y such that G[{u, v, w, x, y}] = K−

5 ,
uv /∈ E(G), and each vertex z ∈ V (G) − {u, v, w, x, y} is adjacent to just two vertices of
{w, x, y}.

(5). if G0 is a subdivision of Ge, m ≤ 2n − 2.

(6). if G0 is a subdivision of Gf , m ≤ 2n+p−3. Furthermore, when p = 3, the equality
holds if and only if G can be obtained from K3,3 by adding two edges joining vertices in
the first class, and each vertex not in K3,3 is adjacent to just two vertices of the first class.

3 Anti-Ramsey numbers for Ω2

Let G be a graph of order n. An edge coloring c of Kn is induced by G if c assigns distinct
colors to the edges of G and assigns one additional color to all the edges of G. Clearly,
an edge coloring of Kn induced by G has |E(G)| + 1 colors (unless G = Kn). Given two
vertex disjoint graphs G and H , denote by G + H the graph obtained from G ∪ H by
joining every vertex of G to all the vertices of H . We have the following result.

Theorem 3.1 For any n ≥ 7, AR(n, Ω2) = 2n − 2.

Proof. Lower bound

Let G ∼= K2 +Kn−2. Suppose c is an edge coloring of Kn induced by G. For any graph
H ∈ Ω2 of order at most n, any copy of H in Kn must contain at least two edges not in
G. Then the edge coloring c of Kn has no rainbow graph in Ω2. This immediately yields
the lower bound AR(n, Ω2) ≥ 2n − 2.

Upper bound

In order to prove the upper bound, here we only need to show that any (2n− 1)-edge-
coloring of Kn always contains a rainbow subgraph belonging to the family Ω2. Suppose
that there is a (2n−1)-edge-coloring c of Kn which does not contain any rainbow subgraph
belonging to the family Ω2. Let G be a representing graph of c. Then G does not contain
two independent cycles. From Theorem 2.2 and Lemma 2.3, we have that G can be
obtained from a subdivision G0 of a graph listed in Figure 1 by adding a forest and at
most one edge joining each tree of the forest to G0. Since |E(G)| = 2n − 1, from Lemma
2.4 we have that G0 is a subdivision of Gd or Gf . To complete the proof, we distinguish
the following cases.
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Case 1. G0 is a subdivision of Gd.

Since |E(G)| = 2n− 1, from Lemma 2.4, we may assume that G contains five distinct
vertices u, v, w, x, y such that G[{u, v, w, x, y}] = K−

5 and uv /∈ E(G), and take a vertex
z ∈ V (G) − {u, v, w, x, y} with N(z) = {x, y}. Furthermore, since n ≥ 7, from Lemma
2.4, there is a vertex s ∈ V (G)−{u, v, w, x, y, z} adjacent to just two vertices of {w, x, y}.

Now, considering the possible neighborhood of the vertex s, we distinguish the follow-
ing subcases.

Subcase 1.1 The vertex s is not adjacent to both x and y.

By the symmetry of x and y, without loss of generality, we assume that s is adjacent
to just the vertices x and w.

Since the cycle xyzx is rainbow, we have

c(uv) ∈ {c(uw), c(wv), c(xy), c(yz), c(xz)},

otherwise the union of the cycles uvwu and xyzx is a rainbow graph belonging to the
family Ω2. So the cycle uvyu is rainbow, and the union of the cycles uvyu and xswx is a
rainbow graph belonging to the family Ω2. A contradiction.

Subcase 1.2 The vertex s is adjacent to both x and y.

Since the cycle ywvy is rainbow, we have

c(sz) ∈ {c(sx), c(xz), c(wv), c(yw), c(yv)},

otherwise the union of the cycles ywvy and xszx is a rainbow graph belonging to the
family Ω2.

Since the cycle xwux is rainbow, we have

c(sz) ∈ {c(sy), c(yz), c(wu), c(ux), c(wx)},

otherwise the union of the cycles xwux and yszy is a rainbow graph belonging to the family
Ω2, a contradiction, since the two sets {c(sx), c(xz), c(wv), c(yw), c(yv)} and {c(sy), c(yz),
c(wu), c(ux), c(wx)} have no common elements.

Case 2. G0 is a subdivision of Gf .

From Lemma 2.4, p ≥ 2. If p = 2, since |E(G)| = 2n − 1, G0 must be a subdivision
of Gd, and we only need to go back to the previous case. So we may assume that p ≥ 3.
Denote by u, v, w all the vertices in the first class of Gf . Note that for each edge x1x2

of Gf , it may be subdivided to a path connecting the vertices x1 and x2 in G. For
convenience, we still use the notation x1x2 to denote the corresponding path in G.

Suppose p ≥ 4. Let x, y, z, s be four distinct vertices in the second class of Gf . If
c(zs) /∈ {c(wz), c(ws), c(ux), c(uy), c(vx), c(vy)}, then the union of the cycles wzsw and
uxvyu is a rainbow graph belonging to the family Ω2. So c(zs) ∈ {c(wz), c(ws), c(ux),
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c(uy), c(vx), c(vy)}. Then either the union of the cycles uzsu and vxwyv or the union of
the cycles vzsv and uxwyu is a rainbow graph belonging to the family Ω2.

So, let p = 3 and denote by x, y, z all the vertices in the second class of Gf . Since
|E(G)| = 2n−1, from Lemma 2.4, there are at least two edges joining vertices of u, v and
w. Without loss of generality, assume that uv, vw ∈ E(G). Since n ≥ 7, from Lemma
2.4, there is a vertex s ∈ V (G) − {x, y, z, u, v, w} that is adjacent to just two vertices of
{u, v, w}.

If c(yz) /∈ {c(wz), c(wy), c(ux), c(uv), c(vx)}, then the union of the cycles wyzw and
uxvu is a rainbow graph belonging to the family Ω2. So we have c(yz) ∈ {c(wz), c(wy),
c(ux), c(uv), c(vx)}. Then the cycle yzuy is rainbow. Since the cycle xwvx is rainbow, we
have c(yz) = c(xv), otherwise the union of the cycles yzuy and xwvx is a rainbow graph
belonging to the family Ω2. By the analog analysis, we have c(xy) = c(vz).

Now, considering the possible neighborhood of the vertex s, we only need to distinguish
the following subcases.

Subcase 2.1 The vertex s is adjacent to just the vertices v and w.

Since c(yz) = c(xv), we have that the union of the cycles yzuy and swvs is a rainbow
graph belonging to the family Ω2, a contradiction.

Subcase 2.2 The vertex s is adjacent to just the vertices u and w.

Since c(yz) = c(xv), we have

c(sv) ∈ {c(ws), c(wv), c(uy), c(uz), c(yz)},

otherwise the union of the cycles swvs and yzuy is a rainbow graph belonging to the
family Ω2. By the analog analysis, from c(xy) = c(vz), we have

c(sv) ∈ {c(us), c(uv), c(xy), c(xw), c(yw)},

a contradiction, since the two sets {c(ws), c(wv), c(uy), c(uz), c(yz)} and {c(us), c(uv),
c(xy), c(xw), c(yw)} have no common elements.

This completes the proof.

4 The value of AR(6, Ω2)

In this section, we present an 11-edge-coloring of K6 which does not contain any graphs in
Ω2. Let V (K6) = {u, v, w, x, y, z}. Define an 11-edge-coloring φ of K6 as follows. Let G =
K6−uv−uz−vz−wz. Clearly, the size of G is just 11. Color the edges of G with distinct
colors. Then color the edges uv and wz with the same color in {φ(xy), φ(uw), φ(wv), color
the edge uz with the color φ(wv), and color the edge vz with the color φ(uw). It is easy
to verify that the edge coloring φ of K6 does not contain any graph in the family Ω2.
This implies the lower bound AR(6, Ω2) ≥ 11. In fact, using the same analysis as in the
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previous section, we can show that any 12-edge-coloring of K6 contains a rainbow graph
belonging to the family Ω2. To complete the section, we have the following result.

Theorem 4.1 AR(6, Ω2) = 11.

5 Bounds of anti-Ramsey numbers for Ωk

Unlike graphs in the family Ω2, we have no more information about graphs in the family
Ωk for k ≥ 3. So we cannot treat the family Ωk (k ≥ 3) as we did for the case Ω2.
Fortunately, the bound of ex(n, Ωk) presents an upper bound of AR(n, Ωk) for k ≥ 3. Let
f(n, k) = (2k − 1)(n − k) and

g(n, k) =

{

f(n, k) + (24k − n)(k − 1), if n ≤ 24k;
f(n, k), if n ≥ 24k.

Lemma 5.1 [4] Every graph G of order n ≥ 3k, k ≥ 2, and size at least g(n, k) contains
k independent cycles except when n ≥ 24k and G ∼= K2k−1 + Kn−2k+1.

This easily yields AR(n, Ωk) < g(n, k). Let G ∼= K2k−2 + Kn−2k+2. Clearly, the edge
coloring of Kn induced by G has no rainbow graph in Ωk. Then we have the following
result.

Theorem 5.2 For any integer n and k, n ≥ 3k, k ≥ 2,
(

2k − 2

2

)

+ (2k − 2)(n − 2k + 2) + 1 ≤ AR(n, Ωk) ≤ g(n, k) − 1.

When n is large enough, i.e., n ≥ 24k, the gap between the upper bound and the lower
bound is just n − 2k − 1. From Theorem 3.1, we know the left equality holds for n ≥ 7
and k = 2. In fact, though we cannot prove it, we feel that the value of AR(n, Ωk) would
be very near to the lower bound rather than the upper bound.

Conjecture 5.3 For any integer n and k, n ≥ 3k, k ≥ 2,

AR(n, Ωk) =

(

2k − 2

2

)

+ (2k − 2)(n − 2k + 2) + 1.
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