Ternary linear codes and quadrics

Yuri Yoshida and Tatsuya Maruta*
Department of Mathematics and Information Sciences
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
yuri-910@hotmail.co.jp, maruta@mi.s.osakafu-u.ac.jp

Submitted: Dec 4, 2008; Accepted: Jan 7, 2009; Published: Jan 16, 2009
Mathematics Subject Classification: 94B27, 94B05, 51E20, 05B25

Abstract

For an $[n, k, d]_{3}$ code \mathcal{C} with $\operatorname{gcd}(d, 3)=1$, we define a map w_{G} from $\Sigma=$ $\mathrm{PG}(k-1,3)$ to the set of weights of codewords of \mathcal{C} through a generator matrix G. A t-flat Π in Σ is called an $(i, j)_{t}$ flat if $(i, j)=\left(\left|\Pi \cap F_{0}\right|,\left|\Pi \cap F_{1}\right|\right)$, where $F_{0}=\left\{P \in \Sigma \mid w_{G}(P) \equiv 0(\bmod 3)\right\}, F_{1}=\left\{P \in \Sigma \mid w_{G}(P) \not \equiv 0, d(\bmod 3)\right\}$. We give geometric characterizations of $(i, j)_{t}$ flats, which involve quadrics. As an application to the optimal linear codes problem, we prove the non-existence of a $[305,6,202]_{3}$ code, which is a new result.

1 Introduction

Let \mathbb{F}_{q}^{n} denote the vector space of n-tuples over \mathbb{F}_{q}, the field of q elements. A linear code \mathcal{C} of length n, dimension k and minimum (Hamming) distance d over \mathbb{F}_{q} is referred to as an $[n, k, d]_{q}$ code. Linear codes over $\mathbb{F}_{2}, \mathbb{F}_{3}, \mathbb{F}_{4}$ are called binary, ternary and quaternary linear codes, respectively. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$, denoted by $w t(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x}. The weight distribution of \mathcal{C} is the list of numbers A_{i} which is the number of codewords of \mathcal{C} with weight i. The weight distribution with $\left(A_{0}, A_{d}, \ldots\right)=(1, \alpha, \ldots)$ is also expressed as $0^{1} d^{\alpha} \cdots$. We only consider non-degenerate codes having no coordinate which is identically zero. An $[n, k, d]_{q}$ code \mathcal{C} with a generator matrix G is called (l, s)-extendable (to \mathcal{C}^{\prime}) if there exist l vectors $h_{1}, \ldots, h_{l} \in \mathbb{F}_{q}^{k}$ so that the extended matrix $\left[G, h_{1}^{\mathrm{T}}, \cdots, h_{l}^{\mathrm{T}}\right]$ generates an $[n+l, k, d+s]_{q}$ code $\mathcal{C}^{\prime}([10])$. Then \mathcal{C}^{\prime} is called an (l, s)-extension of \mathcal{C}. \mathcal{C} is simply called extendable if \mathcal{C} is $(1,1)$-extendable.

We denote by $\operatorname{PG}(r, q)$ the projective geometry of dimension r over \mathbb{F}_{q}. A j-flat is a projective subspace of dimension j in $\mathrm{PG}(r, q)$. 0-flats, 1-flats, 2-flats, 3-flats, $(r-2)$ flats and $(r-1)$-flats are called points, lines, planes, solids, secundums and hyperplanes,

[^0]respectively. We refer to [7], [8] and [9] for geometric terminologies. We investigate linear codes over \mathbb{F}_{q} through the projective geometry.

We assume that $k \geq 3$. Let \mathcal{C} be an $[n, k, d]_{q}$ code with a generator matrix $G=$ $\left[g_{0}, g_{1}, \cdots, g_{k-1}\right]^{\mathrm{T}}$. Put $\Sigma=\operatorname{PG}(k-1, q)$, the projective space of dimension $k-1$ over \mathbb{F}_{q}. We consider the mapping w_{G} from Σ to $\left\{i \mid A_{i}>0\right\}$, the set of weights of codewords of \mathcal{C}. For $P=\mathbf{P}\left(p_{0}, p_{1}, \ldots, p_{k-1}\right) \in \Sigma$ we define the weight of P with respect to G, denoted by $w_{G}(P)$, as

$$
w_{G}(P)=w t\left(\sum_{i=0}^{k-1} p_{i} g_{i}\right)
$$

Our geometric method is just the dual version of that introduced first in [11] to investigate the extendability of \mathcal{C}. See also [14], [15], [16], [18] for the extendability of ternary linear codes. Let

$$
\begin{aligned}
F & =\left\{P \in \Sigma \mid w_{G}(P) \not \equiv d \quad(\bmod q)\right\} \\
F_{d} & =\left\{P \in \Sigma \mid w_{G}(P)=d\right\}
\end{aligned}
$$

Recall that a hyperplane H of Σ is defined by a non-zero vector $h=\left(h_{0}, \ldots, h_{k-1}\right) \in \mathbb{F}_{q}^{k}$ as $H=\left\{P=\mathbf{P}\left(p_{0}, \ldots, p_{k-1}\right) \in \Sigma \mid h_{0} p_{0}+\cdots+h_{k-1} p_{k-1}=0\right\}$. h is called a defining vector of H, which is uniquely determined up to non-zero multiple. It would be possible to investigate the $(l, 1)$-extendability of linear codes from the geometrical structure of F or F_{d} as follows.

Theorem 1.1 ([12]). \mathcal{C} is $(l, 1)$-extendable if and only if there exist l hyperplanes H_{1}, \ldots, H_{l} of Σ such that $F_{d} \cap H_{1} \cap \cdots \cap H_{l}=\emptyset$. Moreover, the extended matrix of G by adding the defining vectors of H_{1}, \ldots, H_{l} as columns generates an $(l, 1)$-extension of \mathcal{C}. Hence, \mathcal{C} is $(l, 1)$-extendable if there exists a $(k-1-l)$-flat contained in F.

The mapping w_{G} is trivial if $F=\emptyset$. For example, w_{G} is trivial if \mathcal{C} attains the Griesmer bound and if q divides d when q is prime [17]. When w_{G} is trivial, there seems no clue to investigate the extendability of \mathcal{C} except for computer search, see [10]. To avoid such cases we assume $\operatorname{gcd}(d, q)=1 ; d$ and q are relatively prime. Then, F forms a blocking set with respect to lines [12], that is, every line meets F in at least one point. The aim of this paper is to give a geometric characterization of F for $q=3$. An application to the optimal linear codes problem is also given in Section 4.

2 Main theorems

Let \mathcal{C} be an $[n, k, d]_{3}$ code with $k \geq 3, \operatorname{gcd}(3, d)=1$. The diversity $\left(\Phi_{0}, \Phi_{1}\right)$ of \mathcal{C} was defined in [11] as the pair of integers:

$$
\Phi_{0}=\frac{1}{2} \sum_{3 \mid i, i \neq 0} A_{i}, \quad \Phi_{1}=\frac{1}{2} \sum_{i \neq 0, d(\bmod 3)} A_{i}
$$

where the notation $x \mid y$ means that x is a divisor of y. Let

$$
\begin{aligned}
& F_{0}=\left\{P \in \Sigma \mid w_{G}(P) \equiv 0 \quad(\bmod 3)\right\} \\
& F_{2}=\left\{P \in \Sigma \mid w_{G}(P) \equiv d \quad(\bmod 3)\right\} \\
& F_{1}=F \backslash F_{0}, F_{e}=F_{2} \backslash F_{d}
\end{aligned}
$$

Then we have $\Phi_{s}=\left|F_{s}\right|$ for $s=0,1$.
A t-flat Π of Σ with $\left|\Pi \cap F_{0}\right|=i,\left|\Pi \cap F_{1}\right|=j$ is called an $(i, j)_{t}$ flat. An $(i, j)_{1}$ flat is called an (i, j)-line. An (i, j)-plane, an (i, j)-solid and so on are defined similarly. We denote by \mathcal{F}_{j} the set of j-flats of Σ. Let Λ_{t} be the set of all possible (i, j) for which an $(i, j)_{t}$ flat exists in Σ. Then we have

$$
\begin{aligned}
\Lambda_{1}= & \{(1,0),(0,2),(2,1),(1,3),(4,0)\} \\
\Lambda_{2}= & \{(4,0),(1,6),(4,3),(4,6),(7,3),(4,9),(13,0)\} \\
\Lambda_{3}= & \{(13,0),(4,18),(13,9),(10,15),(16,12),(13,18),(22,9),(13,27),(40,0)\}, \\
\Lambda_{4}= & \{(40,0),(13,54),(40,27),(31,45),(40,36),(40,45),(49,36),(40,54),(67,27), \\
& (40,81),(121,0)\} \\
\Lambda_{5}= & \{(121,0),(40,162),(121,81),(94,135),(121,108),(112,126),(130,117), \\
& (121,135),(148,108),(121,162),(202,81),(121,243),(364,0)\},
\end{aligned}
$$

see [11]. Let $\Pi_{t} \in \mathcal{F}_{t}$. Denote by $c_{i, j}^{(t)}$ the number of $(i, j)_{t-1}$ flats in Π_{t} and let $\varphi_{s}{ }^{(t)}=$ $\left|\Pi_{t} \cap F_{s}\right|, s=0,1 .\left(\varphi_{0}{ }^{(t)}, \varphi_{1}{ }^{(t)}\right)$ is called the diversity of Π_{t} and the list of $c_{i, j}^{(t)}$'s is called its spectrum. Thus Λ_{t} is the set of all possible diversities of Π_{t}. It holds that $\left(\varphi_{0}, \varphi_{1}\right) \in \Lambda_{t}$ implies $\left(3 \varphi_{0}+1,3 \varphi_{1}\right) \in \Lambda_{t+1}([15])$. We call $\left(\varphi_{0}, \varphi_{1}\right) \in \Lambda_{t}$ is new if $\left(\left(\varphi_{0}-1\right) / 3, \varphi_{1} / 3\right) \notin$ Λ_{t-1}. For example, $(4,3),(4,6) \in \Lambda_{2}$ and $(10,15),(16,12) \in \Lambda_{3}$ are new. We define that $(0,2),(2,1) \in \Lambda_{1}$ are new for convenience. Let $\theta_{j}=|\mathrm{PG}(j, 3)|=\left(3^{j+1}-1\right) / 2$. We set $\theta_{j}=0$ for $j<0$. New diversities of Λ_{t} and the corresponding spectra for $t \geq 2$ are given as follows.

Lemma 2.1 ([15]). New diversities and the corresponding spectra for $t \geq 2$ are
(1) $\left(\varphi_{0}^{(t)}, \varphi_{1}^{(t)}\right)=\left(\theta_{t-1}-3^{T+1}, \theta_{t-1}+\theta_{T}+1\right)$ with spectrum

$$
\begin{aligned}
& \left(c_{\theta_{t-2}-3^{T+1}, \theta_{t-2}+\theta_{T}+1}^{(t)}, c_{\theta_{t-2}, \theta_{t-2}-\theta_{T} T}^{(t)}, c_{\theta_{t-2}, \theta_{t-2}+\theta_{T+1}}^{(t)}\right) \\
& =\left(\theta_{t-1}-3^{T+1}, \theta_{t-1}+\theta_{T}+1, \theta_{t-1}+\theta_{T}+1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\varphi_{0}^{(t)}, \varphi_{1}^{(t)}\right)=\left(\theta_{t-1}+3^{T+1}, \theta_{t-1}-\theta_{T}\right) \text { with spectrum } \\
& \left(c_{\theta_{t-2}, \theta_{t-2}-\theta_{T}}^{(t)}, c_{\theta_{t-2}, \theta_{t-2}+\theta_{T}+1}^{(t)}, c_{\theta_{t-2}(t)}^{\left(+^{T+1}, \theta_{t-2}-\theta_{T}\right.}\right) \\
& \quad=\left(\theta_{t-1}-\theta_{T}, \theta_{t-1}-\theta_{T}, \theta_{t-1}+3^{T+1}\right)
\end{aligned}
$$

when t is odd, where $T=(t-3) / 2$.
(2) $\left(\varphi_{0}^{(t)}, \varphi_{1}^{(t)}\right)=\left(\theta_{t-1}, \theta_{t-1}-\theta_{U+1}\right)$ with spectrum

$$
\begin{aligned}
& \left(c_{\theta_{t-2}, \theta_{t-2}-\theta_{U+1}}^{(t)}, c_{\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1}^{(t)}, c_{\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}}^{(t)}\right) \\
& =\left(\theta_{t-1}, \theta_{t-1}-\theta_{U+1}, \theta_{t-1}+\theta_{U+1}+1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\varphi_{0}^{(t)}, \varphi_{1}^{(t)}\right)=\left(\theta_{t-1}, \theta_{t-1}+\theta_{U+1}+1\right) \text { with spectrum } \\
& \quad\left(c_{\left.\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U+1}, c_{\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}}^{(t)}, c_{\theta_{t-2}, \theta_{t-2}+\theta_{U+1}+1}^{(t)}\right)}^{\quad=\left(\theta_{t-1}-\theta_{U+1}, \theta_{t-1}+\theta_{U+1}+1, \theta_{t-1}\right)}\right.
\end{aligned}
$$

when t is even, where $U=(t-4) / 2$.
Let us recall some known results on quadrics in $\operatorname{PG}(r, 3), r \geq 2$, from [9]. Let $f \in$ $\mathbb{F}_{3}\left[x_{0}, \ldots, x_{r}\right]$ be a quadratic form which is non-degenerate, that is, f is not reducible to a form in fewer than $r+1$ variables by a linear transformation. We define

$$
V_{i}(f)=\left\{P=\mathbf{P}\left(p_{0}, \ldots, p_{r-1}\right) \in \operatorname{PG}(r, 3) \mid f\left(p_{0}, \ldots, p_{r-1}\right)=i\right\}
$$

for $i=0,1,2$. Then, $V_{0}(f)$ is a non-singular quadric. Let

$$
\begin{aligned}
& \mathcal{P}_{r}^{i}=V_{i}\left(x_{0}^{2}+x_{1} x_{2}+\cdots+x_{r-1} x_{r}\right) \text { for } r \text { even; } \\
& \mathcal{E}_{r}^{i}=V_{i}\left(x_{0}^{2}+x_{1}^{2}+x_{2} x_{3}+\cdots+x_{r-1} x_{r}\right), \mathcal{H}_{r}^{i}=V_{i}\left(x_{0} x_{1}+x_{2} x_{3}+\cdots+x_{r-1} x_{r}\right)
\end{aligned}
$$ for r odd.

The quadrics $\mathcal{P}_{r}^{0}, \mathcal{H}_{r}^{0}$ and \mathcal{E}_{r}^{0} are called parabolic, hyperbolic and elliptic, respectively. It is well known for any non-singular quadric \mathcal{Q} in $\operatorname{PG}(r, 3)$ that $\mathcal{Q} \sim \mathcal{P}_{r}^{0}$ for r even and that $\mathcal{Q} \sim \mathcal{H}_{r}^{0}$ or $\mathcal{Q} \sim \mathcal{E}_{r}^{0}$ for r odd (see Section 5.2 in [8]), where $\mathcal{Q}_{1} \sim \mathcal{Q}_{2}$ means that \mathcal{Q}_{1} and \mathcal{Q}_{2} are projectively equivalent.

Theorem 2.2. Let Π_{t} be a t-flat in Σ with new diversity, $t \geq 2$.
(1) $F_{0} \cap \Pi_{t} \sim \mathcal{P}_{t}^{0}$ when t is even.
(2) $F_{0} \cap \Pi_{t} \sim \mathcal{E}_{t}^{0}$ if $\varphi_{0}^{(t)}=\theta_{t-1}-3^{T+1}$ and $F_{0} \cap \Pi_{t} \sim \mathcal{H}_{t}^{0}$ if $\varphi_{0}^{(t)}=\theta_{t-1}+3^{T+1}$ when t is odd, where $T=(t-3) / 2$.

We define $2 V_{i}(f)=V_{i}(2 f)$ for $i=1,2$. We prove the following theorem in the next section.

Theorem 2.3. Let Π_{t} be a t-flat in Σ with new diversity, $t \geq 2$.
(1) $F_{i} \cap \Pi_{t} \sim \mathcal{P}_{t}^{i}$ or $2 \mathcal{P}_{t}^{i}$ for $i=1,2$ when t is even.
(2) $F_{i} \cap \Pi_{t} \sim \mathcal{E}_{t}^{i}$ if $\varphi_{0}^{(t)}=\theta_{t-1}-3^{T+1}$ and $F_{i} \cap \Pi_{t} \sim \mathcal{H}_{t}^{i}$ if $\varphi_{0}^{(t)}=\theta_{t-1}+3^{T+1}$ for $i=1,2$ when t is odd, where $T=(t-3) / 2$.

The geometric characterizations of t-flats whose diversities are not new are already known. We summarize them here. For $t \geq 2$ we set Λ_{t}^{-}and Λ_{t}^{+}as

$$
\begin{aligned}
& \Lambda_{t}^{-}=\left\{\left(\theta_{t-1}, 0\right),\left(\theta_{t-2}, 2 \cdot 3^{t-1}\right),\left(\theta_{t-1}, 2 \cdot 3^{t-1}\right),\left(\theta_{t-1}+3^{t-1}, 3^{t-1}\right),\left(\theta_{t-1}, 3^{t}\right),\left(\theta_{t}, 0\right)\right\} \\
& \Lambda_{t}^{+}=\Lambda_{t} \backslash \Lambda_{t}^{-}
\end{aligned}
$$

Then Λ_{t}^{-}is included in Λ_{t} for all $t \geq 2, \Lambda_{2}^{+}=\{(4,3)\}$, and \mathcal{C} is extendable if $\left(\Phi_{0}, \Phi_{1}\right) \in$ Λ_{k-1}^{-}([11]). It is also known that Π_{t} contains a (4,3)-plane if and only if its diversity is in Λ_{t}^{+}. Obviously, A $\left(\theta_{t}, 0\right)_{t}$ flat is contained in F_{0}.

Theorem 2.4 ([11]). Let Π_{t} be a $\left(\varphi_{0}, \varphi_{1}\right)_{t}$ flat in Σ with $\left(\varphi_{0}, \varphi_{1}\right) \in \Lambda_{t}^{-}, t \geq 2$.
(1) $\Pi_{t} \cap F_{0}$ forms a hyperplane of Π_{t} if $\left(\varphi_{0}, \varphi_{1}\right)=\left(\theta_{t-1}, 0\right)$ or $\left(\theta_{t-1}, 3^{t}\right)$.
(2) There are two $\left(\theta_{t-2}, 3^{t-1}\right)_{t-1}$ flats in Π_{t} meeting in a $\left(\theta_{t-2}, 0\right)_{t-2}$ flat if $\left(\varphi_{0}, \varphi_{1}\right)=$ $\left(\theta_{t-2}, 2 \cdot 3^{t-1}\right)$.
(3) There are two $\left(\theta_{t-1}, 0\right)_{t-1}$ flats and a $\left(\theta_{t-2}, 3^{t-1}\right)_{t-1}$ flat through a fixed $\left(\theta_{t-2}, 0\right)_{t-2}$ flat in Π_{t} if $\left(\varphi_{0}, \varphi_{1}\right)=\left(\theta_{t-1}+3^{t-1}, 3^{t-1}\right)$.

Recall that $(i, j) \in \Lambda_{t}$ implies $(3 i+1,3 j) \in \Lambda_{t+1}$, so $\left(3^{\nu} i+\theta_{\nu-1}, 3^{\nu} j\right) \in \Lambda_{t+\nu}$ for $\nu=1,2, \cdots .\left(\varphi_{0}, \varphi_{1}\right) \in \Lambda_{t}$ is ν-descendant if $\left(\varphi_{0}, \varphi_{1}\right)=\left(3^{\nu} i+\theta_{\nu-1}, 3^{\nu} j\right)$ for some new $(i, j) \in \Lambda_{t-\nu}$. For example, $(13,9) \in \Lambda_{3}$ is 1-descendant since (4,3) is new in Λ_{2}.

Let Π_{t} be a $\left(\varphi_{0}, \varphi_{1}\right)_{t}$ flat with $\left(\varphi_{0}, \varphi_{1}\right)=\left(\theta_{t-1}, 2 \cdot 3^{t-1}\right)$ or $\left(\varphi_{0}, \varphi_{1}\right) \in \Lambda_{t}^{+}$. Assume that $\left(\varphi_{0}, \varphi_{1}\right)$ is not new in Λ_{t}. Then $\left(\varphi_{0}, \varphi_{1}\right)$ is ν-descendant for some positive integer ν. A t-flat whose diversity is ν-descendant can be characterized with axis.

An s-flat S in Π_{t} is called the axis of Π_{t} of type (a, b) if every hyperplane of Π_{t} not containing S has the same diversity (a, b) and if there is no hyperplane of Π_{t} through S whose diversity is (a, b). Then the spectrum of Π_{t} satisfies $c_{a, b}^{(t)}=\theta_{t}-\theta_{t-1-s}$ and the axis is unique if it exists ([14]).

Theorem 2.5 ([16]). Let Π_{t} be a $\left(\varphi_{0}, \varphi_{1}\right)_{t}$ flat in Σ with $\left(\varphi_{0}, \varphi_{1}\right)=\left(\theta_{t-1}, 2 \cdot 3^{t-1}\right)$ or $\left(\varphi_{0}, \varphi_{1}\right) \in \Lambda_{t}^{+}, t \geq 3$, and let ν be a positive integer. Then, $\left(\varphi_{0}, \varphi_{1}\right)$ is ν-descendant in Λ_{t} if and only if Π_{t} contains a $\left(\theta_{\nu-1}, 0\right)_{\nu-1}$ flat which is the axis of Π_{t}.

If Π_{t} has a $\left(\theta_{\nu-1}, 0\right)_{\nu-1}$ flat L which is the axis of type (a, b), then for any point P in L and a point Q of an $(a, b)_{t-1}$ flat H in $\Pi_{t},\langle P, Q\rangle$ is a (4,0)-line, a (1,3)-line or a (1,0)-line if $Q \in F_{0}, Q \in F_{1}, Q \in F_{2}$, respectively, where $\langle P, Q\rangle$ is the line through P and Q. In this paper, $\left\langle\chi_{1}, \chi_{2}, \cdots\right\rangle$ stands for the smallest flat containing subsets $\chi_{1}, \chi_{2}, \cdots$ of Σ.

Proof of Theorem 2.2. When $t=2, \Pi_{2}$ is a (4,3)-plane or a (4,6)-plane, and $F_{0} \cap$ Π_{2} forms a 4 -arc (a set of 4 points no three of which are collinear, see [11]), which is projectively equivalent to a conic \mathcal{P}_{2}^{0} by Theorem 8.14 in [8].

When $t=3, \Pi_{3}$ is a $(10,15)$-solid or a $(16,12)$-solid. If Π_{3} is a $(10,15)$-solid, then it follows from the spectrum that $F_{0} \cap \Pi_{3}$ forms a 10 -cap (a set of 10 points no three of which are collinear), whence we have $F_{0} \cap \Pi_{3} \sim \mathcal{E}_{3}^{0}$ by Theorem 16.1.7 in [7]. Similarly, if Π_{3} is a $(16,12)$-solid, we obtain $F_{0} \cap \Pi_{3} \sim \mathcal{H}_{3}^{0}$ from the spectrum of Π_{3} by Theorem 16.2.1 in [7].

Assume $t \geq 4$. Since every line in Σ meets F_{0} in $0,1,2$ or $\theta_{1}=4$ points, and since every point P of $F_{0} \cap \Pi_{t}$ is on a (2,1)-line when Π_{t} has new diversity (see Section 3 for the exact number of (2,1)-lines through P in $\Sigma), F_{0} \cap \Pi_{t}$ forms a non-singular $\varphi_{0}^{(t)}$-set of type $\left(0,1,2, \theta_{1}\right)$, see Section 22.10 in [9]. It can be easily shown by induction on t that a maximal flat contained in $F_{0} \cap \Pi_{t}$ is a T-flat when Π_{t} has diversity $\left(\theta_{t-1}-3^{T+1}, \theta_{t-1}+\theta_{T}+1\right)$ with t odd, $T=(t-3) / 2$, for Π_{t} contains a hyperplane whose diversity is 1-descendant to new $\left(\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1\right) \in \Lambda_{t-2}$. Hence our assertion follows from Theorem 22.11.6 in [9] and Lemma 2.1.

3 Focal points and focal hyperplanes

For $i=1,2$, a point $P \in F_{i}$ is called a focal point of a hyperplane H (or P is focal to H) if the following three conditions hold:
(a) $\langle P, Q\rangle$ is a $(0,2)$-line for $Q \in F_{i} \cap H$,
(b) $\langle P, Q\rangle$ is a $(2,1)$-line for $Q \in F_{3-i} \cap H$,
(c) $\langle P, Q\rangle$ is a $(1,6-3 i)$-line for $Q \in F_{0} \cap H$.

Such a hyperplane H is called a focal hyperplane of P (or H is focal to P). Note that for any point Q of H, the two points on the line $\langle P, Q\rangle$ other than P, Q are contained in the same set F_{j} for some $0 \leq j \leq 2$ with $Q \notin F_{j}$. Hence, a focal hyperplane of a given point is uniquely determined if it exists. Conversely, a focal point of a given hyperplane H^{\prime} is uniquely determined if it exists and if every point of $F_{0} \cap H^{\prime}$ is contained in a $(2,1)$-line in H^{\prime}. Note that every point of $F_{0} \cap \Pi_{t}$ is contained in a $(2,1)$-line in Π_{t} if $\left(\varphi_{0}{ }^{(t)}, \varphi_{1}{ }^{(t)}\right)$ is new. From the one-to-one correspondence between focal points and focal hyperplanes, we get the following.

Lemma 3.1. Let $t \geq 2, i=1$ or 2 and let Π_{t} be a t-flat with $\varphi_{s}{ }^{(t)}=\left|\Pi_{t} \cap F_{s}\right|$ for $s=0,1,2$, satisfying $\varphi_{i}{ }^{(t)}=c_{a, b}^{(t)}$ and that (a, b) is new in Λ_{t-1}. Then, every point of $\Pi_{t} \cap F_{i}$ has a focal (a, b)-hyperplane in Π_{t} if and only if every (a, b)-hyperplane of Π_{t} has a focal point in $\Pi_{t} \cap F_{i}$.

We note from Lemma 2.1 that the condition $\varphi_{i}{ }^{(t)}=c_{a, b}^{(t)}$ in Lemma 3.1 holds for $i=1,2$ for some new $(a, b) \in \Lambda_{t-1}$ if $\left(\varphi_{0}{ }^{(t)}, \varphi_{1}{ }^{(t)}\right)$ is new in Λ_{t}.

Lemma 3.2. Let δ be a (4,3)-plane. Then, every point of $\delta \cap F_{1}$ and of $\delta \cap F_{2}$ has a focal $(0,2)$-line and a focal $(2,1)$-line, respectively, and vice versa.

Proof. Recall from [11] that $K=\delta \cap F_{0}$ forms a 4 -arc in δ and that δ has spectrum $\left(c_{1,0}^{(2)}, c_{0,2}^{(2)}, c_{2,1}^{(2)}\right)=(4,3,6)$. The set of internal points of K (on no unisecant of $K[8]$) is $\delta \cap F_{1}$ and the set of external points of K (on two unisecants of K [8]) is $\delta \cap F_{2}$. For $Q \in \delta \cap F_{1}$, there exists a unique (0,2)-line ℓ in δ not containing Q. Then ℓ is the focal line of Q. For $R \in \delta \cap F_{2}$, there is a unique (2,1)-line ℓ_{1} through R. Let Q^{\prime} be the point of F_{1} in ℓ_{1} and let ℓ_{2} be the (2,1)-line through Q^{\prime} other than ℓ_{1}. Then ℓ_{2} is the focal line of R. The converses follow by Lemma 3.1.

See Fig. 1 for the configuration of a $(4,3)$-plane $\left(Q\right.$ and R are focal to ℓ_{1} and ℓ_{2}, respectively). Replacing $\delta \cap F_{1}$ and $\delta \cap F_{2}$ for a (4,3)-plane yields a (4,6)-plane with spectrum $\left(c_{1,3}^{(2)}, c_{0,2}^{(2)}, c_{2,1}^{(2)}\right)=(4,3,6)$, see Fig. 2. Hence we get the following.

Lemma 3.3. Let δ be a (4, 6)-plane. Then, every point of $\delta \cap F_{2}$ and of $\delta \cap F_{1}$ has a focal $(0,2)$-line and a focal $(2,1)$-line, respectively, and vice versa.

For a flat S in a $\left(\varphi_{0}, \varphi_{1}\right)_{t}$ flat Π_{t}, let $r_{i, j}^{(s)}$ be the number of $(i, j)_{s}$ flats through S in Π_{t}. We summarize the lists of $r_{i, j}^{(s)}$, to Table 3.1 for $\left(\varphi_{0}, \varphi_{1}\right)_{t}=(10,15)_{3},(16,12)_{3}$.

Fig. 1. (4, 3)-plane

O: a point of F_{0}
ㅁ: a point of F_{1}

- : a point of F_{2}

Fig. 2. (4, 6)-plane

Table 3.1.

Π_{t}	S	$r_{i, j}^{(s)}=\#$ of $(i, j)_{s}$ flats through S in Π_{t}
$(10,15)_{3}$	$P \in F_{0}$	$r_{1,0}^{(1)}=r_{1,3}^{(1)}=2, r_{2,1}^{(1)}=9$
$(10,15)_{3}$	$Q \in F_{1}$	$r_{0,2}^{(1)}=6, r_{2,1}^{(1)}=3, r_{1,3}^{(1)}=4$
$(10,15)_{3}$	$R \in F_{2}$	$r_{1,0}^{(1)}=4, r_{0,2}^{(1)}=6, r_{2,1}^{(1)}=3$
$(10,15)_{3}$	$(1,0)_{1}$	$r_{1,6}^{(2)}=1, r_{4,3}^{(2)}=3$
$(10,15)_{3}$	$(0,2)_{1}$	$r_{1,6}^{(2)}=2, r_{4,3}^{(2)}=r_{4,6}^{(2)}=1$
$(10,15)_{3}$	$(2,1)_{1}$	$r_{4,3}^{(2)}=r_{4,6}^{(2)}=2$
$(10,15)_{3}$	$(1,3)_{1}$	$r_{1,6}^{(2)}=1, r_{4,6}^{(2)}=3$
$(16,12)_{3}$	$P \in F_{0}$	$r_{1,0}^{(1)}=r_{1,3}^{(1)}=1, r_{2,1}^{(1)}=9, r_{4,0}^{(1)}=2$
$(16,12)_{3}$	$Q \in F_{1}$	$r_{0,2}^{(1)}=3, r_{2,1}^{(1)}=6, r_{1,3}^{(1)}=4$
$(16,12)_{3}$	$R \in F_{2}$	$r_{1,0}^{(1)}=4, r_{0,2}^{(1)}=3, r_{2,1}^{(1)}=6$
$(16,12)_{3}$	$(1,0)_{1}$	$r_{4,3}^{(2)}=3, r_{7,3}^{(2)}=1$
$(16,12)_{3}$	$(0,2)_{1}$	$r_{4,3}^{(2)}=r_{4,6}^{(2)}=2$
$(16,12)_{3}$	$(2,1)_{1}$	$r_{4,3}^{(2)}=r_{4,6}^{(2)}=1, r_{7,3}^{(2)}=2$
$(16,12)_{3}$	$(1,3)_{1}$	$r_{4,6}^{(2)}=3, r_{7,3}^{(2)}=1$
$(16,12)_{3}$	$(4,0)_{1}$	$r_{7,3}^{(2)}=4$

Lemma 3.4. Let Δ be a (10,15)-solid. Then, every point of $\Delta \cap F_{1}$ and of $\Delta \cap F_{2}$ has a focal (4, 6)-plane and a focal (4,3)-plane, respectively, and vice versa.

Proof. We prove that every point $R \in \Delta \cap F_{2}$ has a focal (4,3)-plane. It follows from Table 3.1 that there are exactly four (1,0)-lines through R in Δ, say $\ell_{1}, \ldots, \ell_{4}$. Let P_{i} be the point $\ell_{i} \cap F_{0}$ for $i=1, \ldots, 4$ and let δ be a plane containing P_{1}, P_{2}, P_{3}. Since Δ has spectrum $\left(c_{1,6}^{(3)}, c_{4,3}^{(3)}, c_{4,6}^{(3)}\right)=(10,15,15), \delta$ is a $(4,3)$-plane or a $(4,6)$-plane. Let P be the point of $\delta \cap F_{0}$ other than P_{1}, P_{2}, P_{3}, and put $\ell=\langle P, R\rangle$. Then $\delta_{i}=\left\langle\ell, P_{i}\right\rangle$ is a (4,3)-plane for $i=1,2,3$, since it contains a (1,0)-line ℓ_{i}. Thus, ℓ is contained in three $(4,3)$-planes. Hence ℓ is a (1,0)-line by Table 3.1, and we have $P=P_{4}$ and $\ell=\ell_{4}$. Since
the line $\left\langle P, P_{i}\right\rangle$ is a $(2,1)$-line and since $\ell_{1}, \ldots, \ell_{4}$ are (1,0)-lines, R is focal to $\left\langle P, P_{i}\right\rangle$ in δ_{i} for $i=1,2,3$. Now, let ℓ_{P} be the line through P in δ other than $\left\langle P, P_{i}\right\rangle, i=1,2,3$. Then $\left\langle\ell, \ell_{P}\right\rangle$ is a (1,6)-plane by Table 3.1, and ℓ_{P} is a (1,0)-line or a (1,3)-line, for a $(1,6)$-plane has spectrum $\left(c_{1,0}^{(2)}, c_{0,2}^{(2)}, c_{1,3}^{(2)}\right)=(2,9,2)[11]$. Suppose ℓ_{P} is a $(1,3)$-line. Let Q be the point $\ell_{P} \cap\left\langle P_{1}, P_{2}\right\rangle$ and put $m=\langle Q, R\rangle$. Then m is a $(0,2)$-line since $\left\langle\ell, \ell_{P}\right\rangle$ is a (1,6)-plane. On the other hand, since $\delta_{12}=\left\langle R, P_{1}, P_{2}\right\rangle$ is a (4,3)-plane satisfying that R is focal to $\left\langle P_{1}, P_{2}\right\rangle$ in δ_{12}, m must be a $(2,1)$-line, a contradiction. Hence ℓ_{P} is a (1,0)-line and is focal to R in the plane $\left\langle R, \ell_{P}\right\rangle$, and our assertion follows.

The following lemma can be also proved similarly using Table 3.1.
Lemma 3.5. Let Δ be a (16,12)-solid. Then, every point of $\Delta \cap F_{1}$ and of $\Delta \cap F_{2}$ has a focal $(4,3)$-plane and a focal $(4,6)$-plane, respectively, and vice versa.

Easy counting arguments yield the following.
Lemma 3.6. For even $t \geq 4$, let Π_{t}^{1}, Π_{t}^{2} be flats with parameters $\left(\theta_{t-1}, \theta_{t-1}-\theta_{U+1}\right)_{t}$, $\left(\theta_{t-1}, \theta_{t-1}+\theta_{U+1}+1\right)_{t}, U=(t-4) / 2$. For odd $t \geq 5$, let Π_{t}^{3}, Π_{t}^{4} be flats with parameters $\left(\theta_{t-1}-3^{T+1}, \theta_{t-1}+\theta_{T}+1\right)_{t},\left(\theta_{t-1}+3^{T+1}, \theta_{t-1}-\theta_{T}\right)_{t}, T=(t-3) / 2$. Then Table 3.2 holds.

Table 3.2.

Π_{t}	S	$r_{i, j}^{(s)}=\#$ of $(i, j)_{s}$ flats through S in Π_{t}
Π_{t}^{1}	Π_{t-3}^{3}	$r_{\theta_{t-3}-3^{U+1}, \theta_{t-3}+\theta_{U}+1}^{(t-2)}=4, r_{\theta_{t-3}, \theta_{t-3}-\theta_{U}}^{(t-2)}=6, r_{\theta_{t-3}, \theta_{t-3}+\theta_{U}+1}^{(t-2)}=3$
Π_{t}^{1}	Π_{t-3}^{4}	$r_{\theta_{t-3}-3^{U+1}, \theta_{t-3}+\theta_{U}+1}^{(t-2)}=4, r_{\theta_{t-3}, \theta_{t-3}-\theta_{U}}^{(t-2)}=3, r_{\theta_{t-3}, \theta_{t-3}+\theta_{U}+1}^{(t-2)}=6$
Π_{t}^{1}	Π_{t-2}^{1}	$r_{\theta_{t-2}, \theta_{t-2}-\theta_{U+1}}^{(t-5)}=2, r_{\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1}^{(t-1)}=r_{\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}}^{(t-1)}=1$
Π_{t}^{1}	Π_{t-2}^{2}	$r_{\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1}^{(t-1)}=r_{\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}}^{(t-1)}=2$
Π_{t}^{2}	Π_{t-3}^{3}	$r_{\theta_{t-3}, \theta_{t-3}-\theta_{U}}^{(t-2)}=6, r_{\theta_{t-3}, \theta_{t-3}+\theta_{U}+1}^{(t-2)}=3, r_{\theta_{t-3}+3^{U+1}, \theta_{t-3}-\theta_{U}}^{(t-2)}=4$
Π_{t}^{2}	Π_{t-3}^{4}	$r_{\theta_{t-3}, \theta_{t-3}-\theta_{U}}^{(t-2)}=3, r_{\theta_{t-3}, \theta_{t-3}+\theta_{U}+1}^{(t-2)}=6, r_{\theta_{t-3}+3^{U+1}, \theta_{t-3}-\theta_{U}}^{(t-2)}=4$
Π_{t}^{2}	Π_{t-2}^{1}	$r_{\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1}=r_{\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}}^{(t-1)}=2$
Π_{t}^{2}	Π_{t-2}^{2}	$r_{\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1}^{(t-1)}=r_{\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}}^{(t-1)}=1, r_{\theta_{t-2}, \theta_{t-2}+\theta_{U+1}+1}^{(t-1)}=2$
Π_{t}^{3}	Π_{t-3}^{1}	$r_{\theta_{t-3}, \theta_{t-3}-\theta_{T}}^{(t-2)}=4, r_{\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1}^{(t-2)}=6, r_{\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}}^{(t-2)}=3$
Π_{t}^{3}	Π_{t-3}^{2}	$r_{\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1}^{(t-2}=6, r_{\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}}^{(t-2)}=3, r_{\theta_{t-3}, \theta_{t-3}+\theta_{T}+1}^{(t-2)}=4$
Π_{t}^{3}	Π_{t-2}^{3}	$r_{\theta_{t-2}-3^{T+1}, \theta_{t-2}+\theta_{T}+1}^{(t-1)}=2, r_{\theta_{t-2}, \theta_{t-2}-\theta_{T}}^{(t-1)}=r_{\theta_{t-2}, \theta_{t-2}+\theta_{T}+1}^{(t-1)}=1$
Π_{t}^{3}	Π_{t-2}^{4}	$r_{\theta_{t-2}, \theta_{t-2}-\theta_{T}}^{(t-1)}=r_{\theta_{t-2}, \theta_{t-2}+\theta_{T}+1}^{(t-1)}=2$
Π_{t}^{4}	Π_{t-3}^{1}	$r_{\theta_{t-3}, \theta_{t-3}-\theta_{T}}^{(t-2)}=4, r_{\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1}^{(t-2)}=3, r_{\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}}^{(t-2)}=6$
Π_{t}^{4}	Π_{t-3}^{2}	$r_{\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1}^{(t-2)}=3, r_{\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}}^{(t-2)}=6, r_{\theta_{t-3}, \theta_{t-3}+\theta_{T}+1}^{(t-2)}=4$
Π_{t}^{4}	Π_{t-2}^{3}	$r_{\theta_{t-2}, \theta_{t-2}-\theta_{T}}^{(t-1)}=r_{\theta_{t-2}, \theta_{t-2}+\theta_{T}+1}^{(t-1)}=2$
Π_{t}^{4}	Π_{t-2}^{4}	$r_{\theta_{t-2}, \theta_{t-2}-\theta_{T}}^{(t-1)}=r_{\theta_{--2}, \theta_{t-2}+\theta_{T+1}}^{(t-1)}=1, r_{\theta_{t-2}+3^{T+1} \theta_{t-2}-\theta_{T}}^{(t-1)}=2$

We prove the following four lemmas by induction on t. More precisely, we show Lemma 3.7 and Lemma 3.8 for even t using Lemmas 3.7-3.10 as the induction hypothesis for $t-2$ or $t-1$, and we show Lemma 3.9 and Lemma 3.10 for odd t using Lemmas 3.7 3.10 as well, where Lemmas 3.2-3.5 give the induction basis.

Lemma 3.7. Let Π_{t} be a $\left(\theta_{t-1}, \theta_{t-1}-\theta_{U+1}\right)_{t}$ flat for even $t \geq 4$, where $U=(t-4) / 2$. Then, every point of $\Pi_{t} \cap F_{1}$ and of $\Pi_{t} \cap F_{2}$ has a focal $\left(\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1\right)_{t-1}$ flat and a focal $\left(\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}\right)_{t-1}$ flat, respectively, and vice versa.

Proof. We prove that arbitrary $\left(\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}\right)_{t-1}$ flat π in Π_{t} has a focal point in $F_{2} \cap \Pi_{t}$. Let δ be a $\left(\theta_{t-4}-3^{U}, \theta_{t-4}+\theta_{U-1}+1\right)_{t-3}$ flat in π. Then, from Table 3.2, there are exactly three $\left(\theta_{t-3}, \theta_{t-3}+\theta_{U}+1\right)_{t-2}$ flats through δ in Π_{t}, precisely two of which are contained in π. Let Δ be the $\left(\theta_{t-3}, \theta_{t-3}+\theta_{U}+1\right)_{t-2}$ flat through δ not contained in π. From Table 3.2, in Π_{t}, there are two $\left(\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1\right)_{t-1}$ flats through Δ, say π_{1}, π_{2}, and two $\left(\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}\right)_{t-1}$ flats through Δ, say π_{3}, π_{4}. Let $\Delta_{i}=\pi \cap \pi_{i}$ for $i=1, \ldots, 4$. Then, $\Delta_{1}, \cdots, \Delta_{4}$ are the $(t-2)$-flats through δ in π, consisting two $\left(\theta_{t-3}, \theta_{t-3}-\theta_{U}\right)_{t-2}$ flats and two $\left(\theta_{t-3}, \theta_{t-3}+\theta_{U}+1\right)_{t-2}$ flats from Table 3.2. It also follows from Table 3.2 that a $\left(\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1\right)_{t-1}$ flat cannot contain two $\left(\theta_{t-3}, \theta_{t-3}+\theta_{U}+1\right)_{t-2}$ flats meeting in a $\left(\theta_{t-4}-3^{U}, \theta_{t-4}+\theta_{U-1}+1\right)_{t-3}$ flat. Hence, Δ_{3}, Δ_{4} are $\left(\theta_{t-3}, \theta_{t-3}+\theta_{U}+1\right)_{t-2}$ flats and Δ_{1}, Δ_{2} are $\left(\theta_{t-3}, \theta_{t-3}-\theta_{U}\right)_{t-2}$ flats. From the induction hypothesis for $t-2, \delta$ has a focal point $R \in F_{2}$ in Δ. To show that R is focal to π, It suffices to prove that R is focal to Δ_{i} in π_{i} for $i=1, \ldots, 4$. Since the diversity of π_{i} is new in Λ_{t-1} and since R is focal to δ, it follows from the induction hypothesis for $t-1$ that R has the focal $(t-2)$-flat Δ_{i}^{\prime} through δ in π_{i} for $i=1, \ldots, 4$. For $i=1,2, \Delta_{i}^{\prime}$ is a $\left(\theta_{t-3}, \theta_{t-3}-\theta_{U}\right)_{t-2}$ flat, and Δ_{i} is the only $\left(\theta_{t-3}, \theta_{t-3}-\theta_{U}\right)_{t-2}$ flat through δ in π_{i} from Table 3.2. Hence $\Delta_{i}^{\prime}=\Delta_{i}$. For $i=3,4, \Delta_{i}^{\prime}$ is a $\left(\theta_{t-3}, \theta_{t-3}+\theta_{U}+1\right)_{t-2}$ flat, and Δ_{i} is the only $\left(\theta_{t-3}, \theta_{t-3}+\theta_{U}+1\right)_{t-2}$ flat through δ other than Δ in π_{i} from Table 3.2. Hence we have $\Delta_{i}^{\prime}=\Delta_{i}$ as well. Thus R is focal to Δ_{i} in π_{i} for $i=1, \ldots, 4$.
Similarly, it can be proved using Table 3.2 that every $\left(\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1\right)_{t-1}$ flat in Π_{t} has a focal point in $F_{1} \cap \Pi_{t}$. The converses follow from Lemma 3.1.

Replacing $\Pi_{t} \cap F_{1}$ and $\Pi_{t} \cap F_{2}$ for a $\left(\theta_{t-1}, \theta_{t-1}-\theta_{U+1}\right)_{t}$ flat Π_{t} yields a $\left(\theta_{t-1}, \theta_{t-1}+\right.$ $\left.\theta_{U+1}+1\right)_{t}$ flat in which every $\left(\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}\right)_{t-1}$ flat and every $\left(\theta_{t-2}-3^{U+1}, \theta_{t-2}+\right.$ $\left.\theta_{U}+1\right)_{t-1}$ flat have a focal point in $F_{1} \cap \Pi_{t}$ and in $F_{2} \cap \Pi_{t}$, respectively. Hence we get the following.

Lemma 3.8. Let Π be a $\left(\theta_{t-1}, \theta_{t-1}+\theta_{U+1}+1\right)_{t}$ flat for even $t \geq 4$, where $U=(t-4) / 2$. Then, every point of $\Pi \cap F_{1}$ and of $\Pi \cap F_{2}$ has a focal $\left(\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}\right)_{t-1}$ flat and a focal $\left(\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1\right)_{t-1}$ flat, respectively, and vice versa.
Lemma 3.9. Let Π be $a\left(\theta_{t-1}-3^{T+1}, \theta_{t-1}+\theta_{T}+1\right)_{t}$ flat for odd $t \geq 5$, where $T=$ $(t-3) / 2$. Then, every point of $\Pi \cap F_{1}$ and of $\Pi \cap F_{2}$ has a focal $\left(\theta_{t-2}, \theta_{t-2}-\theta_{T}\right)_{t-1}$ flat and a focal $\left(\theta_{t-2}, \theta_{t-2}+\theta_{T}+1\right)_{t-1}$ flat, respectively, and vice versa.

Proof. We prove that arbitrary $\left(\theta_{t-2}, \theta_{t-2}-\theta_{T}\right)_{t-1}$ flat π in Π_{t} has a focal point in $F_{2} \cap \Pi_{t}$. Let δ be a $\left(\theta_{t-4}, \theta_{t-4}+\theta_{T-1}+1\right)_{t-3}$ flat in π. Then, from Table 3.2, there are exactly
three $\left(\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}\right)_{t-2}$ flats through δ in Π_{t}, precisely two of which are contained in π. Let Δ be the $\left(\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}\right)_{t-2}$ flat through δ not contained in π. From Table 3.2, in Π_{t}, there are two $\left(\theta_{t-2}, \theta_{t-2}-\theta_{T}\right)_{t-1}$ flats through Δ, say π_{1}, π_{2}, and two $\left(\theta_{t-2}, \theta_{t-2}+\theta_{T}+1\right)_{t-1}$ flats through Δ, say π_{3}, π_{4}. Let $\Delta_{i}=\pi \cap \pi_{i}$ for $i=1, \ldots, 4$. Then, $\Delta_{1}, \cdots, \Delta_{4}$ are the $(t-2)$-flats through δ in π, consisting two $\left(\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1\right)_{t-2}$ flats and two $\left(\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}\right)_{t-2}$ flats from Table 3.2. It also follows from Table 3.2 that a $\left(\theta_{t-2}, \theta_{t-2}+\theta_{T}+1\right)_{t-1}$ flat cannot contain two $\left(\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}\right)_{t-2}$ flats meeting in a $\left(\theta_{t-4}, \theta_{t-4}+\theta_{T-1}+1\right)_{t-3}$ flat. Hence, Δ_{3}, Δ_{4} are $\left(\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1\right)_{t-2}$ flats and Δ_{1}, Δ_{2} are $\left(\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}\right)_{t-2}$ flats. From the induction hypothesis for $t-2$, δ has a focal point $R \in F_{2}$ in Δ. To show that R is focal to π, It suffices to prove that R is focal to Δ_{i} in π_{i} for $i=1, \ldots, 4$. Since the diversity of π_{i} is new in Λ_{t-1} and since R is focal to δ, it follows from the induction hypothesis for $t-1$ that R has the focal $(t-2)$-flat Δ_{i}^{\prime} through δ in π_{i} for $i=1, \ldots, 4$. For $i=1,2, \Delta_{i}^{\prime}$ is a $\left(\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}\right)_{t-2}$ flat, and Δ_{i} is the only $\left(\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}\right)_{t-2}$ flat through δ other than Δ in π_{i} from Table 3.2. Hence we have $\Delta_{i}^{\prime}=\Delta_{i}$. For $i=3,4, \Delta_{i}^{\prime}$ is a $\left(\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1\right)_{t-2}$ flat, and Δ_{i} is the only $\left(\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1\right)_{t-2}$ flat through δ in π_{i} from Table 3.2. Hence $\Delta_{i}^{\prime}=\Delta_{i}$ as well. Thus R is focal to Δ_{i} in π_{i} for $i=1, \ldots, 4$.
Similarly, it can be proved using Table 3.2 that every $\left(\theta_{t-2}, \theta_{t-2}+\theta_{T}+1\right)_{t-1}$ flat in Π_{t} has a focal point in $F_{1} \cap \Pi_{t}$. The converses follow from Lemma 3.1.

The following lemma can be also proved similarly using Table 3.2.
Lemma 3.10. Let Π be a $\left(\theta_{t-1}+3^{T+1}, \theta_{t-1}-\theta_{T}\right)_{t}$ flat for odd $t \geq 5$, where $T=(t-3) / 2$. Then, every point of $\Pi \cap F_{1}$ and of $\Pi \cap F_{2}$ has a focal $\left(\theta_{t-2}, \theta_{t-2}+\theta_{T}+1\right)_{t-1}$ flat and a focal $\left(\theta_{t-2}, \theta_{t-2}-\theta_{T}\right)_{t-1}$ flat, respectively, and vice versa.

Recall that $(2,1)$ and $(0,2)$ are new in Λ_{1}. We have shown the following theorem by Lemmas 3.2-3.10.

Theorem 3.11. Let Π be a t-flat with new diversity in $\Lambda_{t}, t \geq 2$. Then, every point of $\Pi \cap F_{1}$ or $\Pi \cap F_{2}$ has a unique focal hyperplane whose diversity is new in Λ_{t-1}. Conversely, every hyperplane with new diversity in Λ_{t-1} has a unique focal point in $\Pi \cap F_{1}$ or in $\Pi \cap F_{2}$.

Table 3.3. The focal line of $R \in F_{2} \cap \delta$

plane δ	$(4,0)$	$(1,6)$	$(4,3)$	$(4,6)$	$(7,3)$
focal line	$(4,0)$	$(1,0)$	$(2,1)$	$(0,2)$	$(1,3)$

Table 3.4. The focal line of $Q \in F_{1} \cap \delta$

plane δ	$(1,6)$	$(4,3)$	$(4,6)$	$(7,3)$	$(4,9)$
focal line	$(1,3)$	$(0,2)$	$(2,1)$	$(1,0)$	$(4,0)$

Let δ be an (i, j)-plane with $i+j<\theta_{2}$ and take $R \in \delta \cap F_{2}$. Then, it follows from the geometric configurations of $F_{0} \cap \delta, F_{1} \cap \delta, F_{2} \cap \delta$ that R has the unique focal line in δ as in Table 3.3. This can be proved for t-flats as follows for $t \geq 3$.

Let Π_{t} be a $\left(\varphi_{0}, \varphi_{1}\right)_{t}$ flat with $t \geq 3$. By Theorem 3.11, every point of $F_{2} \cap \Pi_{t}$ or $F_{1} \cap \Pi_{t}$ has the unique focal hyperplane of Π_{t} provided $\left(\varphi_{0}, \varphi_{1}\right)$ is new in Λ_{t-1}.
Assume that $\left(\varphi_{0}, \varphi_{1}\right)$ is not new in Λ_{t-1}. Then, there is a $\left(\left(\varphi_{0}-1\right) / 3, \varphi_{1} / 3\right)_{t-1}$ flat π in Π_{t}. Let L be the axis of Π_{t} and let P be a point of L out of π. Then, for a point $Q \in \pi$, the line $\langle P, Q\rangle$ is a $(4,0)$-line, a $(1,3)$-line or a $(1,0)$-line if $Q \in F_{0}, Q \in F_{1}$ or $Q \in F_{2}$, respectively. Assume that $F_{2} \cap \Pi_{t} \neq \emptyset$ and that $R \in F_{2} \cap \pi$ is focal to a ($t-2$)-flat Δ in π. Then, it is easy to see that R is focal to $\langle P, \Delta\rangle$. Thus, every point of $F_{2} \cap \Pi_{t}$ has the unique focal hyperplane of Π_{t}.

Theorem 3.12. Let Π_{t} be a $\left(\varphi_{0}, \varphi_{1}\right)_{t}$ flat with $\varphi_{0}+\varphi_{1}<\theta_{t}, t \geq 2$. Then, for any point R of $F_{2} \cap \Pi_{t}$,
(1) R has the unique focal $(a, b)_{t-1}$ flat in Π_{t} with

$$
a=\left(4 \theta_{t-1}-\varphi_{0}-2 \varphi_{1}\right) / 3, b=\left(2 \varphi_{0}+\varphi_{1}-2 \theta_{t-1}\right) / 3
$$

(2) The numbers of (i, j)-lines through R in Π_{t} are

$$
r_{1,0}^{(1)}=a, r_{2,1}^{(1)}=b, r_{0,2}^{(1)}=\theta_{t-1}-a-b .
$$

We also get the following similarly (see Table 3.4 for $t=2$).

Theorem 3.13. Let Π_{t} be $a\left(\varphi_{0}, \varphi_{1}\right)_{t}$ flat with $\varphi_{1}>0, t \geq 2$. Then, for any point Q of $F_{1} \cap \Pi_{t}$,
(1) Q has the unique focal $(a, b)_{t-1}$ flat in Π_{t} with

$$
a=\left(\varphi_{0}+2 \varphi_{1}-2 \theta_{t-1}-2\right) / 3, b=\left(4 \theta_{t-1}-2 \varphi_{0}-\varphi_{1}+1\right) / 3
$$

(2) The numbers of (i, j)-lines through Q in Π_{t} are

$$
r_{1,3}^{(1)}=a, r_{0,2}^{(1)}=b, r_{2,1}^{(1)}=\theta_{t-1}-a-b .
$$

Now, assume $P \in F_{0}$. To count $r_{i, j}^{(1)}$ for P when $\left(\varphi_{0}, \varphi_{1}\right)$ is new, we employ the following lemmas.

Lemma 3.14 ([16]). Let Π be a t-flat in Σ with even $t \geq 4, U=(t-4) / 2$.
(1) If Π is a $\left(\theta_{t-1}, \theta_{t-1}-\theta_{U+1}\right)_{t}$ flat, then Π contains four $\left(\theta_{t-2}, \theta_{t-2}-\theta_{U+1}\right)_{t-1}$ flats π_{1}, \cdots, π_{4} through a fixed $\left(\theta_{t-3}, \theta_{t-3}-\theta_{U+1}\right)_{t-2}$ flat Δ such that Δ contains a $(4,0)$-line $\ell=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ which is the axis of Δ of type $\left(\theta_{t-4}, \theta_{t-4}-\theta_{U}\right)$ and that P_{i} is the axis of π_{i} of type $\left(\theta_{t-3}, \theta_{t-3}-\theta_{U}\right)$ for $1 \leq i \leq 4$.
(2) If Π is a $\left(\theta_{t-1}, \theta_{t-1}+\theta_{U+1}+1\right)_{t}$ flat, then Π contains four $\left(\theta_{t-2}, \theta_{t-2}+\theta_{U+1}+1\right)_{t-1}$ flats π_{1}, \cdots, π_{4} through a fixed $\left(\theta_{t-3}, \theta_{t-3}+\theta_{U+1}+1\right)_{t-2}$ flat Δ such that Δ contains a $(4,0)$-line $\ell=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ which is the axis of Δ of type $\left(\theta_{t-4}, \theta_{t-4}+\theta_{U}+1\right)$ and that P_{i} is the axis of π_{i} of type $\left(\theta_{t-3}, \theta_{t-3}+\theta_{U}+1\right)$ for $1 \leq i \leq 4$.

Lemma 3.15 ([16]). Let Π be a t-flat in Σ with odd $t \geq 5, T=(t-3) / 2$.
(1) If Π is a $\left(\theta_{t-1}+3^{T+1}, \theta_{t-1}-\theta_{T}\right)_{t}$ flat, then Π contains four $\left(\theta_{t-2}+3^{T+1}, \theta_{t-2}-\theta_{T}\right)_{t-1}$ flats $\pi_{1} \cdots \pi_{4}$ through a fixed $\left(\theta_{t-3}+3^{T+1}, \theta_{t-3}-\theta_{T}\right)_{t-2}$ flat Δ such that Δ contains a $(4,0)$-line $\ell=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ which is the axis of Δ of type $\left(\theta_{t-4}+3^{T}, \theta_{t-4}-\theta_{T-1}\right)$ and that P_{i} is the axis of π_{i} of type $\left(\theta_{t-3}+3^{T}, \theta_{t-3}-\theta_{T-1}\right)$ for $1 \leq i \leq 4$.
(2) If Π is a $\left(\theta_{t-1}-3^{T+1}, \theta_{t-1}+\theta_{T}+1\right)_{t}$ flat, then Π contains four $\left(\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+\right.$ 1) $)_{t-1}$ flats π_{1}, \cdots, π_{4} through a fixed $\left(\theta_{t-3}-3^{T+1}, \theta_{t-3}+\theta_{T}+1\right)_{t-2}$ flat Δ such that Δ contains a (4, 0)-line $\ell=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ which is the axis of Δ of type $\left(\theta_{t-4}-3^{T}, \theta_{t-4}+\right.$ $\left.\theta_{T-1}+1\right)$ and that P_{i} is the axis of π_{i} of type $\left(\theta_{t-3}-3^{T}, \theta_{t-3}+\theta_{T-1}+1\right)$ for $1 \leq i \leq 4$.

Since F_{0} is projectively equivalent to a non-singular quadric \mathcal{Q} by Theorem 2.2 and since $G(\mathcal{Q})$, the group of projectivities fixing \mathcal{Q}, acts transitively on \mathcal{Q} (see Theorem 22.6.4 of [9]), we may assume that $P=P_{1}$ in Lemmas 3.14 or 3.15 . Since P is the axis of π_{1} but not of $\pi_{2}, \pi_{3}, \pi_{4}$, we get the following.

Theorem 3.16. Let Π_{t} be a t-flat with new diversity, $t \geq 4$, and let P_{1} and π_{1} be as in Lemma 3.14 or Lemma 3.15. Assume that P_{1} is the axis of π_{1} of type (a, b). Then, for any point P of $F_{0} \cap \Pi_{t}$, the numbers of (i, j)-lines through P in Π_{t} are

$$
r_{4,0}^{(1)}=a, r_{1,3}^{(1)}=b, r_{1,0}^{(1)}=\theta_{t-2}-a-b, r_{2,1}^{(1)}=3^{t-1} .
$$

Proof of Theorem 2.3. We first prove for $t=2$ as the induction basis. Let Π_{2} be a (4,3)-plane. Recall that $F_{0} \cap \Pi_{2}$ forms a 4-arc, say K, and the set of internal points of K in Π_{2} is $F_{1} \cap \Pi_{2}$. On the other hand, $\mathcal{P}_{2}^{2}=\{\mathbf{P}(0,1,2), \mathbf{P}(1,1,1), \mathbf{P}(1,2,2)\}$ is the set of internal points of the conic $\mathcal{P}_{2}^{0}=V_{0}\left(x_{0}^{2}+x_{1} x_{2}\right)$ in $\mathrm{PG}(2,3)$. Hence, taking a projectivity τ from Π_{2} to $\operatorname{PG}(2,3)$ with $\tau\left(F_{1} \cap \Pi_{2}\right)=\mathcal{P}_{2}^{2}=2 \mathcal{P}_{2}^{1}$, we get $F_{i} \cap \Pi_{2} \sim 2 \mathcal{P}_{2}^{i}$ for $i=0,1,2$. When Π_{2} is a (4,6)-plane, we have $F_{i} \cap \Pi_{2} \sim \mathcal{P}_{2}^{i}$ for $i=0,1,2$ since $F_{2} \cap \Pi_{2}$ is the set of internal points of a 4-arc $F_{0} \cap \Pi_{2}$ in this case.

Now, let t be odd ≥ 3 and $T=(t-3) / 2$. Let Π_{t} be a $\left(\theta_{t-1}-3^{T+1}, \theta_{t-1}+\theta_{T}+1\right)_{t}$ flat and π be a $\left(\theta_{t-2}, \theta_{t-2}+\theta_{T}+1\right)_{t-1}$ flat in Π_{t} which is focal to $Q \in F_{1} \cap \Pi_{t}$. We prove $F_{i} \cap \Pi_{t} \sim \mathcal{E}_{t}^{i}$ for $i=0,1,2$. We have $F_{i} \cap \pi \sim \mathcal{P}_{t-1}^{i}$ for $i=0,1,2$ by the induction hypothesis for $t-1$. Let π^{\prime} be the hyperplane $V_{0}\left(x_{0}\right)$ in $\operatorname{PG}(t, 3)$ and take $f=x_{1}^{2}+x_{2} x_{3}+\cdots+x_{t-1} x_{t}$. We consider $V_{i}(f) \cap \pi^{\prime}\left(\sim \mathcal{P}_{t-1}^{i}\right)$ and $\mathcal{E}_{t}^{i}=V_{i}\left(x_{0}^{2}+x_{1}^{2}+x_{2} x_{3}+\cdots+x_{t-1} x_{t}\right)$ for $i=1,2$. Note that $Q^{\prime}=\mathbf{P}(1,0, \cdots, 0) \in \mathcal{E}_{t}^{1} \backslash \pi^{\prime}$ and $\mathcal{E}_{t}^{i} \cap \pi^{\prime}=V_{i}(f) \cap \pi^{\prime}$. Since $F_{i} \cap \pi \sim \mathcal{P}_{t-1}^{i}$ for $i=1$, 2, we can take a projectivity τ from Π_{t} to $\mathrm{PG}(t, 3)$ satisfying $\tau\left(F_{i} \cap \pi\right)=V_{i}(f) \cap \pi^{\prime}$ for $i=1,2$ and $\tau(Q)=Q^{\prime}$. For $P^{\prime}=\mathbf{P}\left(0, p_{1}, \cdots, p_{t}\right) \in \mathcal{E}_{t}^{i} \cap \pi^{\prime}$, the two points $\mathbf{P}\left(1, p_{1}, \cdots, p_{t}\right)$ and $\mathbf{P}\left(2, p_{1}, \cdots, p_{t}\right)$ on the line $\left\langle P^{\prime}, Q^{\prime}\right\rangle$ other than P^{\prime}, Q^{\prime} belong to \mathcal{E}_{t}^{i+1}, where $i+1$ is calculated modulo 3. Thus, we have $\tau\left(F_{i} \cap \Pi_{t}\right)=\mathcal{E}_{t}^{i}$ for $i=0,1,2$.

Next, let Π_{t} be a $\left(\theta_{t-1}+3^{T+1}, \theta_{t-1}-\theta_{T}\right)_{t}$ flat for odd $t \geq 3, T=(t-3) / 2$. Let R be a point of F_{2} and π be a $\left(\theta_{t-2}, \theta_{t-2}+\theta_{T}+1\right)_{t-1}$ flat which is focal to R. We prove $F_{i} \cap \Pi_{t} \sim \mathcal{H}_{t}^{i}$ for $i=1,2$. We have $F_{i} \cap \pi \sim \mathcal{P}_{t-1}^{i}$ for $i=0,1,2$ by the induction hypothesis for $t-1$. Let π^{\prime} be the hyperplane $V_{0}\left(x_{0}-x_{1}\right)$ in $\operatorname{PG}(t, 3)$ and take $f=x_{1}^{2}+x_{2} x_{3}+\cdots+x_{t-1} x_{t}$ as above. We consider $V_{i}(f) \cap \pi^{\prime}\left(\sim \mathcal{P}_{t-1}^{i}\right)$ and $\mathcal{H}_{t}^{i}=V_{i}\left(x_{0} x_{1}+x_{2} x_{3}+\cdots+x_{t-1} x_{t}\right)$ for
$i=1,2$. Note that $R^{\prime}=\mathbf{P}(1,2,0, \cdots, 0) \in \mathcal{H}_{t}^{2} \backslash \pi^{\prime}$ and $\mathcal{H}_{t}^{i} \cap \pi^{\prime}=V_{i}(f) \cap \pi^{\prime}$. Since $F_{i} \cap \pi \sim \mathcal{P}_{t-1}^{i}$ for $i=1,2$, we can take a projectivity τ from Π_{t} to $\operatorname{PG}(t, 3)$ satisfying $\tau\left(F_{i} \cap \pi\right)=V_{i}(f) \cap \pi^{\prime}$ for $i=1,2$ and $\tau(R)=R^{\prime}$. For $P^{\prime}=\mathbf{P}\left(p_{1}, p_{1}, p_{2}, \cdots, p_{t}\right) \in \mathcal{H}_{t}^{i} \cap \pi^{\prime}$, the two points $\mathbf{P}\left(p_{1}+1, p_{1}-1, p_{2}, \cdots, p_{t}\right)$ and $\mathbf{P}\left(p_{1}-1, p_{1}+1, p_{2}, \cdots, p_{t}\right)$ on the line $\left\langle P^{\prime}, R^{\prime}\right\rangle$ other than P^{\prime}, R^{\prime} belong to \mathcal{H}_{t}^{i+2}, where $i+2$ is calculated modulo 3. Hence, we have $\tau\left(F_{i} \cap \Pi_{t}\right)=\mathcal{H}_{t}^{i}$ for $i=0,1,2$.

For even $t \geq 4$, we first assume Π_{t} is a $\left(\theta_{t-1}, \theta_{t-1}+\theta_{U+1}+1\right)_{t}$ flat, where $U=(t-4) / 2$. Let Q be a point of F_{1} and π be a $\left(\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_{U}\right)_{t-1}$ flat which is focal to Q. We prove $F_{i} \cap \Pi_{t} \sim \mathcal{P}_{t}^{i}$ for $i=1,2$. We have $F_{i} \cap \pi \sim \mathcal{P}_{t-1}^{i}$ for $i=0,1,2$ by the induction hypothesis for $t-1$. Let π^{\prime} be the hyperplane $V_{0}\left(x_{0}\right)$ in $\operatorname{PG}(t, 3)$ and take $f=x_{1} x_{2}+$ $x_{3} x_{4}+\cdots+x_{t-1} x_{t}$. We consider $V_{i}(f) \cap \pi^{\prime}\left(\sim \mathcal{H}_{t-1}^{i}\right)$ and $\mathcal{P}_{t}^{i}=V_{i}\left(x_{0}^{2}+x_{1} x_{2}+\cdots+x_{t-1} x_{t}\right)$ for $i=1,2$. Note that $Q^{\prime}=\mathbf{P}(1,0, \cdots, 0) \in \mathcal{P}_{t}^{1} \backslash \pi^{\prime}$ and $\mathcal{P}_{t}^{i} \cap \pi^{\prime}=V_{i}(f) \cap \pi^{\prime}$. Since $F_{i} \cap \pi \sim \mathcal{H}_{t-1}^{i}$ for $i=1,2$, we can take a projectivity τ from Π_{t} to $\operatorname{PG}(t, 3)$ satisfying $\tau\left(F_{i} \cap \pi\right)=V_{i}(f) \cap \pi^{\prime}$ for $i=1,2$ and $\tau(Q)=Q^{\prime}$. For $P^{\prime}=\mathbf{P}\left(0, p_{1}, p_{2}, \cdots, p_{t}\right) \in \mathcal{P}_{t}^{i} \cap \pi^{\prime}$, the two points $\mathbf{P}\left(1, p_{1}, p_{2}, \cdots, p_{t}\right)$ and $\mathbf{P}\left(2, p_{1}, p_{2}, \cdots, p_{t}\right)$ on the line $\left\langle P^{\prime}, Q^{\prime}\right\rangle$ other than P^{\prime}, Q^{\prime} belong to \mathcal{P}_{t}^{i+1}, where $i+1$ is calculated modulo 3. Hence, we have $\tau\left(F_{i} \cap \Pi_{t}\right)=\mathcal{P}_{t}^{i}$ for $i=0,1,2$.

Next, let Π_{t} be a $\left(\theta_{t-1}, \theta_{t-1}+\theta_{U+1}+1\right)_{t}$ flat for even $t \geq 4, U=(t-4) / 2$. Let R be a point of F_{2} and π be a $\left(\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_{U}+1\right)_{t-1}$ flat which is focal to R. We prove $F_{i} \cap \Pi_{t} \sim \mathcal{P}_{t}^{i}$ for $i=1,2$. We have $F_{i} \cap \pi \sim \mathcal{P}_{t-1}^{i}$ for $i=0,1,2$ by the induction hypothesis for $t-1$. Let π^{\prime} be the hyperplane $V_{0}\left(x_{0}-x_{1}-x_{2}\right)$ in $\operatorname{PG}(t, 3)$ and take $f=x_{1}^{2}+x_{2}^{2}+x_{3} x_{4}+\cdots+x_{t-1} x_{t}$. We consider $V_{i}(f) \cap \pi^{\prime}\left(\sim \mathcal{E}_{t-1}^{i}\right)$ and $\mathcal{P}_{t}^{i}=$ $V_{i}\left(x_{0}^{2}+x_{1} x_{2}+\cdots+x_{t-1} x_{t}\right)$ for $i=1,2$. Note that $R^{\prime}=\mathbf{P}(1,1,1,0, \cdots, 0) \in \mathcal{P}_{t}^{1} \backslash \pi^{\prime}$ and $\mathcal{P}_{t}^{i} \cap \pi^{\prime}=V_{i}(f) \cap \pi^{\prime}$. Since $F_{i} \cap \pi \sim \mathcal{E}_{t-1}^{i}$ for $i=1$, 2 , we can take a projectivity τ from Π_{t} to $\mathrm{PG}(t, 3)$ satisfying $\tau\left(F_{i} \cap \pi\right)=V_{i}(f) \cap \pi^{\prime}$ for $i=1,2$ and $\tau(R)=R^{\prime}$. For $P^{\prime}=\mathbf{P}\left(p_{1}+p_{2}, p_{1}, p_{2}, \cdots, p_{t}\right) \in \mathcal{P}_{t}^{i} \cap \pi^{\prime}$, the two points $\mathbf{P}\left(p_{1}+p_{2}+1, p_{1}+1, p_{2}+1, p_{3} \cdots, p_{t}\right)$ and $\mathbf{P}\left(p_{1}+p_{2}+2, p_{1}+2, p_{2}+2, p_{3} \cdots, p_{t}\right)$ on the line $\left\langle P^{\prime}, R^{\prime}\right\rangle$ other than P^{\prime}, R^{\prime} belong to \mathcal{P}_{t}^{i+2}, where $i+2$ is calculated modulo 3. Hence, we have $\tau\left(F_{i} \cap \Pi_{t}\right)=\mathcal{P}_{t}^{i}$ for $i=0,1,2$.

4 An application to optimal linear codes problem

One of the fundamental problems in coding theory is the optimal linear codes problem, which is the problem to optimize one of the parameters n, k, d for given the other two over a given field \mathbb{F}_{q}, see [4], [5]. Here, we consider one version of the problem to determine $n_{q}(k, d)$, the minimum value of n for which an $[n, k, d]_{q}$ code exists. $\left[n_{q}(k, d), k, d\right]_{q}$ codes are called optimal. $n_{3}(k, d)$ has been determined for all d for $k \leq 5$, but not for many values of d for the case $k \geq 6$. For example, $n_{3}(6,202)$ is not determined yet so far since Hamada [3] proved the following in 1993.

Lemma 4.1 ([3]). (1) $n_{3}(6,203)=307$. (2) $n_{3}(6,202)=305$ or 306.

In this section, we show how our investigations in the previous section can be applied
to consider such problems by proving the non-existence of a $[305,6,202]_{3}$ code, which is a new result.

Theorem 4.2. $A[305,6,202]_{3}$ code does not exist.
Corollary 4.3. $n_{3}(6,202)=306$.

We first introduce the usual geometric method. Let \mathcal{C} be an $[n, k, d]_{q}$ code with a generator matrix G attaining the Griesmer bound:

$$
n \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

where $\lceil x\rceil$ denotes the smallest integer greater than or equal to x, and assume that \mathcal{C} satisfies $d \leq q^{k-1}$. We mainly deal with such codes in this section. Then, any two columns of G are linearly independent, see, e.g., Theorem 5.1 of [4]. Hence the set of n columns of G can be considered as an n-set C_{1} in $\Sigma=\operatorname{PG}(k-1, q)$ such that every hyperplane meets C_{1} in at most $n-d$ points and that some hyperplane meets C_{1} in exactly $n-d$ points, see Theorem 2.3 of [5]. On the other hand, each column of G was considered as a defining vector of a hyperplane of Σ in Section 1. So, the geometric structures found in the previous sections can be applied to the dual space Σ^{*} of Σ.

A line l with $t=\left|l \cap C_{1}\right|$ is called a t-line. A t-plane, a t-solid and so on are defined similarly. Let \mathcal{F}_{j} be the set of j-flats in Σ. For an m-flat Π in Σ we define

$$
\gamma_{j}(\Pi)=\max \left\{\left|\Delta \cap C_{1}\right| \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{j}\right\}, 0 \leq j \leq m .
$$

We denote simply by γ_{j} instead of $\gamma_{j}(\Sigma)$. It holds that $\gamma_{k-2}=n-d, \gamma_{k-1}=n$.
Denote by a_{i} the number of i-hyperplanes Π in Σ. Note that $a_{i}=A_{n-i} / 2$ for $0 \leq$ $i \leq n-d$ and that $a_{n-d}>0$. The list of a_{i} 's is called the spectrum of \mathcal{C} (or C_{1}). We usually use τ_{j} 's for the spectrum of a hyperplane of Σ to distinguish from the spectrum of \mathcal{C}. Simple counting arguments yield the following.

Lemma 4.4. Let $\left(a_{0}, a_{1}, \ldots, a_{n-d}\right)$ be the spectrum of \mathcal{C}. Then
(1) $\sum_{i=0}^{n-d} a_{i}=\theta_{k-1}$.
(2) $\sum_{i=1}^{n-d} i a_{i}=n \theta_{k-2}$.
(3) $\sum_{i=2}^{n-d}\binom{i}{2} a_{i}=\binom{n}{2} \theta_{k-3}$.

One can get the following from the three equalities of Lemma 4.4:

$$
\begin{equation*}
\sum_{i=0}^{n-d-2}\binom{n-d-i}{2} a_{i}=\binom{n-d}{2} \theta_{k-1}-n(n-d-1) \theta_{k-2}+\binom{n}{2} \theta_{k-3} \tag{4.1}
\end{equation*}
$$

Lemma 4.5. Let Π be an i-hyperplane through a t-secundum Δ with $t=\gamma_{k-3}(\Pi)$. Then
(1) $t \leq \gamma_{k-2}-\frac{n-i}{q}=\frac{i+q \gamma_{k-2}-n}{q}$.
(2) $a_{i}=0$ if an $\left[i, k-1, d_{0}\right]_{q}$ code with $d_{0} \geq i-\left\lfloor\frac{i+q \gamma_{k-2}-n}{q}\right\rfloor$ does not exist, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.
(3) $t=\left\lfloor\frac{i+q \gamma_{k-2}-n}{q}\right\rfloor$ if an $\left[i, k-1, d_{1}\right]_{q}$ code with $d_{1} \geq i-\left\lfloor\frac{i+q \gamma_{k-2}-n}{q}\right\rfloor+1$ does not exist.
(4) Let c_{j} be the number of j-hyperplanes through Δ other than Π. Then the following equality holds:

$$
\begin{equation*}
\sum_{j}\left(\gamma_{k-2}-j\right) c_{j}=i+q \gamma_{k-2}-n-q t . \tag{4.2}
\end{equation*}
$$

(5) For a γ_{k-2}-hyperplane Π_{0} with spectrum $\left(\tau_{0}, \cdots, \tau_{\gamma_{k-3}}\right), \tau_{t}>0$ holds if $i+q \gamma_{k-2}-$ $n-q t<q$.

Proof. (1) Counting the points of C_{1} on the hyperplanes through Δ, we get $n \leq$ $q\left(\gamma_{k-2}-t\right)+i$.
(2) Π gives an $\left[i, k-1, d_{0}\right]_{q}$ code with $d_{0} \geq i-\left\lfloor\frac{i+q \gamma_{k-2}-n}{q}\right\rfloor$ by (1).
(3) If $t \leq\left\lfloor\frac{i+q \gamma_{k-2}-n}{q}\right\rfloor-1$, then Π gives an $\left[i, k-1, d_{1}\right]_{q}$ code with $d_{1} \geq i-\left\lfloor\frac{i+q \gamma_{k-2}-n}{q}\right\rfloor+1$. Hence our assertion follows from (1).
(4) (4.2) follows from $\sum_{j} c_{j}=q$ and $\sum_{j}(j-t) c_{j}=n-i$.
(5) It holds that $c_{\gamma_{k-2}}>0$ when the right hand side of (4.2) is at most $q-1$.

An f-set F in $\operatorname{PG}(k-1, q)$ satisfying

$$
m=\min \left\{|F \cap \pi| \mid \pi \in \mathcal{F}_{k-2}\right\}
$$

is called an $\{f, m ; k-1, q\}$-minihyper. Put $C_{0}=\Sigma \backslash C_{1}$. Note that C_{0} forms a $\left\{\theta_{k-1}-\right.$ $\left.n, \theta_{k-2}-(n-d) ; k-1, q\right\}$-minihyper.

Lemma 4.6. Let F be a $\left\{18=\theta_{2}+\theta_{1}+\theta_{0}, 5=\theta_{1}+\theta_{0} ; 4,3\right\}$-minihyper corresponding to $a[103,5,68]_{3}$ code \mathcal{C}_{103}. Then
(1) there exist a plane δ, a line ℓ and a point P which are mutually disjoint such that

$$
F=\delta \cup \ell \cup\{P\}
$$

(2) The spectrum of \mathcal{C}_{103} is $\left(a_{25}, a_{26}, a_{31}, a_{32}, a_{34}, a_{35}\right)=(1,3,4,9,35,69)$.

Proof. (1) follows from Theorem 3.1 of [2]. (2) can be easily calculated from the fact that δ, ℓ and P are mutually disjoint.

The following lemma can also be obtained from Theorem 3.1 of [2].

Lemma 4.7. (1) The spectrum of $a[81,5,54]_{3}$ code is $\left(a_{0}, a_{27}\right)=(1,120)$.
(2) The spectrum of $a[80,5,53]_{3}$ code is $\left(a_{0}, a_{26}, a_{27}\right)=(1,40,80)$.

Lemma 4.8. Let F be a $\left\{21=\theta_{2}+2 \theta_{1}, 6=\theta_{1}+2 \theta_{0} ; 4,3\right\}$-minihyper corresponding to a $[100,5,66]_{3}$ code \mathcal{C}_{100}. Then, either
(a) there exist a plane δ and two lines ℓ_{1}, ℓ_{2} all of which are skew such that

$$
F=\delta \cup \ell_{1} \cup \ell_{2},
$$

and \mathcal{C}_{100} has spectrum $\left(a_{25}, a_{28}, a_{31}, a_{34}\right)=(4,1,24,92)$, or
(b) there exist two skew lines $\ell_{1}=\left\{Q_{0}, Q_{1}, Q_{2}, Q_{3}\right\}$ and $\ell_{2}=\left\{R_{0}, R_{1}, R_{2}, R_{3}\right\}$ and a plane δ containing ℓ_{1} with $\ell_{2} \cap \delta=R_{0}$ such that

$$
F=\left(\delta \backslash Q_{0}\right) \cup\left\langle Q_{1}, R_{1}\right\rangle \cup\left\langle Q_{2}, R_{2}\right\rangle \cup\left\langle Q_{3}, R_{3}\right\rangle,
$$

and \mathcal{C}_{100} has spectrum $\left(a_{19}, a_{28}, a_{31}, a_{34}\right)=(1,3,27,90)$.
Proof. See Theorem 5.10(2) of [2]. Each spectrum can be calculated by hand from the geometrical structure.

Lemma 4.9. Let F be a $\left\{30=2 \theta_{2}+\theta_{1}, 9=2 \theta_{1}+\theta_{0} ; 4,3\right\}$-minihyper corresponding to a $[91,5,60]_{3}$ code \mathcal{C}_{91}. Then
(1) There exist two skew lines $\ell_{1}=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ and $\ell_{2}=\left\{Q_{1}, Q_{2}, R, S\right\}$ such that $F=\left(\delta_{1} \backslash Q_{1}\right) \cup\left(\delta_{2} \backslash Q_{2}\right) \cup\left\langle P_{1}, R\right\rangle \cup\left\langle P_{2}, R\right\rangle \cup\left\langle P_{3}, S\right\rangle \cup\left\langle P_{4}, S\right\rangle$, where $\delta_{1}=\left\langle\ell_{1}, Q_{1}\right\rangle$, $\delta_{2}=\left\langle\ell_{1}, Q_{2}\right\rangle$.
(2) The spectrum of \mathcal{C}_{91} is $\left(a_{10}, a_{28}, a_{31}\right)=(1,30,90)$.

Proof. (1) follows from Theorem 5.13(1) of [2].
(2) F is contained in a solid, say Δ, and there are ten 1-planes and thirty 4-planes in Δ. Hence (2) follows.

Lemma 4.10 ([1]). (1) The spectrum of $a[26,4,17]_{3}$ code is $\left(a_{0}, a_{8}, a_{9}\right)=(1,13,26)$.
(2) The spectrum of $a[31,4,20]_{3}$ code is
(a) $\left(a_{4}, a_{9}, a_{10}, a_{11}\right)=(1,9,12,18)$ or
(b) $\left(a_{7}, a_{8}, a_{10}, a_{11}\right)=(2,6,11,21)$.

As an application of Theorem 3.13, we prove the following.
Lemma 4.11. $A[90,5,59]_{3}$ code is extendable.
Proof. Let \mathcal{C} is a $[90,5,59]_{3}$ code and let Δ be a γ_{3}-solid, which gives a $[31,4,20]_{3}$ code by Lemma 4.5. Then Δ has no j-planes for $j \notin\{4,7,8,9,10,11\}$ by Lemma 4.10(2), so we have

$$
a_{i}=0 \text { for all } i \notin\{9,10,18,19,24,25,26,27,28,30,31\}
$$

by Lemma 4.5 and the $n_{3}(4, d)$ table (see [6]). Now, it holds that $F_{0}=\{i$-solids $\mid i \equiv 0$ $(\bmod 3)\}, F_{1}=\{26$-solids $\}$. Suppose that \mathcal{C} is not extendable. Then the diversity $\left(\Phi_{0}, \Phi_{1}\right)$ of \mathcal{C} satisfies

$$
\left(\Phi_{0}, \Phi_{1}\right) \in\{(40,27),(31,45),(40,36),(40,45),(49,36)\}
$$

by Theorem 2.7 of [11]. Let Δ_{0} be a 26 -solid in $\Sigma=\mathrm{PG}(4,3)$ and let Q be the corresponding point of F_{1} in Σ^{*}. Then there are at most $18(2,1)$-lines through Q in Σ^{*} by Theorem 3.13(2). On the other hand, setting $(i, t)=(26,9)$ in Lemma 4.5, the equation (4.2) has the unique solution $\left(c_{30}, c_{31}\right)=(2,1)$ corresponding to a $(2,1)$-line through Q. Hence, by Lemma $4.10(1)$, there are at least $26(2,1)$-lines through Q, a contradiction.

Now, we are ready to prove Theorem 4.4. Let \mathcal{C} be a putative $[305,6,202]_{3}$ code and let π_{0} be a γ_{4}-hyperlane which gives a $[103,5,68]_{3}$ code by Lemma 4.5. Then π_{0} has no j-solid for $j \notin\{25,26,31,32,34,35\}$ by Lemma 4.6 , so we have

$$
a_{i}=0 \text { for all } i \notin\{74,80,81,89,90,91,92,98,99,100,101,102,103\}
$$

by Lemma 4.5 and the $n_{3}(5, d)$ table (see [13]). For $s=0,1,2$, it holds that

$$
\begin{equation*}
F_{s}=\{i \text {-hyperlanes } \mid i+1 \equiv s \quad(\bmod 3)\} \tag{4.3}
\end{equation*}
$$

Let π be an i-hyperlane of $\Sigma=\operatorname{PG}(5,3)$. If $i=81, C_{1} \cap \pi$ gives a $[81,5,54]_{3}$ code by Lemma 4.5 and π has no solid contained in π_{0} by Lemma 4.7(1), a contradiction. Hence $a_{81}=0$. We obtain $a_{80}=0$ by Lemma 4.7(2) similarly.

If $i=91, C_{1} \cap \pi$ gives a $[91,5,60]_{3}$ code by Lemma 4.5 and π has a 10 -solid by Lemma 4.9. Setting $(i, t)=(91,10)$ in Lemma 4.5, the equation (4.2) has no solution, a contradiction. Hence $a_{91}=0$. If $i=90, \pi$ corresponds to a $[90,5,59]_{3}$ code by Lemma 4.5 and π has a 9 -solid or a 10 -solid by Lemmas 4.9 and 4.11. Setting $i=90$ and $t=9$ or 10 in Lemma 4.5, the equation (4.2) has no solution. Thus $a_{90}=0$.

Hence, from (4.1), we have

$$
\begin{equation*}
406 a_{74}+91 a_{89}+55 a_{92}+10 a_{98}+6 a_{99}+3 a_{100}+a_{101}=2182 \tag{4.4}
\end{equation*}
$$

It follows from Lemma $4.1(1)$ that \mathcal{C} is not extendable. Hence the diversity of $\mathcal{C}\left(\Phi_{0}, \Phi_{1}\right)$ is one of the following:

$$
(121,81),(94,135),(121,108),(112,126),(130,117),(121,135),(148,108)
$$

Hence, if $r_{1,0}^{(1)}+r_{0,2}^{(1)} \geq 90$, then it holds that

$$
\begin{equation*}
r_{1,0}^{(1)}+r_{0,2}^{(1)}=94 \tag{4.5}
\end{equation*}
$$

for a fixed point of $R \in F_{2}$ by Theorem 3.12, where $r_{i, j}^{(1)}$ denotes the number of (i, j)-lines through R in Σ^{*}.

If $i=100, C_{1} \cap \pi$ gives a $[100,5,66]_{3}$ code by Lemma 4.5 and $C_{0} \cap \pi$ forms a minihyper of type (a) or (b) in Lemma 4.8. Let R_{π} be the point of F_{2} in Σ^{*} corresponding to π. Setting $i=100$ in Lemma 4.5, the equation (4.2) has the solutions as in Table 4.1, where 'line' stands for the corresponding line through R_{π} in Σ^{*}. For example, (4.2) has the unique solution $\left(c_{74}, c_{89}, c_{99}\right)=(1,1,1)$ when $t=19$. Equivalently, by (4.3), a 19-solid in π corresponds to a (2,1)-line through R_{π} in Σ^{*}. Now, (4.5) holds from Table 4.1 since the spectrum of a 100 -hyperplane satisfies $\tau_{34} \geq 90$ by Lemma 4.8. If $C_{0} \cap \pi$ forms a minihyper of type (a) in Lemma 4.8, we have $\tau_{34}=92$. Hence there are at most two (1,0)-lines through R_{π} in Σ^{*} which correspond to the solutions of (4.2) with $t \neq 34$. Let δ be the plane contained in $C_{0} \cap \pi$. Since all of the solids in π through δ are 25 -solids and since there are at most two $(1,0)$-lines through R_{π} in Σ^{*} corresponding to the solution $\left(c_{74}, c_{103}\right)=(1,2)$ in Table 4.1 for $t=25, \delta$ corresponds to a $(7,3)$-plane δ^{*} through R_{π} in Σ^{*} by Theorem 3.12. In δ^{*}, there are one $(1,0)$-line and three $(2,1)$-lines through R_{π}. Hence, estimating the left hand side of (4.4), we get

$$
2182 \leq 406+182 \cdot 3+101+55+20 \cdot 23+92+3=1663
$$

from the spectrum of $C_{1} \cap \pi$ of type (a), a contradiction. If $C_{0} \cap \pi$ forms a minihyper of type (b) in Lemma 4.8, we have $\tau_{34}=90$. Hence there are at most four $(1,0)$-lines through R_{π} in Σ^{*} which correspond to the solutions of (4.2) with $t \neq 34$. Let δ be the plane given in (b) of Lemma 4.8. Since the solids in π through δ consist of one 19-solid and three 28 -solids and since the solution in Table 4.1 for $t=19$ corresponds to a $(2,1)$-line, δ corresponds to a (7,3)-plane δ^{*} through R_{π} in Σ^{*} by Theorem 3.12. Hence, estimating the left hand side of (4.4), we get

$$
2182 \leq 503+101 \cdot 2+97+55 \cdot 3+20 \cdot 24+90+3=1540
$$

from the spectrum of $C_{1} \cap \pi$ of type (b), a contradiction. Hence $a_{100}=0$.
Table 4.1. Solutions of (4.2) for $i=100$

t	c_{74}	c_{89}	c_{92}	c_{98}	c_{99}	c_{100}	c_{101}	c_{102}	c_{103}	line
19	1	1			1					$(2,1)$
25	1								2	$(1,0)$
		2						1		$(2,1)$
		1	1		1					$(2,1)$
28		1		1				1		$(2,1)$
		1			1		1			$(2,1)$
		1				2				$(1,0)$
			1	1	1					$(2,1)$
31			1						2	$(1,0)$
				2				1		$(2,1)$ $(2,1)$
			1	1		1			2	
			1	2	1				$1,0)$ $(0,2)$	
34							1		2	$(1,0)$
								2	1	$(0,2)$

Table 4.2. Solutions of (4.2) for $i=103$

t	c_{74}	c_{89}	c_{92}	c_{98}	c_{99}	c_{101}	c_{102}	c_{103}	line
25	1					1	1		$(2,1)$
		2			1				$(2,1)$
26	1							2	$(1,0)$
		2					1		$(2,1)$
		1	1		1				$(2,1)$
31		1						2	$(1,0)$
			1			1	1		$(2,1)$
				2	1				$(2,1)$
32			1					2	$(1,0)$
				2			1		$(2,1)$
				1	1	1			$(2,1)$
34			1				2	$(1,0)$	
				1		1	1	$(0,2)$	
						2	1		$(2,1)$
35					1		2	$(1,0)$	
							2	1	$(0,2)$

Next, we prove the non-existence of a $(13,0)$-plane in Σ^{*} which consists of collinear four points corresponding to 89-hyperplanes and nine points corresponding to 92-hyperplanes. Let δ^{*} be such a plane containing a $(4,0)$-line l_{0} consisting the points corresponding to 89 -hyperplanes of Σ. Take a point P of l_{0} which corresponds to a 89-hyperplane π_{P} and let l_{1}, l_{2}, l_{3} be the other lines on δ^{*} through P. Setting $i=89$ in Lemma 4.5, l_{0} corresponds to the solution $c_{89}=3$ for $t=17$ in (4.2) and l_{1}, l_{2}, l_{3} correspond to the solution $c_{92}=3$ for $t=20$ in (4.2). It follows that there exists a u-plane δ_{0} in π_{P} such that there are one 17 -solid and three 20 -solids in π_{P} through δ_{0}, so $(20-u) 3+17=89$, giving a contradiction.

Finally, assume $i=103$. Then, $C_{1} \cap \pi$ gives a $[103,5,68]_{3}$ code by Lemma 4.5 and $C_{0} \cap \pi$ forms a minihyper consisting of a plane δ, a line ℓ and a point P which are mutually disjoint by Lemma 4.6. Let R_{π} be the point of F_{2} in Σ^{*} corresponding to π. Setting $i=103$ in Lemma 4.5, the equation (4.2) has the solutions as in Table 4.2, where 'line' stands for the corresponding line through R_{π} in Σ^{*}. Since there are one 25 -solid (corresponding to a (2,1)-line) and three 26 -solids (corresponding to a (2,1)-line or a (1,0)-line) through δ in π, δ corresponds to a (7,3)-plane, say δ^{*}, through R_{π} by Theorem 3.12. Hence, there are one $(1,0)$-line and three $(2,1)$-lines through R_{π} in δ^{*}. Furthermore, the solids in π through ℓ are four 31-solids containing $\langle\ell, P\rangle$ and nine 32solids, all of which correspond to $(1,0)$-lines or $(2,1)$-lines through R_{π}. If all of the lines are (1,0)-lines, then ℓ corresponds to a (13,0)-solid in Σ^{*} containing the (13,0)-plane which consists of collinear four points corresponding to 89 -hyperplanes and nine points corresponding to 92 -hyperplanes, a contradiction. Hence, by Theorem 3.12, ℓ corresponds to a $(22,9)$-solid containing four $(1,0)$-lines and nine $(2,1)$-lines through R_{π}. Recall that the spectrum of π is $\left(\tau_{25}, \tau_{26}, \tau_{31}, \tau_{32}, \tau_{34}, \tau_{35}\right)=(1,3,4,9,35,69)$. Estimating the left hand
side of (4.4) we get

$$
2182 \leq 407+406+182 \cdot 2+91 \cdot 4+20 \cdot 9+10 \cdot 35+1 \cdot 69=2140
$$

a contradiction. This completes the proof of Theorem 4.2.

References

[1] M. van Eupen, P. Lisonĕk, Classification of some optimal ternary linear codes of small length, Des. Codes Cryptogr. 10 (1997) 63-84.
[2] N. Hamada, A characterization of some $[n, k, d ; q]$-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. 116 (1993) 229-268.
[3] N. Hamada, A survey of recent work on characterization of minihypers in $P G(t, q)$ and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. \& Syst. Sci. 18 (1993) 161-191.
[4] R. Hill, Optimal linear codes, in: C. Mitchell, ed., Cryptography and Coding II (Oxford Univ. Press, Oxford, 1992) 75-104.
[5] R. Hill, E. Kolev, A survey of recent results on optimal linear codes, in: F.C. Holroyd et al., ed., Combinatorial Designs and their Applications (Chapman \& Hall/CRC, Res. Notes Math. 403, 1999) 127-152.
[6] R. Hill, D.E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr. 2 (1992) 137-157.
[7] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.
[8] J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford, 1998.
[9] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Clarendon Press, Oxford, 1991.
[10] A. Kohnert, (l, s)-extension of linear codes, Discrete Math., 309 (2009) 412-417.
[11] T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr. 35 (2005) 175-190.
[12] T. Maruta, Extendability of linear codes over \mathbb{F}_{q}, Proc. 11th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Pamporovo, Bulgaria, 2008, 203-209.
[13] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.geocities.com/mars39.geo/griesmer.htm.
[14] T. Maruta, K. Okamoto, Geometric conditions for the extendability of ternary linear codes, in: \varnothing. Ytrehus (Ed.), Coding and Cryptography, Lecture Notes in Computer Science 3969, Springer-Verlag, 2006, pp. 85-99.
[15] T. Maruta, K. Okamoto, Some improvements to the extendability of ternary linear codes, Finite Fields Appl. 13 (2007) 259-280.
[16] K. Okamoto, Necessary and sufficient conditions for the extendability of ternary linear codes, preprint.
[17] H.N. Ward, Divisibility of codes meeting the Griesmer bound, J. Combin. Theory Ser. A 83, no. 1 (1998) 79-93.
[18] Y. Yoshida, T. Maruta, On the (2, 1)-extendability of ternary linear codes, Proc. 11th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Pamporovo, Bulgaria, 2008, 305-311.

[^0]: *This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 20540129.

