Ternary linear codes and quadrics

Yuri Yoshida and Tatsuya Maruta^{*}

Department of Mathematics and Information Sciences Osaka Prefecture University, Sakai, Osaka 599-8531, Japan yuri-910@hotmail.co.jp, maruta@mi.s.osakafu-u.ac.jp

Submitted: Dec 4, 2008; Accepted: Jan 7, 2009; Published: Jan 16, 2009 Mathematics Subject Classification: 94B27, 94B05, 51E20, 05B25

Abstract

For an $[n, k, d]_3$ code \mathcal{C} with gcd(d, 3) = 1, we define a map w_G from $\Sigma = PG(k-1,3)$ to the set of weights of codewords of \mathcal{C} through a generator matrix G. A *t*-flat Π in Σ is called an $(i, j)_t$ flat if $(i, j) = (|\Pi \cap F_0|, |\Pi \cap F_1|)$, where $F_0 = \{P \in \Sigma \mid w_G(P) \equiv 0 \pmod{3}\}, F_1 = \{P \in \Sigma \mid w_G(P) \not\equiv 0, d \pmod{3}\}$. We give geometric characterizations of $(i, j)_t$ flats, which involve quadrics. As an application to the optimal linear codes problem, we prove the non-existence of a $[305, 6, 202]_3$ code, which is a new result.

1 Introduction

Let \mathbb{F}_q^n denote the vector space of *n*-tuples over \mathbb{F}_q , the field of *q* elements. A linear code \mathcal{C} of length *n*, dimension *k* and minimum (Hamming) distance *d* over \mathbb{F}_q is referred to as an $[n, k, d]_q$ code. Linear codes over \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_4 are called binary, ternary and quaternary linear codes, respectively. The *weight* of a vector $\boldsymbol{x} \in \mathbb{F}_q^n$, denoted by $wt(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x} . The weight distribution of \mathcal{C} is the list of numbers A_i which is the number of codewords of \mathcal{C} with weight *i*. The weight distribution with $(A_0, A_d, \ldots) = (1, \alpha, \ldots)$ is also expressed as $0^1 d^{\alpha} \cdots$. We only consider *non-degenerate* codes having no coordinate which is identically zero. An $[n, k, d]_q$ code \mathcal{C} with a generator matrix G is called (l, s)-extendable (to \mathcal{C}') if there exist l vectors $h_1, \ldots, h_l \in \mathbb{F}_q^k$ so that the extended matrix $[G, h_1^T, \cdots, h_l^T]$ generates an $[n+l, k, d+s]_q$ code \mathcal{C}' ([10]). Then \mathcal{C}' is called an (l, s)-extension of \mathcal{C} . \mathcal{C} is simply called extendable if \mathcal{C} is (1, 1)-extendable.

We denote by PG(r,q) the projective geometry of dimension r over \mathbb{F}_q . A *j*-flat is a projective subspace of dimension j in PG(r,q). 0-flats, 1-flats, 2-flats, 3-flats, (r-2)flats and (r-1)-flats are called *points*, *lines*, *planes*, *solids*, *secundums* and *hyperplanes*,

^{*}This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 20540129.

respectively. We refer to [7], [8] and [9] for geometric terminologies. We investigate linear codes over \mathbb{F}_q through the projective geometry.

We assume that $k \geq 3$. Let \mathcal{C} be an $[n, k, d]_q$ code with a generator matrix $G = [g_0, g_1, \dots, g_{k-1}]^{\mathrm{T}}$. Put $\Sigma = \mathrm{PG}(k-1, q)$, the projective space of dimension k-1 over \mathbb{F}_q . We consider the mapping w_G from Σ to $\{i \mid A_i > 0\}$, the set of weights of codewords of \mathcal{C} . For $P = \mathbf{P}(p_0, p_1, \dots, p_{k-1}) \in \Sigma$ we define the weight of P with respect to G, denoted by $w_G(P)$, as

$$w_G(P) = wt(\sum_{i=0}^{k-1} p_i g_i).$$

Our geometric method is just the dual version of that introduced first in [11] to investigate the extendability of C. See also [14], [15], [16], [18] for the extendability of ternary linear codes. Let

$$F = \{P \in \Sigma \mid w_G(P) \not\equiv d \pmod{q}\},\$$

$$F_d = \{P \in \Sigma \mid w_G(P) = d\}.$$

Recall that a hyperplane H of Σ is defined by a non-zero vector $h = (h_0, \ldots, h_{k-1}) \in \mathbb{F}_q^k$ as $H = \{P = \mathbf{P}(p_0, \ldots, p_{k-1}) \in \Sigma \mid h_0 p_0 + \cdots + h_{k-1} p_{k-1} = 0\}$. h is called a *defining* vector of H, which is uniquely determined up to non-zero multiple. It would be possible to investigate the (l, 1)-extendability of linear codes from the geometrical structure of For F_d as follows.

Theorem 1.1 ([12]). C is (l, 1)-extendable if and only if there exist l hyperplanes H_1, \ldots, H_l of Σ such that $F_d \cap H_1 \cap \cdots \cap H_l = \emptyset$. Moreover, the extended matrix of G by adding the defining vectors of H_1, \ldots, H_l as columns generates an (l, 1)-extension of C. Hence, C is (l, 1)-extendable if there exists a (k - 1 - l)-flat contained in F.

The mapping w_G is trivial if $F = \emptyset$. For example, w_G is trivial if \mathcal{C} attains the Griesmer bound and if q divides d when q is prime [17]. When w_G is trivial, there seems no clue to investigate the extendability of \mathcal{C} except for computer search, see [10]. To avoid such cases we assume gcd(d,q) = 1; d and q are relatively prime. Then, F forms a blocking set with respect to lines [12], that is, every line meets F in at least one point. The aim of this paper is to give a geometric characterization of F for q = 3. An application to the optimal linear codes problem is also given in Section 4.

2 Main theorems

Let C be an $[n, k, d]_3$ code with $k \ge 3$, gcd(3, d) = 1. The *diversity* (Φ_0, Φ_1) of C was defined in [11] as the pair of integers:

$$\Phi_0 = \frac{1}{2} \sum_{3|i,i\neq 0} A_i, \quad \Phi_1 = \frac{1}{2} \sum_{i\not\equiv 0,d \pmod{3}} A_i,$$

where the notation x|y means that x is a divisor of y. Let

$$F_0 = \{P \in \Sigma \mid w_G(P) \equiv 0 \pmod{3}\},$$

$$F_2 = \{P \in \Sigma \mid w_G(P) \equiv d \pmod{3}\},$$

$$F_1 = F \setminus F_0, \ F_e = F_2 \setminus F_d.$$

Then we have $\Phi_s = |F_s|$ for s = 0, 1.

A t-flat Π of Σ with $|\Pi \cap F_0| = i$, $|\Pi \cap F_1| = j$ is called an $(i, j)_t$ flat. An $(i, j)_1$ flat is called an (i, j)-line. An (i, j)-plane, an (i, j)-solid and so on are defined similarly. We denote by \mathcal{F}_j the set of j-flats of Σ . Let Λ_t be the set of all possible (i, j) for which an $(i, j)_t$ flat exists in Σ . Then we have

$$\begin{split} \Lambda_1 &= \{(1,0), (0,2), (2,1), (1,3), (4,0)\}, \\ \Lambda_2 &= \{(4,0), (1,6), (4,3), (4,6), (7,3), (4,9), (13,0)\}, \\ \Lambda_3 &= \{(13,0), (4,18), (13,9), (10,15), (16,12), (13,18), (22,9), (13,27), (40,0)\}, \\ \Lambda_4 &= \{(40,0), (13,54), (40,27), (31,45), (40,36), (40,45), (49,36), (40,54), (67,27), \\ &\quad (40,81), (121,0)\}, \\ \Lambda_5 &= \{(121,0), (40,162), (121,81), (94,135), (121,108), (112,126), (130,117), \\ &\quad (121,135), (148,108), (121,162), (202,81), (121,243), (364,0)\}, \end{split}$$

see [11]. Let $\Pi_t \in \mathcal{F}_t$. Denote by $c_{i,j}^{(t)}$ the number of $(i, j)_{t-1}$ flats in Π_t and let $\varphi_s^{(t)} = |\Pi_t \cap F_s|, s = 0, 1. (\varphi_0^{(t)}, \varphi_1^{(t)})$ is called the *diversity of* Π_t and the list of $c_{i,j}^{(t)}$'s is called its *spectrum*. Thus Λ_t is the set of all possible diversities of Π_t . It holds that $(\varphi_0, \varphi_1) \in \Lambda_t$ implies $(3\varphi_0 + 1, 3\varphi_1) \in \Lambda_{t+1}$ ([15]). We call $(\varphi_0, \varphi_1) \in \Lambda_t$ is *new* if $((\varphi_0 - 1)/3, \varphi_1/3) \notin \Lambda_{t-1}$. For example, $(4, 3), (4, 6) \in \Lambda_2$ and $(10, 15), (16, 12) \in \Lambda_3$ are new. We define that $(0, 2), (2, 1) \in \Lambda_1$ are new for convenience. Let $\theta_j = |\operatorname{PG}(j, 3)| = (3^{j+1} - 1)/2$. We set $\theta_j = 0$ for j < 0. New diversities of Λ_t and the corresponding spectra for $t \geq 2$ are given as follows.

$$\begin{aligned} & \text{Lemma 2.1 ([15]). New diversities and the corresponding spectra for } t \geq 2 \text{ are} \\ & (1) \; (\varphi_0^{(t)}, \varphi_1^{(t)}) = (\theta_{t-1} - 3^{T+1}, \theta_{t-1} + \theta_T + 1) \text{ with spectrum} \\ & \; (c_{\theta_{t-2} - 3^{T+1}, \theta_{t-2} + \theta_T + 1}, c_{\theta_{t-2}, \theta_{t-2} - \theta_T}^{(t)}, c_{\theta_{t-2}, \theta_{t-2} + \theta_T + 1}^{(t)}) \\ & = (\theta_{t-1} - 3^{T+1}, \theta_{t-1} + \theta_T + 1, \theta_{t-1} + \theta_T + 1) \\ & \text{and} \\ & (\varphi_0^{(t)}, \varphi_1^{(t)}) = (\theta_{t-1} + 3^{T+1}, \theta_{t-1} - \theta_T) \text{ with spectrum} \\ & \; (c_{\theta_{t-2}, \theta_{t-2} - \theta_T}^{(t)}, c_{\theta_{t-2}, \theta_{t-2} + \theta_T + 1}^{(t)}, c_{\theta_{t-2} + 3^{T+1}, \theta_{t-2} - \theta_T}^{(t)}) \\ & = (\theta_{t-1} - \theta_T, \theta_{t-1} - \theta_T, \theta_{t-1} + 3^{T+1}) \\ & \text{when } t \text{ is odd, where } T = (t - 3)/2. \end{aligned}$$

$$(2) \; (\varphi_0^{(t)}, \varphi_1^{(t)}) = (\theta_{t-1}, \theta_{t-1} - \theta_{U+1}) \text{ with spectrum} \\ & \; (c_{\theta_{t-2}, \theta_{t-2} - \theta_{U+1}}^{(t)}, c_{\theta_{t-2} - 3^{U+1}, \theta_{t-2} + \theta_U + 1}^{(t)}, c_{\theta_{t-2} + 3^{U+1}, \theta_{t-2} - \theta_U}^{(t)}) \\ & = (\theta_{t-1}, \theta_{t-1} - \theta_{U+1}, \theta_{t-1} + \theta_{U+1} + 1), \end{aligned}$$

The electronic journal of combinatorics 16 (2009), #R9

and

$$\begin{aligned} (\varphi_0^{(t)}, \varphi_1^{(t)}) &= (\theta_{t-1}, \theta_{t-1} + \theta_{U+1} + 1) \text{ with spectrum} \\ (c_{\theta_{t-2}-3^{U+1}, \theta_{t-2}+\theta_U+1}^{(t)}, c_{\theta_{t-2}+3^{U+1}, \theta_{t-2}-\theta_U}^{(t)}, c_{\theta_{t-2}, \theta_{t-2}+\theta_{U+1}+1}^{(t)}) \\ &= (\theta_{t-1} - \theta_{U+1}, \theta_{t-1} + \theta_{U+1} + 1, \theta_{t-1}) \\ \text{when } t \text{ is even, where } U &= (t-4)/2. \end{aligned}$$

Let us recall some known results on quadrics in PG(r,3), $r \ge 2$, from [9]. Let $f \in \mathbb{F}_3[x_0, \ldots, x_r]$ be a quadratic form which is non-degenerate, that is, f is not reducible to a form in fewer than r + 1 variables by a linear transformation. We define

 $V_i(f) = \{ P = \mathbf{P}(p_0, \dots, p_{r-1}) \in \mathrm{PG}(r, 3) \mid f(p_0, \dots, p_{r-1}) = i \}$

for i = 0, 1, 2. Then, $V_0(f)$ is a non-singular quadric. Let

$$\mathcal{P}_r^i = V_i(x_0^2 + x_1x_2 + \dots + x_{r-1}x_r) \text{ for } r \text{ even};$$

$$\mathcal{E}_r^i = V_i(x_0^2 + x_1^2 + x_2x_3 + \dots + x_{r-1}x_r), \ \mathcal{H}_r^i = V_i(x_0x_1 + x_2x_3 + \dots + x_{r-1}x_r) \text{ for } r \text{ odd.}$$

The quadrics \mathcal{P}_r^0 , \mathcal{H}_r^0 and \mathcal{E}_r^0 are called *parabolic*, *hyperbolic* and *elliptic*, respectively. It is well known for any non-singular quadric \mathcal{Q} in PG(r, 3) that $\mathcal{Q} \sim \mathcal{P}_r^0$ for r even and that $\mathcal{Q} \sim \mathcal{H}_r^0$ or $\mathcal{Q} \sim \mathcal{E}_r^0$ for r odd (see Section 5.2 in [8]), where $\mathcal{Q}_1 \sim \mathcal{Q}_2$ means that \mathcal{Q}_1 and \mathcal{Q}_2 are projectively equivalent.

Theorem 2.2. Let Π_t be a t-flat in Σ with new diversity, $t \ge 2$. (1) $F_0 \cap \Pi_t \sim \mathcal{P}_t^0$ when t is even. (2) $F_0 \cap \Pi_t \sim \mathcal{E}_t^0$ if $\varphi_0^{(t)} = \theta_{t-1} - 3^{T+1}$ and $F_0 \cap \Pi_t \sim \mathcal{H}_t^0$ if $\varphi_0^{(t)} = \theta_{t-1} + 3^{T+1}$ when t is odd, where T = (t-3)/2.

We define $2V_i(f) = V_i(2f)$ for i = 1, 2. We prove the following theorem in the next section.

Theorem 2.3. Let Π_t be a t-flat in Σ with new diversity, $t \ge 2$. (1) $F_i \cap \Pi_t \sim \mathcal{P}_t^i$ or $2\mathcal{P}_t^i$ for i = 1, 2 when t is even. (2) $F_i \cap \Pi_t \sim \mathcal{E}_t^i$ if $\varphi_0^{(t)} = \theta_{t-1} - 3^{T+1}$ and $F_i \cap \Pi_t \sim \mathcal{H}_t^i$ if $\varphi_0^{(t)} = \theta_{t-1} + 3^{T+1}$ for i = 1, 2when t is odd, where T = (t-3)/2.

The geometric characterizations of t-flats whose diversities are not new are already known. We summarize them here. For $t \ge 2$ we set Λ_t^- and Λ_t^+ as

$$\Lambda_t^- = \{ (\theta_{t-1}, 0), (\theta_{t-2}, 2 \cdot 3^{t-1}), (\theta_{t-1}, 2 \cdot 3^{t-1}), (\theta_{t-1} + 3^{t-1}, 3^{t-1}), (\theta_{t-1}, 3^t), (\theta_t, 0) \}$$

$$\Lambda_t^+ = \Lambda_t \setminus \Lambda_t^-.$$

Then Λ_t^- is included in Λ_t for all $t \ge 2$, $\Lambda_2^+ = \{(4,3)\}$, and \mathcal{C} is extendable if $(\Phi_0, \Phi_1) \in \Lambda_{k-1}^-$ ([11]). It is also known that Π_t contains a (4,3)-plane if and only if its diversity is in Λ_t^+ . Obviously, A $(\theta_t, 0)_t$ flat is contained in F_0 .

Theorem 2.4 ([11]). Let Π_t be a $(\varphi_0, \varphi_1)_t$ flat in Σ with $(\varphi_0, \varphi_1) \in \Lambda_t^-$, $t \ge 2$. (1) $\Pi_t \cap F_0$ forms a hyperplane of Π_t if $(\varphi_0, \varphi_1) = (\theta_{t-1}, 0)$ or $(\theta_{t-1}, 3^t)$. (2) There are two $(\theta_{t-2}, 3^{t-1})_{t-1}$ flats in Π_t meeting in a $(\theta_{t-2}, 0)_{t-2}$ flat if $(\varphi_0, \varphi_1) = (\theta_{t-2}, 2 \cdot 3^{t-1})$. (3) There are two $(\theta_{t-1}, 0)_{t-1}$ flats and a $(\theta_{t-2}, 3^{t-1})_{t-1}$ flat through a fixed $(\theta_{t-2}, 0)_{t-2}$ flat in Π_t if $(\varphi_0, \varphi_1) = (\theta_{t-1} + 3^{t-1}, 3^{t-1})$.

Recall that $(i, j) \in \Lambda_t$ implies $(3i + 1, 3j) \in \Lambda_{t+1}$, so $(3^{\nu}i + \theta_{\nu-1}, 3^{\nu}j) \in \Lambda_{t+\nu}$ for $\nu = 1, 2, \cdots$. $(\varphi_0, \varphi_1) \in \Lambda_t$ is ν -descendant if $(\varphi_0, \varphi_1) = (3^{\nu}i + \theta_{\nu-1}, 3^{\nu}j)$ for some new $(i, j) \in \Lambda_{t-\nu}$. For example, $(13, 9) \in \Lambda_3$ is 1-descendant since (4, 3) is new in Λ_2 .

Let Π_t be a $(\varphi_0, \varphi_1)_t$ flat with $(\varphi_0, \varphi_1) = (\theta_{t-1}, 2 \cdot 3^{t-1})$ or $(\varphi_0, \varphi_1) \in \Lambda_t^+$. Assume that (φ_0, φ_1) is not new in Λ_t . Then (φ_0, φ_1) is ν -descendant for some positive integer ν . A *t*-flat whose diversity is ν -descendant can be characterized with axis.

An s-flat S in Π_t is called the *axis of* Π_t of type (a, b) if every hyperplane of Π_t not containing S has the same diversity (a, b) and if there is no hyperplane of Π_t through S whose diversity is (a, b). Then the spectrum of Π_t satisfies $c_{a,b}^{(t)} = \theta_t - \theta_{t-1-s}$ and the axis is unique if it exists ([14]).

Theorem 2.5 ([16]). Let Π_t be a $(\varphi_0, \varphi_1)_t$ flat in Σ with $(\varphi_0, \varphi_1) = (\theta_{t-1}, 2 \cdot 3^{t-1})$ or $(\varphi_0, \varphi_1) \in \Lambda_t^+$, $t \geq 3$, and let ν be a positive integer. Then, (φ_0, φ_1) is ν -descendant in Λ_t if and only if Π_t contains a $(\theta_{\nu-1}, 0)_{\nu-1}$ flat which is the axis of Π_t .

If Π_t has a $(\theta_{\nu-1}, 0)_{\nu-1}$ flat L which is the axis of type (a, b), then for any point P in Land a point Q of an $(a, b)_{t-1}$ flat H in Π_t , $\langle P, Q \rangle$ is a (4,0)-line, a (1,3)-line or a (1,0)-line if $Q \in F_0$, $Q \in F_1$, $Q \in F_2$, respectively, where $\langle P, Q \rangle$ is the line through P and Q. In this paper, $\langle \chi_1, \chi_2, \cdots \rangle$ stands for the smallest flat containing subsets χ_1, χ_2, \cdots of Σ .

Proof of Theorem 2.2. When t = 2, Π_2 is a (4,3)-plane or a (4,6)-plane, and $F_0 \cap \Pi_2$ forms a 4-arc (a set of 4 points no three of which are collinear, see [11]), which is projectively equivalent to a conic \mathcal{P}_2^0 by Theorem 8.14 in [8].

When t = 3, Π_3 is a (10,15)-solid or a (16,12)-solid. If Π_3 is a (10,15)-solid, then it follows from the spectrum that $F_0 \cap \Pi_3$ forms a 10-cap (a set of 10 points no three of which are collinear), whence we have $F_0 \cap \Pi_3 \sim \mathcal{E}_3^0$ by Theorem 16.1.7 in [7]. Similarly, if Π_3 is a (16,12)-solid, we obtain $F_0 \cap \Pi_3 \sim \mathcal{H}_3^0$ from the spectrum of Π_3 by Theorem 16.2.1 in [7].

Assume $t \geq 4$. Since every line in Σ meets F_0 in 0, 1, 2 or $\theta_1 = 4$ points, and since every point P of $F_0 \cap \Pi_t$ is on a (2,1)-line when Π_t has new diversity (see Section 3 for the exact number of (2,1)-lines through P in Σ), $F_0 \cap \Pi_t$ forms a non-singular $\varphi_0^{(t)}$ -set of type $(0, 1, 2, \theta_1)$, see Section 22.10 in [9]. It can be easily shown by induction on t that a maximal flat contained in $F_0 \cap \Pi_t$ is a T-flat when Π_t has diversity $(\theta_{t-1} - 3^{T+1}, \theta_{t-1} + \theta_T + 1)$ with t odd, T = (t-3)/2, for Π_t contains a hyperplane whose diversity is 1-descendant to new $(\theta_{t-3} - 3^T, \theta_{t-3} + \theta_{T-1} + 1) \in \Lambda_{t-2}$. Hence our assertion follows from Theorem 22.11.6 in [9] and Lemma 2.1.

3 Focal points and focal hyperplanes

For i = 1, 2, a point $P \in F_i$ is called a *focal point* of a hyperplane H (or P is *focal to* H) if the following three conditions hold:

(a) $\langle P, Q \rangle$ is a (0,2)-line for $Q \in F_i \cap H$,

(b) $\langle P, Q \rangle$ is a (2, 1)-line for $Q \in F_{3-i} \cap H$,

(c) $\langle P, Q \rangle$ is a (1, 6 - 3i)-line for $Q \in F_0 \cap H$.

Such a hyperplane H is called a *focal hyperplane* of P (or H is *focal to* P). Note that for any point Q of H, the two points on the line $\langle P, Q \rangle$ other than P, Q are contained in the same set F_j for some $0 \leq j \leq 2$ with $Q \notin F_j$. Hence, a focal hyperplane of a given point is uniquely determined if it exists. Conversely, a focal point of a given hyperplane H' is uniquely determined if it exists and if every point of $F_0 \cap H'$ is contained in a (2, 1)-line in H'. Note that every point of $F_0 \cap \Pi_t$ is contained in a (2, 1)-line in Π_t if $(\varphi_0^{(t)}, \varphi_1^{(t)})$ is new. From the one-to-one correspondence between focal points and focal hyperplanes, we get the following.

Lemma 3.1. Let $t \ge 2$, i = 1 or 2 and let Π_t be a t-flat with $\varphi_s^{(t)} = |\Pi_t \cap F_s|$ for s = 0, 1, 2, satisfying $\varphi_i^{(t)} = c_{a,b}^{(t)}$ and that (a, b) is new in Λ_{t-1} . Then, every point of $\Pi_t \cap F_i$ has a focal (a, b)-hyperplane in Π_t if and only if every (a, b)-hyperplane of Π_t has a focal point in $\Pi_t \cap F_i$.

We note from Lemma 2.1 that the condition $\varphi_i^{(t)} = c_{a,b}^{(t)}$ in Lemma 3.1 holds for i = 1, 2 for some new $(a, b) \in \Lambda_{t-1}$ if $(\varphi_0^{(t)}, \varphi_1^{(t)})$ is new in Λ_t .

Lemma 3.2. Let δ be a (4,3)-plane. Then, every point of $\delta \cap F_1$ and of $\delta \cap F_2$ has a focal (0,2)-line and a focal (2,1)-line, respectively, and vice versa.

Proof. Recall from [11] that $K = \delta \cap F_0$ forms a 4-arc in δ and that δ has spectrum $(c_{1,0}^{(2)}, c_{0,2}^{(2)}, c_{2,1}^{(2)}) = (4,3,6)$. The set of internal points of K (on no unisecant of K [8]) is $\delta \cap F_1$ and the set of external points of K (on two unisecants of K [8]) is $\delta \cap F_2$. For $Q \in \delta \cap F_1$, there exists a unique (0,2)-line ℓ in δ not containing Q. Then ℓ is the focal line of Q. For $R \in \delta \cap F_2$, there is a unique (2,1)-line ℓ_1 through R. Let Q' be the point of F_1 in ℓ_1 and let ℓ_2 be the (2,1)-line through Q' other than ℓ_1 . Then ℓ_2 is the focal line of R. The converses follow by Lemma 3.1.

See Fig. 1 for the configuration of a (4,3)-plane $(Q \text{ and } R \text{ are focal to } \ell_1 \text{ and } \ell_2,$ respectively). Replacing $\delta \cap F_1$ and $\delta \cap F_2$ for a (4,3)-plane yields a (4,6)-plane with spectrum $(c_{1,3}^{(2)}, c_{0,2}^{(2)}, c_{2,1}^{(2)}) = (4,3,6)$, see Fig. 2. Hence we get the following.

Lemma 3.3. Let δ be a (4,6)-plane. Then, every point of $\delta \cap F_2$ and of $\delta \cap F_1$ has a focal (0,2)-line and a focal (2,1)-line, respectively, and vice versa.

For a flat S in a $(\varphi_0, \varphi_1)_t$ flat Π_t , let $r_{i,j}^{(s)}$ be the number of $(i, j)_s$ flats through S in Π_t . We summarize the lists of $r_{i,j}^{(s)}$'s to Table 3.1 for $(\varphi_0, \varphi_1)_t = (10, 15)_3, (16, 12)_3$.

Table 3.1.

Π_t	S	$r_{i,j}^{(s)} = \# \text{ of } (i,j)_s \text{ flats through } S \text{ in } \Pi_t$ $r_{1,j}^{(1)} = r_{1,3}^{(1)} = 2, r_{2,1}^{(1)} = 9$
$(10, 15)_3$	$P \in F_0$	$r_{1,0}^{(1)} = r_{1,3}^{(1)} = 2, r_{2,1}^{(1)} = 9$
$(10, 15)_3$	$Q \in F_1$	$r_{0,2}^{(1)} = 6, r_{2,1}^{(1)} = 3, r_{1,3}^{(1)} = 4$
$(10, 15)_3$		$r_{1,0}^{(1)} = 4, r_{0,2}^{(1)} = 6, r_{2,1}^{(1)} = 3$
$(10, 15)_3$		$r_{1,6}^{(2)} = 1, r_{4,3}^{(2)} = 3$
$(10, 15)_3$	$(0,2)_1$	$r_{1,6}^{(2)} = 2, r_{4,3}^{(2)} = r_{4,6}^{(2)} = 1$
$(10, 15)_3$		$r_{4,3}^{(2)} = r_{4,6}^{(2)} = 2$
$(10, 15)_3$		$r_{1,6}^{(2)} = 1, r_{4,6}^{(2)} = 3$
$(16, 12)_3$	$P \in F_0$	$r_{1,0}^{(1)} = r_{1,3}^{(1)} = 1, r_{2,1}^{(1)} = 9, r_{4,0}^{(1)} = 2$
$(16, 12)_3$	$Q \in F_1$	$r_{0,2}^{(1)} = 3, r_{2,1}^{(1)} = 6, r_{1,3}^{(1)} = 4$
$(16, 12)_3$		$r_{1,0}^{(\dot{1})} = 4, r_{0,2}^{(\dot{1})} = 3, r_{2,1}^{(\dot{1})} = 6$
$(16, 12)_3$	$(1,0)_1$	$r_{4,3}^{(2)} = 3, r_{7,3}^{(2)} = 1$
$(16, 12)_3$	$(0,2)_1$	$r_{4,3}^{(2)} = r_{4,6}^{(2)} = 2$
$(16, 12)_3$	$(2,1)_1$	$r_{4,3}^{(2)} = r_{4,6}^{(2)} = 1, r_{7,3}^{(2)} = 2$
$(16, 12)_3$	$(1,3)_1$	$r_{4,6}^{(2)} = 3, r_{7,3}^{(2)} = 1$
$(16, 12)_3$	$(4,0)_1$	$r_{7,3}^{(2)} = 4$

Lemma 3.4. Let Δ be a (10, 15)-solid. Then, every point of $\Delta \cap F_1$ and of $\Delta \cap F_2$ has a focal (4, 6)-plane and a focal (4, 3)-plane, respectively, and vice versa.

Proof. We prove that every point $R \in \Delta \cap F_2$ has a focal (4,3)-plane. It follows from Table 3.1 that there are exactly four (1,0)-lines through R in Δ , say ℓ_1, \ldots, ℓ_4 . Let P_i be the point $\ell_i \cap F_0$ for $i = 1, \ldots, 4$ and let δ be a plane containing P_1, P_2, P_3 . Since Δ has spectrum $(c_{1,6}^{(3)}, c_{4,3}^{(3)}, c_{4,6}^{(3)}) = (10, 15, 15), \delta$ is a (4,3)-plane or a (4,6)-plane. Let Pbe the point of $\delta \cap F_0$ other than P_1, P_2, P_3 , and put $\ell = \langle P, R \rangle$. Then $\delta_i = \langle \ell, P_i \rangle$ is a (4,3)-plane for i = 1, 2, 3, since it contains a (1,0)-line ℓ_i . Thus, ℓ is contained in three (4,3)-planes. Hence ℓ is a (1,0)-line by Table 3.1, and we have $P = P_4$ and $\ell = \ell_4$. Since the line $\langle P, P_i \rangle$ is a (2,1)-line and since ℓ_1, \ldots, ℓ_4 are (1,0)-lines, R is focal to $\langle P, P_i \rangle$ in δ_i for i = 1, 2, 3. Now, let ℓ_P be the line through P in δ other than $\langle P, P_i \rangle$, i = 1, 2, 3. Then $\langle \ell, \ell_P \rangle$ is a (1,6)-plane by Table 3.1, and ℓ_P is a (1,0)-line or a (1,3)-line, for a (1,6)-plane has spectrum $(c_{1,0}^{(2)}, c_{0,2}^{(2)}, c_{1,3}^{(2)}) = (2, 9, 2)$ [11]. Suppose ℓ_P is a (1,3)-line. Let Q be the point $\ell_P \cap \langle P_1, P_2 \rangle$ and put $m = \langle Q, R \rangle$. Then m is a (0,2)-line since $\langle \ell, \ell_P \rangle$ is a (1,6)-plane. On the other hand, since $\delta_{12} = \langle R, P_1, P_2 \rangle$ is a (4,3)-plane satisfying that R is focal to $\langle P_1, P_2 \rangle$ in δ_{12} , m must be a (2,1)-line, a contradiction. Hence ℓ_P is a (1,0)-line and is focal to R in the plane $\langle R, \ell_P \rangle$, and our assertion follows.

The following lemma can be also proved similarly using Table 3.1.

Lemma 3.5. Let Δ be a (16, 12)-solid. Then, every point of $\Delta \cap F_1$ and of $\Delta \cap F_2$ has a focal (4,3)-plane and a focal (4,6)-plane, respectively, and vice versa.

Easy counting arguments yield the following.

Lemma 3.6. For even $t \ge 4$, let Π_t^1, Π_t^2 be flats with parameters $(\theta_{t-1}, \theta_{t-1} - \theta_{U+1})_t$, $(\theta_{t-1}, \theta_{t-1} + \theta_{U+1} + 1)_t$, U = (t-4)/2. For odd $t \ge 5$, let Π_t^3, Π_t^4 be flats with parameters $(\theta_{t-1} - 3^{T+1}, \theta_{t-1} + \theta_T + 1)_t$, $(\theta_{t-1} + 3^{T+1}, \theta_{t-1} - \theta_T)_t$, T = (t-3)/2. Then Table 3.2 holds.

Table 3.2.

Π_t	S	$r_{i,j}^{(s)} = \#$ of $(i,j)_s$ flats through S in Π_t
Π^1_t	Π^3_{t-3}	$r_{\theta_{t-3}-3^{U+1},\theta_{t-3}+\theta_{U}+1}^{(t-2)} = 4, \ r_{\theta_{t-3},\theta_{t-3}-\theta_{U}}^{(t-2)} = 6, \ r_{\theta_{t-3},\theta_{t-3}+\theta_{U}+1}^{(t-2)} = 3$
Π^1_t	Π_{t-3}^4	$r_{\theta_{t-2}-3^{U+1}\theta_{t-2}+\theta_{U}+1}^{(t-2)} = 4, \ r_{\theta_{t-3},\theta_{t-3}-\theta_{U}}^{(t-2)} = 3, \ r_{\theta_{t-3},\theta_{t-3}+\theta_{U}+1}^{(t-2)} = 6$
Π^1_t	Π^1_{t-2}	$r^{(t-1)} - 2 r^{(t-1)} - 1$
Π^1_t	Π_{t-2}^2	$\begin{aligned} r_{\theta_{t-2},\theta_{t-2}-\theta_{U+1}} &= 2, \ r_{\theta_{t-2}-3^{U+1},\theta_{t-2}+\theta_{U}+1} = r_{\theta_{t-2}+3^{U+1},\theta_{t-2}-\theta_{U}} = 1 \\ r_{\theta_{t-2}-3^{U+1},\theta_{t-2}+\theta_{U}+1} &= r_{\theta_{t-2}+3^{U+1},\theta_{t-2}-\theta_{U}} = 2 \\ \hline r_{\theta_{t-3},\theta_{t-3}-\theta_{U}}^{(t-2)} &= 6, \ r_{\theta_{t-3},\theta_{t-3}+\theta_{U}+1}^{(t-2)} = 3, \ r_{\theta_{t-3},\theta_{t-3}+\theta_{U}+1}^{(t-2)} = 3, \ r_{\theta_{t-3},\theta_{t-3}+\theta_{U}+1}^{(t-2)} = 6, \ r_{\theta_{t-3}+3^{U+1},\theta_{t-3}-\theta_{U}}^{(t-2)} = 4 \\ r_{\theta_{t-2}-3^{U+1},\theta_{t-2}+\theta_{U}+1}^{(t-1)} &= r_{\theta_{t-2}+3^{U+1},\theta_{t-2}-\theta_{U}}^{(t-1)} = 2 \\ r_{\theta_{t-2}-3^{U+1},\theta_{t-2}+\theta_{U}+1}^{(t-1)} &= r_{\theta_{t-2}+3^{U+1},\theta_{t-2}-\theta_{U}}^{(t-1)} = 1, \ r_{\theta_{t-2},\theta_{t-2}+\theta_{U}+1}^{(t-1)} = 2 \\ \hline r_{\theta_{t-2}-3^{U+1},\theta_{t-2}+\theta_{U}+1}^{(t-2)} &= 4, \ r_{\theta_{t-2}-3^{U+1},\theta_{t-2}-\theta_{U}}^{(t-2)} &= 1, \ r_{\theta_{t-2},\theta_{t-2}+\theta_{U+1}+1}^{(t-1)} = 2 \\ \hline r_{\theta_{t-3},\theta_{t-3}-\theta_{T}}^{(t-2)} &= 4, \ r_{\theta_{t-3}-3^{T},\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} &= 6, \ r_{\theta_{t-3}+3^{T},\theta_{t-3}-\theta_{T-1}}^{(t-2)} &= 3 \\ r_{\theta_{t-2}-3^{U+1},\theta_{t-2}-\theta_{U}}^{(t-2)} &= 0, \ r_{\theta_{t-2}-3^{U+1},\theta_{t-3}-\theta_{T}}^{(t-2)} &= 0 \\ \hline r_{\theta_{t-3},\theta_{t-3}-\theta_{T}}^{(t-2)} &= 4, \ r_{\theta_{t-3}-3^{T},\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} &= 6, \ r_{\theta_{t-3}+3^{T},\theta_{t-3}-\theta_{T-1}}^{(t-2)} &= 3 \\ \hline r_{\theta_{t-3},\theta_{t-3}-\theta_{T}}^{(t-2)} &= 0, \ r_{\theta_{t-3}-3^{T},\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} &= 0, \ r_{\theta_{t-3}+3^{T},\theta_{t-3}-\theta_{T-1}}^{(t-2)} &= 3 \\ \hline r_{\theta_{t-3}-3^{U+1},\theta_{t-3}-\theta_{T}}^{(t-2)} &= 0, \ r_{\theta_{t-3}+3^{U+1},\theta_{t-3}-\theta_{T-1}}^{(t-2)} &= 0 \\ \hline r_{\theta_{t-3}-3^{U+1},\theta_{t-3}-\theta_{T}}^{(t-2)} &= 0, \ r_{\theta_{t-3}+3^{U+1},\theta_{t-3}-\theta_{T-1}}^{(t-2)} &= 0 \\ \hline r_{\theta_{t-3}-3^{U+1},\theta_{t-3}-\theta_{T}}^{(t-2)} &= 0, \ r_{\theta_{t-3}+3^{U+1},\theta_{t-3}-\theta_{T-1}}^{(t-2)} &= 0 \\ \hline r_{\theta_{t-3}-3^{U+1},\theta_{t-3}-\theta_{T}-1}^{(t-2)} &= 0, \ r_{\theta_{t-3}+3^{U+1},\theta_{t-3}-\theta_{T-1}}^{(t-2)} &= 0 \\ \hline r_{\theta_{t-3}-3^{U+1},\theta_{t-3}-\theta_{T}-1}^{(t-2)} &= 0, \ r_{\theta_{t-3}+3^{U+1},\theta_{t-3}-\theta_{T-1}}^{(t-2)} &= 0 \\ \hline r_{\theta_{t-3}-3^{U+1},\theta_{t-3}-\theta_{T-1}}^{(t-2)} &= 0 \\ \hline r_{\theta_{t-3}-3^{U+1},\theta_{t-3}-\theta_{T-1}-1}^{(t-2)} &= 0 \\ \hline r_{\theta_{t-3}-3^{U+1},\theta_{t-3}-\theta_{T-1}-1}^{(t-2)} &= 0 \\ \hline r_{\theta_{t-3}-3^{U+1},\theta_{t-3}-\theta_$
Π^2_t	Π^3_{t-3}	$r_{\theta_{t-3},\theta_{t-3}-\theta_U}^{(t-2)} = 6, \ r_{\theta_{t-3},\theta_{t-3}+\theta_U+1}^{(t-2)} = 3, \ r_{\theta_{t-3}+3^{U+1},\theta_{t-3}-\theta_U}^{(t-2)} = 4$
Π_t^2	Π_{t-3}^4	$r_{\theta_{t-3},\theta_{t-3}-\theta_U}^{(t-2)} = 3, \ r_{\theta_{t-3},\theta_{t-3}+\theta_U+1}^{(t-2)} = 6, \ r_{\theta_{t-3}+3^{U+1},\theta_{t-3}-\theta_U}^{(t-2)} = 4$
Π_t^2	Π^1_{t-2}	$r_{\theta_{t-2}-3^{U+1},\theta_{t-2}+\theta_{U}+1}^{(t-1)} = r_{\theta_{t-2}+3^{U+1},\theta_{t-2}-\theta_{U}}^{(t-1)} = 2$
Π^2_t	Π_{t-2}^2	$r_{\theta_{t-2}-3^{U+1},\theta_{t-2}+\theta_{U}+1}^{(t-1)} = r_{\theta_{t-2}+3^{U+1},\theta_{t-2}-\theta_{U}}^{(t-1)} = 1, \ r_{\theta_{t-2},\theta_{t-2}+\theta_{U+1}+1}^{(t-1)} = 2$
Π_t^3	Π^1_{t-3}	$r_{\theta_{t-3},\theta_{t-3}-\theta_T}^{(t-2)} = 4, \ r_{\theta_{t-3}-3^T,\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} = 6, \ r_{\theta_{t-3}+3^T,\theta_{t-3}-\theta_{T-1}}^{(t-2)} = 3$
Π^3_t	Π_{t-3}^2	$r_{\theta_{t-3}-3^T,\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} = 6, \ r_{\theta_{t-3}+3^T,\theta_{t-3}-\theta_{T-1}}^{(t-2)} = 3, \ r_{\theta_{t-3},\theta_{t-3}+\theta_{T}+1}^{(t-2)} = 4$
Π^3_t	Π^3_{t-2}	$ r_{\theta_{t-3}-3}^{(t-2)} r_{\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} = 6, \ r_{\theta_{t-3}+3}^{(t-2)} r_{\theta_{t-3}+3}^{(t-2)} = 3, \ r_{\theta_{t-3},\theta_{t-3}+\theta_{T+1}}^{(t-2)} = 4 $ $ r_{\theta_{t-2}-3}^{(t-1)} r_{\theta_{t-2}+\theta_{T}+1}^{(t-1)} = 2, \ r_{\theta_{t-2},\theta_{t-2}-\theta_{T}}^{(t-1)} = r_{\theta_{t-2},\theta_{t-2}+\theta_{T}+1}^{(t-1)} = 1 $
Π^3_t	Π_{t-2}^4	$r_{\theta_{t-2},\theta_{t-2}-\theta_{T}}^{(t-1)} = r_{\theta_{t-2},\theta_{t-2}+\theta_{T}+1}^{(t-1)} = 2$
Π_t^4	Π^1_{t-3}	$r_{\theta_{t-3},\theta_{t-3}-\theta_T}^{(t-2)} = 4, \ r_{\theta_{t-3}-3^T,\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} = 3, \ r_{\theta_{t-3}+3^T,\theta_{t-3}-\theta_{T-1}}^{(t-2)} = 6$
Π_t^4	Π_{t-3}^2	$ \begin{array}{c} r_{\theta_{t-3},\theta_{t-3}-\theta_T}^{(t-2)} = 0, \ r_{\theta_{t-3}-3^T,\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} = 3, \ r_{\theta_{t-3}+3^T,\theta_{t-3}-\theta_{T-1}}^{(t-2)} = 6 \\ r_{\theta_{t-3}-3^T,\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} = 3, \ r_{\theta_{t-3}+3^T,\theta_{t-3}-\theta_{T-1}}^{(t-2)} = 6, \ r_{\theta_{t-3},\theta_{t-3}+\theta_{T-1}+1}^{(t-2)} = 4 \end{array} $
Π_t^4	Π^3_{t-2}	$r_{\theta_{t-2},\theta_{t-2}-\theta_{T}}^{(t-1)} = r_{\theta_{t-2},\theta_{t-2}+\theta_{T}+1}^{(t-1)} = 2$
Π_t^4	Π_{t-2}^4	$r_{\theta_{t-2},\theta_{t-2}-\theta_T}^{(t-1)} = r_{\theta_{t-2},\theta_{t-2}+\theta_T+1}^{(t-2)+t-2+t+1} = 1, \ r_{\theta_{t-2}+3^{T+1},\theta_{t-2}-\theta_T}^{(t-1)} = 2$

We prove the following four lemmas by induction on t. More precisely, we show Lemma 3.7 and Lemma 3.8 for even t using Lemmas 3.7 - 3.10 as the induction hypothesis for t-2 or t-1, and we show Lemma 3.9 and Lemma 3.10 for odd t using Lemmas 3.7 - 3.10 as well, where Lemmas 3.2 - 3.5 give the induction basis.

Lemma 3.7. Let Π_t be a $(\theta_{t-1}, \theta_{t-1} - \theta_{U+1})_t$ flat for even $t \ge 4$, where U = (t-4)/2. Then, every point of $\Pi_t \cap F_1$ and of $\Pi_t \cap F_2$ has a focal $(\theta_{t-2} - 3^{U+1}, \theta_{t-2} + \theta_U + 1)_{t-1}$ flat and a focal $(\theta_{t-2} + 3^{U+1}, \theta_{t-2} - \theta_U)_{t-1}$ flat, respectively, and vice versa.

Proof. We prove that arbitrary $(\theta_{t-2} + 3^{U+1}, \theta_{t-2} - \theta_U)_{t-1}$ flat π in Π_t has a focal point in $F_2 \cap \Pi_t$. Let δ be a $(\theta_{t-4} - 3^U, \theta_{t-4} + \theta_{U-1} + 1)_{t-3}$ flat in π . Then, from Table 3.2, there are exactly three $(\theta_{t-3}, \theta_{t-3} + \theta_U + 1)_{t-2}$ flats through δ in Π_t , precisely two of which are contained in π . Let Δ be the $(\theta_{t-3}, \theta_{t-3} + \theta_U + 1)_{t-2}$ flat through δ not contained in π . From Table 3.2, in Π_t , there are two $(\theta_{t-2}-3^{U+1},\theta_{t-2}+\theta_U+1)_{t-1}$ flats through Δ , say π_1,π_2 , and two $(\theta_{t-2}+3^{U+1},\theta_{t-2}-\theta_U)_{t-1}$ flats through Δ , say π_3,π_4 . Let $\Delta_i=\pi\cap\pi_i$ for $i=1,\ldots,4$. Then, $\Delta_1, \dots, \Delta_4$ are the (t-2)-flats through δ in π , consisting two $(\theta_{t-3}, \theta_{t-3} - \theta_U)_{t-2}$ flats and two $(\theta_{t-3}, \theta_{t-3} + \theta_U + 1)_{t-2}$ flats from Table 3.2. It also follows from Table 3.2 that a $(\theta_{t-2} - 3^{U+1}, \theta_{t-2} + \theta_U + 1)_{t-1}$ flat cannot contain two $(\theta_{t-3}, \theta_{t-3} + \theta_U + 1)_{t-2}$ flats meeting in a $(\theta_{t-4} - 3^U, \theta_{t-4} + \theta_{U-1} + 1)_{t-3}$ flat. Hence, Δ_3, Δ_4 are $(\theta_{t-3}, \theta_{t-3} + \theta_U + 1)_{t-2}$ flats and Δ_1, Δ_2 are $(\theta_{t-3}, \theta_{t-3} - \theta_U)_{t-2}$ flats. From the induction hypothesis for $t-2, \delta$ has a focal point $R \in F_2$ in Δ . To show that R is focal to π , It suffices to prove that R is focal to Δ_i in π_i for $i = 1, \ldots, 4$. Since the diversity of π_i is new in Λ_{t-1} and since R is focal to δ , it follows from the induction hypothesis for t-1 that R has the focal (t-2)-flat Δ'_i through δ in π_i for $i = 1, \ldots, 4$. For $i = 1, 2, \Delta'_i$ is a $(\theta_{t-3}, \theta_{t-3} - \theta_U)_{t-2}$ flat, and Δ_i is the only $(\theta_{t-3}, \theta_{t-3} - \theta_U)_{t-2}$ flat through δ in π_i from Table 3.2. Hence $\Delta'_i = \Delta_i$. For $i = 3, 4, \Delta'_i$ is a $(\theta_{t-3}, \theta_{t-3} + \theta_U + 1)_{t-2}$ flat, and Δ_i is the only $(\theta_{t-3}, \theta_{t-3} + \theta_U + 1)_{t-2}$ flat through δ other than Δ in π_i from Table 3.2. Hence we have $\Delta'_i = \Delta_i$ as well. Thus R is focal to Δ_i in π_i for $i = 1, \ldots, 4$.

Similarly, it can be proved using Table 3.2 that every $(\theta_{t-2} - 3^{U+1}, \theta_{t-2} + \theta_U + 1)_{t-1}$ flat in Π_t has a focal point in $F_1 \cap \Pi_t$. The converses follow from Lemma 3.1.

Replacing $\Pi_t \cap F_1$ and $\Pi_t \cap F_2$ for a $(\theta_{t-1}, \theta_{t-1} - \theta_{U+1})_t$ flat Π_t yields a $(\theta_{t-1}, \theta_{t-1} + \theta_{U+1} + 1)_t$ flat in which every $(\theta_{t-2} + 3^{U+1}, \theta_{t-2} - \theta_U)_{t-1}$ flat and every $(\theta_{t-2} - 3^{U+1}, \theta_{t-2} + \theta_U + 1)_{t-1}$ flat have a focal point in $F_1 \cap \Pi_t$ and in $F_2 \cap \Pi_t$, respectively. Hence we get the following.

Lemma 3.8. Let Π be a $(\theta_{t-1}, \theta_{t-1} + \theta_{U+1} + 1)_t$ flat for even $t \ge 4$, where U = (t-4)/2. Then, every point of $\Pi \cap F_1$ and of $\Pi \cap F_2$ has a focal $(\theta_{t-2} + 3^{U+1}, \theta_{t-2} - \theta_U)_{t-1}$ flat and a focal $(\theta_{t-2} - 3^{U+1}, \theta_{t-2} + \theta_U + 1)_{t-1}$ flat, respectively, and vice versa.

Lemma 3.9. Let Π be a $(\theta_{t-1} - 3^{T+1}, \theta_{t-1} + \theta_T + 1)_t$ flat for odd $t \geq 5$, where T = (t-3)/2. Then, every point of $\Pi \cap F_1$ and of $\Pi \cap F_2$ has a focal $(\theta_{t-2}, \theta_{t-2} - \theta_T)_{t-1}$ flat and a focal $(\theta_{t-2}, \theta_{t-2} + \theta_T + 1)_{t-1}$ flat, respectively, and vice versa.

Proof. We prove that arbitrary $(\theta_{t-2}, \theta_{t-2} - \theta_T)_{t-1}$ flat π in Π_t has a focal point in $F_2 \cap \Pi_t$. Let δ be a $(\theta_{t-4}, \theta_{t-4} + \theta_{T-1} + 1)_{t-3}$ flat in π . Then, from Table 3.2, there are exactly three $(\theta_{t-3} + 3^T, \theta_{t-3} - \theta_{T-1})_{t-2}$ flats through δ in Π_t , precisely two of which are contained in π . Let Δ be the $(\theta_{t-3} + 3^T, \theta_{t-3} - \theta_{T-1})_{t-2}$ flat through δ not contained in π . From Table 3.2, in Π_t , there are two $(\theta_{t-2}, \theta_{t-2} - \theta_T)_{t-1}$ flats through Δ , say π_1, π_2 , and two $(\theta_{t-2}, \theta_{t-2} + \theta_T + 1)_{t-1}$ flats through Δ , say π_3, π_4 . Let $\Delta_i = \pi \cap \pi_i$ for $i = 1, \ldots, 4$. Then, $\Delta_1, \dots, \Delta_4$ are the (t-2)-flats through δ in π , consisting two $(\theta_{t-3}-3^T, \theta_{t-3}+\theta_{T-1}+1)_{t-2}$ flats and two $(\theta_{t-3}+3^T, \theta_{t-3}-\theta_{T-1})_{t-2}$ flats from Table 3.2. It also follows from Table 3.2 that a $(\theta_{t-2}, \theta_{t-2} + \theta_T + 1)_{t-1}$ flat cannot contain two $(\theta_{t-3} + 3^T, \theta_{t-3} - \theta_{T-1})_{t-2}$ flats meeting in a $(\theta_{t-4}, \theta_{t-4} + \theta_{T-1} + 1)_{t-3}$ flat. Hence, Δ_3, Δ_4 are $(\theta_{t-3} - 3^T, \theta_{t-3} + \theta_{T-1} + 1)_{t-2}$ flats and Δ_1, Δ_2 are $(\theta_{t-3} + 3^T, \theta_{t-3} - \theta_{T-1})_{t-2}$ flats. From the induction hypothesis for t-2, δ has a focal point $R \in F_2$ in Δ . To show that R is focal to π , It suffices to prove that R is focal to Δ_i in π_i for $i = 1, \ldots, 4$. Since the diversity of π_i is new in Λ_{t-1} and since R is focal to δ , it follows from the induction hypothesis for t-1 that R has the focal (t-2)-flat Δ'_i through δ in π_i for $i = 1, \ldots, 4$. For $i = 1, 2, \Delta'_i$ is a $(\theta_{t-3} + 3^T, \theta_{t-3} - \theta_{T-1})_{t-2}$ flat, and Δ_i is the only $(\theta_{t-3} + 3^T, \theta_{t-3} - \theta_{T-1})_{t-2}$ flat through δ other than Δ in π_i from Table 3.2. Hence we have $\Delta'_i = \Delta_i$. For $i = 3, 4, \Delta'_i$ is a $(\theta_{t-3} - 3^T, \theta_{t-3} + \theta_{T-1} + 1)_{t-2}$ flat, and Δ_i is the only $(\theta_{t-3} - 3^T, \theta_{t-3} + \theta_{T-1} + 1)_{t-2}$ flat through δ in π_i from Table 3.2. Hence $\Delta'_i = \Delta_i$ as well. Thus R is focal to Δ_i in π_i for $i = 1, \ldots, 4$. Similarly, it can be proved using Table 3.2 that every $(\theta_{t-2}, \theta_{t-2} + \theta_T + 1)_{t-1}$ flat in Π_t

has a focal point in $F_1 \cap \Pi_t$. The converses follow from Lemma 3.1.

The following lemma can be also proved similarly using Table 3.2.

Lemma 3.10. Let Π be a $(\theta_{t-1}+3^{T+1}, \theta_{t-1}-\theta_T)_t$ flat for odd $t \geq 5$, where T = (t-3)/2. Then, every point of $\Pi \cap F_1$ and of $\Pi \cap F_2$ has a focal $(\theta_{t-2}, \theta_{t-2}+\theta_T+1)_{t-1}$ flat and a focal $(\theta_{t-2}, \theta_{t-2}-\theta_T)_{t-1}$ flat, respectively, and vice versa.

Recall that (2, 1) and (0, 2) are new in Λ_1 . We have shown the following theorem by Lemmas 3.2 - 3.10.

Theorem 3.11. Let Π be a t-flat with new diversity in Λ_t , $t \geq 2$. Then, every point of $\Pi \cap F_1$ or $\Pi \cap F_2$ has a unique focal hyperplane whose diversity is new in Λ_{t-1} . Conversely, every hyperplane with new diversity in Λ_{t-1} has a unique focal point in $\Pi \cap F_1$ or in $\Pi \cap F_2$.

Table 3.3. The focal line of $R \in F_2 \cap \delta$

plane δ	(4,0)	(1,6)	(4,3)	(4,6)	(7,3)
focal line	(4,0)	(1,0)	(2,1)	(0,2)	(1,3)

Table 3.4.	The focal	line c	of $Q \in$	$F_1 \cap \delta$
------------	-----------	--------	------------	-------------------

				C - I -	
plane δ	(1,6)	(4,3)	(4,6)	(7,3)	(4,9)
focal line	(1,3)	(0,2)	(2,1)	(1,0)	(4,0)

Let δ be an (i, j)-plane with $i + j < \theta_2$ and take $R \in \delta \cap F_2$. Then, it follows from the geometric configurations of $F_0 \cap \delta$, $F_1 \cap \delta$, $F_2 \cap \delta$ that R has the unique focal line in δ as in Table 3.3. This can be proved for t-flats as follows for $t \geq 3$.

Let Π_t be a $(\varphi_0, \varphi_1)_t$ flat with $t \geq 3$. By Theorem 3.11, every point of $F_2 \cap \Pi_t$ or $F_1 \cap \Pi_t$ has the unique focal hyperplane of Π_t provided (φ_0, φ_1) is new in Λ_{t-1} .

Assume that (φ_0, φ_1) is not new in Λ_{t-1} . Then, there is a $((\varphi_0 - 1)/3, \varphi_1/3)_{t-1}$ flat π in Π_t . Let L be the axis of Π_t and let P be a point of L out of π . Then, for a point $Q \in \pi$, the line $\langle P, Q \rangle$ is a (4,0)-line, a (1,3)-line or a (1,0)-line if $Q \in F_0$, $Q \in F_1$ or $Q \in F_2$, respectively. Assume that $F_2 \cap \Pi_t \neq \emptyset$ and that $R \in F_2 \cap \pi$ is focal to a (t-2)-flat Δ in π . Then, it is easy to see that R is focal to $\langle P, \Delta \rangle$. Thus, every point of $F_2 \cap \Pi_t$ has the unique focal hyperplane of Π_t .

Theorem 3.12. Let Π_t be a $(\varphi_0, \varphi_1)_t$ flat with $\varphi_0 + \varphi_1 < \theta_t$, $t \ge 2$. Then, for any point R of $F_2 \cap \Pi_t$,

(1) R has the unique focal $(a, b)_{t-1}$ flat in Π_t with

$$a = (4\theta_{t-1} - \varphi_0 - 2\varphi_1)/3, \ b = (2\varphi_0 + \varphi_1 - 2\theta_{t-1})/3.$$

(2) The numbers of (i, j)-lines through R in Π_t are

$$r_{1,0}^{(1)} = a, \ r_{2,1}^{(1)} = b, \ r_{0,2}^{(1)} = \theta_{t-1} - a - b.$$

We also get the following similarly (see Table 3.4 for t = 2).

Theorem 3.13. Let Π_t be a $(\varphi_0, \varphi_1)_t$ flat with $\varphi_1 > 0$, $t \ge 2$. Then, for any point Q of $F_1 \cap \Pi_t$,

(1) Q has the unique focal $(a, b)_{t-1}$ flat in Π_t with

$$a = (\varphi_0 + 2\varphi_1 - 2\theta_{t-1} - 2)/3, \ b = (4\theta_{t-1} - 2\varphi_0 - \varphi_1 + 1)/3.$$

(2) The numbers of (i, j)-lines through Q in Π_t are

$$r_{1,3}^{(1)} = a, \ r_{0,2}^{(1)} = b, \ r_{2,1}^{(1)} = \theta_{t-1} - a - b.$$

Now, assume $P \in F_0$. To count $r_{i,j}^{(1)}$ for P when (φ_0, φ_1) is new, we employ the following lemmas.

Lemma 3.14 ([16]). Let Π be a t-flat in Σ with even $t \ge 4$, U = (t - 4)/2.

(1) If Π is a $(\theta_{t-1}, \theta_{t-1} - \theta_{U+1})_t$ flat, then Π contains four $(\theta_{t-2}, \theta_{t-2} - \theta_{U+1})_{t-1}$ flats π_1, \dots, π_4 through a fixed $(\theta_{t-3}, \theta_{t-3} - \theta_{U+1})_{t-2}$ flat Δ such that Δ contains a (4,0)-line $\ell = \{P_1, P_2, P_3, P_4\}$ which is the axis of Δ of type $(\theta_{t-4}, \theta_{t-4} - \theta_U)$ and that P_i is the axis of π_i of type $(\theta_{t-3}, \theta_{t-3} - \theta_U)$ for $1 \leq i \leq 4$.

(2) If Π is a $(\theta_{t-1}, \theta_{t-1} + \theta_{U+1} + 1)_t$ flat, then Π contains four $(\theta_{t-2}, \theta_{t-2} + \theta_{U+1} + 1)_{t-1}$ flats π_1, \dots, π_4 through a fixed $(\theta_{t-3}, \theta_{t-3} + \theta_{U+1} + 1)_{t-2}$ flat Δ such that Δ contains a (4, 0)-line $\ell = \{P_1, P_2, P_3, P_4\}$ which is the axis of Δ of type $(\theta_{t-4}, \theta_{t-4} + \theta_U + 1)$ and that P_i is the axis of π_i of type $(\theta_{t-3}, \theta_{t-3} + \theta_U + 1)$ for $1 \leq i \leq 4$. Lemma 3.15 ([16]). Let Π be a t-flat in Σ with odd $t \geq 5$, T = (t-3)/2. (1) If Π is a $(\theta_{t-1} + 3^{T+1}, \theta_{t-1} - \theta_T)_t$ flat, then Π contains four $(\theta_{t-2} + 3^{T+1}, \theta_{t-2} - \theta_T)_{t-1}$ flats $\pi_1 \cdots \pi_4$ through a fixed $(\theta_{t-3} + 3^{T+1}, \theta_{t-3} - \theta_T)_{t-2}$ flat Δ such that Δ contains a (4,0)-line $\ell = \{P_1, P_2, P_3, P_4\}$ which is the axis of Δ of type $(\theta_{t-4} + 3^T, \theta_{t-4} - \theta_{T-1})$ and that P_i is the axis of π_i of type $(\theta_{t-3} + 3^T, \theta_{t-3} - \theta_{T-1})$ for $1 \leq i \leq 4$. (2) If Π is a $(\theta_{t-1} - 3^{T+1}, \theta_{t-1} + \theta_T + 1)_t$ flat, then Π contains four $(\theta_{t-3} - 3^T, \theta_{t-3} + \theta_{T-1} + 1)_{t-1}$ flats π_1, \cdots, π_4 through a fixed $(\theta_{t-3} - 3^{T+1}, \theta_{t-3} + \theta_T + 1)_{t-2}$ flat Δ such that Δ contains a (4, 0)-line $\ell = \{P_1, P_2, P_3, P_4\}$ which is the axis of Δ of type $(\theta_{t-4} - 3^T, \theta_{t-4} + \theta_{T-1} + 1)$ and that P_i is the axis of π_i of type $(\theta_{t-3} - 3^T, \theta_{t-3} + \theta_{T-1} + 1)$ for $1 \leq i \leq 4$.

Since F_0 is projectively equivalent to a non-singular quadric \mathcal{Q} by Theorem 2.2 and since $G(\mathcal{Q})$, the group of projectivities fixing \mathcal{Q} , acts transitively on \mathcal{Q} (see Theorem 22.6.4 of [9]), we may assume that $P = P_1$ in Lemmas 3.14 or 3.15. Since P is the axis of π_1 but not of π_2, π_3, π_4 , we get the following.

Theorem 3.16. Let Π_t be a t-flat with new diversity, $t \ge 4$, and let P_1 and π_1 be as in Lemma 3.14 or Lemma 3.15. Assume that P_1 is the axis of π_1 of type (a, b). Then, for any point P of $F_0 \cap \Pi_t$, the numbers of (i, j)-lines through P in Π_t are

$$r_{4,0}^{(1)} = a, \ r_{1,3}^{(1)} = b, \ r_{1,0}^{(1)} = \theta_{t-2} - a - b, \ r_{2,1}^{(1)} = 3^{t-1}.$$

Proof of Theorem 2.3. We first prove for t = 2 as the induction basis. Let Π_2 be a (4,3)-plane. Recall that $F_0 \cap \Pi_2$ forms a 4-arc, say K, and the set of internal points of K in Π_2 is $F_1 \cap \Pi_2$. On the other hand, $\mathcal{P}_2^2 = \{\mathbf{P}(0,1,2), \mathbf{P}(1,1,1), \mathbf{P}(1,2,2)\}$ is the set of internal points of the conic $\mathcal{P}_2^0 = V_0(x_0^2 + x_1x_2)$ in PG(2,3). Hence, taking a projectivity τ from Π_2 to PG(2,3) with $\tau(F_1 \cap \Pi_2) = \mathcal{P}_2^2 = 2\mathcal{P}_2^1$, we get $F_i \cap \Pi_2 \sim 2\mathcal{P}_2^i$ for i = 0, 1, 2. When Π_2 is a (4,6)-plane, we have $F_i \cap \Pi_2 \sim \mathcal{P}_2^i$ for i = 0, 1, 2 since $F_2 \cap \Pi_2$ is the set of internal points of a 4-arc $F_0 \cap \Pi_2$ in this case.

Now, let t be odd ≥ 3 and T = (t-3)/2. Let Π_t be a $(\theta_{t-1}-3^{T+1}, \theta_{t-1}+\theta_T+1)_t$ flat and π be a $(\theta_{t-2}, \theta_{t-2}+\theta_T+1)_{t-1}$ flat in Π_t which is focal to $Q \in F_1 \cap \Pi_t$. We prove $F_i \cap \Pi_t \sim \mathcal{E}_t^i$ for i = 0, 1, 2. We have $F_i \cap \pi \sim \mathcal{P}_{t-1}^i$ for i = 0, 1, 2 by the induction hypothesis for t-1. Let π' be the hyperplane $V_0(x_0)$ in PG(t, 3) and take $f = x_1^2 + x_2x_3 + \cdots + x_{t-1}x_t$. We consider $V_i(f) \cap \pi' (\sim \mathcal{P}_{t-1}^i)$ and $\mathcal{E}_t^i = V_i(x_0^2 + x_1^2 + x_2x_3 + \cdots + x_{t-1}x_t)$ for i = 1, 2. Note that $Q' = \mathbf{P}(1, 0, \cdots, 0) \in \mathcal{E}_t^1 \setminus \pi'$ and $\mathcal{E}_t^i \cap \pi' = V_i(f) \cap \pi'$. Since $F_i \cap \pi \sim \mathcal{P}_{t-1}^i$ for i = 1, 2, we can take a projectivity τ from Π_t to PG(t, 3) satisfying $\tau(F_i \cap \pi) = V_i(f) \cap \pi'$ for i = 1, 2 and $\tau(Q) = Q'$. For $P' = \mathbf{P}(0, p_1, \cdots, p_t) \in \mathcal{E}_t^i \cap \pi'$, the two points $\mathbf{P}(1, p_1, \cdots, p_t)$ and $\mathbf{P}(2, p_1, \cdots, p_t)$ on the line $\langle P', Q' \rangle$ other than P', Q' belong to \mathcal{E}_t^{i+1} , where i + 1 is calculated modulo 3. Thus, we have $\tau(F_i \cap \Pi_t) = \mathcal{E}_t^i$ for i = 0, 1, 2.

Next, let Π_t be a $(\theta_{t-1} + 3^{T+1}, \theta_{t-1} - \theta_T)_t$ flat for odd $t \ge 3$, T = (t-3)/2. Let R be a point of F_2 and π be a $(\theta_{t-2}, \theta_{t-2} + \theta_T + 1)_{t-1}$ flat which is focal to R. We prove $F_i \cap \Pi_t \sim \mathcal{H}_t^i$ for i = 1, 2. We have $F_i \cap \pi \sim \mathcal{P}_{t-1}^i$ for i = 0, 1, 2 by the induction hypothesis for t - 1. Let π' be the hyperplane $V_0(x_0 - x_1)$ in PG(t, 3) and take $f = x_1^2 + x_2x_3 + \cdots + x_{t-1}x_t$ as above. We consider $V_i(f) \cap \pi' (\sim \mathcal{P}_{t-1}^i)$ and $\mathcal{H}_t^i = V_i(x_0x_1 + x_2x_3 + \cdots + x_{t-1}x_t)$ for i = 1, 2. Note that $R' = \mathbf{P}(1, 2, 0, \dots, 0) \in \mathcal{H}_t^2 \setminus \pi'$ and $\mathcal{H}_t^i \cap \pi' = V_i(f) \cap \pi'$. Since $F_i \cap \pi \sim \mathcal{P}_{t-1}^i$ for i = 1, 2, we can take a projectivity τ from Π_t to $\mathrm{PG}(t, 3)$ satisfying $\tau(F_i \cap \pi) = V_i(f) \cap \pi'$ for i = 1, 2 and $\tau(R) = R'$. For $P' = \mathbf{P}(p_1, p_1, p_2, \dots, p_t) \in \mathcal{H}_t^i \cap \pi'$, the two points $\mathbf{P}(p_1 + 1, p_1 - 1, p_2, \dots, p_t)$ and $\mathbf{P}(p_1 - 1, p_1 + 1, p_2, \dots, p_t)$ on the line $\langle P', R' \rangle$ other than P', R' belong to \mathcal{H}_t^{i+2} , where i + 2 is calculated modulo 3. Hence, we have $\tau(F_i \cap \Pi_t) = \mathcal{H}_t^i$ for i = 0, 1, 2.

For even $t \geq 4$, we first assume Π_t is a $(\theta_{t-1}, \theta_{t-1} + \theta_{U+1} + 1)_t$ flat, where U = (t-4)/2. Let Q be a point of F_1 and π be a $(\theta_{t-2} + 3^{U+1}, \theta_{t-2} - \theta_U)_{t-1}$ flat which is focal to Q. We prove $F_i \cap \Pi_t \sim \mathcal{P}_t^i$ for i = 1, 2. We have $F_i \cap \pi \sim \mathcal{P}_{t-1}^i$ for i = 0, 1, 2 by the induction hypothesis for t - 1. Let π' be the hyperplane $V_0(x_0)$ in PG(t, 3) and take $f = x_1x_2 + x_3x_4 + \cdots + x_{t-1}x_t$. We consider $V_i(f) \cap \pi' (\sim \mathcal{H}_{t-1}^i)$ and $\mathcal{P}_t^i = V_i(x_0^2 + x_1x_2 + \cdots + x_{t-1}x_t)$ for i = 1, 2. Note that $Q' = \mathbf{P}(1, 0, \cdots, 0) \in \mathcal{P}_t^1 \setminus \pi'$ and $\mathcal{P}_t^i \cap \pi' = V_i(f) \cap \pi'$. Since $F_i \cap \pi \sim \mathcal{H}_{t-1}^i$ for i = 1, 2, we can take a projectivity τ from Π_t to PG(t, 3) satisfying $\tau(F_i \cap \pi) = V_i(f) \cap \pi'$ for i = 1, 2 and $\tau(Q) = Q'$. For $P' = \mathbf{P}(0, p_1, p_2, \cdots, p_t) \in \mathcal{P}_t^i \cap \pi'$, the two points $\mathbf{P}(1, p_1, p_2, \cdots, p_t)$ and $\mathbf{P}(2, p_1, p_2, \cdots, p_t)$ on the line $\langle P', Q' \rangle$ other than P', Q' belong to \mathcal{P}_t^{i+1} , where i+1 is calculated modulo 3. Hence, we have $\tau(F_i \cap \Pi_t) = \mathcal{P}_t^i$ for i = 0, 1, 2.

Next, let Π_t be a $(\theta_{t-1}, \theta_{t-1} + \theta_{U+1} + 1)_t$ flat for even $t \ge 4$, U = (t-4)/2. Let R be a point of F_2 and π be a $(\theta_{t-2} - 3^{U+1}, \theta_{t-2} + \theta_U + 1)_{t-1}$ flat which is focal to R. We prove $F_i \cap \Pi_t \sim \mathcal{P}_t^i$ for i = 1, 2. We have $F_i \cap \pi \sim \mathcal{P}_{t-1}^i$ for i = 0, 1, 2 by the induction hypothesis for t-1. Let π' be the hyperplane $V_0(x_0 - x_1 - x_2)$ in PG(t, 3) and take $f = x_1^2 + x_2^2 + x_3x_4 + \cdots + x_{t-1}x_t$. We consider $V_i(f) \cap \pi'(\sim \mathcal{E}_{t-1}^i)$ and $\mathcal{P}_t^i = V_i(x_0^2 + x_1x_2 + \cdots + x_{t-1}x_t)$ for i = 1, 2. Note that $R' = \mathbf{P}(1, 1, 1, 0, \cdots, 0) \in \mathcal{P}_t^1 \setminus \pi'$ and $\mathcal{P}_t^i \cap \pi' = V_i(f) \cap \pi'$. Since $F_i \cap \pi \sim \mathcal{E}_{t-1}^i$ for i = 1, 2, we can take a projectivity τ from Π_t to PG(t, 3) satisfying $\tau(F_i \cap \pi) = V_i(f) \cap \pi'$ for i = 1, 2 and $\tau(R) = R'$. For $P' = \mathbf{P}(p_1+p_2, p_1, p_2, \cdots, p_t) \in \mathcal{P}_t^i \cap \pi'$, the two points $\mathbf{P}(p_1+p_2+1, p_1+1, p_2+1, p_3 \cdots, p_t)$ and \mathbf{P}_t^{i+2} , where i+2 is calculated modulo 3. Hence, we have $\tau(F_i \cap \Pi_t) = \mathcal{P}_t^i$ for i = 0, 1, 2.

4 An application to optimal linear codes problem

One of the fundamental problems in coding theory is the *optimal linear codes problem*, which is the problem to optimize one of the parameters n, k, d for given the other two over a given field \mathbb{F}_q , see [4], [5]. Here, we consider one version of the problem to determine $n_q(k, d)$, the minimum value of n for which an $[n, k, d]_q$ code exists. $[n_q(k, d), k, d]_q$ codes are called *optimal*. $n_3(k, d)$ has been determined for all d for $k \leq 5$, but not for many values of d for the case $k \geq 6$. For example, $n_3(6, 202)$ is not determined yet so far since Hamada [3] proved the following in 1993.

Lemma 4.1 ([3]). (1) $n_3(6, 203) = 307$. (2) $n_3(6, 202) = 305$ or 306.

In this section, we show how our investigations in the previous section can be applied

to consider such problems by proving the non-existence of a $[305, 6, 202]_3$ code, which is a new result.

Theorem 4.2. A $[305, 6, 202]_3$ code does not exist.

Corollary 4.3. $n_3(6, 202) = 306$.

We first introduce the usual geometric method. Let C be an $[n, k, d]_q$ code with a generator matrix G attaining the Griesmer bound:

$$n \ge g_q(k,d) := \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil,$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x, and assume that \mathcal{C} satisfies $d \leq q^{k-1}$. We mainly deal with such codes in this section. Then, any two columns of G are linearly independent, see, e.g., Theorem 5.1 of [4]. Hence the set of n columns of G can be considered as an n-set C_1 in $\Sigma = \operatorname{PG}(k-1,q)$ such that every hyperplane meets C_1 in at most n-d points and that some hyperplane meets C_1 in exactly n-d points, see Theorem 2.3 of [5]. On the other hand, each column of G was considered as a defining vector of a hyperplane of Σ in Section 1. So, the geometric structures found in the previous sections can be applied to the dual space Σ^* of Σ .

A line l with $t = |l \cap C_1|$ is called a *t*-line. A *t*-plane, a *t*-solid and so on are defined similarly. Let \mathcal{F}_j be the set of *j*-flats in Σ . For an *m*-flat Π in Σ we define

$$\gamma_j(\Pi) = max\{|\Delta \cap C_1| \mid \Delta \subset \Pi, \ \Delta \in \mathcal{F}_j\}, \ 0 \le j \le m.$$

We denote simply by γ_i instead of $\gamma_i(\Sigma)$. It holds that $\gamma_{k-2} = n - d$, $\gamma_{k-1} = n$.

Denote by a_i the number of *i*-hyperplanes Π in Σ . Note that $a_i = A_{n-i}/2$ for $0 \leq i \leq n-d$ and that $a_{n-d} > 0$. The list of a_i 's is called the *spectrum* of \mathcal{C} (or C_1). We usually use τ_j 's for the spectrum of a hyperplane of Σ to distinguish from the spectrum of \mathcal{C} . Simple counting arguments yield the following.

Lemma 4.4. Let $(a_0, a_1, \ldots, a_{n-d})$ be the spectrum of C. Then

(1)
$$\sum_{i=0}^{n-d} a_i = \theta_{k-1}$$
. (2) $\sum_{i=1}^{n-d} i a_i = n \theta_{k-2}$. (3) $\sum_{i=2}^{n-d} {i \choose 2} a_i = {n \choose 2} \theta_{k-3}$.

One can get the following from the three equalities of Lemma 4.4:

$$\sum_{i=0}^{n-d-2} \binom{n-d-i}{2} a_i = \binom{n-d}{2} \theta_{k-1} - n(n-d-1)\theta_{k-2} + \binom{n}{2} \theta_{k-3}.$$
 (4.1)

Lemma 4.5. Let Π be an *i*-hyperplane through a *t*-secundum Δ with $t = \gamma_{k-3}(\Pi)$. Then

(1)
$$t \leq \gamma_{k-2} - \frac{n-i}{q} = \frac{i+q\gamma_{k-2} - n}{q}$$
.

(2) $a_i = 0$ if an $[i, k-1, d_0]_q$ code with $d_0 \ge i - \left\lfloor \frac{i+q}{q} \right\rfloor_{k-2} - n$ does not exist, where $\lfloor x \rfloor$ denotes the largest integer less than or equal to x.

(3)
$$t = \left\lfloor \frac{i + q\gamma_{k-2} - n}{q} \right\rfloor$$
 if an $[i, k-1, d_1]_q$ code with $d_1 \ge i - \left\lfloor \frac{i + q\gamma_{k-2} - n}{q} \right\rfloor + 1$ does not exist.

(4) Let c_j be the number of j-hyperplanes through Δ other than Π . Then the following equality holds:

$$\sum_{j} (\gamma_{k-2} - j)c_j = i + q\gamma_{k-2} - n - qt.$$
(4.2)

(5) For a γ_{k-2} -hyperplane Π_0 with spectrum $(\tau_0, \cdots, \tau_{\gamma_{k-3}}), \tau_t > 0$ holds if $i + q\gamma_{k-2} - q\gamma_{k-2}$ n - qt < q.

Proof. (1) Counting the points of C_1 on the hyperplanes through Δ , we get $n \leq 1$ $q(\gamma_{k-2}-t)+i.$

- (2) Π gives an $[i, k-1, d_0]_q$ code with $d_0 \ge i \left|\frac{i+q\gamma_{k-2}-n}{q}\right|$ by (1). (3) If $t \leq \left\lfloor \frac{i+q\gamma_{k-2}-n}{q} \right\rfloor - 1$, then Π gives an $[i, k-1, d_1]_q$ code with $d_1 \geq i - \left\lfloor \frac{i+q\gamma_{k-2}-n}{q} \right\rfloor + 1$. Hence our assertion follows from (1).
- (4) (4.2) follows from $\sum_j c_j = q$ and $\sum_j (j-t)c_j = n-i$. (5) It holds that $c_{\gamma_{k-2}} > 0$ when the right hand side of (4.2) is at most q-1.

An f-set F in PG(k-1,q) satisfying

$$m = \min\{|F \cap \pi| \mid \pi \in \mathcal{F}_{k-2}\}$$

is called an $\{f, m; k-1, q\}$ -minihyper. Put $C_0 = \Sigma \setminus C_1$. Note that C_0 forms a $\{\theta_{k-1} - \varphi_{k-1}\}$ $n, \theta_{k-2} - (n-d); k-1, q$ -minihyper.

Lemma 4.6. Let F be a $\{18 = \theta_2 + \theta_1 + \theta_0, 5 = \theta_1 + \theta_0; 4, 3\}$ -minihyper corresponding to $a [103, 5, 68]_3 code C_{103}$. Then

(1) there exist a plane δ , a line ℓ and a point P which are mutually disjoint such that

$$F = \delta \cup \ell \cup \{P\}.$$

(2) The spectrum of C_{103} is $(a_{25}, a_{26}, a_{31}, a_{32}, a_{34}, a_{35}) = (1, 3, 4, 9, 35, 69).$

(1) follows from Theorem 3.1 of [2]. (2) can be easily calculated from the fact Proof. that δ , ℓ and P are mutually disjoint.

The following lemma can also be obtained from Theorem 3.1 of [2].

Lemma 4.7. (1) The spectrum of a $[81, 5, 54]_3$ code is $(a_0, a_{27}) = (1, 120)$. (2) The spectrum of a $[80, 5, 53]_3$ code is $(a_0, a_{26}, a_{27}) = (1, 40, 80)$.

Lemma 4.8. Let F be a $\{21 = \theta_2 + 2\theta_1, 6 = \theta_1 + 2\theta_0; 4, 3\}$ -minihyper corresponding to a $[100, 5, 66]_3$ code C_{100} . Then, either

(a) there exist a plane δ and two lines ℓ_1, ℓ_2 all of which are skew such that

$$F = \delta \cup \ell_1 \cup \ell_2,$$

and C_{100} has spectrum $(a_{25}, a_{28}, a_{31}, a_{34}) = (4, 1, 24, 92)$, or

(b) there exist two skew lines $\ell_1 = \{Q_0, Q_1, Q_2, Q_3\}$ and $\ell_2 = \{R_0, R_1, R_2, R_3\}$ and a plane δ containing ℓ_1 with $\ell_2 \cap \delta = R_0$ such that

$$F = (\delta \setminus Q_0) \cup \langle Q_1, R_1 \rangle \cup \langle Q_2, R_2 \rangle \cup \langle Q_3, R_3 \rangle,$$

and C_{100} has spectrum $(a_{19}, a_{28}, a_{31}, a_{34}) = (1, 3, 27, 90).$

Proof. See Theorem 5.10(2) of [2]. Each spectrum can be calculated by hand from the geometrical structure. \Box

Lemma 4.9. Let *F* be a $\{30 = 2\theta_2 + \theta_1, 9 = 2\theta_1 + \theta_0; 4, 3\}$ -minihyper corresponding to a $[91, 5, 60]_3$ code C_{91} . Then

(1) There exist two skew lines $\ell_1 = \{P_1, P_2, P_3, P_4\}$ and $\ell_2 = \{Q_1, Q_2, R, S\}$ such that $F = (\delta_1 \setminus Q_1) \cup (\delta_2 \setminus Q_2) \cup \langle P_1, R \rangle \cup \langle P_2, R \rangle \cup \langle P_3, S \rangle \cup \langle P_4, S \rangle$, where $\delta_1 = \langle \ell_1, Q_1 \rangle$, $\delta_2 = \langle \ell_1, Q_2 \rangle$. (2) The spectrum of C_{91} is $(a_{10}, a_{28}, a_{31}) = (1, 30, 90)$.

Proof. (1) follows from Theorem 5.13(1) of [2].

(2) F is contained in a solid, say Δ , and there are ten 1-planes and thirty 4-planes in Δ . Hence (2) follows.

Lemma 4.10 ([1]). (1) The spectrum of a $[26, 4, 17]_3$ code is $(a_0, a_8, a_9) = (1, 13, 26)$. (2) The spectrum of a $[31, 4, 20]_3$ code is (a) $(a_4, a_9, a_{10}, a_{11}) = (1, 9, 12, 18)$ or (b) $(a_7, a_8, a_{10}, a_{11}) = (2, 6, 11, 21)$.

As an application of Theorem 3.13, we prove the following.

Lemma 4.11. $A [90, 5, 59]_3$ code is extendable.

Proof. Let C is a $[90, 5, 59]_3$ code and let Δ be a γ_3 -solid, which gives a $[31, 4, 20]_3$ code by Lemma 4.5. Then Δ has no *j*-planes for $j \notin \{4, 7, 8, 9, 10, 11\}$ by Lemma 4.10(2), so we have

 $a_i = 0$ for all $i \notin \{9, 10, 18, 19, 24, 25, 26, 27, 28, 30, 31\}$

by Lemma 4.5 and the $n_3(4, d)$ table (see [6]). Now, it holds that $F_0 = \{i \text{-solids} \mid i \equiv 0 \pmod{3}\}$, $F_1 = \{26 \text{-solids}\}$. Suppose that \mathcal{C} is not extendable. Then the diversity (Φ_0, Φ_1) of \mathcal{C} satisfies

 $(\Phi_0, \Phi_1) \in \{(40, 27), (31, 45), (40, 36), (40, 45), (49, 36)\}$

by Theorem 2.7 of [11]. Let Δ_0 be a 26-solid in $\Sigma = PG(4,3)$ and let Q be the corresponding point of F_1 in Σ^* . Then there are at most 18 (2, 1)-lines through Q in Σ^* by Theorem 3.13(2). On the other hand, setting (i, t) = (26, 9) in Lemma 4.5, the equation (4.2) has the unique solution $(c_{30}, c_{31}) = (2, 1)$ corresponding to a (2, 1)-line through Q. Hence, by Lemma 4.10(1), there are at least 26 (2, 1)-lines through Q, a contradiction.

Now, we are ready to prove Theorem 4.4. Let C be a putative $[305, 6, 202]_3$ code and let π_0 be a γ_4 -hyperlane which gives a $[103, 5, 68]_3$ code by Lemma 4.5. Then π_0 has no *j*-solid for $j \notin \{25, 26, 31, 32, 34, 35\}$ by Lemma 4.6, so we have

$$a_i = 0$$
 for all $i \notin \{74, 80, 81, 89, 90, 91, 92, 98, 99, 100, 101, 102, 103\}$

by Lemma 4.5 and the $n_3(5, d)$ table (see [13]). For s = 0, 1, 2, it holds that

$$F_s = \{i \text{-hyperlanes} \mid i+1 \equiv s \pmod{3}\}.$$
(4.3)

Let π be an *i*-hyperlane of $\Sigma = PG(5,3)$. If i = 81, $C_1 \cap \pi$ gives a $[81, 5, 54]_3$ code by Lemma 4.5 and π has no solid contained in π_0 by Lemma 4.7(1), a contradiction. Hence $a_{81} = 0$. We obtain $a_{80} = 0$ by Lemma 4.7(2) similarly.

If i = 91, $C_1 \cap \pi$ gives a $[91, 5, 60]_3$ code by Lemma 4.5 and π has a 10-solid by Lemma 4.9. Setting (i, t) = (91, 10) in Lemma 4.5, the equation (4.2) has no solution, a contradiction. Hence $a_{91} = 0$. If i = 90, π corresponds to a $[90, 5, 59]_3$ code by Lemma 4.5 and π has a 9-solid or a 10-solid by Lemmas 4.9 and 4.11. Setting i = 90 and t = 9 or 10 in Lemma 4.5, the equation (4.2) has no solution. Thus $a_{90} = 0$.

Hence, from (4.1), we have

$$406a_{74} + 91a_{89} + 55a_{92} + 10a_{98} + 6a_{99} + 3a_{100} + a_{101} = 2182.$$

$$(4.4)$$

It follows from Lemma 4.1(1) that C is not extendable. Hence the diversity of C (Φ_0, Φ_1) is one of the following:

(121, 81), (94, 135), (121, 108), (112, 126), (130, 117), (121, 135), (148, 108).

Hence, if $r_{1,0}^{(1)} + r_{0,2}^{(1)} \ge 90$, then it holds that

$$r_{1,0}^{(1)} + r_{0,2}^{(1)} = 94 (4.5)$$

for a fixed point of $R \in F_2$ by Theorem 3.12, where $r_{i,j}^{(1)}$ denotes the number of (i, j)-lines through R in Σ^* .

If $i = 100, C_1 \cap \pi$ gives a $[100, 5, 66]_3$ code by Lemma 4.5 and $C_0 \cap \pi$ forms a minihyper of type (a) or (b) in Lemma 4.8. Let R_{π} be the point of F_2 in Σ^* corresponding to π . Setting i = 100 in Lemma 4.5, the equation (4.2) has the solutions as in Table 4.1, where 'line' stands for the corresponding line through R_{π} in Σ^* . For example, (4.2) has the unique solution $(c_{74}, c_{89}, c_{99}) = (1, 1, 1)$ when t = 19. Equivalently, by (4.3), a 19-solid in π corresponds to a (2, 1)-line through R_{π} in Σ^* . Now, (4.5) holds from Table 4.1 since the spectrum of a 100-hyperplane satisfies $\tau_{34} \geq 90$ by Lemma 4.8. If $C_0 \cap \pi$ forms a minihyper of type (a) in Lemma 4.8, we have $\tau_{34} = 92$. Hence there are at most two (1, 0)-lines through R_{π} in Σ^* which correspond to the solutions of (4.2) with $t \neq 34$. Let δ be the plane contained in $C_0 \cap \pi$. Since all of the solids in π through δ are 25-solids and since there are at most two (1, 0)-lines through R_{π} in Σ^* corresponding to the solution $(c_{74}, c_{103}) = (1, 2)$ in Table 4.1 for t = 25, δ corresponds to a (7, 3)-plane δ^* through R_{π} in Σ^* by Theorem 3.12. In δ^* , there are one (1, 0)-line and three (2, 1)-lines through R_{π} . Hence, estimating the left hand side of (4.4), we get

$$2182 \le 406 + 182 \cdot 3 + 101 + 55 + 20 \cdot 23 + 92 + 3 = 1663,$$

from the spectrum of $C_1 \cap \pi$ of type (a), a contradiction. If $C_0 \cap \pi$ forms a minihyper of type (b) in Lemma 4.8, we have $\tau_{34} = 90$. Hence there are at most four (1,0)-lines through R_{π} in Σ^* which correspond to the solutions of (4.2) with $t \neq 34$. Let δ be the plane given in (b) of Lemma 4.8. Since the solids in π through δ consist of one 19-solid and three 28-solids and since the solution in Table 4.1 for t = 19 corresponds to a (2, 1)-line, δ corresponds to a (7, 3)-plane δ^* through R_{π} in Σ^* by Theorem 3.12. Hence, estimating the left hand side of (4.4), we get

$$2182 \le 503 + 101 \cdot 2 + 97 + 55 \cdot 3 + 20 \cdot 24 + 90 + 3 = 1540,$$

from the spectrum of $C_1 \cap \pi$ of type (b), a contradiction. Hence $a_{100} = 0$.

Iu	Table 4.1. Solutions of (4.2) for $i = 100$									
t	c_{74}	c_{89}	c_{92}	C_{98}	c_{99}	c_{100}	c_{101}	c_{102}	c_{103}	line
19	1	1			1					(2, 1)
25	1								2	(1, 0)
		2						1		(2, 1)
		1	1		1					(2, 1)
28		1		1				1		(2,1)
		1			1		1			(2, 1)
		1				2				(1, 0)
			1	1	1					(2, 1)
31			1						2	(1, 0)
				2				1		(2, 1)
				1	1		1			(2, 1)
				1		2				(1, 0)
					2	1				(0, 2)
34							1		2	(1,0)
								2	1	(0,2)

Table 4.1. Solutions of (4.2) for i = 100

t	C_{74}	C_{89}	c_{92}	C_{98}	C99	c_{101}	C_{102}	c_{103}	line
25	1					1	1		(2,1)
		2			1				(2, 1)
26	1							2	(1, 0)
		2					1		(2, 1)
		1	1		1				(2, 1)
31		1						2	(1, 0)
			1			1	1		(2, 1)
_				2	1				(2, 1)
32			1					2	(1, 0)
				2			1		(2, 1)
				1	1	1			(2, 1)
34				1				2	(1, 0)
					1		1	1	(0, 2)
						2	1		(2, 1)
35						1		2	(1, 0)
_							2	1	(0, 2)

Table 4.2. Solutions of (4.2) for i = 103

Next, we prove the non-existence of a (13, 0)-plane in Σ^* which consists of collinear four points corresponding to 89-hyperplanes and nine points corresponding to 92-hyperplanes. Let δ^* be such a plane containing a (4, 0)-line l_0 consisting the points corresponding to 89-hyperplanes of Σ . Take a point P of l_0 which corresponds to a 89-hyperplane π_P and let l_1, l_2, l_3 be the other lines on δ^* through P. Setting i = 89 in Lemma 4.5, l_0 corresponds to the solution $c_{89} = 3$ for t = 17 in (4.2) and l_1, l_2, l_3 correspond to the solution $c_{92} = 3$ for t = 20 in (4.2). It follows that there exists a u-plane δ_0 in π_P such that there are one 17-solid and three 20-solids in π_P through δ_0 , so (20-u)3+17 = 89, giving a contradiction.

Finally, assume i = 103. Then, $C_1 \cap \pi$ gives a $[103, 5, 68]_3$ code by Lemma 4.5 and $C_0 \cap \pi$ forms a minihyper consisting of a plane δ , a line ℓ and a point P which are mutually disjoint by Lemma 4.6. Let R_{π} be the point of F_2 in Σ^* corresponding to π . Setting i = 103 in Lemma 4.5, the equation (4.2) has the solutions as in Table 4.2, where 'line' stands for the corresponding line through R_{π} in Σ^* . Since there are one 25-solid (corresponding to a (2, 1)-line) and three 26-solids (corresponding to a (2, 1)-line or a (1, 0)-line) through δ in π , δ corresponds to a (7, 3)-plane, say δ^* , through R_{π} by Theorem 3.12. Hence, there are one (1, 0)-line and three (2, 1)-lines through R_{π} in δ^* . Furthermore, the solids in π through ℓ are four 31-solids containing $\langle \ell, P \rangle$ and nine 32-solids, all of which correspond to (1, 0)-lines or (2, 1)-lines through R_{π} . If all of the lines are (1, 0)-lines, then ℓ corresponds to a (13, 0)-solid in Σ^* containing the (13, 0)-plane which consists of collinear four points corresponding to 89-hyperplanes and nine points corresponding to 92-hyperplanes, a contradiction. Hence, by Theorem 3.12, ℓ corresponds to a (22, 9)-solid containing four (1, 0)-lines and nine (2, 1)-lines through R_{π} . Recall that the spectrum of π is $(\tau_{25}, \tau_{26}, \tau_{31}, \tau_{32}, \tau_{34}, \tau_{35}) = (1, 3, 4, 9, 35, 69)$. Estimating the left hand

side of (4.4) we get

 $2182 \le 407 + 406 + 182 \cdot 2 + 91 \cdot 4 + 20 \cdot 9 + 10 \cdot 35 + 1 \cdot 69 = 2140,$

a contradiction. This completes the proof of Theorem 4.2.

References

- M. van Eupen, P. Lisoněk, Classification of some optimal ternary linear codes of small length, Des. Codes Cryptogr. 10 (1997) 63–84.
- [2] N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. **116** (1993) 229–268.
- [3] N. Hamada, A survey of recent work on characterization of minihypers in PG(t,q) and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. & Syst. Sci. **18** (1993) 161–191.
- [4] R. Hill, Optimal linear codes, in: C. Mitchell, ed., Cryptography and Coding II (Oxford Univ. Press, Oxford, 1992) 75–104.
- [5] R. Hill, E. Kolev, A survey of recent results on optimal linear codes, in: F.C. Holroyd et al., ed., Combinatorial Designs and their Applications (Chapman & Hall/CRC, Res. Notes Math. 403, 1999) 127–152.
- [6] R. Hill, D.E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr. 2 (1992) 137–157.
- [7] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.
- [8] J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford, 1998.
- [9] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Clarendon Press, Oxford, 1991.
- [10] A. Kohnert, (l, s)-extension of linear codes, Discrete Math., **309** (2009) 412-417.
- [11] T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr. 35 (2005) 175–190.
- [12] T. Maruta, Extendability of linear codes over \mathbb{F}_q , Proc. 11th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Pamporovo, Bulgaria, 2008, 203–209.
- [13] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.geocities.com/mars39.geo/griesmer.htm.
- [14] T. Maruta, K. Okamoto, Geometric conditions for the extendability of ternary linear codes, in: Ø. Ytrehus (Ed.), Coding and Cryptography, Lecture Notes in Computer Science **3969**, Springer-Verlag, 2006, pp. 85–99.

- [15] T. Maruta, K. Okamoto, Some improvements to the extendability of ternary linear codes, Finite Fields Appl. 13 (2007) 259–280.
- [16] K. Okamoto, Necessary and sufficient conditions for the extendability of ternary linear codes, preprint.
- [17] H.N. Ward, Divisibility of codes meeting the Griesmer bound, J. Combin. Theory Ser. A 83, no.1 (1998) 79–93.
- [18] Y. Yoshida, T. Maruta, On the (2, 1)-extendability of ternary linear codes, Proc. 11th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Pamporovo, Bulgaria, 2008, 305–311.