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Abstract

We give a bijection between certain colored partitions and the elements in the
quotient of an affine Weyl group modulo its Weyl group. By Bott’s formula these
colored partitions give rise to some partition identities. In certain types, these iden-
tities have previously appeared in the work of Bousquet-Melou-Eriksson, Eriksson-
Eriksson and Reiner. In other types the identities appear to be new. For type An,
the affine colored partitions form another family of combinatorial objects in bijec-
tion with (n+1)-core partitions and n-bounded partitions. Our main application is
to characterize the rationally smooth Schubert varieties in the affine Grassmanni-
ans in terms of affine partitions and a generalization of Young’s lattice which refines
weak order and is a subposet of Bruhat order. Several of the proofs are computer
assisted.

1 Introduction

Let W be a finite irreducible Weyl group associated to a simple connected compact Lie
group G, and let W̃ be its associated affine Weyl group. In analogy with the Grassman-
nian manifolds in classical type A, the quotient W̃/W is the indexing set for the Schubert

varieties in the affine Grassmannians LG. Let W̃ S be the minimal length coset represen-
tatives for W̃/W . Much of the geometry and topology for the affine Grassmannians can

be studied from the combinatorics of W̃ S and vice versa. For example, Bott [6] showed
that the Poincaré series for the cohomology ring for the affine Grassmannian is equal to
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the length generating function for W̃ S, and this series can be written in terms of the
exponents e1, e2, . . . , en for W as

PfW S(t) =
1

(1 − te1)(1 − te2) · · · (1 − ten)
. (1)

Bott’s formula suggests there is a natural bijection between elements in W̃ S and a
subset of partitions that preserves length. The goal of this paper is to give such a bijection
which has useful implications in terms of the geometry, topology and combinatorics of
affine Grassmannians and Bruhat order. We use Bott’s formula to prove one direction of
this bijection. The family of partitions in the image of this map is not the most obvious
one: partitions whose parts are all in the set of exponents. Instead, we map W̃ S to a family
of colored partitions we call affine partitions using a canonical factorization into segments.
The segments are determined in general by the minimal length coset representatives in
a corresponding finite Weyl group, hence there are only a finite number of them. In the
simplest cases, the segments are the elements in the W -orbit of the special generator s0

in W̃ S acting on the left. In other cases, the map works best if we use a smaller set of
segments and their images under an automorphism of the Dynkin diagram.

Using our bijection between W̃ S and affine partitions, there are three natural partial
orders on affine partitions. Bruhat order and the left weak order on W̃ S are inherited from
W̃ . Thus, the affine partitions also inherit these two poset structures via the bijection. In
addition we will introduce a generalization of Young’s lattice on affine partitions which
refines the weak order and is refined by the Bruhat order.

In type An, Misra and Miwa [23] showed that (n + 1)-core partitions are in bijection

with W̃ S. Björner-Brenti [3], Eriksson-Eriksson [12] and Lapointe-Morse [19] have shown

that the elements of W̃ S are in bijection not only with (n + 1)-core partitions, but also
with k-bounded partitions, and skew shapes with no long hooks. Each of these related1

partition bijections has useful properties in terms of the geometry of affine Grassmannians.
Affine partitions in type A give a new perspective on these well studied families.

From the point of view of affine partitions though, type A is harder than the other types
Bn, Cn, Dn, E6,7,8, G2, F4 because the weak order on segments is the most complicated.
Therefore, type A is covered last though the reader interested only in type A can skip
past the other type specific sections.

The segments and reduced factorizations have been used before in a wide variety
of other work [8, 9, 10, 12, 17, 18, 21, 27] in various types connecting affine partitions
with lecture hall partitions, Pieri type rules for the homology and cohomology of affine
Grassmannians, and hypergeometric identities. However, none of the previous work seems
to address the complete set of affine Weyl groups as we do in this article. More details
on previous work are given after the definitions in Section 3.

As an application of the theory of affine partitions and the generalized Young’s lat-
tice, we will give a characterization of rationally smooth Schubert varieties in the affine

1The Björner-Brenti partitions are related to the Lapointe-Morse partitions via conjugation of the
corresponding core partition; a process called k-conjugation in [17]. The Lapointe-Morse partitions are
the same as the Eriksson2 partitions but they are described differently.
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Grassmannians LG. The smooth and rationally smooth Schubert varieties in LG for all
simple connected Lie groups G have recently been characterized by the following theorem
which was proved using different techniques. The description given here for the rationally
smooth Schubert varieties complements our original description and relates these elements
to the affine partitions.

Theorem 1. [2] Let Xw be the Schubert variety in LG indexed by w ∈ W̃ S.

1. Xw is smooth if and only if Xw is a closed parabolic orbit.

2. Xw is rationally smooth if and only if one of the following conditions holds:

a) Xw is a closed parabolic orbit.

b) The set of all v ∈ W̃ S such that v ≤ w in Bruhat order is totally ordered.

c) W has type An and Xw is spiral (see Section 9 for definition).

d) W has type B3 and w = s3s2s0s3s2s1s3s2s0 using the labeling of the Coxeter
graph on Page 43.

By Theorem 1, we will say w is a cpo if Xw is a closed parabolic orbit if and only if
Xw is smooth. In terms of Bruhat order, the cpo’s can be identified as follows. Let S̃ be
a generating set for W̃ and let Iw = {s ∈ S̃ : s ≤ w}. Then w ∈ W̃ S is a cpo if and only
if sw ≤ w for all s ∈ Iw.

For our characterization of rational smoothness, we will rely on the following theorem
due to Carrell and Peterson which requires a bit more terminology. It is known that the
Poincaré polynomial of the Schubert variety Xw in LG is determined by

Pw(t) =
∑

tℓ(v)

where the sum is over all v in W̃ S such that v ≤ w in Bruhat order on W̃ . See [16] for
details. We say that a polynomial F (t) = f0 + f1t + f2t

2 + · · · + fkt
k is palindromic if

fi = fk−i for all 0 ≤ i ≤ k.

Theorem 2. [11] Let Xw be the Schubert variety in LG indexed by w ∈ W̃ S. Then Xw

is rationally smooth if and only if Pw(t) is palindromic.

In light of Theorem 2, we will say w ∈ W̃ S is palindromic if and only if Pw(t) is

palindromic if and only if Xw is rationally smooth. We will say w is a chain if {v ∈ W̃ S :
v ≤ w} is a totally ordered set.

The outline of the paper is as follows. In Section 2 we establish our basic notation
and concepts we hope are familiar to readers. In Section 3, the canonical factorization
into segments for elements in W̃ S is described for all Weyl groups which motivates the
definition of the affine partitions. We also state the main theorem giving the bijection
from W̃ S to affine partitions. The type dependent part of the proof of the main theorem
is postponed until Sections 5 through 9. In Section 4, we present a new characterization
of palindromic elements in terms of affine partitions and generalized Young’s lattice.
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After posting the original version of this manuscript on arXiv.org, we learned of the
work of Andrew Pruett which also gives canonical reduced expressions for elements in W̃ S

for the simply laced types and characterizes the palindromic elements [26].

2 Background

In this section we establish notation and terminology for Weyl groups, affine Weyl groups
and partitions. There are several excellent textbooks available which cover this mate-
rial more thoroughly including [4, 7, 15] for (affine) Weyl groups and [1, 22, 28, 29] for
partitions.

Let S = {s1, . . . , sn} be the simple generators for W and let s0 be the additional

generator for W̃ . Let D be the Dynkin diagram for W̃ as shown on Page 43. Then the
relations on the generators are determined by D

(sisj)
mij = 1

where mij = 2 if i, j are not connected in D and otherwise mij is the multiplicity of
the bond between i, j in D. A product of generators is reduced if no shorter product
determines the same element in W̃ .

Let ℓ(w) denote the length of w ∈ W̃ or the length of any reduced expression for w. The

Bruhat order on W̃ is defined by v ≤ w if given any reduced expression w = sa1
sa2

· · · sap

there exists a subexpression for v. Therefore, the cover relation in Bruhat order is defined
by

w covers v ⇐⇒ v = sa1
sa2

· · · ŝai
· · · sap

and ℓ(w) = ℓ(v) + 1.

A partition is a weakly decreasing sequence of positive integers of finite length. By
an abuse of terminology, we will also consider a partition to be a weakly decreasing
sequence of non-negative integers with a finite number of positive terms. A partition
λ = (λ1 ≥ λ2 ≥ λ3 ≥ . . .) is often depicted by a Ferrers diagram which is a left justified
set of squares with λ1 squares on the top row, λ2 squares on the second row, etc. For
example,

(7, 5, 5, 2) ∼=

The values λi are called the parts of the partition.
Young’s lattice on partitions is an important partial order determined by containment

of Ferrers diagrams [22]. In other words, µ ⊂ λ if µi ≤ λi for all i ≥ 0. For example,
(5, 5, 4) ⊂ (7, 5, 5, 2) in Young’s lattice. Young’s lattice is a ranked poset with rank
function determined by the size of the partition, denoted

|λ| =
∑

λi.
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Young’s lattice appears as the closure relation on Schubert varieties in the classical
Grassmannian varieties [14]. For the isotropic Grassmannians of types B, C, D, the con-
tainment relation on Schubert varieties is determined by the subposet of Young’s lattice
on strict partitions, i.e. partitions of the form (λ1 > λ2 > · · · > λf). This fact follows
easily from the signed permutation notation for the Weyl group of types B/C. Lascoux
[20] has shown that Young’s lattice restricted to (n + 1)-core partitions characterizes the
closure relation on Schubert varieties for affine Grassmannians in type A. See Section 9
for more details.

3 Canonical Factorizations and Affine Partitions

In this section, we will identify a canonical reduced factorization r(w) for each minimal

length coset representative w ∈ W̃ S. The factorizations will be in terms of segments
coming from quotients of parabolic subgroups of W̃ . We will use the fact about Coxeter
groups that for each w ∈ W̃ and each parabolic subgroup WI = 〈si | i ∈ I〉 there exists a
unique factorization of w such that w = u · v, ℓ(w) = ℓ(u) + ℓ(v), u is a minimal length
element in the coset uWI and v ∈ WI [4, Prop. 2.4.4]. We will use the notation u = uI(w)
and v = vI(w) in this unique factorization of w. Let W I denote the minimal length coset
representatives for W/WI .

Consider the Coxeter graph of an affine Weyl group W̃ as labeled on Page 43. The
special generator s0 is connected to either one or two elements among s1, . . . , sn. If s0 is
connected to s1, call W̃ a Type I Coxeter group; types A, C, E, F, G. If s0 is not connected
to s1, then there is an involution on the Coxeter graph for W̃ interchanging s0 and s1 and
fixing all other generators. Call these W̃ Type II Coxeter groups; types B, D.

Let W̃ be a Type I Coxeter group, then the parabolic subgroup generated by S =
{s1, s2, . . . , sn} is the finite Weyl group W . Let J ⊂ S be the subset of generators that
commute with s0; in particular s1 6∈ J using our labeling of the generators. Then since
W is finite, there are a finite number of minimal length coset representatives in W J . For
each j ≥ 0, if there are k elements in W J of length j, label these fragments by

F 1(j), . . . , F k(j).

Appending an s0 onto the right of each fragment, we obtain elements in W̃ S called
segments. In particular, for each fragment F i(j), fix a reduced expression F i(j) =
sa1

sa2
· · · saj

, and set

Σi(j + 1) = sa1
sa2

· · · saj
· s0 ∈ W̃ S.

Now, assume w ∈ W̃ S and w 6= id. Let w′ = ws0. Then the unique reduced factorization
w′ = uS(w′) · vS(w′) has the property that uS(w′) is in W̃ S and vS(w′) ∈ W . In fact,

vS(w′) ∈ W J since w ∈ W̃ S and all the generators in J commute with s0. Hence, vS(w′) =
F i(j) for some i, j so multiplying on the right by s0 we have w = uS(w′)Σi(j + 1). By
induction uS(w′) has a reduced factorization into a product of segments as well. Therefore,
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each w ∈ W̃ S has a canonical reduced factorization into a product of segments, denoted

r(w) = Σif (λf) · · ·Σ
i3(λ3)Σ

i2(λ2)Σ
i1(λ1), (2)

for some f ≥ 0 and ℓ(w) =
∑f

j=1 λj. Note, w ∈ W̃ S may have other reduced factorizations
into a product of segments, however, r(w) is unique in the following sense.

Lemma 3. For w ∈ W̃ S, the canonical reduced factorization r(w) = Σif (λf) · · ·
Σi2(λ2)Σ

i1(λ1) is the unique reduced factorization of w into a product of segments such
that every initial product

Σif (λf) · · ·Σ
id+1(λd+1)Σ

id(λd) 1 ≤ d ≤ f

is equal to r(u) for some u ∈ W̃ S. Furthermore, every consecutive partial product

Σid(λd)Σ
id−1(λd−1) · · ·Σ

ic+1(λc+1)Σ
ic(λc) 1 ≤ c ≤ d ≤ f

is equal to r(v) for some v ∈ W̃ S .

Proof. The first claim follows by induction from the uniqueness of the factorization w =
uS(w′) · vS(w′)s0. To prove the second claim, it is enough to assume c = 1 by induction.

Let v = Σid(λd) · · ·Σ
i1(λ1) as an element of W̃ . Then v ∈ W̃ S since w ∈ W̃ S, and

the product Σid(λd) · · ·Σ
i2(λ2)Σ

i1(λ1) must be a reduced factorization of v since r(w) is a
reduced factorization. Assume by induction on the number of segments in the product that
Σid(λd) · · ·Σ

i2(λ2) = r(u) for some u ∈ W̃ S. Then, by the uniqueness of the factorization
r(v), we must have Σid(λd) · · ·Σ

i1(λ1) = r(v).

Remark 4. Observe that the canonical factorization into segments used above extends
to any Coxeter system (W, S) with s0 replaced by any si ∈ S and J replaced by the set
{sj : j 6= i and sisj = sjsi}. However, for types B and D, Theorem 8 doesn’t hold
using this factorization. By using the involution interchanging s0 and s1 in Type II Weyl
groups, we can identify another canonical factorization with shorter segments and all the
nice partition properties as with Type I Weyl groups.

Assume W̃ is a Type II affine Weyl group with generators labeled as on Page 43. Let
J = {s2, s3, . . . , sn}. Note, the parabolic subgroups generated by S = {s1, s2, s3, . . . , sn}

and S ′ = {s0, s2, s3, . . . , sn} are isomorphic finite Weyl groups. Since W̃S′ is a finite Weyl

group, (W̃S′)J is finite. For each j ≥ 0, if there are k elements in (W̃S′)J of length j, label
these 0-segments by

Σ1
0(j), . . . , Σ

k
0(j) (3)

and fix a reduced expression for each one. Similarly, there are a finite number of elements
in W J = (W̃S)J . For each j ≥ 0, if there are k minimal length elements of W J of length
j, label these 1-segments by

Σ1
1(j), . . . , Σ

k
1(j). (4)
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We will assume each 0,1-pair of segments is labeled consistently so Σi
1(j) and Σi

0(j) have
reduced expressions that differ only in the rightmost generator.

By construction, every Σi
0(j) is a minimum length coset representative for W̃/W =

W̃/WS and every Σi
1(j) is a minimum length coset representative for W̃/WS′. Let w ∈

W̃ S, then the unique reduced factorization w = uS′(w) · vS′(w) has the property that

uS′(w) ∈ W̃ S′

and vS′(w) ∈ WS′. In fact, since w ∈ W̃ S, then vS′(w) ∈ (WS′)J so

vS′(w) = Σi
0(j) for some i, j. Similarly, if y ∈ W̃ S′

, then y has a unique factorization

y = uS(y) · vS(y) where uS(y) ∈ W̃ S and vS(y) = Σi
1(j) for some i, j. Therefore, by

induction each w ∈ W̃ S has a canonical reduced factorization into a product of alternating
0,1-segments, denoted

r(w) = · · ·Σc3
0 (λ3)Σ

c2
1 (λ2)Σ

c1
0 (λ1), (5)

which is unique in the sense of Lemma 3 but where all the consecutive partial products
correspond with minimum length coset representatives in W̃ S or W̃ S′

according to their
rightmost factor. Note, each r(w) is the product of a finite number of segments, say f
of them, and ℓ(w) =

∑f

j=1 λj. Note further that the subscripts in (5) are forced to start
with 0 on the right and then alternate between 0 and 1. Hence the subscripts can easily
be recovered if we omit them and simply use the same notation as in (2).

In both Type I and Type II affine Weyl groups, Lemma 5 below shows that if r(w)
factors into segments of lengths λ1, λ2, . . . , λf as in (2) or (5), then the sequence of numbers
(λ1, λ2, . . . ) is a partition of ℓ(w) i.e. λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0 and |λ| =

∑
λi = ℓ(w).

If the segments all have unique lengths, then we can recover w from the partition λ
by multiplying the corresponding segments in reverse order. However, when there are
multiple segments of the same length we will need to allow the parts of the partitions
to be “colored” to be able to recover w from the colored partitions. The colors of the
parts of a colored partition will be denoted by superscripts. For example, (51, 51, 42, 36, 12)
corresponds with the partition (5, 5, 4, 3, 1) and the exponents determine the coloring of
this partition. Colored partitions are only needed in types A, D, E, F . Some colored
partitions cannot occur in each type. The rules for determining the allowed colored
partitions come from identifying which products of pairs of segments are minimal length
coset representatives and which are not.

We will say that (ia, jb) is an allowed pair if

Σa(i) · Σb(j) ∈ W̃ S and ℓ(Σa(i) · Σb(j)) = i + j.

The following two lemmas describe how segments and allowed pairs relate to the left weak
order on W̃ S.

Lemma 5. If (ia, jb) is an allowed pair, then the following hold:

1. In Type I affine Weyl groups, we have Σa(i) ≤ Σb(j) ∈ W̃ S in the left weak order

on W̃ S.

2. In Type II affine Weyl groups, then Σa
0(i) ≤ Σb

0(j) and Σa
1(i) ≤ Σb

1(j) in left weak
order.
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Thus, in either case, if (ia, jb) is an allowed pair, then i ≤ j. Furthermore, if in addition
i = j then a = b.

Proof. The statements (1) and (2) in the lemma will follow by observation in each type
once we have identified the segments in later sections. Assuming W is Type I and
Σa(i) ≤ Σb(j) ∈ W̃ S in the left weak order then it follows that i ≤ j since ℓ(Σa(i)) = i
and ℓ(Σb(j)) = j. Furthermore, the only way two elements of the same length can be
comparable in the weak order is if they are equivalent, hence i = j implies Σa(i) = Σb(j)
which implies a = b. The analogous statements hold for the Type II case.

Remark 6. It would be nice to have a type-independent proof of Lemma 5 and to know
to what extent this statement holds for all Coxeter groups.

Lemma 7. If u ∈ W̃ S, u 6= id, and u < Σa(i) in left weak order, then u is a segment
itself, say u = Σc(h). Thus, if (ia, jb) is an allowed pair, then (hc, jb) is also an allowed
pair.

Note, (hc, ia) may or may not be an allowed pair if Σc(h) < Σa(i).

Proof. To prove the first part of the statement, note that the set of segments form a
lower order ideal in left weak order. Since (ia, jb) is an allowed pair and Σc(h) < Σa(i) in
left weak order, then Σc(h) ≤ Σb(j) in left weak order also by Lemma 5, interpreted with
subscripts in the Type II case. Furthermore, Σc(h)·Σb(j) is a right factor of Σa(i)·Σb(j) ∈

W̃ S so Σc(h) · Σb(j) is reduced and in W̃ S, thus, (hc, jb) is also an allowed pair.

Let P be the set of affine colored partitions: the set of all partitions λ = (λc1
1 , . . . , λ

cf

f )

such that each consecutive pair (λ
ci+1

i+1 , λci

i ) is an allowed pair for 1 ≤ i < f . Note, the
order of the consecutive pairs is backwards to the order they appear in λ. Observe that for
every w ∈ W̃ S, the pairwise consecutive segments in r(w) must correspond with allowed
pairs by Lemma 3. Therefore, we can define a map

π : W̃ S −→ P
w 7→ λ

(6)

if r(w) = Σcf (λf) · · ·Σ
c2(λ2)Σ

c1(λ1) and λ = (λc1
1 , λc2

2 , . . . , λ
cf

f ).

Theorem 8. Let W be any Weyl group and W̃ be the corresponding affine Weyl group.
Then π : W̃ S → P is a length preserving bijection.

The theorem above is closely related to theorems of Lam, Lapointe, Morse and Shi-
mozono [19, 17] which have been useful in the formulation of Pieri type rules for the
cohomology ring of the affine Grassmannian in type An. The same bijection in different
language has been used by Eriksson-Eriksson [12] and Reiner [27] to obtain partition iden-
tities related to these bijections in types B, C, D. See also Bousquet-Mélou and Eriksson
[8, 9, 10] to relate W̃ S with the lecture hall partitions. More recently Lam-Shimozono-
Schilling [18] and Littig-Mitchell [21] have used similar factorizations in various types. Our
work provides a more general context in which the affine colored partitions are related to
W̃ S and the affine Grassmannians.
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Proof. Observe that the map π is automatically injective since r(v) = r(w) implies v = w.
Furthermore, the inverse map sending

λ = (λc1
1 ≥ λc2

2 ≥ λc3
3 ≥ . . . ) 7→

{
. . .Σc3(λ3)Σ

c2(λ2)Σ
c1(λ1) Type I

. . .Σc3
0 (λ3)Σ

c2
1 (λ2)Σ

c1
0 (λ1) Type II.

determines a well defined expression π−1(λ) in W̃ . If π−1(λ) ∈ W̃ S and this expression is
reduced, then it must be r(π−1(λ)) by Lemma 3. Therefore, after identifying the segments
and allowed pairs in each type, the theorem will follow if we prove

For each k ≥ 0, the number of partitions of k in P is equinumerous to the
number of elements in W̃ S of length k.

This statement can be proved via a partition identity equating Bott’s formula (1) and the
rank generating function for P for all types except type A.

This verification occurs in Theorem 28 for type B, Theorem 41 for type C, and Theo-
rem 52 for type D. For type G2, this partition identity is easy to check by hand. For types
E6, E7, E8, F4, computer verification of the identity can be used as discussed in Section 8.

In type An for n ≥ 2, the generating function for allowed partitions is not as easy to
write down in one formula simultaneously for all n. Therefore, surjectivity is proved in
Theorem 64 using the (n + 1)-core partitions.

For emphasis, we state the following corollary of Theorem 8 which is a useful tool
for the applications. As opposed to multiplication of generators, the corollary says that
reduced multiplication of segments is a “local condition”.

Corollary 9. Any product of segments Σc1(j1)Σ
c2(j2) · · ·Σ

ck(jk) is equal to r(v) for some

v ∈ W̃ S if and only if for each 1 ≤ i < k the pair (jci

i , j
ci+1

i+1 ) is an allowed pair.

Given an affine partition in P, say a corner is P-removable if the partition obtained
by removing this corner in the Ferrers diagram leaves a partition that is still in P. The
set of P-removable corners for any partition will depend on the affine Weyl group type.

In types B, C, G2, we will show that the segments have unique lengths so P is a subset
of all partitions with no colors necessary. It is interesting to note the relationship between
Bruhat order on W̃ S and the induced order from Young’s lattice on P. The corollary
below shows that Bruhat order on W̃ S contains the covering relations in Young’s lattice
determined by P-removable corners.

Corollary 10. Let P be the set of affine partitions in types Bn, Cn or G2. If λ, µ ∈ P
and λ covers µ in Young’s lattice, then π−1(λ) covers π−1(µ) in the Bruhat order on W̃ S.

Proof. In types Bn, Cn, and G2, the segments form a chain in the left weak order, see Equa-
tions (8), (18), and (26). If λ, µ ∈ P and λ covers µ in Young’s lattice, then µ is obtained
by deleting one outside corner square from λ. Thus Σ(µg) · · ·Σ(µ2)Σ(µ1) is obtained from
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Σ(λf ) · · ·Σ(λ2)Σ(λ1) by striking out one generator at the beginning of a segment. This
expression will be a reduced expression for a minimal length coset representative precisely
when the corresponding partition satisfies the conditions to be in P by Corollary 9. Given
that µ ∈ P, then π−1(λ) = Σ(λf ) · · ·Σ(λ2)Σ(λ1) > Σ(µg) · · ·Σ(µ2)Σ(µ1) = π−1(µ) and

ℓ(π−1(λ)) = ℓ(π−1(µ)) + 1. So, π−1(λ) covers π−1(µ) in the Bruhat order on W̃ S.

For types A,D,E, and F , we define a generalization of Young’s lattice on colored
partitions as follows. First, a colored part jc covers another part (j − 1)d if Σc(j) covers

Σd(j − 1) in left weak order on W̃ . Second, a colored partition λ = (λc1
1 , λc2

2 , . . .) ∈ P
covers µ = (µd1

1 , µd2

2 , . . .) ∈ P if λ and µ agree in all but one part indexed by j, and λ
cj

j

covers µ
dj

j in the partial order on colored parts.

Corollary 11. If λ, µ ∈ P and λ covers µ in the generalized Young’s lattice, then π−1(λ)

covers π−1(µ) in the Bruhat order on W̃ S.

Remark 12. The converse to Corollary 11 does not hold. See Example 31.

Question. Is there an alternative partition ξ(w) to associate with each w ∈ W̃ S so that

v < w in Bruhat order on W̃ S if and only if ξ(v) ⊂ ξ(w) outside of type A? Recall, the
core partitions play this role in type A by a theorem of Lascoux [20].

4 Palindromic Elements

As a consequence of the bijection between W̃ S and affine partitions from Theorem 8,
the generalized Young’s lattice and Corollary 11, we can observe enough relations in
Bruhat order to identify all palindromic elements of W̃ S in terms of affine partitions. For
example, any affine partition with two or more P-removable corners cannot correspond
with a palindromic element since Bott’s formula starts 1 + t + · · · in all types. We recall,
the palindromic elements have been recently characterized in [2] via the coroot lattice
elements. In type An, there are two infinite families of palindromics, first studied by the
second author in [24]. This alternative approach has given us additional insight into the

combinatorial structure of W̃ S.

Theorem 13. Assume W is not of type An for n ≥ 2 or B3. Let w ∈ W̃ S and say
π(w) = λ. Then w is palindromic if and only if the interval [id, w] in Bruhat order on

W̃ S is isomorphic to the interval [∅, λ] in the generalized Young’s lattice and the interval
[∅, λ] is rank symmetric.

Remark 14. Say w ∈ W̃ S is Y B-nice if the interval [id, w] in Bruhat order on W̃ S

is isomorphic to the interval [∅, λ] in the generalized Young’s lattice. Say w is Y B-
palindromic if w is Y B−nice and the interval [∅, λ] is rank symmetric. So outside of type
B3 and An for n ≥ 2, Y B−palindromic and palindromic are equivalent. In type B3, there
is one palindromic element which is not Y B-nice namely w = s3s2s0s3s2s1s3s2s0. In type
An for n ≥ 2 the spiral elements which are not closed parabolic orbits are palindromic but
not Y B-nice. See Section 9.
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Typically the palindromic elements are indexed by one row shapes and staircase
shapes. These elements correspond with chains and closed parabolic orbits. The proof of
Theorem 13 for the infinite families will be stated and proved more explicitly in Theo-
rems 35, 46 and 57. After stating some general tools used for the palindromy proofs, we
prove Theorem 13 for the exceptional types below to demonstrate the technique of using
affine partitions.

Define the branching number bW to be the smallest rank in the Bruhat order on W̃ S

with more than 1 element. By Bott’s formula, bW ≥ 2. It will be shown that if w ∈ W̃ S

is not palindromic, then symmetry of the Poincaré polynomial Pw(t) always fails in the
first bW − 1 coefficients for the exceptional types. For some of the other types, we must
look further down in Bruhat order.

Let mW be the maximum number of coefficients one must check for all w ∈ W̃ S to
insure that Pw(t) is not palindromic if w is not palindromic. Hence, mW is defined to be

the minimum number so that w ∈ W̃ S is palindromic if and only if Pw(t) =
∑ℓ(w)

i=0 ait
i

and ai = aℓ(w)−i for all 1 ≤ i ≤ mW . We will show that mW is always bounded by n but
can be significantly smaller.

Theorem 15. The number mW for W̃ S is determined as follows:

type mW

A1, n = 1 0
An, n ≥ 2 2
Bn, n = 3 2
Bn, n ≥ 4 4
Cn, n ≥ 2 2
Dn, n ≥ 4 n − 2
E6 3
E7 4
E8 6
F4 4
G2 4

(7)

This theorem will be proved after introducing the segments in each type.

Remark 16. Computationally, the fact that mW is constant in most cases is very useful.
This means that an efficient algorithm exists to verify that an element is not palindromic
which does not require one to build up the entire Bruhat interval below an element w ∈ W̃ S

(which takes an exponential amount of time in terms of the length of the element). For
example, in type F4 it suffices to choose a single reduced expression for w and consider
subsequences with at most 4 generators removed. This leads to an O(ℓ(w)4) algorithm.

Remark 17. The number mW bounds the degree of the first nontrivial coefficient in the
Kazhdan-Lusztig polynomial Pid,w(t) for w ∈ W̃ S by a theorem of Björner and Ekedahl
[5].
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We identify the elements of W̃ S with their corresponding affine partition by Theorem 8.
Therefore, the Bruhat order and the left weak order extends to affine partitions in addition
to the generalized Young’s lattice. Furthermore, we will abuse notation and denote a
colored partition (λc1

1 , . . . , λck

k ) simply by λ or (λ1, . . . , λk) when the particular colors are
not essential to the argument.

Given an affine partition λ, we will say λ is a thin partition if the interval [∅, λ] is rank
symmetric in the first and last bW ranks in the generalized Young’s lattice. Note, thin is
a necessary condition for palindromy by Corollary 11. Furthermore, the following lemma
shows that any affine partition whose smallest k parts form a partition that is not thin
cannot itself be thin.

Lemma 18. If a colored partition (λc1
1 , . . . , λck

k ) ∈ P is thin then (λc2
2 , . . . , λck

k ) ∈ P is
thin.

Proof. Suppose λ′ = (λc2
2 , . . . , λck

k ) is not thin. Then there exist at least two affine colored
partitions µ, ν below λ′ in generalized Young’s lattice such that |µ| = |ν| > |λ′| − bW .
By definition of generalized Young’s lattice we must have µ1, ν1 ≤ λc2

2 in left weak order.
Therefore, by Lemma 5, both (µ1, λ

c1
1 ) and (ν1, λ

c1
1 ) must be allowed pairs. Therefore,

concatenating λc1
1 on the front of µ, ν gives two partitions µ′ = (λc1

1 , µ) and ν ′ = (λc1
1 , ν)

in P such that µ′, ν ′ ≤ λ in generalized Young’s lattice and |µ′| = |ν ′| > |λ| − bW ,
contradicting the fact that λ is thin. Hence, λ′ must also be thin.

Observe that λ may be thin and still cover two or more elements in Bruhat order;
exactly one of the covering relations occurs in the generalized Young’s lattice in this case.
(See Example 31.) Using similar logic to the proof of Lemma 18, we get the following
statement. In Bruhat order, if a colored partition λ = (λ1, . . . , λk) (suppressing the colors)
covers two partitions µ, ν both with largest part at most λ1 in left weak order, then any
affine partition of the form (γ1, . . . , γj, λ1, . . . , λk) = γ.λ also covers two partitions γ.µ
and γ.ν. Therefore, define an extra thin partition λ to be an affine partition that is thin
and such that there exists at most one affine partition µ covered by λ in Bruhat order
such that the largest part of µ is less than or equal to the largest part of λ in left weak
order. Note, extra thin is a necessary condition for palindromy. In fact, this gives an
analog of Lemma 18 for extra thin partitions.

Lemma 19. If a colored partition (λc1
1 , . . . , λck

k ) ∈ P is extra thin then the colored partition
(λc2

2 , . . . , λck

k ) ∈ P is extra thin.

Now we restrict our attention to the exceptional types. Determining the palindromic
elements in W̃ S for the exceptional types follows easily from the affine partitions, the
generalized Young’s lattice and Lemma 20. For each type there are relatively few palin-
dromics: 8 in G2, 9 in F4, and 11 in E6,7,8. In types G2 and F4 the palindromics are
precisely the chains : elements whose principal lower order ideal is a chain in Bruhat or-
der so Pw(t) = 1 + t + · · · + tℓ(w). In each of types E6,7,8, in addition to the chains there
is one palindromic whose Poincaré polynomial is similar to the longest single row in type
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D. Plus in types E6,7 there are 2 additional Poincaré polynomials that occur. In E6, two
elements have the Poincaré polynomial

(t10 + t9 + t8 + t6 + t5 + t4 + t2 + t + 1)(t6 + t3 + 1).

In E7, one element has the Poincaré polynomial

(t21 + t16 + t14 + t12 + t9 + t7 + t5 + 1)(t6 + t5 + t4 + t3 + t2 + t + 1)

Lemma 20. For all exceptional types, every affine partition with 7 or more parts is not
palindromic. In fact, mW ≤ (bW − 1).

Proof. Recall that by Lemma 5, every non-empty affine partition covers at least one
element in the generalized Young’s lattice by removing a corner of the smallest part. So
by Corollary 11, given an affine partition µ with 7 or more parts, we only need to show
there exists one element ν below µ in Bruhat order which is not comparable to µ in
generalized Young’s lattice and |µ| − |ν| < bW .

By definition, any affine partition which is not extra thin covers two or more elements
in Bruhat order so we can restrict our attention to the extra thin elements. The following
observations can be made in the exceptional types with computer assistance:

1. The only extra thin affine partitions with 7 parts in any exceptional type occur in
E6, E7 and G2.

2. In E6, E7 and G2, every extra thin affine partition with 7 parts has largest 4 parts
(jc, jc, jc, jc) (repeats at least 4 times). Furthermore, if kd is any part such that
(jc, kd) is any allowed pair, then either jc = kd or the affine partition (kd, jc) has
two P-removable corners.

3. The repeated parts jc occurring in every extra thin affine partition with 7 parts
described in Part (2) have the property that below (jc, jc, jc, jc) in Bruhat order
there exists some affine partition λ whose parts are all weakly larger than jc in the
left weak order and |λ| > 4j − bW .

Using these observations we complete the proof. In types E8 and F4 every affine
partition with 7 or more parts is not extra thin by the first observation and Lemma 19.
So, assume the type is E6, E7 or G2. By the second observation, the only colored part
which is allowed to extend an extra thin affine partition with 7 or more parts to an-
other extra thin affine partition is another copy of its largest part. Therefore, every
extra thin affine partition µ with at least 7 parts has its largest part repeated at least 4
times. Say µ = (jc, jc, jc, jc, µc5

5 , . . . , µck

k ) and say λ = (λd1

1 , . . . , λ
dp
p ) is the affine par-

tition below (jc, jc, jc, jc) in Bruhat order appearing in the third observation. Then

ν = (λd1

1 , . . . , λ
dp
p , µc5

5 , . . . , µck

k ) must be an affine partition by Lemma 5 and the defi-
nition of P. Furthermore, ν is not in the interval below µ in the generalized Young’s
lattice but ν < µ in Bruhat order and |ν| > |µ| − bW . Hence µ fails to be palindromic by
the (bW − 1)th coefficient.
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Remark 21. Looking closely at the data, one sees that in fact every affine partition in
E7, E8 and F4 with 7 or more parts covers at least two elements in Bruhat order. In E6

and G2, there exist an infinite number of extra thin non-palindromic elements which cover
a single element in Bruhat order and only fail to be palindromic on the second and fourth
coefficient respectively. In type E6 there are two segments of length 12 which can repeat
an arbitrary number of times to get such elements. In type G2, there is a unique segment
of length 5, and the affine partition (5, 5, . . . , 5) with k ≥ 2 parts has this property.

Theorem 22. In each exceptional type we have:

1. No affine partition λ ∈ P with 4 or more parts corresponds with a palindromic
w ∈ W̃ S. In fact, the unique palindromic element with 3 parts occurs in E7.

2. A finite computer search over all extra thin affine partitions with at most 3 parts
suffices to identify all palindromic elements in P, or equivalently in W̃ S.

3. We have mW = bW − 1.

Proof. Note, every element which is not extra thin fails to be palindromic by depth bW −1
by definition. Therefore, by Lemma 20, we only needed to verify these statements for extra
thin affine partitions with at most 6 parts which is efficient to check by computer. In each
case, it was verified that every non-palindromic fails to be palindromic by depth bW − 1,
and furthermore, there is at least one non-palindromic element that is palindromic up to
the (bW − 2)nd coefficient.

Remark 23. We note that the proof of Theorem 13 in the exceptional types now follows
from Theorem 22 simply by verifying that for every palindromic element the corresponding
Bruhat interval is isomorphic to the interval in generalized Young’s lattice.

5 Type B

In this section we prove Theorem 8 and Theorem 13 for type Bn, n ≥ 3. We begin by
identifying a family of partitions P(Bn) with a length preserving bijection to W̃ S. Then,
we identify the segments in type B and the allowed pairs corresponding to these segments.
It follows immediately from the list of allowed pairs that P(Bn) are the affine partitions.
Finally we use the explicit description of the segments in this type to identify the affine
partitions corresponding with palindromic elements in W̃ S.

Let P(Bn) be the set of partitions whose parts are bounded by 2n−1 and all the parts
of length strictly less than n are strictly decreasing. Note, all parts in these partitions
have the same color. Therefore, the generating function for such partitions is

GBn
(x) =

(1 + x)(1 + x2) · · · (1 + xn−1)

(1 − xn)(1 − xn+1) · · · (1 − x2n−1)
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Lemma 24. We have the following generating function identity with Bott’s formula from
(1):

GBn
(x) =

1

(1 − x)(1 − x3)(1 − x5) · · · (1 − x2n−1)
.

Proof. Apply induction on n.

Consider the Coxeter graph of B̃n on Page 43. In the language of Section 3, B̃n is a
Type II Coxeter graph. Following (3) and (4), for 1 ≤ j ≤ 2n − 1, set

Σ1(j) =

{
sj . . . s3s2s1 1 ≤ j ≤ n

s2n−j · · · sn−1snsn−1 · · · s4s3s2s1 n < j ≤ 2n − 1.
(8)

Similarly, replacing all the s1’s in Σ1(j) with s0’s, set

Σ0(j) =





s0 j = 1

sj . . . s3s2s0 1 < j ≤ n

s2n−j . . . sn−1snsn−1 . . . s3s2s0 n < j ≤ 2n − 2

s0s2s3 . . . sn−1snsn−1 . . . s3s2s0 j = 2n − 1.

(9)

Using the signed permutation description of the finite Weyl group of type Bn, one can
verify that these segments are all the minimal length coset representatives for W/WJ and

W̃S′/WJ respectively. See [4, Chapter 8] for a detailed description of this notation.

Lemma 25. We have the following commutation rules for si ·Σ1(j) for all 1 ≤ i ≤ n and
1 ≤ j ≤ 2n − 1:

si · Σ1(j) =





Σ1(j) · si 1 ≤ j < i − 1 or 2n − i < j ≤ 2n − 1

Σ1(j + 1) j = i − 1 or j = 2n − i − 1

Σ1(j − 1) j = i or j = 2n − i

Σ1(j) · si+1 1 ≤ i < j < 2n − i − 1,

(10)

and for i = 0 and j = 1 we have

s0Σ1(1) = s0s1 = s1s0 = Σ1(1)s0.

Similar commutation rules for siΣ0(j) for all 0 ≤ i ≤ n and 1 ≤ j ≤ 2n − 1 are obtained
from (10) by interchanging the roles of s1 and s0.

Proof. These follow directly from the commutation relations among the generators deter-
mined by the Dynkin diagram.

Lemma 26. We have the following product rules for segments in type Bn:

1. For 1 ≤ j < n,
Σ1(j)Σ0(j) = Σ1(j − 1)Σ0(j) · s1.
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2. For n ≤ j ≤ 2n − 1,
Σ1(j + 1)Σ0(j) = Σ1(j)Σ0(j) · s1.

Proof. If j = 1, then Statement 1 holds since s0 and s1 commute. Assume 2 ≤ j < n. By
Lemma 25, we have Σ1(j)si = si−1Σ1(j) for all 2 ≤ i ≤ j so

Σ1(j) · Σ0(j) =Σ1(j) · sjsj−1 · · · s2s0 (11)

=sj−1 · · · s2s1 · Σ1(j) · s0 (12)

=Σ1(j − 1) · sjsj−1 · · · s2s1 · s0 (13)

=Σ1(j − 1) · sjsj−1 · · · s2 · s0s1 (14)

=Σ1(j − 1) · Σ0(j) · s1. (15)

Statement 2 holds by a similar argument.

Corollary 27. We have the following product rules for segments corresponding with all
pairs (j, k) 6∈ P(Bn) with 1 ≤ j, k ≤ 2n − 1:

Σ1(k) · Σ0(j) =

{
Σ1(j − 1) · Σ0(k) · s1 j ≤ k < 2n − j

Σ1(j) · Σ0(k − 1) · s1 n ≤ j < k or j < 2n − j ≤ k.

Proof. This follows from Lemma 25 and Lemma 26.

Recall, P is the set of allowed partitions for W̃ S and π : W̃ S −→ P was defined in (6).

Theorem 28. In type Bn, we have P = P(Bn) and π : W̃ S −→ P is a length preserving
bijection.

Proof. We have already shown in the proof of Theorem 8 that π is a length preserving
injection. Since there is a length preserving bijection from W̃ S to P(Bn) by Lemma 24,
we only need to show that P ⊂ P(Bn) to prove the theorem. Therefore, we only need to
show that the segments have unique lengths between 1 and 2n − 1 and that all allowed
pairs in type Bn are strictly increasing if the larger part has length less than n. This
follows directly from the definition of the segments and Corollary 27.

The counting argument in the proof above determines the complete set of allowed
pairs.

Corollary 29. The product Σ1(j) · Σ0(k) ∈ W̃ S and ℓ(Σ1(j) · Σ0(k)) = j + k if and only
if 1 ≤ j < k ≤ 2n − 1 or n ≤ j = k ≤ 2n − 1.

Example 30. If n = 4, the partition (7, 5, 5, 3, 1) ∈ P(Bn) corresponds with s0 · s3s2s1 ·
s3s4s3s2s0 · s3s4s3s2s1 · s0s2s3s4s3s2s0. Pictorially, we have

0 2 3 4 3 2 0
1 2 3 4 3
0 2 3 4 3
1 2 3
0
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where the corresponding reduced expression is read along the rows from right to left,
bottom to top. Note, the 0’s and 1’s alternate in the first column starting with a 0 in the
top row since Bn is a Type II Coxeter group. The other columns contain their column
number up to column n, for n < j < 2n− 1 column j contains 2n− j, and column 2n− 1
again alternates from 0 to 1 starting from the top.

Recall from Corollary 10, that if both λ, µ ∈ P(Bn) and λ covers µ in Young’s lattice

then π−1(λ) covers π−1(µ) in Bruhat order on W̃ S. However, below we give an example
where the converse does not hold.

Example 31. If n = 4, the partition (5, 2, 1) ∈ P(Bn) corresponds with s0 ·s2s1 ·s3s4s3s2s0

which covers s0s2s3s4s3s2s0 = Σ0(7) by deleting s1. Pictorially,

(5, 2, 1) ∼= 0 2 3 4 3
1 2
0

covers (7) ∼= 0 2 3 4 3 2 0 .

Therefore, in Bruhat order (5, 2, 1) covers (7) even though (5, 2, 1) is not comparable to
(7) in Young’s lattice.

With more work, we can obtain all of the elements below w ∈ W̃ S in Bruhat order
by looking at r(w), knocking out one generator at a time, and using the commutation
relations in Lemma 25 and Corollary 27 to identify a canonical segmented expression for
the new element. In fact, in practice it is easy to see that knocking out most elements will
lead to products for non-minimal length coset representatives or non-reduced expressions.

Corollary 32. If v < w in Bruhat order on W̃ S and ℓ(w) = ℓ(v) + 1, then one of the
following must hold:

1. The partition π(v) is obtained from π(w) by removing a single outer corner square
so that the remaining shape is in P.

2. The partition π(v) is obtained from π(w) by removing a single inside square s in
row i of the Ferrers diagram so that the generators corresponding to the squares to
the right of square s all commute up to join onto the end of an existing row above
row i, and furthermore, the resulting product of segments can be put into canonical
form using the commutation relations in Lemma 25 and Lemma 26 in such a way
that they correspond with a partition in P with one fewer square.

Lemma 33. If λ ∈ P(Bn) and λ1 < n, then the interval in Bruhat order between id and
π−1(λ) is isomorphic as posets to the interval from the empty partition to λ in Young’s
lattice on strict partitions.

The lemma above is “well-known” in the following sense. If λ1 < n, then sn does
not appear in any reduced expression for π−1(λ). Thus, the interval from id and π−1(λ)
in Bruhat order is isomorphic to an interval in Grassmannian quotient of the finite Weyl
group of type Dn−1 modulo I = {s1, . . . , sn−1}. Using Proctor’s criterion for Bruhat order
in Dn−1 [25] or [4, Theorem 8.2.8], the lemma now follows. It can also be proven directly
using the type B segments.
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Lemma 34. If λ ∈ P(Bn) is a single row (λ = (j)), then the interval in Bruhat order
between id and π−1(λ) is isomorphic as posets to the interval from the empty partition to
λ in Young’s lattice. In particular, this interval is a totally ordered chain.

Proof. If λ is a single row of length j, then r(π−1(λ)) = Σ0(j). Observe directly from
the relations on the generators that deleting any but the leftmost generator from Σ0(j)
either leaves a non-reduced expression or a non-minimal length coset representative by
definition.

Consider the Bruhat order on W̃ S expressed in terms of partitions in P(Bn) for n ≥ 3.
By Lemma 33, the smallest 4 ranks of the Bruhat Hasse diagram are determined by
Young’s lattice on strict partitions:

\ /

|

|
∅

(16)

Theorem 35. Let W̃ be the affine Weyl group of type Bn and let w ∈ W̃ S. For n ≥ 4, w
is palindromic if and only if π(w) is a one row shape (j) with 0 ≤ j < 2n or a staircase
shape (k, k − 1, k − 2, . . . , 1) for 1 < k < n. For n = 3, w is palindromic if and only if
π(w) is a one row shape or the staircase shape (2, 1) or the square (3, 3, 3).

Remark 36. The number of palindromic elements in W̃ S for type Bn is therefore 8 for
n = 3 and 3n − 2 for n ≥ 4. The one row shapes with n ≤ j ≤ 2n − 2 and the (3, 3, 3)
shape in n = 3 correspond with rationally smooth Schubert varieties which are not actually
smooth. All others are closed parabolic orbits, hence they are smooth by Theorem 1.

Proof. By definition, w is palindromic if and only if its Poincaré polynomial Pw(t) =∑
v≤w tℓ(v) is palindromic. By Lemma 34, we know that Pw(t) = 1 + t + · · ·+ tj if π(w) is

a one row shape, which is clearly palindromic. By Lemma 33, if π(w) is a staircase shape
(k, k − 1, k − 2, . . . , 1) for 1 < k < n and n ≥ 3, then

Pw(t) =
k∏

j=1

(1 + tj)

which is easily seen to be palindromic by induction. In the case n = 3, one can verify
that for w = s3s2s0 · s3s2s1 · s3s2s0 corresponding with π(w) = (3, 3, 3), the Poincaré
polynomial for Xw is

Pw(t) =t9 + t8 + t7 + 2t6 + 2t5 + 2t4 + 2t3 + t2 + t1 + 1

=(1 + t)(1 + t2)(1 + t3 + t6) + t4 + t5
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which is palindromic.2

Conversely, we will show that if π(w) is not a one row shape or a staircase shape or
(3, 3, 3) in the case n = 3, then for some 0 < j < ℓ(w) one pair of the coefficients in

Pw(t) =

ℓ(w)∑

i=0

ait
i

has the property that aj 6= aℓ(w)−j . We can calculate all aj for 0 < j ≤ n by computing
the number of strict partitions that fit inside the Ferrers diagram for π(w) since there
are no repeated parts in any partition in P(Bn) of size n or less and P(Bn) contains all
such strict partitions. Therefore, in order to show Pw(t) is not palindromic, it suffices to
show there exists some 1 < j ≤ n such that aℓ(w)−j is bigger than the number of strict
partitions below π(w) of size j.

Assume λ = π(w) has at least two rows. From (16), we know the branching number
bW = 2 so a1 = a2 = 1. If λ has two or more P-removable outside corners, then aℓ(w)−1 ≥ 2
so w is not palindromic. Similarly, if λ has one P-removable corner and removing it leaves
a shape with two P-removable corners, then aℓ(w)−2 ≥ 1 so w is not palindromic. One of
these two cases occurs for all partitions λ ∈ P(Bn) with at least two rows and λ1 > n
or if there exists an i such that λi − λi+1 ≥ 2. Therefore, it remains to show that if
λ = (n, n, . . . , n) = (nk) or λ = (nk, n − 1, . . . , 1) for some k > 1 then Pw(t) is not
palindromic excluding the case λ = (3, 3, 3) and n = 3.

If λ = (nk) then the interval below λ in Young’s lattice restricted to P(Bn) is self dual,
and hence rank symmetric, since we can pair any γ ⊂ λ with its complement inside the
rectangle of size n × k. Therefore, for each k > 1, in order to show w is not palindromic,
we simply need to find a single partition µ ∈ P(Bn) such that π−1(µ) < w in Bruhat
order, µ 6⊂ λ in Young’s lattice, and ℓ(µ) ≥ ℓ(w) − n.

Assume first that 1 < k < n. Let i = n − k. Then, w > π−1(nk−1, n − 1) and
deleting the generator in column i on row k in the reduced expression corresponding
with (nk−1, n− 1) gives an expression where the leftmost si+1 commutes right past k − 2
segments of length n, increasing its index as it commutes past each segment, to become
an si+1+k−2 = sn−1 which glues onto the rightmost Σ0(n). Similarly, the leftmost si+2

commutes right past k−3 segments and glues onto the rightmost Σ1(n) to become Σ1(n+
1), etc for the left most si+3, . . . sn−1. The remaining expression corresponds with the
partition µ = ((n + 1)k−1, n − k − 1) 6⊂ (nk), but v = π−1(µ) < w in Bruhat order
and ℓ(v) = ℓ(w) − 2 so w is not palindromic. For example, if n = 6, k = 4, then if
w = π−1(6, 6, 6, 6), we have µ = (7, 7, 7, 1) and v = π−1(µ) is obtained from π−1(6, 6, 6, 5)
by deleting one more generator and applying commutation relations:

λ = 0 2 3 4 5 6
1 2 3 4 5 6
0 2 3 4 5 6
1 2 3 4 5 6

> 0 2 3 4 5 6
1 2 3 4 5 6
0 2 3 4 5 6
1 3 4 5

= 0 2 3 4 5 6 5
1 2 3 4 5 6 5
0 2 3 4 5 6 5
1

= µ

2It is interesting to observe that the interval below w = π−1(3, 3, 3) contains all the elements cor-
responding with the strict partitions contained in (3, 3, 3) plus the two additional elements π−1(5) and
π−1(4) in Bruhat order which contribute symmetrically to Pw(t).
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Assume next that λ = (nn), we claim that µ = ((n + 2)n−2) is a partition in P(Bn)
which is not contained in λ such that π−1(µ) < w in Bruhat order and ℓ(π−1(µ)) =
ℓ(w)−4. For n ≥ 4, this implies a4 < aℓ(w)−4, so w is not palindromic. To prove the claim,
observe that by Lemma 33, w > π−1(nn−2, n−1, n−2). Let v′ be the element obtained by
deleting the generator corresponding to row n−1 and column 1 in π−1(nn−2, n−1, n−2).
Assume n is even for the sake of notation (the case n odd is the same except for a 0,1
switch). Then, by definition

v′ = sn−2 · · · s2s1 · sn−1 · · · s3s2 · π
−1(nn−2).

Note that by Lemma 25, s2 ·π
−1(nn−2) = π−1(n+1, nn−3) since the index on the generator

s2 increases by one each time it commutes with a Σ0(n) or Σ1(n), after commuting with
n−3 segments s2 becomes sn−1 and sn−1 ·Σ0(n) = Σ0(n+1). After moving the s2, the last
s1 commutes right as far as possible and becomes an sn−2 which glues onto the rightmost
segment. Continuing in the same way we can commute all the generators remaining in
the expression for v′ above in the last two rows of (nn) up to glue onto rows 1, . . . , n − 2
adding two additional generators to each row, so π−1(µ) = v < w.

Similarly, if π(w) is any partition in P(Bn) with n ≥ 4 of the form = (nk, λk+1, . . . , λm)
with k > n, then r(w) has a right factor of π−1(nn) so as above w is bigger than v =
π−1((n + 2)n−2, nk−n, λk+1, . . . , λm) and ℓ(v) = ℓ(w) − 4, so w is not palindromic.

If n = 3, we claim any affine partition (3k, λk+1, . . . , λm) is not palindromic for k > 3.
To see this note that (35) covers (4, 4, 3, 3), so (3k, λk+1, . . . , λm) covers at least 2 elements
in Bruhat order, hence is not palindromic. For k > 5, one may extend this observation by
using an argument similar to the proof of Lemma 20. For k = 4, it is easy to verify the
claim on the 4 possible affine partitions. For example, (34) covers (3, 3, 3, 2) and (4, 3, 3, 1)
chopping out the 3 on the 3rd row. Similarly, (34, 2) covers (4, 3, 3, 3) and (4, 4, 3, 2).

Finally, we need to address the case λ = (nk, n − 1, n − 2, . . . , 2, 1) for 1 ≤ k < n and

n ≥ 4. We claim w covers two elements of length ℓ(w) − 1 in W̃ S. The first element
is obtained by deleting the last row of λ. The second element, indexed by the partition
((n + 1)k−1, n, n − 1, . . . , k̂, . . . , 2, 1), is obtained from λ by deleting the corner square in
row n column k to obtain the expression (suppressing the 0,1 subscripts so we don’t need
to consider the parity of n):

Σ(1)Σ(2) · · ·Σ(k − 1)Σ(k − 1) · π−1(nk, n − 1, n − 2, . . . , k + 1)

Now, by Lemma 26, Σ1(k − 1)Σ0(k − 1) = Σ1(k − 2)Σ0(k − 1) · s1. Moving the s1 on the
right up past n− 2 rows it becomes sn−1 by Lemma 25 which glues onto row 1 to become
a Σ0(n + 1). Swapping s1 with s0 results in the same partition shapes. After rectifying
the two segments of length k − 1 there are two segments of length k − 2 which rectify by
adding an additional generator to row 2, etc. Applying the same technique repeatedly we
can rectify the whole expression to obtain an equivalent reduced expression corresponding
to the shape obtained from λ by removing the corner square from each row from n to row
n + k − 1 and adding one square to rows 1 through k − 1.

Recall the definition of mW from Section 4.

Corollary 37. For W of type Bn, we have mW = 4 for n ≥ 4 and mW = 2 for n = 3.
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6 Type C

Let P(Cn) be the set of partitions whose parts are bounded by 2n and the parts of length
less than or equal to n are strictly decreasing. The generating function for such partitions
is

GCn
(x) =

(1 + x)(1 + x2) · · · (1 + xn)

(1 − xn+1)(1 − xn+2) · · · (1 − x2n)

Lemma 38. We have the following generating function identity with Bott’s formula from
(1):

GCn
(x) =

1

(1 − x)(1 − x3)(1 − x5) · · · (1 − x2n−1)
.

Proof. Apply induction on n.

The Dynkin diagram of C̃n with the extra generator labeled s0 is adjacent to s1 so
W̃ S will have Type I segments and fragments as described in Section 3. The parabolic
subgroup generated by S = {s1, s2, s3 . . . , sn} corresponds with the finite Weyl group of
type Cn. Let J = {s2, . . . , sn}. Then the minimal length coset representatives for W/WJ

are the fragments
id

si · · · s3s2s1 for 1 ≤ i ≤ n
si · · · sn−1snsn−1 · · · s3s2s1 for 1 ≤ i < n

(17)

The fact that these are all the minimum length coset representatives for WI/WJ is easily
checked using the signed permutation description of the type Cn Weyl group elements [4].
We will use the reduced expressions in (17) to define the segments Σi(j). Note, in this
case, each word in (17) has unique length, so we will denote Σ1(j) by simply Σ(j). Set
Σ(0) = id, and for 1 ≤ j ≤ 2n set

Σ(j) =

{
sj−1 . . . s2s1s0 1 ≤ j ≤ n + 1

s2n−j+1 · · · sn−1snsn−1 · · · s2s1s0 n + 1 < j ≤ 2n.
(18)

The proofs of the next two lemmas are analogous to Lemmas 25 and 26 in type B.

Lemma 39. We have the following commutation rules for si ·Σ(j) for all 1 ≤ i ≤ n and
1 ≤ j ≤ 2n:

si · Σ(j) =





Σ(j) · si 1 ≤ j < i or 2n − i + 1 < j ≤ 2n

Σ(j + 1) j = i or j = 2n − i

Σ(j − 1) j = i + 1 or j = 2n − i + 1

Σ(j) · si+1 i + 1 < j < 2n − i.

(19)

Lemma 40. We have the following product rules for segments in type Cn:

1. For 1 ≤ j ≤ n,
Σ(j) · Σ(j) = Σ(j − 1) · Σ(j) · s1.
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2. For n + 1 ≤ j ≤ 2n,
Σ(j + 1) · Σ(j) = Σ(j) · Σ(j) · s1.

Theorem 41. In type Cn, π : W̃ S −→ P = P(Cn) is a length preserving bijection.

Proof. As in the proof of Theorem 28, we only need to show that the allowed pairs in
type Cn have parts bounded by 2n and are strictly increasing if the larger part has length
less than or equal to n. This follows directly from Lemma 40.

Corollary 42. The product Σ(j) · Σ(k) ∈ W̃ S and ℓ(Σ(j) · Σ(k)) = j + k if and only if
1 ≤ j < k ≤ 2n or n < j = k ≤ 2n.

Example 43. If n = 4, the partition (7, 5, 5, 3, 1) ∈ P(Cn) corresponds with s0 · s2s1s0 ·
s4s3s2s1s0 · s4s3s2s1s0 · s2s3s4s3s2s1s0. Pictorially, we have

0 1 2 3 4 3 2
0 1 2 3 4
0 1 2 3 4
0 1 2
0

where again the corresponding reduced expression is read along the rows from right to
left, bottom to top. The columns contain their column number minus one up to column
n + 1 and for n + 1 < j ≤ 2n − 1 column j contains 2n − j + 1.

Bruhat order on W̃ S in type C is very similar to type B. The proofs for the next two
lemmas are very similar to the proofs of Lemmas 33 and 34.

Lemma 44. If λ ∈ P(Cn) and every λk ≤ n, then the interval in Bruhat order between
id and π−1(λ) is isomorphic as posets to the interval from the empty partition to λ in
Young’s lattice on strict partitions.

Lemma 45. If λ ∈ P(Cn) is a single row, then the interval in Bruhat order between
id and π−1(λ) is isomorphic as posets to the interval from the empty partition to λ in
Young’s lattice. In particular, this interval is a totally ordered chain.

Consider the elements in W̃ S determined by partitions in P(Cn) for n ≥ 2. By

Lemma 44, the smallest 5 ranks of Bruhat order on W̃ S is the same as Young’s lattice on
strict partitions of size at most 4

| / |

\ /

|

|
∅

(20)
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Theorem 46. Let W be the Weyl group of type Cn for n ≥ 2 and let w ∈ W̃ S. Then w
is palindromic if and only if π(w) is a one row shape (j) for 0 ≤ j ≤ 2n or a staircase
shape (k, k − 1, k − 2, . . . , 1) for 1 < k ≤ n.

Remark 47. The number of palindromic elements in W̃ S for type Cn is therefore 3n for
n ≥ 2. The Schubert varieties indexed by one row shapes with 2 ≤ j ≤ 2n are rationally
smooth but not actually smooth. All of the staircase shapes are closed parabolic orbits,
hence they are smooth by Theorem 1.

Proof. The proof of Theorem 46 is similar to the proof of Theorem 35. By Lemma 45, we
know that Pw(t) = 1+ t+ · · ·+ tj if π(w) is a one row shape, which is clearly palindromic.
By Lemma 44, if π(w) is a staircase shape (k, k − 1, k − 2, . . . , 1) for 1 < k ≤ n then

Pw(t) =

k∏

j=1

(1 + tj)

which is palindromic.
Conversely, assume λ = π(w) has at least two rows and is not a staircase shape for

k ≤ n. From (20), we know a1 = a2 = 1. If λ has two or more P-removable outside
corners, then aℓ(w)−1 ≥ 2 so w is not palindromic. Similarly, if λ has one P-removable
corner and removing it leaves a shape with two P-removable corners, then aℓ(w)−2 ≥ 1 so
w is not palindromic. One of these two cases occurs for all partitions λ ∈ P(Cn) with at
least two rows and λ1 > n + 1 or if there exists an i such that λi − λi+1 ≥ 2. Therefore,
it remains to show that if λ = (n + 1)k for k ≥ 2 or λ = ((n + 1)k, n, n − 1, . . . , 1) for
some k ≥ 1 then Pw(t) is not palindromic. Note, these are the only two families of thin
elements which are not palindromic in type C.

If λ = ((n + 1)k) for k ≤ n then λ covers only one element µ = ((n + 1)k−1, n) in
Bruhat order. For k < n, µ covers both ((n + 1)k, n − 1) and ((n + 2)k−1, n − k). The
later covering relations is seen by deleting the sn−k from the Σ(n) factor which allows the
sn−k+1, . . . , sn−1 in the bottom row to commute up adding one generator to each other
factor. For k = n, µ covers ((n + 2)n−1) by deleting the s0 in the bottom row. Therefore,
for all k ≥ 2 there are at least two elements of rank |λ|−2 below λ = ((n+1)k) in Bruhat
order.

Assume now λ = ((n + 1)k, n, n− 1, . . . , 1). If k ≥ n then it follows from the previous
case that λ is not palindromic. If 0 < k < n, then λ covers two elements ((n + 1)k, n, n−
1, . . . , 2) and ((n + 2)k−1, n, n− 1, . . . , k + 2, k, k− 1, . . . 1). The later element is obtained
from λ by knocking out the s0 in the Σ(k+1) factor and allowing the s1, . . . , sk generators
to commute up adding one generator to each of the Σ(n+1) factors. Hence, for all k ≥ 1,
λ is not palindromic.

Corollary 48. For W of type Cn, we have mW = 2.

the electronic journal of combinatorics 16(2) (2009), #R18 23



7 Type D

Let P(Dn) be the set of partitions whose parts are bounded by 2n−2, the parts of length
at most n−2 are strictly decreasing, and the parts of length n−1 are two colored, but at
most one color can appear in any partition in P(Dn). The generating function for such
partitions is

GDn
(x) =

(1 + x)(1 + x2) · · · (1 + xn−2)(1 + xn−1)

(1 − xn−1)(1 − xn)(1 − xn+1) · · · (1 − x2n−2)

Lemma 49. We have the following generating function identity with Bott’s formula from
(1):

GDn
(x) =

1

(1 − xn−1)(1 − x)(1 − x3)(1 − x5) · · · (1 − x2n−3)
.

Proof. The formula holds for n = 4 and the general case follows by induction.

The Coxeter graph for D̃n has an involution interchanging s0 and s1 so this is a Type
II Coxeter graph. The segments described in Section 3 for type D are given as follows:
for 1 ≤ j ≤ 2n − 2, z ∈ {b, c} = {blue, crimson} set

Σz
1(j) =





sj . . . s3s2s1 1 ≤ j ≤ n − 2

sn−1sn−2 . . . s3s2s1 j = n − 1 and z = b

snsn−2 . . . s3s2s1 j = n − 1 and z = c

s2n−j−1 · · · sn−2sn−1snsn−2 · · · s4s3s2s1 n ≤ j ≤ 2n − 2.

(21)

Note, there are two distinct 1-segments of length n− 1, namely Σb
1(n− 1) and Σc

1(n− 1).
The superscript z = b, c distinguishes these two cases. Otherwise, for j 6= n − 1 the z is
irrelevant and can be omitted if it is convenient.

Similarly, define Σz
0(j) for all 1 ≤ j ≤ 2n − 2 and z ∈ {b, c} to be the reduced

expression obtained from Σz
1(j) by interchanging s0 ↔ s1 and sn−1 ↔ sn. For example,

Σb
1(n − 1) = sn−1sn−2 . . . s3s2s1 so Σb

0(n − 1) = snsn−2 . . . s3s2s0. Note the longest 0-
segment Σz

0(2n − 2) = s0s2 · · · sn−2sn−1snsn−2 · · · s4s3s2s0 both starts and ends in s0.

Lemma 50. In type D̃n, we have the following commutation rules for si · Σz
1(j) for all

1 ≤ j ≤ 2n − 2 and z ∈ {b, c}. For 1 ≤ i ≤ n − 2,

si · Σ
z
1(j) =





Σz
1(j) · si 1 ≤ j < i − 1 or 2n − i − 1 < j ≤ 2n − 2

Σz
1(j + 1) j = i − 1 or j = 2n − i − 2

Σz
1(j − 1) j = i or j = 2n − i − 1

Σz
1(j) · si+1 i < j < 2n − i − 2.

(22)
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For i = n − 1, we have

sn−1 · Σ
z
1(j) =





Σ1(j) · sn−1 1 ≤ j < n − 2

Σb
1(j + 1) j = n − 2

Σ1(j + 1) j = n − 1 and z = c

Σ1(j − 1) j = n − 1 and z = b

Σc
1(j − 1) j = n

Σ1(j) · sn n < j ≤ 2n − 2.

(23)

For i = n, the commutation relations for sn · Σz
1(j) are similar to those in (23) inter-

changing b ↔ c and sn ↔ sn−1. In particular, for n < j ≤ 2n − 2,

sn · Σz
1(j) = Σz

1(j) · sn−1.

For i = 0
Σz

0(1) · Σz
1(1) = s0s1 = s1s0 = Σz

1(1) · Σz
0(1).

Similarly, commutation rules for si ·Σ
z
0(j) for all 0 ≤ i ≤ n, z ∈ {b, c} and 1 ≤ j ≤ 2n−2

are obtained from (22) and (23) by interchanging s0 ↔ s1 and sn−1 ↔ sn.

Proof. These follow directly from the commutation relations among the generators deter-
mined by the Dynkin diagram.

Lemma 51. We have the following product rules for segments in type D̃n:

1. For 1 ≤ j < n − 1, we have

Σ1(j) · Σ0(j) = Σ1(j − 1)Σ0(j) · s1.

2. For j = n − 1, we have

Σb
1(n − 1) · Σc

0(n − 1) = Σ1(n − 2)Σc
0(n − 1) · s1

and
Σc

1(n − 1) · Σb
0(n − 1) = Σ1(n − 2)Σb

0(n − 1) · s1.

3. For n ≤ j < 2n − 1, we have

Σ1(j + 1) · Σ0(j) = Σ1(j)Σ0(j) · s1.

Similar rules hold interchanging 0 ↔ 1 above.

Proof. If 1 ≤ j < n − 1, then the segments Σ0(j) and Σ1(j) involve only a proper subset

of the generators of S̃. This proper subset generates a parabolic subgroup isomorphic to
a parabolic subgroup of the affine Weyl group of type B̃n. Therefore, the stated relation
holds by Lemma 26.

the electronic journal of combinatorics 16(2) (2009), #R18 25



Assume n ≤ j < 2n − 1 and let t = 2n − j − 1. Then,

Σ0(j) = stst+1 · · · sn−2sn−1snsn−2 · · · s2s0

Σ1(j + 1) = st−1stst+1 · · · sn−2sn−1snsn−2 · · · s2s1.

By Lemma 50, we have the commutation moves Σ1(j+1)si = siΣ1(j+1) for all t ≤ i ≤ n−
2, Σ1(j+1)sn−1 = snΣ1(j+1), Σ1(j+1)sn = sn−1Σ1(j+1). Note, Σ1(j+1)st−1 is not equal
to a single generator times a segment, but Σ1(j+1)st−1 = st−1 ·Σ1(j)st−1 = st−1st−2·Σ1(j).
Then by Lemma 50 again we have Σ1(j)si = si−1Σ1(j) for all 2 ≤ i < t − 1. Therefore,

Σ1(j + 1)Σ0(j) = Σ1(j + 1) · stst+1 · · · sn−2sn−1snsn−2 · · · s2s0

=stst+1 · · · sn−2sn−1snsn−2 · · · st · Σ1(j + 1) · st−1 · · · s2s0

=stst+1 · · · sn−2sn−1snsn−2 · · · st · st−1Σ1(j) · st−1 · · · s2s0

=stst+1 · · · sn−2sn−1snsn−2 · · · st · st−1 · st−2 · · · s1 · Σ1(j) · s0

=Σ1(j) · Σ1(j) · s0

=Σ1(j) · stst+1 · · · sn−2sn−1snsn−2sn · · · s2s1 · s0

=Σ1(j) · stst+1 · · · sn · · · s2s0 · s1

=Σ1(j) · Σ0(j) · s1

since s0 and s1 commute.
For j = n − 1, the proof is similar to the calculations above.

Theorem 52. In type Dn, π : W̃ S −→ P = P(Dn) is a length preserving bijection.

Proof. As in the proof of Theorem 28, we only need to show that the allowed pairs in
type Dn are colored partitions in P(Dn) given Lemma 49. This follows directly from
Lemma 51.

Corollary 53. The product Σy
1(j) · Σ

z
0(k) ∈ W̃ S and ℓ(Σ1(j) · Σ0(k)) = j + k if and only

if y = z and (1 ≤ j < k ≤ 2n − 2 or n − 1 ≤ j = k ≤ 2n − 2).

Example 54. If n = 6, the colored partition (7, 5b, 5b, 3, 1) ∈ P(Dn) corresponds with
s0 · s3s2s1 · s6s4s3s2s0 · s5s4s3s2s1 · s4s6s5s4s3s2s0. Pictorially, we have

0 2 3 4 6 5 4
1 2 3 4 5
0 2 3 4 6
1 2 3
0

where again the corresponding reduced expression is read along the rows from right to
left, bottom to top. Note, the 0’s and 1’s alternate in the first column starting with a 0 in
the top left corner. The columns indexed by 1 < j < n − 1 contain j, for n < j < 2n − 2
column j contains 2n−j−1, and column 2n−2 again alternates from 0 to 1 starting from
the top. Columns n− 1 and n alternate between the values n− 1, n as well depending on
the unique color of the parts of size (n − 1) if they are present.

Bruhat order on W̃ S in type D is similar to type B up to rank n − 1. The proofs for
the next two lemmas are very similar to the proofs of Lemmas 33 and 34.
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Lemma 55. If λ ∈ P(Dn) and every λk ≤ n−1, then the interval in Bruhat order between

id and π−1(λ) in W̃ S is isomorphic as posets to the interval from the empty partition to
λ in Young’s lattice on strict partitions.

Lemma 56. If λ ∈ P(Dn) is a single row, then the interval in Bruhat order between id
and π−1(λ) is isomorphic as posets to the interval from the empty partition to λ in the
generalized Young’s lattice on colored partitions where the parts of size n − 1 have two
possible colors both covering (n − 2) and covered by (n). In particular,

Pw(t) =
∑

v≤w

tℓ(w) = 1 + t + t2 + · · · + tn−2 + 2tn−1 + tn + · · ·+ t2n−2.

Consider the elements in W̃ S determined by their corresponding partitions in P(Dn)

for n ≥ 5. By Lemma 55, Bruhat order up to rank 3 on W̃ S is the same as Young’s lattice
on strict partitions of size at most 3 as in (16). However, for n = 4, there are 3 colored
partitions of size 3 in P(D4).

0 2 3 0 2 4 0 2
1

\ | /

0 2

|
0

|
∅

(24)

Theorem 57. Let W̃ be the affine Weyl group of type Dn for n ≥ 4 and let w ∈ W̃ S.
Then w is palindromic if and only if π(w) is a one row shape (j) with 1 ≤ j ≤ n − 1 or
j = 2n − 2 or a staircase shape (k, k − 1, k − 2, . . . , 1) for k ≤ n − 1. Note, if j = n − 1
or k = n − 1, there are two distinct elements of either shape corresponding to the two
possible colors of parts of size n − 1.

This proof is very similar to Theorem 35. In fact it is a bit easier in this case; to show
Pw(t) =

∑
ait

i is not palindromic it will suffice to show that aℓ(w)−j > 1 = aj for j = 1
or j = 2.

Proof. By Lemma 56, we know that Pw(t) = 1+t+ · · ·+tj if π(w) is a one row shape with
0 ≤ j ≤ n− 1, which is clearly palindromic. Also by Lemma 56, if π(w) = (2n− 2), then
Pw(t) is palindromic. By Lemma 55, if π(w) is a staircase shape (k, k − 1, k − 2, . . . , 1)
for 1 < k ≤ n − 1 then

Pw(t) =
k∏

j=1

(1 + tj)

which is palindromic.
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Conversely, it follows from Lemma 56 that if π(w) is a one row shape of length n ≤ j <
2n − 2, then Pw(t) is not palindromic. So, assume λ = π(w) has at least two rows and is
not a staircase shape for k ≤ n−1. From (24), we know a1 = a2 = 1. If λ has two or more
P-removable outside corners, then aℓ(w)−1 ≥ 2 so w is not palindromic. Similarly, if λ has
one P-removable corner and removing it leaves a shape with two P-removable corners,
then aℓ(w)−2 ≥ 2 so w is not palindromic. One of these two cases occurs for all partitions
λ ∈ P(Dn) with at least two rows and λ1 ≥ n or if there exists an i such that λi−λi+1 ≥ 2.
Therefore, it remains to show that if λ = ((n − 1)k) or λ = ((n − 1)k, (n − 2), . . . , 1) for
some k ≥ 2 and with either color pattern, then Pw(t) is not palindromic. We can fix the
color pattern for the parts of size n − 1 and look only at partitions with the exact same
color pattern in the proof below. Therefore, we will not need to specify the fixed color
pattern.

Say λ = ((n − 1)k) for 2 ≤ k ≤ n − 1. Then w covers the two elements π−1((n −
1)k−1, n − 2) and π−1(nk−1, n − k − 1) as seen by omitting the sn−k in the last row of λ
and allowing all the larger generators to commute up. For example, for n = 6, we omit
the 2 on the last row and allow the s6s4s3 to commute up via the relations in Lemma 50

0 2 3 4 5
1 2 3 4 6
0 2 3 4 5
1 3 4 6

∼= 0 2 3 4 5 6
1 2 3 4 6 5
0 2 3 4 5 6
1

Hence, a1 = 1 < 2 ≤ aℓ(w)−1.
If λ = ((n−1)k) with k ≥ n, then w covers v = π−1((n−1)k−1, n−2), and v covers two

elements since n ≥ 4, namely the ones corresponding to the partitions ((n− 1)k−1, n− 3)
and ((n + 1)n−2, (n − 1)k−n). The ladder element is obtained by omitting the square in
column n − 1 of row n and the square in column 1 of row n − 1 of λ. As in the case of
the (nn) square in the proof of Theorem 35, the remaining generators in rows n and n−1
commute up to add two additional squares to each of the first n − 2 rows. Therefore,
aℓ(w)−2 ≥ 2 > a2 = 1. For example, when n = k = 4 we have

0 2 4
1 2 3

2 4
1 2

∼= 0 2 4 3 2
1 2 3 4 2

On the other hand, say λ = ((n − 1)k, (n − 2), . . . , 1) for some k ≥ 2. If k ≥ n,
then we can delete two generators in λ in two ways as in the proof of Theorem 35 for
the shape ((n − 1)n) and obtain two elements below w of length ℓ(w) − 2. If k = 2,
then there are two elements of length ℓ(w) − 2 below w corresponding to the partitions
((n−1)2, (n−2), . . . , 3, 1) and (n, n−1, n−2, . . . , 3) obtained from λ by deleting the last
two elements in column 1 and allowing the s2 to commute up. If 2 < k < n, then again
w covers two elements corresponding to the partitions ((n − 1)k, (n − 2), . . . , 3, 2) and

(nk−2, (n − 1)2, n − 2, . . . , k̂ − 1, . . . , 1), the ladder element is obtained from λ as follows.
Delete the largest generator sk−1 in row n. The corresponding product of segments has
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two consecutive segments of length k− 2, use the segment relations Σ1(k− 2)Σ0(k− 2) =
Σ1(k−3)Σ0(k−2) ·s1 or the analogous relation switching 0 and 1. Then the s1 commutes
up to row 1 and becomes an sn or sn−1 extending row 1. After applying the segment
relation, now rows n + 1 and n + 2 have the same length. Repeating the same procedure
adds an extra box to row 2, etc. After applying k − 2 segment relations, the remaining

partition is (nk−2, (n − 1)2, n − 2, . . . , k̂ − 1, . . . , 1).

Corollary 58. For W of type Dn, we have mW = n − 1.

Proof. The proof above shows that n − 1 is sufficient. It is necessary for the element
w = Σ0(2n − 3) ∈ W̃ S with Pw(t) = tn +

∑2n−3
i=0 ti.

8 Exceptional Types

In this section we give the algorithm we used to prove Theorem 8 for the exceptional
types. As an example of the algorithm, we give the full proof in type G2. In type F4, we
give the necessary data to verify the theorem without much discussion in the appendix.
For types E6, E7, E8 we refer the reader to our Lisp and Maple code available at

http://www.math.washington.edu/∼billey

Every exceptional type has a Type I Coxeter graph. The segments can be obtained
using the Mozes numbers game [4, 13]. The node-firing game from [2] can be used as
well since the segments form an interval in left weak order so one only needs to find the
longest element in W̃ S with exactly one s0 in any reduced expression. The allowed pairs
can also be identified using the numbers game or the node-firing game. Below is the high
level algorithm for verifying Theorem 8:

1. Identify the set of all segments using the node-firing game.

2. Compute all products of pairs Σc(i)Σd(j) to identify allowed pairs:
Σc(i)Σd(j) is allowed if and only if

ℓ(Σc(i)Σd(j)) = i + j

and
Σc(i)Σd(j) ∈ W̃ S.

Both tests are straightforward using the numbers game.

3. Let A be the finite partial order on the allowed colored parts in P given by ic < jd

if (ic, jd) is an allowed pair. Verify that A is a subposet of left weak order restricted
to the segments confirming Lemma 5 in this case.
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4. Construct a representation of the rational generating function GP =
∑

λ∈P t|λ| cor-
responding with the affine partitions. If (jd, jd) is an allowed pair, we say jd is
repeatable. Let

D(jc) =

{
(1 − tj) jc repeatable

1 otherwise.

and if λ = (λc1
1 > λc2

2 > · · · > λck

k ) is a strict colored partition, let D(λ) =∏k

i=1 D(λci

i ). Then

GP =
∑ t|λ|

D(λ)
(25)

where the sum is over all strictly decreasing chains λ = (λc1
1 > λc2

2 > · · · > λck

k )
(including the empty chain) in A and |λ| =

∑
λi. The sum in (25) is finite since

there are only a finite number of segments in each type.

5. Verify that the rational generating function GP is equal to the expression given by
Bott’s formula.

Remark 59. In practice a reasonably efficient way to compute the rational generating
function in (25) is to identify the set of all strict colored partitions with no repeatable
parts and then for each subset of the repeatable parts, check if the repeatable parts can
appear with the non-repeatable parts. Furthermore, the strictly decreasing chains of non-
repeatable parts should be constructed using a depth first search that only looks down
branches corresponding with allowed pairs.

Example in Type G2: The Dynkin diagram of type G̃2 is a Type I graph. The segments
are as follows:

segment length

Σ(1) = s0 1
Σ(2) = s1s0 2
Σ(3) = s2s1s0 3
Σ(4) = s1s2s1s0 4
Σ(5) = s2s1s2s1s0 5
Σ(6) = s1s2s1s2s1s0 6

(26)

Observe that the segments have distinct lengths. No colors will be necessary for the
corresponding partitions.

One can verify that the product of two segments Σ(i) ·Σ(j) is a reduced expression for

a minimal length coset representative in W̃ S if and only if the ordered pair (i, j) appears
in the following list of allowed pairs:

{(1, 4), (1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6), (5, 5), (5, 6), (6, 6)}
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Let P(G2) be the set of partitions allowed by these pairwise rules, i.e. they have an
arbitrary number of 5’s and 6’s followed by one of the partitions from the following set:

{(1), (2), (3), (4), (4, 1)}

The generating function for such partitions is

1 + t + t2 + t3 + t4 + t1t4

(1 − t5)(1 − t6)
=

1 + t + t2 + t3 + t4 + t5

(1 − t5)(1 − t6)
=

1

(1 − t1)(1 − t5)
(27)

Observe that the formula above agrees with Bott’s formula for the rank generating func-
tion for W̃ S since the exponents for type G2 are {1, 5}. This proves Theorem 8 for type
G2.

Above it was easy enough to use the description of P(G2) to get the generating function
in (27) since 5 and 6 can be added to every affine partition to get another affine partition.
In types F4, E6,7,8 some repeatable parts are not allowed to appear with other parts so we
need to be more careful. For example, in type F4 the part denoted 111 in the appendix
cannot appear with all other parts. Therefore, it is instructive to build this generating
function using (25) as an example. The following are all strict affine partitions in P(G2)
and their corresponding denominators:

{(), (1), (2), (3), (4), (1, 4)} D(λ) = 1
{(5)} ∪ {(j, 5) | 1 ≤ j ≤ 4} ∪ {(1, 4, 5)} D(λ) = (1 − t5)
{6} ∪ {(j, 6) | 1 ≤ j ≤ 4} ∪ {(1, 4, 6)} D(λ) = (1 − t6)
{(5, 6)} ∪ {(j, 5, 6) | 1 ≤ j ≤ 4} ∪ {(1, 4, 5, 6)} D(λ) = (1 − t5)(1 − t6)

Putting this information into (25) we have

GP =
(
1 + t + t2 + t3 + t4 + t1t4

) (
1 +

t5

(1 − t5)
+

t6

(1 − t6)
+

t5t6

(1 − t5)(1 − t6)

)

which simplifies to (27) as expected.

9 Type A

Fix W to be the Weyl group of type An and W̃ its affine Weyl group. The elements in
W̃ S are known to be in bijection with (n + 1)-core partitions and n-bounded partitions
[12, 23, 19]. In this section, we will describe the affine partitions in type A and prove

that these objects are also in bijection with W̃ S. The proof relies on the (n + 1)-core
bijection. We use the segments to identify the palindromic elements as well. Following a
suggestion due to Hugh Thomas, we use the k-bounded partitions to identify the Poincaré
polynomial for all the palindromic, nonsmooth elements in W̃ S reproving a theorem due
to the second author [24].

In the Dynkin diagram for Ãn, both s1 and sn are connected to s0 in the Dynkin
diagram for W̃ . We will treat W as a Type I Coxeter group with J = 〈s2, . . . , sn−1〉. The
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fragments in this type are the elements of W J . As permutations, these fragments have
one line notation in Sn+1 of the form

[a, 1, 2, . . . , â, ..., b̂, . . . , n + 1, b] = sa−1sa−2 · · · s1sbsb+1 · · · sn−1sn

where a, b ∈ {1, . . . , n + 1} := [n + 1] and a 6= b. The segments can be defined by

Σc(k) = scsc−1 . . . s1sn−k+c+2 . . . sn−1sns0

for 0 ≤ c ≤ n, 1 ≤ k − c ≤ n, so 1 ≤ k ≤ 2n and k is the length of Σc(k). There are
n(n + 1) segments for type An.

To describe the weak order on segments and the allowed pairs, it is convenient to use
an alternative notation. For 0 ≤ i ≤ n and 1 ≤ j ≤ n, let

Ci,j = sisi−1 . . . s1 sn−j+2 . . . sn−1sns0

so ℓ(Ci,j) = i + j and Σc(k) = Cc,k−c.

Lemma 60. For 1 ≤ a ≤ n, we have the following relations:

saCi,j =





Ci,jsa+1 a < i and a < n − j

Ci,j+1 a < i and a = n − j

Ci,j−1 a < i and a = n − j + 1

Ci,jsa a < i and a ≥ n − j + 2

Ci−1,j a = i

Ci+1,j a = i + 1

Ci,jsa a > i + 1 and a ≤ n − j

Ci,j+1 a > i + 1 and a = n − j + 1

Ci,j−1 a > i + 1 and a = n − j + 2

Ci,jsa−1 a > i + 1 and a > n − j + 2.

Proof. These relations follow directly from the Coxeter relations.

As a direct corollary of the relations above, we get the following characterization of
the weak order on segments.

Lemma 61. In left weak order,

Ci,j ≤ Ck,l ⇐⇒

{
i ≤ k and j ≤ l for i + j 6= n

i < k and j ≤ l for i + j = n.

Hence, the left weak order on segments is a poset similar to the product of chains
[n + 1] × [n], except that it is missing some relations between the middle two ranks
namely, Ci,j 6< Ci,j+1 if i + j = n.

Thus, the weak order on segments in type A is significantly more complicated than in
all other types. In order to characterize the allowed pairs Ci,jCk,l and finish the proof of

Theorem 8 in type A, we introduce the bijection from W̃ S to core partitions.
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9.1 Core Partitions, k-bounded partitions, and affine partitions

Let λ be a partition thought of as a Ferrers diagram. We say a square s is addable to λ if
s is adjacent to the southeast boundary of λ and adding s to λ results in a larger partition
shape. Similarly, a square s inside λ is removable from λ if s is adjacent to the southeast
boundary of λ and removing s from λ results in a smaller partition shape. The n-content
of the square (i, j) in matrix notation is (j − i) modulo (n + 1) taken in the range [0, n].
The arm of a square s in λ is the set of boxes strictly to the right of s. The leg of a
square s in λ is the set of boxes strictly below s. The hook length of square s = (i, j)
in λ, denoted h(s), is the number of squares weakly below s plus the number of squares
strictly to the right of s, so h(s) = |arm(s)|+ |leg(s)|+1. A central hook of a partition is
any hook whose corner square s is along the main diagonal so s = (a, a) for some a ∈ N.
The lowest central hook of a partition is the central hook with a as large as possible.

An n+1-core is a partition with no hook length divisible by n+1, or equivalently, no
hook length exactly n+1 [22]. In type An, Misra and Miwa [23] showed that (n+1)-core

partitions are in bijection with W̃ S. Lascoux showed that Bruhat order on W̃ S in type
An is completely determined by the partial order of containment on the corresponding
(n + 1)-cores [20]. See also [3].

Let Cn+1 be the set of all (n + 1)-cores. The Misra-Miwa bijection from

c : W̃ S −→ Cn+1

is defined recursively as follows. Consider all squares (i, j) ∈ N × N labeled by their n-

content. The empty partition, denoted ∅, represents the identity element in W̃ S. Say c(w)

is the (n + 1)-core for w ∈ W̃ S and siw ∈ W̃ S with ℓ(w) < ℓ(siw). To obtain the Ferrers
diagram for c(siw) from the Ferrers diagram for c(w), add all of the addable squares of
c(w) with n-content i to c(w).

For example, if n = 3, then the 4-core for s2s3s0 is a single column with three boxes
obtained by first adding the unique box with n-content 0, then 3, then 2 in such a way
as to obtain a partition shape at each step. The (n + 1)-cores starting with s2s3s0 and
building up to s0s3s2s1s2s3s0 are given by the following shapes (the n-content is written
inside each box just for convenience):

s2s3s0 s1s2s3s0 s2s1s2s3s0 s3s2s1s2s3s0 s0s3s2s1s2s3s0

0
3
2

0 1
3
2
1

0 1 2
3
2
1

0 1 2 3
3
2
1

0 1 2 3 0
3 0
2
1
0

Note, that the number of boxes in c(w) is at least ℓ(w) but not necessarily equal to ℓ(w).
More formally, for 0 ≤ i ≤ n, let ri be the operator on partitions which acts on λ by

adding all addable boxes of n-content i and removing all removable boxes of n-content i. If
w ∈ W̃ S and w = si1si2 . . . sip is a reduced expression, then define c(w) = ri1ri2 . . . rip(∅).
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To see that c : W̃ S −→ Cn+1 is a proper map and a bijection we rely on the following
facts which are proved in [19].

Theorem 62. Let w ∈ W̃ S.

1. If λ ∈ Cn+1 then ri(λ) ∈ Cn+1 for all 0 ≤ i ≤ n so c(w) ∈ Cn+1.

2. We have siw ∈ W̃ S if and only if c(w) has at least one addable or one removable
square of n-content i. If w < siw, then c(w) has no removable squares of n-content
i and all the addable squares of n-content i lie in consecutive diagonals. If w > siw,
then c(w) has no addable squares of n-content i and all the removable squares of

n-content i lie in consecutive diagonals. If w ∈ W̃ S and siw 6∈ W̃ S, then c(w) has
no addable or removable squares with n-content i.

3. The relations among the set of generators S̃ = {s0, s1, . . . , sn} acting on W̃ S from
the left are exactly the same as the relations among the operators {r0, . . . , rn} acting
on Cn+1. Thus, we can consider the action si : Cn+1 −→ Cn+1 to be the same as ri.

Now we can return to products of segments. Roughly speaking, pairwise allowed
products of segments in type A correspond with consecutive central hooks in the core
partition.

Lemma 63. The product Ci,jCk,l is reduced and in W̃ S if and only if at least one of the
following hold:

1. i < k and j < l.

2. k + l > n and i < k and j ≤ l.

3. i + j > n and i ≤ k and j ≤ l.

Proof. By Theorem 62(2), if w ∈ W̃ S and sic(w) adds at least one box, then siw ∈ W̃ S,
ℓ(siw) = ℓ(w) + 1, and c(w) ⊂ sic(w). In particular, this shows that every segment

Ck,l = sk · · · s1sn−l+2 · · · sns0 has the properties: Ck,l ∈ W̃ S, ℓ(Ck,l) = k + l and c(Ck,l) is
a single hook shape core partition c(Ck,l) with hook length at least k + l and arm length
exactly k. The generators sn−l+2 · · · sns0 build up the leg of the hook, and the generators
sk · · · s1 build up the arm of the hook. If k + l > n then c(Ck,l) has hook length k + l + 1
since applying the generators sk · · · s1 along the arm of the hook must necessarily also add
one more box to the leg of the hook.

Let H0 = c(Ck,l), H1 = s0c(Ck,l), . . . , Hi+j = si · · · s1sn−j+2 · · · sns0c(Ck,l) be the result
of applying each of the generators of Ci,j = si · · · s1sn−j+2 · · · sns0 from right to left on
c(Ck,l). Note, H1 is a hook plus one extra square on the central diagonal and Hi+j is the
union of exactly two central hooks since there are no other s0 generators in the reduced
expression for Ci,j.

Again by Theorem 62( 2), the product Ci,jCk,l is reduced and in W̃ S if and only if
Ha contains at least one square not in Ha−1 for each 1 ≤ a ≤ i + j. Observe, that if
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one of the three conditions above are satisfied, the latter condition holds since the second
central hook is built up exactly as it is when applying the generators of Ci,j to the empty
partition.

Conversely, assume that none of the three conditions hold on i, j, k, l. Then there
exists a smallest a such that either the lowest squares in both the first and second central
hooks of Ha−1 are in the same row and the next generator tries to add one more square
to the leg of the second hook but fails, or the rightmost squares in both the first and
second central hooks of Ha−1 are in the same column and the next generator tries to add
one more square to the arm of the second hook but fails. In either case, we claim no new
squares are added in Ha so Ha ⊂ Ha−1 hence Ci,jCk,l cannot be a reduced factorization

for an element in W̃ S.
To prove the claim Ha ⊂ Ha−1, assume the lowest squares in both the first and second

central hooks of Ha−1 are in the same row and the next generator tries to add one more
square in row r and column 2 to the leg of the second hook. The other case is similar. The
generator being applied to go from Ha−1 to Ha is sn+1+2−r where n+1+2−r ≥ n−j+2 > 1
by definition of the segment Ci,j. Let z = n + 1 + 2 − r so the n-content of (r, 2) is
z mod(n + 1). If the cell (r, 2) is not addable then it must be because (r, 1) is not a
square in Ha−1, therefore no square in any row below row r is addable. Square (2, 3)
has n-content 1 so it is not added from Ha−1 to Ha since z > 1, nor is any square south
or east of (2, 3). Finally, if a cell of n-content z was addable in the first row, then the
hook with corner (1, 2) would have hook length n + 1 in Ha, but this cannot happen by
Theorem 62( 1). Therefore, Ha is contained in Ha−1.

Rephrasing the vocabulary slightly from Section 3, we say two segments Ci,jCk,l form

an allowed pair if ℓ(Ci,jCk,l) = i + j + k + l and Ci,jCk,l ∈ W̃ . Note, in the language of
Section 3, we would have said ((i + j)i, (k + l)k) is an allowed pair as a colored partition
since Ci,j = Σi(i + j). However, in type A it is more convenient to work with the Ci,j

notation for segments. Furthermore, we say Ci1,j1Ci2,j2 · · ·Cip,jp
is an allowed product of

segments if each consecutive pair is an allowed pair.

Theorem 64. Let W be the Weyl group of type An. There is a length preserving bijection
from W̃ S to allowed product of segments given by the canonical factorization r(w) =
Ci0,j0Ci1,j1 · · ·Cip,jp

.

Proof. Injectivity of the map r is proved in the first paragraph of the proof for Theorem 8.
Therefore, it remains to show that any allowed product of segments gives rise to a reduced
expression for an element in W̃ S.

Let v = Ci1,j1 · · ·Cip,jp
be an allowed product of segments. By induction we can assume

Ci1,j1 · · ·Cip,jp
is a reduced factorization for v and v ∈ W̃ S. Assume Ci0,j0Ci1,j1 is also an

allowed product. We will show that w = Ci0,j0v ∈ W̃ S and ℓ(w) = ℓ(v) + i0 + j0.
Construct the (n+1)-core partition c(v) by multiplying one segment at a time, starting

with Cip,jp
and ending with Ci1,j1. By induction, we assume that multiplication by Ci1,j1

in this construction adds a new square on the main diagonal with n-content 0 in square
s = (a, a) for some a, new squares with n-content n, n−1, . . . , n−j1 +2, below s, and then
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new squares with n-content 1, 2, . . . , i1 to the right of s, plus possibly other squares, thus
the length of the corresponding element in W̃ S is strictly increasing with each generator.
Similarly, since Ci0,j0Ci1,j1 is also an allowed product, starting with c(v) and multiplying
by the generators in Ci0,j0 in reverse order will add at least one new box each with each
generator as shown in Lemma 63. The resulting partition will be an (n + 1)-core λ.
Therefore, the expression Ci0,j0Ci1,j1 · · ·Cip,jp

is a reduced factorization for w = c
−1(λ) so

w ∈ W̃ S.

Corollary 65. Assume w ∈ W̃ S. The factorization r(w) = Ci1,j1Ci2,j2 · · ·Cip,jp
can

be obtained from c(w) by successively removing the lowest central hook of the remaining
partition for each factor. To remove a hook, apply generators which remove squares in
the lowest central hook along the arm first, then the leg, then the corner square.

Corollary 66. If r(w) = Ci1,j1Ci2,j2 · · ·Cip,jp
then c(w) has p squares along the main

diagonal. Conversely, if c(w) has exactly p squares along the main diagonal, then there
are p segments in the canonical factorization r(w).

Corollary 67. Let i : W̃ S −→ W̃ S be the involution determined by mapping si to sn+1−i

for 1 ≤ i ≤ n. If w = Ci1,j1 · · ·Cip,jp
, then i(w) = Cj1−1,i1+1 · · ·Cjp−1,jp+1.

Proof. The proof follows directly from the observation that c(w) is the transpose of
c(i(w)).

Let Bn be the set of n-bounded partitions, so λ ∈ Bn implies λi ≤ n for all i. For a
fixed n, define a map

b : Cn+1 −→ Bn

given by mapping λ ∈ Cn+1 to µ ∈ Bn if the Ferrers diagram for λ has µi squares with
hook length at most n in row i for each i ≥ 1. For example, if n = 3, λ = (5, 2, 1, 1, 1)
then b(λ) = (3, 1, 1, 1, 1).

Define a second map,
a : Bn −→ W̃ S

as follows. Given µ ∈ Bn, fill the squares in the Ferrers diagram of µ by their n-content.
Say i1i2 . . . ip is the word obtained by reading along the rows of µ from right to left,
bottom to top. Then a(µ) = si1si2 · · · sip. For example, with n = 3,

(3, 3) = 0 1 2
3 0 1

=⇒ a(3, 3) = s1s0s3s2s1s0.

The next theorem follows from [12, Lemma 23], [19, Theorem 7], and [23].

Theorem 68. The maps a and b are bijections such that a ◦ b ◦ c : W̃ S −→ W̃ S is the
identity map. Furthermore, if a(µ) = w ∈ W̃ S then |µ| = ℓ(w).

Corollary 69. In type An, there exists a size preserving bijection from n-bounded parti-
tions to affine partitions P.

the electronic journal of combinatorics 16(2) (2009), #R18 36



Note, in general the canonical reduced expressions given by the n-bounded partition
and the corresponding affine partition are different. For example, with n = 3 again

(2, 2, 1) = 0 1
3 0
2

=⇒ a(2, 2, 1) = s2s0s3s1s0 = s0s2s1s3s0 = C0,1C2,2.

9.2 Palindromy in type A

Given that the partition bijection π : W̃ S −→ P holds in type A by Theorem 8 and
Theorem 64, we can identify all the thin elements of W̃ S in type A and cpo’s relatively
easily. Furthermore, we can use the relations in Lemma 60 to identify which of the thin
elements are not palindromic. Therefore, we can give a complete characterization of
palindromic elements in type An using the following theorem due to the second author.
This allows us to determine mW as well.

Note, that in type A1, W̃ S is a chain under Bruhat order so every element is thin,
extra thin and palindromic. Therefore, throughout the rest of this section we will assume
n ≥ 2.

Theorem 70. [24] In type An for n ≥ 2, there exist two infinite families of palindromic
elements, namely {C0,j(C1,n)

k : j +k = 0 mod n} and {Ci,1(Cn,1)
k : i+k+1 = 0 mod n}.

We call the palindromic elements in Theorem 70 spiral elements since their unique
reduced expressions spiral around the Dynkin diagram clockwise or counterclockwise.

Lemma 71. Assume W has type An for n ≥ 2.

1. For each segment Ci,j such that i + j ≤ n and each k ≥ 0, the following elements
are thin:

C0,j−iC1,j−i+1 · · ·Ci−1,j−1 · Ci,j · (Ci+1,n−j)
k if 0 ≤ i < j ≤ n,

C0,j−iC1,j−i+1 · · ·Ci−1,j−1 · Ci,j · (Cn+1−i,j)
k if 0 ≤ i < j ≤ n,

Ci−j,1Ci−j+1,2 · · ·Ci−1,j−1 · Ci,j · (Ci+1,n−j)
k if 1 ≤ j ≤ i < n,

Ci−j,1Ci−j+1,2 · · ·Ci−1,j−1 · Ci,j · (Cn+1−i,j)
k if 1 ≤ j ≤ i < n.

2. For each pair 1 ≤ i, j ≤ n such that i + j = n + 1 and k ≥ 0, the elements (Ci,j)
k

are thin.

Conversely, every thin element in W̃ S is listed above.

Proof. Observe that the branching number bW = 2, so an affine partition λ = π(w) ∈ P
is thin if and only if λ covers one element in the generalized Young’s lattice.

The only thin segments are of the form Ci,j for i + j = n + 1, C0,j for 1 ≤ j ≤ n,
and Ci,1 for 0 ≤ i < n. All other segments cover two elements given by reducing the first
index or the second index. Furthermore, the segments Ci,j such that i + j > n + 1 all
cover two segments Ci−1,j and Ci,j−1 and both are repeatable. So, if w has any segment
of length strictly longer than n + 1 then w is not thin.

Therefore, w = Ci1,j1 · · ·Cip,jp
6= id is thin if and only if all of the following hold:
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1. i1 = 0 or j1 = 1 or i1 + j1 = n + 1.

2. For each 1 ≤ k ≤ p, we have ik + jk ≤ n + 1.

3. For each 1 ≤ k < p, the pair (ik+1, jk+1) is minimal so that Cik,jk
Cik+1,jk+1

is an
allowed pair.

The lemma now follows from these three conditions.

Lemma 72. For each segment Ci,j such that i + j ≤ n there exists a cpo with Ci,j as its
longest segment given by the product

C0,j−iC1,j−i+1 · · ·Ci−1,j−1Ci,j if i < j
Ci−j,1Ci−j+1,2 · · ·Ci−1,j−1Ci,j if i ≥ j.

(28)

Furthermore, all cpo’s are of this form, hence there are n(n+1)
2

of them.

Proof. First note that since i+j ≤ n, the support of Ci,j, namely Ii,j = {s ∈ S̃ : s ≤ Ci,j},
is a proper subset of S̃, and the support of any segment smaller than Ci,j in weak order
is contained in Ii,j. Any allowed product of segments with support in Ii,j would have
length no longer than the products in (28) by Lemma 63. Therefore, by Theorem 64, the
product above is the unique cpo with support Ii,j.

Conversely, given an arbitrary cpo w with support I ⊂ S̃, I 6= S̃, let r(w) =
Ci1,j1 · · ·Cip,jp

be the corresponding reduced factorization into segments. If ℓ(Cip,jp
) > n

then its support is all of S̃ by definition of Cip,jp
, contradiction. Therefore, ip + jp ≤ n

and r(w) must be one of the products above.

Lemma 73. Assume W has type An for n ≥ 2.

1. For each segment Ci,j such that i + j ≤ n and each k ≥ 1, the following elements
are thin but not palindromic:

C0,j−iC1,j−i+1 · · ·Ci−1,j−1 · Ci,j · (Ci+1,n−j)
k if 1 ≤ i < j < n,

C0,j−iC1,j−i+1 · · ·Ci−1,j−1 · Ci,j · (Cn+1−i,j)
k if 1 ≤ i < j < n,

Ci−j,1Ci+1,2 · · ·Ci−1,j−1 · Ci,j · (Ci+1,n−j)
k if 2 ≤ j ≤ i < n,

Ci−j,1Ci+1,2 · · ·Ci−1,j−1 · Ci,j · (Cn+1−i,j)
k if 2 ≤ j ≤ i < n.

2. For each 0 ≤ i < n, 1 ≤ j < n, and k > 0 such that i + k + 1 6= 0 mod n
and j + k 6= 0 mod n, the elements Ci,1(Cn,1)

k and C0,j(C1,n)k are thin but not
palindromic.

3. For each pair 1 ≤ i, j ≤ n such that i+ j = n+1, k ≥ 1, k 6= 0 mod n, the elements
(Ci,j)

k are thin but not palindromic.
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Proof. Using the relations on generators and segments from Lemma 60 and arguments
similar to ones used in other types, one can show that every element w in the list above
either covers 2 or more elements in the Bruhat order or w covers one element v and v
covers 3 elements. Comparing with Bott’s formula (1) shows w cannot be palindromic.

For example, consider elements of the form w = (C1,n)k for all k ≥ 1 and k 6=
0 mod n. First, assume that 1 ≤ k < n. We claim w covers v = C1,n−k(C2,n)k−1 and
v′ = C0,n(C1,n)

k−1. To see the first covering relation, recall C1,n = s1s2 · · · sns0 and knock
out the leftmost sk+1 generator from the left in r(w). The leftmost sk then commutes to
the right decreasing it’s index as it passes each C1,n until it becomes an s2 which can glue
onto the rightmost C1,n forming a C2,n. Then the leftmost sk−1 commutes right until it
becomes an s2 etc. Second, for the case k > n, we make the following observation from
the relations on generators:

C2,n(C1,n)
n = (C1,n)

nC2,n

and
C2,n(C1,n)

k 6∈ W̃ S for 1 ≤ k < n.

Therefore, for any w = (C1,n)
k with k > n and k 6= 0 mod n, we can apply the procedure

in the first case to the leftmost (k mod n) segments and commute the C2,n’s to the right
past any factors of the form (C1,n)

n. Hence, w must actually cover at least 2 elements in
Bruhat order, so it is not palindromic.

Let [ n
k ]t denote the t-analog of ( n

k )

[ n
k ]t =

[n]!

[k]! [n − k]!

where [n]! =
∏n−1

i=0 (1 + t + t2 + · · · + ti) is the usual t-analog of n!. The polynomial [ n
k ]t

gives the rank generating function for the partitions that fit inside a k × n − k rectangle
[28, Sect. 1.3], hence it is palindromic. The polynomial is also the Poincaré polynomial
for the Grassmannian manifold Gn,k.

The following lemma was originally proved in [24]. This short proof was suggested by
Hugh Thomas.

Lemma 74. Let w be a spiral element of length k · n for k ≥ 1. Then

Pw(t) =
[

n+k
k

]
t
.

Hence w is palindromic.

Proof. Let w be the spiral element Cn−k−1,1(Cn,1)
k for some k ≥ 1. Then a

−1(w) = (n)k.
Every partition µ ⊂ (n)k has the property that a(µ) ≤ w in Bruhat order since the
reduced expression corresponding to the n-bounded partition µ is a subexpression of
Cn−k−1,1(Cn,1)

k. Therefore, to prove the lemma, we only need to show that no λ ∈ Bn

exists such that λ 6⊂ (n)k and a(λ) < w.
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Given any n-bounded partition λ such that λ 6⊂ (n)k, then λ must have more than
k parts. If the canonical reduced expression a(λ) = si1 · · · sip , then the core partition
ri1 · · · rip(∅) = b

−1(λ) must have at least k + 1 rows. However, by similar logic b
−1((n)k)

has exactly k rows, therefore a(λ) 6≤ a((n)k) = w by Lascoux’s Theorem mentioned

earlier: Bruhat order on W̃ S in type An is completely determined by the partial order of
containment on the corresponding (n + 1)-cores [20].

The proof for w = C0,n−k(C1,n)k follows from the natural involution on the Dynkin
diagram fixing s0.

Theorem 75. Let W be the Weyl group of type An. Every element in W̃ S is palindromic
if n = 1. If n ≥ 2, then the palindromic elements in W̃ S are precisely the cpo’s and the
spiral elements.

Proof. Lemma 72 and Lemma 74 prove each of the cpo’s and spiral elements are palin-
dromic. Lemmas 71 and 73 show that every other element is not palindromic.

Corollary 76. For W of type An with n ≥ 2, we have mW = 2.

10 Appendix

Example in type F4: The segments for F4 appear in Equation (30). Observe that the
segments do not have distinct lengths, so colors will be necessary for the corresponding
partitions.

One can verify that the product of two segments Σ(i) ·Σ(j) is a reduced expression for

a minimal length coset representative in W̃ S if and only if the ordered pair (i. j) appears
in the list of allowed patterns in Figure 10.

This list of allowed patterns is harder to internalize than in types B, C, D, G2, however
some useful information pops out of it. First, the only parts which can repeat in a colored
partition are 111, 14, 15 and 16. Additional parts indicated by 14, 15, 16 can be added to
any affine partition to get another affine partition, but 111 cannot appear in any partition
with 81, 9, 10, 11 or 12. Let NR be the set of allowed partitions with no parts in the set
{111, 14, 15, 16}. There are 132 partitions in NR and they all have size at most 40. The
colored partition (13, 121, 101, 51) is the unique one in NR with size 40 exactly. Let NRE
be the set of all partitions in NR that can be in an allowed partition with 111. There are
96 elements in NRE including (13, 121, 101, 51).

To compute the generating function for P(F4), let

GNR(t) =
∑

λ∈NR

t|λ|

be the rank generating function for the partitions in NR and similarly for NRE. Then,
since every partition in P(F4) contains an 111 or not, we get the following identity

GP(F4) =
GNR

(1 − t14)(1 − t15)(1 − t16)
+

t11 · GNRE

(1 − t11)(1 − t14)(1 − t15)(1 − t16)
. (29)
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By computer it is easy to compute the coefficients for GNR and GNRE

NR (1 1 1 1 1 2 2 3 3 3 4 4 5 5 5 5 4 5 5 6 6 6 6 6 5 5 4 4 3 2 2 2 3 2 2 2 2 1 1 1 1)
NRE (1 1 1 1 1 2 2 3 2 2 2 2 2 3 3 3 2 3 4 5 5 4 4 4 3 3 3 3 2 1 2 2 3 2 2 2 2 1 1 1 1)

Miraculously using Maple, the sum in (29) simplifies to

1

(1 − t1)(1 − t5)(1 − t7)(1 − t11)
.

as expected using Bott’s formula since the exponents for F4 are 1, 5, 7, 11. This proves
Theorem 8 for type F4.

The nine palindromic elements of F4 are given by the affine partitions

(), (1), (2), (3), (4), (5), (51), (6), (6, 1).

Using (30), we see the cpo’s correspond with (), (1), (2), (3), (6, 1).

segment length

Σ(1) = s0 1
Σ(2) = s1s0 2
Σ(3) = s2s1s0 3
Σ(4) = s3s2s1s0 4
Σ(5) = s2s3s2s1s0 5
Σ1(5) = s4s3s2s1s0 5
Σ(6) = s1s2s3s2s1s0 6
Σ1(6) = s2s4s3s2s1s0 6
Σ(7) = s1s2s4s3s2s1s0 7
Σ1(7) = s3s2s4s3s2s1s0 7
Σ(8) = s1s3s2s4s3s2s1s0 8
Σ1(8) = s2s3s2s4s3s2s1s0 8
Σ(9) = s1s2s3s2s4s3s2s1s0 9
Σ1(9) = s2s1s3s2s4s3s2s1s0 9
Σ(10) = s2s1s2s3s2s4s3s2s1s0 10
Σ1(10) = s3s2s1s3s2s4s3s2s1s0 10
Σ(11) = s3s2s1s2s3s2s4s3s2s1s0 11
Σ1(11) = s4s3s2s1s3s2s4s3s2s1s0 11
Σ(12) = s2s3s2s1s2s3s2s4s3s2s1s0 12
Σ1(12) = s4s3s2s1s2s3s2s4s3s2s1s0 12
Σ(13) = s2s4s3s2s1s2s3s2s4s3s2s1s0 13
Σ(14) = s3s2s4s3s2s1s2s3s2s4s3s2s1s0 14
Σ(15) = s2s3s2s4s3s2s1s2s3s2s4s3s2s1s0 15
Σ(16) = s1s2s3s2s4s3s2s1s2s3s2s4s3s2s1s0 16

(30)
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(16.16)
(15.16)(15.15)
(14.16)(14.15)(14.14)
(13.16)(13.15)(13.14)
(12.16)(12.15)(12.14)
(121.16)(121.15)(121.14)(121 .13)
(11.16)(11.15)(11.14)(11.13)
(111.16)(111.15)(111.14)(111 .13)(111.121)(111.111)
(10.16)(10.15)(10.14)(10.13)
(101.16)(101.15)(101.14)(101 .13)(101.121)(101.111)
(9.16)(9.15)(9.14)(9.13)(9.12)
(91.16)(91.15)(91.14)(91.13)(91.121)(91.111)
(8.16)(8.15)(8.14)(8.13)(8.121)(8.111)
(81.16)(81.15)(81.14)(81.13)(81.12)
(7.16)(7.15)(7.14)(7.13)(7.121)(7.111)
(71.16)(71.15)(71.14)(71.13)(71.12)(71.121)(71.111)
(6.16)(6.15)(6.14)(6.13)(6.121)(6.111)
(61.16)(61.15)(61.14)(61.13)(61.12)(61.121)(61.111)
(5.16)(5.15)(5.14)(5.13)(5.12)(5.121)(5.111)
(51.16)(51.15)(51.14)(51.13)(51.12)(51.121)(51.11)(51.111)(51.101)
(4.16)(4.15)(4.14)(4.13)(4.12)(4.121)(4.11)(4.111)(4.101)
(3.16)(3.15)(3.14)(3.13)(3.12)(3.121)(3.11)(3.111)(3.101)
(2.16)(2.15)(2.14)(2.13)(2.12)(2.121)(2.11)(2.111)(2.10)(2.101)(2.91)
(1.16)(1.15)(1.14)(1.13)(1.12)(1.121)(1.11)(1.111)(1.10)(1.101)(1.9)(1.91)(1.8)(1.7)(1.6)

Figure 1: Allowed pairs for F4.
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Figure 2: Affine Dynkin diagrams
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Ẽ6
r r r r r

r

r

0 1 2 3 4

5

6

Ẽ7
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