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Abstract

We extend a classical construction on symmetric functions, the superization pro-
cess, to several combinatorial Hopf algebras, and obtain analogs of the hook-content
formula for the (q, t)-specializations of various bases. Exploiting the dendriform
structures yields in particular (q, t)-analogs of the Björner-Wachs q-hook-length for-
mulas for binary trees, and similar formulas for plane trees.
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1 Introduction

Combinatorial Hopf algebras are special graded and connected Hopf algebras based on
certain classes of combinatorial objects. There is no general agreement of what their
precise definition should be, but looking at their structure as well as to their existing
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applications, it is pretty clear that they are to be regarded as generalizations of the Hopf
algebra Sym of symmetric functions.

It is well-known that one can define symmetric functions f(X−Y ) of a formal difference
of alphabets. This can be interpreted either as the image of the difference

∑

i xi −
∑

j yj

by the operator f in the λ-ring generated by X and Y , or, in Hopf-algebraic terms, as
(Id⊗ω̃)◦∆(f), where ∆ is the coproduct and ω̃ the antipode. And in slightly less pedantic
terms, this just amounts to replacing the power-sums pn(X) by pn(X)− pn(Y ), a process
already discussed at length in Littlewood’s book [26, p. 100].

This article deals with a class of combinatorial identities whose first examples involved
Schur functions. As is well-known, the Schur functions sλ(X) are the characters of the
irreducible tensor representations of the general Lie algebra gl(n). Similarly, the sλ(X−Y )
are the characters of the irreducible tensor representations of the general Lie superalgebras
gl(m|n) [3]. These symmetric functions are not positive sums of monomials, and for
this reason, one often prefers to use as characters the so-called supersymmetric functions
sλ(X|Y ), which are defined by pn(X|Y ) = pn(X) + (−1)n−1pn(Y ) (see [41]), and are
indeed positive sums of monomials: their complete homogeneous functions are given by

σt(X|Y ) =
∑

n>0

hn(X|Y )tn = λt(Y )σt(X) =
∏

i,j

1 + tyj

1 − txi

. (1)

Another (not unrelated) classical result on Schur functions is the hook-content formula
[30, I.3 Ex. 3], which gives in closed form the specialization of a Schur function at the
virtual alphabet

1 − t

1 − q
=

1

1 − q
− t

1

1 − q
= 1 + q + q2 + · · · − (t + tq + tq2 + · · · ) . (2)

This specialization was first considered by Littlewood [26, Ch. VII], who obtained a
factorized form for the result, but with possible simplifications. The improved version
known as the hook-content formula

sλ

(

1 − t

1 − q

)

= qn(λ)
∏

x∈λ

1 − tqc(x)

1 − qh(x)
, (3)

which is a (q, t)-analog of the famous hook-length formula of Frame-Robinson-Thrall [11],
is due to Stanley [44].

The first example of a combinatorial Hopf algebra generalizing symmetric functions is
Gessel’s algebra of quasi-symmetric functions [13]. Its Hopf algebra structure was further
worked out in [31, 12], and later used in [24], where two different analogs of the hook-
content formula for quasi-symmetric functions are given. Indeed, the notation

FI

(

1 − t

1 − q

)

(4)

is ambiguous. It can mean (at least) two different things:

either FI

( 1

1 − q
×̂ (1 − t)

)

or FI

(

(1 − t) ×̂
1

1 − q

)

,
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where ×̂ denotes the ordered product of alphabets. The second one is of the form FI(X −
Y ) (in the sense of [24]), but the first one is not (cf. [24]).

In this article, we shall extend the notion of superization to several combinatorial
Hopf algebras. We shall start with FQSym (Free quasi-symmetric functions, based on
permutations), and our first result (Theorem 3.1) will allow us to give new expressions
and combinatorial proofs of the (q, t)-specializations of quasi-symmetric functions. Next,
we extend these results to PBT, the Loday-Ronco algebra of planar binary trees, and
obtain a (q, t)-analog of the Knuth and Björner-Wachs hook-length formulas for binary
trees. These results rely on the dendriform structure of PBT. Exploiting in a similar
way the tridendriform structure of WQSym (Word quasi-symmetric functions, based on
packed words, or set compositions), we arrive at a (q, t) analog of the formula of [20]
counting packed words according to the shape of their plane tree.

Acknowledgments.- This work has been partially supported by Agence Nationale de la Recherche,

grant ANR-06-BLAN-0380. The authors would also like to thank the contributors of the MuPAD project,

and especially those of the combinat package, for providing the development environment for this research

(see [21] for an introduction to MuPAD-Combinat).

2 Background

2.1 Some conventions

The algebras considered in this paper are defined from infinite totally ordered sets of
variables, referred to as alphabets. It is customary to reserve the letters A, B, . . . for
noncommutative alphabets, and X, Y, . . . for commutative ones. If A and B are two
alphabets, their ordinal sum is denoted by A+̂B, or simply by A + B when there is no
ambiguity. Their cartesian product, endowed with the lexicographic order, is denoted by
AB.

Multi-indices in upper position denote a product: if elements Zi are defined, Z(i1,...,ir)

means Zi1 · · ·Zir .
The symmetric group is denoted by Sn. A permutation σ ∈ Sn is said to have

a descent at i ∈ [1, n − 1] if σ(i) > σ(i + 1). The set of such i is called the descent
set of σ and denoted by Des(σ). Descent sets of permutations of Sn can be encoded
by compositions of n, i.e., finite sequences of positive integers I = (i1, . . . , ir) summing
to n. To the descent set D = {d1, . . . , dr−1} we associate the composition I such that
dk = i1 + i2 + · · · + ik, and ir = n − dr−1. We say that I is the descent composition
of σ. We also say that D is the descent set of I and write I = C(σ) = C(D), and
D = Des(σ) = Des(I). These defintions extend to words w = w1 · · ·wn over an arbitrary
ordered alphabet: w has a descent at i if wi > wi+1. The notation I � n means that I is
a composition of n. Compositions are represented by ribbon diagrams:

(5)
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where the number of cells of the k-th row is the k-th part of the composition. Thus, the
above diagram corresponds to the composition (2, 4, 1, 1, 3).

The conjugate composition, obtained by reading from right to left the heights of the
columns of this diagram, is denoted by I∼.

The sum of the descents of a word w or of a composition I is called its major index,
and is denoted by maj (w) or maj (I).

The evaluation Ev(w) of a word w over a totally ordered alphabet A is the sequence
(|w|a)a∈A where |w|a is the number of occurences of a in w. The packed evaluation I =
pEv(w) is the composition obtained by removing the zeros in Ev(w).

The standardized word std(w) of a word w ∈ A∗ is the permutation obtained by
iteratively scanning w from left to right, and labelling 1, 2, . . . the occurrences of its
smallest letter, then numbering the occurrences of the next one, and so on. For example,
std(bbacab) = 341625. For a word w on the alphabet {1, 2, . . .}, we denote by w[k] the
word obtained by replacing each letter i by the integer i + k.

All algebras are over some field K of characteristic 0.

2.2 Noncommutative symmetric functions

2.2.1 The algebra Sym

The reader is referred to [12] for the basic theory of noncommutative symmetric functions.
The encoding of Hopf-algebraic operations by means of sums, differences, and products
of virtual alphabets is fully explained in [24]. Here is a brief reminder.

The algebra of noncommutative symmetric functions, denoted by Sym, or by Sym(A)
if we consider the realization in terms of an auxiliary alphabet, is defined as the free
associative algebra over an infinite sequence of generators Si, i > 1. We also set S0 = 1.
It is graded by deg Si = i. Its homogeneous component of degree n is denoted by Symn.

If A is an infinite totally ordered alphabet, we can set

σt(A) :=
∑

n>0

Sn(A)tn =
→
∏

i>1

(1 − tai)
−1 (6)

where t is an auxiliary indeterminate commuting with A. Thus, Sn(A) is the sum of all
nondecreasing words of length n over A. The inverse of the generating series σt(A) is

λ−t(A) :=
∑

n>0

Λn(A)(−t)n =
←
∏

i>1

(1 − tai). (7)

Thus, Λn(A) is the sum of all decreasing words of length n over A. Under the commutative
image A → X (i.e., sending the letters of A to commuting variables), Sn(A) and Λn(A) go
to hn(X) (complete homogeneous symmetric functions) and en(X) (elementary symmetric
functions) respectively.
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2.2.2 Linear bases

Bases of the homogeneous component Symn are labelled by compositions I of n. The
ribbon basis may be defined by

RI(A) =
∑

C(w)=I

w , (8)

that is, the sum of all words over A whose descent composition is I. We have the relation

SI =
∑

J6I

RJ (9)

where 6 is the reverse refinement order.

2.2.3 Hopf algebra structure

If A and B are two totally ordered alphabets we can define Sn(A+̂B), which is clearly
equal to

Sn(A+̂B) =
∑

i+j=n

Si(A)Sj(B) . (10)

If we assume that A and B commute with each other, this defines a coproduct on Sym,
under the usual identification f(A)g(B) ≡ f ⊗ g:

∆F = F (A+̂B) . (11)

Clearly, this is an algebra morphism, endowing Sym with the structure of a bialgebra.
Being graded and connected, Sym is actually a Hopf algebra.

The graded dual of Sym is QSym (quasi-symmetric functions). The dual basis of
(SI) is (MI) (monomial), and that of (RI) is (FI) (Gessel’s fundamental basis).

2.2.4 The (1 − q)-transform

The Hopf structures on Sym and QSym allows one to mimic, up to a certain extent,
the λ-ring notation. In particular, the (1− q)-transform of ordinary symmetric functions
(sending power-sums pn to (1 − qn)pn) is easily generalized. Recall from [24] that the
noncommutative symmetric functions of a difference of alphabets are defined by the change
of generators

Sn 7→ Sn(A − B) =
∑

i+j=n

(−1)iΛi(B)Sj(A) = p ◦ (I ⊗ γ) ◦ ∆Sn, (12)

where ∆ is the coproduct, γ the antipode, I the identity map, and

p(F ⊗ G) := G(B)F (A). (13)
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Thus,
σt((1 − q)A) := λ−qt(A)σt(A), (14)

Since we also know the inverse transform (A/(1− q)), we can introduce a second variable
and define noncommutative symmetric functions and quasi-symmetric functions of the
virtual alphabet (1 − t)/(1 − q) (see [24] and below for details). In the sequel, we shall
need to define this specialization in more complicated Hopf algebras. The best way to
achieve this is to rely upon another description, involving the internal product of Sym.

2.2.5 Internal product

The Hopf algebra Sym is sometimes improperly called the Solomon descent algebra in
the literature. This is because its homogeneous components Symn can be endowed with a
new product, called the internal product, for which they are anti-isomorphic to the descent
algebras of symmetric groups [12]. To cut the story short, if

DI =
∑

C(σ)=I

σ (15)

denotes the sum of all permutations with descent composition I in the group algebra of
Sn, then the DI form the basis of a subalgebra Σn of ZSn (Solomon’s descent algebra,
[43]), and the map

α : DI 7→ RI (16)

is an anti-isomorphism from Σn and Symn endowed with its internal product ∗. The inter-
nal product is extended to Sym by requiring that F ∗G = 0 if F and G are homogeneous
of different degrees.

The fundamental property of the internal product is the splitting formula

(f1 . . . fr) ∗ g = µr [(f1 ⊗ · · · ⊗ fr) ∗r ∆rg] , (17)

where µr denotes the r-fold multiplication, ∗r the internal product in Sym⊗r, and ∆r the
iterated coproduct with values in Sym⊗r.

This formula implies that for any (genuine or virtual) alphabet X, the algebra mor-
phism F 7→ F (XA) is given by

F (XA) = F (A) ∗ σ1(XA) . (18)

In particular,
F ((1 − q)A) = F (A) ∗ σ1((1 − q)A) (19)

and the inverse transform is given by

F (A) = F ((1 − q)A) ∗ σ1

(

A

1 − q

)

, (20)

where

σt

(

A

1 − q

)

:= · · ·σq2t(A)σqt(A)σt(A) . (21)

We usually consider that our auxiliary variable t is of rank one, which means that σt(A) =
σ1(tA).
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2.3 Free quasi-symmetric functions

Recall from [9] that for an infinite totally ordered alphabet A, FQSym(A) is the subal-
gebra of K〈A〉 spanned by the polynomials

Gσ(A) =
∑

std(w)=σ

w (22)

the sum of all words in An whose standardization is the permutation σ ∈ Sn. The
multiplication rule is, for α ∈ Sk and β ∈ Sℓ,

GαGβ =
∑

γ∈Sk+l; γ=u·v

std(u)=α,std(v)=β

Gγ . (23)

The noncommutative ribbon Schur function RI ∈ Sym is then

RI =
∑

C(σ)=I

Gσ . (24)

This defines a Hopf embedding Sym → FQSym. Indeed, the coproduct of FQSym may
also be defined by

∆Gσ = Gσ(A+̂B), (25)

where A+̂B denotes the ordinal sum. This clearly is an algebra morphism, which restricts
to the coproduct of Sym. As a Hopf algebra, FQSym is self-dual. It is isomorphic to
the Hopf algebra of permutations considered in [31] and [2].

The scalar product materializing this duality is the one for which (Gσ , Gτ ) = δσ,τ−1

(Kronecker symbol). Hence, Fσ := Gσ−1 is the dual basis of Gσ.
The internal product ∗ of FQSym is induced by composition ◦ in Sn in the basis Fσ,

that is,
Fσ ∗ Fτ = Fσ◦τ so that Gσ ∗ Gτ = Gτ◦σ . (26)

Its restriction to Symn coincides with the internal product already defined.
The transpose of the Hopf embedding Sym → FQSym is the commutative image

Fσ 7→ Fσ(X) = FI(X), where I is the descent composition of σ, and FI is Gessel’s
fundamental basis of QSym. Note that this implies that if X is a commutative alphabet,
Fσ(X) depends only on the descent composition I = C(σ).

2.4 Word quasi-symmetric functions

A word u over N
∗ is said to be packed if the set of letters appearing in u is an interval of

N
∗ containing 1. The algebra WQSym(A) (Word Quasi-Symmetric functions) is defined

as the subalgebra of K〈A〉 based on packed words and spanned by the elements

Mu(A) :=
∑

pack(w)=u

w, (27)
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where pack(w) is the packed word of w, that is, the word obtained by replacing all occur-
rences of the k-th smallest letter of w by k. For example,

pack(871883319) = 431442215. (28)

Let Nu = M∗
u be the dual basis of (Mu). It is known that WQSym is a self-dual

Hopf algebra [17, 37] and that on the graded dual WQSym∗, an internal product ∗ may
be defined by

Nu ∗ Nv = Npack(u,v), (29)

where the packing of biwords is defined with respect to the lexicographic order on biletters,
so that, for example,

pack

(

42412253

53154323

)

= 62513274. (30)

This product is induced from the internal product of parking functions [38, 33, 39]
and allows one to identify the homogeneous components WQSymn with the (opposite)
Solomon-Tits algebras, in the sense of [40].

The (opposite) Solomon descent algebra, realized as Symn, is embedded in the (op-
posite) Solomon-Tits algebra realized as WQSym∗n by

SI =
∑

Ev(u)=I

Nu, (31)

where Ev(u) is the evaluation of u defined in Section 2.

3 Free super-quasi-symmetric functions

3.1 Supersymmetric functions

As already mentioned in the introduction, in the λ-ring notation, the definition of super-
symmetric functions is transparent. If X and X̄ are two independent infinite alphabets,
the superization f# of f ∈ Sym is

f# := f(X | X̄) = f(X − qX̄)|q=−1, (32)

where f(X − qX̄) is interpreted in the λ-ring sense (pn(X − qX̄) := pn(X)− qnpn(X̄)), q
being of rank one, so that pn(X|X̄) = pn(X) − (−1)npn(X̄). This can also be written as
an internal product

f# = f ∗ σ#
1 , (33)

where σ#
1 = σ1(X − qX̄)|q=−1 = λ1(X̄)σ1(X), and the internal product is extended to the

algebra generated by Sym(X) and Sym(X̄) by means of the splitting formula (17) and
the rules

σ1 ∗ f = f ∗ σ1, σ1 ∗ σ1 = σ1. (34)

Here, the bar means f(X, X) = f(X, X). In particular, σ1 = σ1(X) = σ1(X).
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3.2 Noncommutative supersymmetric functions

3.2.1 A basis of Sym(2)

The superization map can be lifted to noncommutative symmetric functions. We need two
independent infinite totally ordered alphabets A and Ā. Let Sym(2) := Sym(A)⋆Sym(Ā)
be the free product of two copies of Sym, i.e., the free algebra generated by the Sn(A)
and Sn(A). We define Sym(A|Ā) as the subalgebra of Sym(2) generated by the S#

n where

σ#
1 = λ̄1σ1 =

∑

I=(i1,...,ir+1)

(−1)i1+···+ir−rSi1...irSir+1. (35)

For example,
S#

1 = S1 + S1, S#
2 = S2 + S11 − S2 + S11, (36)

S#
3 = S3 + S12 + S111 − S21 + S111 − S21 − S12 + S3. (37)

We shall denote the generators of Sym(2) by S(k,ǫ) where ǫ = {±1}, so that S(k,1) = Si

and S(k,−1) = S̄k.

The corresponding basis of Sym(2) is then written

S(I,ǫ) = S(i1,...,ir),(ǫ1,...,ǫr) := S(i1,ǫ1)S(i2,ǫ2) . . . S(ir ,ǫr), (38)

where I = (i1, . . . , ir) is a composition and ǫ = (ǫ1, . . . , ǫr) ∈ {±1}r is a vector of signs.
The superization f ♯ of f ∈ Sym is defined as its image by the algebra morphism

Sn 7→ S♯
n.

3.2.2 Signed ribbons

Following [19], we define an order on signed compositions as follows: let

(I, ǫ) = ((i1, . . . , im), (ǫ1, . . . , ǫm)) and (J, η) = ((j1, . . . , jp), (η1, . . . , ηp))

two signed compositions. Then (I, ǫ) is coarser than (J, η), and we write (I, ǫ) 6 (J, η),
if there exists a sequence (l0 = 0, l1, . . . , lp = m) such that for any integer k,

jk = ilk−1+1 + · · ·+ ilk and ηk = ǫlk−1+1 = · · · = ǫlk . (39)

For example, the signed compositions coarser than ((1, 1, 3, 2), (−1, 1, 1,−1)) are

((1, 1, 3, 2), (−1, 1, 1,−1)) and ((1, 4, 2), (−1, 1,−1)). (40)

The signed ribbons R(J,η) are defined by the following formula [19]:

S(I,ǫ) =:
∑

(J,η)6(I,ǫ)

R(J,η). (41)
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3.2.3 Internal product of Sym(2)

Again, we extend the internal product by formulas (17) and (34) where, now, f1, . . . , fr,
g ∈ Sym(2), and σ1 = σ1(A), σ1 = σ1(Ā). The resulting algebra is isomorphic to the
Mantaci-Reutenauer algebra of type B ([32], see [1] for this version). The superization of
f ∈ Sym can now be written as

f# = f ∗ σ#
1 = f(A − qĀ)|q=−1 = f ∗ (λ1σ1). (42)

3.3 Super-quasi-symmetric functions

There are two natural and nonequivalent choices for defining super-quasi-symmetric func-
tions. The first one is to set F (X|X̄) = F (X − qX̄)|q=−1 as in [15]. The second one
is obtained by commutative image from the free super-quasi-symmetric functions to be
defined below. Let us note that super-quasi-symmetric functions have been recently in-
terpreted as characters of certain abstract crystals of the Lie superalgebras gl(m|n) [25].

3.4 Free super-quasi-symmetric functions

3.4.1 The superization map

The expressions (42) are still well-defined for an arbitrary f ∈ FQSym. We can de-
fine FQSym(A|Ā) as a subalgebra of the free product FQSym(2) = FQSym(A) ⋆
FQSym(Ā), i.e., the algebra freely generated by the Gα(A), Gβ(A), where α and β
run over connected permutations.

Again, the internal product ∗ is extended to the free product by conditions (17) (valid
only if g ∈ Sym(2), which is enough for our purpose, cf. [8]), and (34). Note that
FQSym(2) is the algebra of free quasi-symmetric functions of level 2, as defined in [34].

3.4.2 Conventions for signed words

Let us set

A(0) = A = {a1 < a2 < . . . < an < . . .} , (43)

A(1) = Ā = {. . . < ān < . . . < ā2 < ā1} , (44)

order A = Ā ∪ A by āi < aj for all i, j, and denote by std the standardization of signed
words with respect to this order.

We denote by maj (w, ǫ) the major index of w with respect to this order on the signed
alphabet.

We also need the signed standardization Std, defined as follows. Represent a signed
word w ∈ An by a pair (w, ǫ), where w ∈ An is the underlying unsigned word, and
ǫ ∈ {±1}n is the vector of signs. Then Std(w, ǫ) = (std(w), ǫ).

We denote by m(ǫ) the number of entries −1 in ǫ.
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3.4.3 A combinatorial expression of the superization map

A basis of FQSym(2) is given by

Gσ,ǫ :=
∑

Std(w)=(σ,ǫ)

w ∈ Z〈A〉. (45)

and the internal product obtained from (17) and (34) coincides with the one of [34], so that
it is in fact always well-defined. In particular, viewing signed permutations as elements
of the group {±1} ≀ Sn,

Gα,ǫ ∗ Gβ,η = G(β,η)◦(α,ǫ) = Gβ◦α,(ηα)·ǫ, (46)

with ηα = (ηα(1), . . . , ηα(n)) and ǫ · η = (ǫ1η1, . . . , ǫnηn).

We now embed FQSym in FQSym(2) by

Gσ 7→ G(σ,1n), (47)

which allows us to define
G#

σ := Gσ(A|Ā) = Gσ ∗ σ#
1 , (48)

and FQSym(A|Ā) as the algebra spanned by the Gσ(A|Ā).

Theorem 3.1 The expansion of Gσ(A|Ā) on the basis Gτ,ǫ is

Gσ(A|Ā) =
∑

std(τ,ǫ)=σ

Gτ,ǫ . (49)

Proof – This is clear for σ = 12 . . . n:

∑

n

G12...n(A|Ā) = λ̄1 · σ1 =
∑

i1<i2<...<ik
j16j26...6jℓ

āi1 āi2 · · · āikaj1aj2 · · ·ajℓ
, (50)

and writing

Gσ(A|Ā) = Gσ ∗ (λ̄1 · σ1) =
∑

std(τ,ǫ)=12···n

Gτσ,ǫσ =
∑

std(τ,ǫ)=σ

Gτ,ǫ , (51)

we obtain (49).

4 An application: the (1 − t)-transform

Our analogs of the (q, t)-hook-content formulas will be obtained by lifting the definition
of the vitual alphabet (1 − t)/(1 − q) to various combinatorial Hopf algebras, and then
evaluating on it a special basis. Since 1/(1 − q) is a genuine alphabet, what we have to
do is to understand the transformation A → (1 − t)A.
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4.1 The canonical projection

We have an obvious projection

FQSym(A|Ā) → FQSym(A) (52)

consisting in setting Ā = A. We need the refined map

ηt(G
#
σ ) = Gσ(A|tA) = Gσ((1 − t)A)|t=−t. (53)

Corollary 4.1 In the special case Ā = tA, one gets

Gσ(A|tA) =
∑

std(τ,ǫ)=σ

tm(ǫ)Gτ (A). (54)

Proof – This follows from (49).

Example 4.2 We have

G12(A|tA) = (1 + t)(G12 + tG21), G21(A|tA) = (1 + t)(G21 + tG12). (55)

G123(A|tA) = (1 + t)(G123 + tG213 + tG312 + t2 G321),

G132(A|tA) = (1 + t)(G132 + tG231 + tG321 + t2 G312),

G213(A|tA) = (1 + t)(G213 + tG123 + tG132 + t2 G231),

G231(A|tA) = (1 + t)(G231 + tG132 + tG123 + t2 G213),

G312(A|tA) = (1 + t)(G312 + tG231 + tG321 + t2 G132),

G321(A|tA) = (1 + t)(G321 + tG312 + tG213 + t2 G123).

(56)

G4132(A|tA) = (1 + t)(G4132 + tG3421 + tG4231 + tG4321

+ t2 G2413 + t2 G3412 + t2 G4312 + t3 G1423).
(57)

Indeed, (57) is obtained from the 16 signed permutations whose standardized word is
4132:

4132, 4132, 3421, 3421, 4231, 4231, 4321, 4321,

2413, 2413, 3412, 3412, 4312, 4312, 1423, 1423.
(58)

Summing over a descent class, we obtain the natural embedding of Sym(A|Ā) into
FQSym(A|Ā):

RI(A|Ā) =
∑

C(σ)=I

Gσ(A|Ā). (59)

We then have
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Corollary 4.3

RI(A|Ā) =
∑

C(J,ǫ)=I

R(J,ǫ), (60)

where R(J,ǫ) is defined in (41) and C(J, ǫ) is the composition whose descents are the de-
scents of any signed permutation (σ, ǫ) where σ is of shape J .

Substituting Ā = tA yields

RI(A|tA) =
∑

C(J,ǫ)=I

tm(ǫ)RJ(A), (61)

which allows us to recover directly a formula of [24] (note that in [24], the recursive
description of b(I, J) is incorrect). Recall that a peak of a composition is a cell of its
ribbon diagram having no cell to its right nor on its top and that a valley is a cell having
no cell to its left nor at its bottom.

For example, Equation (56) gives

R3(A|tA) = (1 + t)(R3 + t R12 + t2 R111),

R21(A|tA) = (1 + t)(t R3 + (1 + t) R21 + t2 R12 + t R111),

R12(A|tA) = (1 + t)(t R3 + t(1 + t) R21 + R12 + t R111),

R111(A|tA) = (1 + t)(t2 R3 + t R12 + R111).

(62)

On this example, one can check the following result for all pairs of compositions of 3.

Corollary 4.4 ([24], (121))

RI(A|tA) =
∑

J

(1 + t)v(J)tb(I,J)RJ(A), (63)

where the sum is over all compositions J such that I has either a peak or a valley at each
peak of J . Here v(J) is the number of valleys of J and b(I, J) is the number of values d
such that, either d is a descent of J and not a descent of I, or d− 1 is a descent of I and
not a descent of J .

Proof – This is best understood at the level of permutations. First, the coefficient of
RJ(A) is, by definition, the t-number of signed permutations of shape I whose underlying
(unsigned) permutation is of shape J , the power of t being the number of negative signs.
Now, to insert signs in the ribbon diagram of a permutation of shape J in order to obtain
a signed permutation of shape I, we distinguish three kinds of cells: those which must
have a plus sign, those which must have a minus sign, and those which can have both
signs. The valleys of J can get any sign without changing their final shape whereas all
other cells have a fixed plus or minus sign, depending on I and J , thus explaining the fact
that the coefficient in front of RJ is a polynomial of the form (1+ t)v(J) tb. The power of t
corresponds to the number of cells that must have a minus sign. It is enough to determine
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for all pairs of compositions of 3 if the middle cell has to be negative or not since this
depends only on the relative positions of their adjacent cells in I and J . Looking more
carefully at the positions that must have a negative sign, one finds the following sets,
given I and J :

I\J 3 21 12 111
3 ∅ − {1} {1, 2}
21 {1} ∅ {1, 3} {1}
12 {1} {2} ∅ {2}
111 {2} − {3} ∅

(64)

where − means that b(I, J) is not defined since in that case RJ does not appear is the
expansion of RI(A|tA). This is is accordance with (63), and establish its validity in
general.

4.2 The dual transformation

Corollary 4.1 is equivalent, up to substituting −t to t, to a combinatorial description of

Gσ((1 − t)A) = Gσ(A) ∗ σ1((1 − t)A). (65)

Let η∗t be the adjoint of ηt. We can consistently define the virtual alphabet A · (1− t) by

Fσ(A · (1 − t)) := η∗−t(Fσ(A)), (66)

since, for two mutually commuting alphabets, the noncommutative Cauchy formula [8]
states

σ1(AB) =
∑

σ

Fσ(A)Gσ(B), (67)

so that we should have

σ1(A · (1 − t) · B) =
∑

α

Fα(A · (1 − t))Gα(B)

=
∑

β

Fβ(A)Gβ((1 − t)B).
(68)

Writing
Gβ((1 − t)B) = Gβ(B) ∗ Sn((1 − t)B), (69)

and using the expression [24, Prop. 5.2],

Sn((1 − t)A) =

n−1
∑

k=0

(1 − t)(−t)kR(1k ,n−k), (70)

we get

n−1
∑

k=0

(1 − t)(−t)kGβ ∗ R(1k ,n−k) =

n−1
∑

k=0

(1 − t)(−t)k
∑

Des(τ)={1,...,k}

Gτ◦β(B), (71)
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since Equation (24) yields

R(1k ,n−k) =
∑

Des(σ)={1,...,k}

Gσ. (72)

We have, setting γ = τ ◦ β in Equation (71), and plugging it into (68),

σ1(A · (1 − t) · B) = 1 +
∑

|γ|=n>1
06k6n−1





∑

Des(τ)={1,...,k}

(1 − t)(−t)kFτ−1◦γ(A)



Gσ(B), (73)

so that

Fγ(A · (1 − t)) =
n−1
∑

k=0

(1 − t)(−t)k
∑

Des(τ)={1,...,k}

Fτ−1◦γ(A). (74)

Theorem 4.5 In terms of signed permutations,

Fγ(A · (1 − t)) =
∑

ǫ∈{±1}n

(−t)m(ǫ)Fstd(γ,ǫ)(A). (75)

Proof – An equivalent formulation of Equation (74) is

Fγ(A · (1 − t)) = σ1((1 − t)A) ∗ Fγ . (76)

Since
σ1((1 − t)A) = 1 +

∑

|τ |=n>1
06k6n

∑

Des(τ)={1,...,k}

Fτ−1 , (77)

by Corollary 4.1, we also have

σ1((1 − t)A) = 1 +
∑

n>1

∑

ǫ∈{±1}n

(−t)m(ǫ)Fstd(1...n,ǫ)(A), (78)

whence the statement.

For example, let us compute Fσ(A · (1 − t)) for all permutations of 3.

F123(A · (1 − t)) = (1 − t)(F123 − tF213 − tF231 + t2 F321),

F132(A · (1 − t)) = (1 − t)(F132 − tF231 − tF213 + t2 F312),

F213(A · (1 − t)) = (1 − t)(F213 − tF123 − tF321 + t2 F231),

F231(A · (1 − t)) = (1 − t)(F231 − tF132 − tF312 + t2 F213),

F312(A · (1 − t)) = (1 − t)(F312 − tF321 − tF123 + t2 F132),

F321(A · (1 − t)) = (1 − t)(F321 − tF312 − tF132 + t2 F123),

(79)
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4.3 The (q, t)-specialization

Recall from [9] that when X is a commutative alphabet, the specialization

Fσ(X) = FC(σ)(X) (80)

depends only on the descent composition of σ, and is equal to a fundamental quasi-
symmetric function. Recall also that, for a composition I of n (see [14]), one has

FI

(

1

1 − q

)

=
qmaj (I)

(q)n

. (81)

From now on, we denote by X the alphabet |1−t
1−q|

:= 1
1−q

×̂ (1 − t). That is,

F (X) := F (A · (1 − t))|A= 1
1−q

. (82)

Corollary 4.6 Specializing A = 1
1−q

in Theorem 4.5, we obtain

Fσ(X) = FC(σ)(X) in the notation of [24]

=
1

(q)n

∑

ǫ∈{±1}n

(−t)m(ǫ)qmaj (σ,ǫ), (83)

where the major index of a signed word (w, ǫ) is as in 3.4.2.

For example,

(q)4F1324(X) = −q5t3 +2q5t2 − q5t+ q4t4 −2q4t3 + q4t2 + q2t2 −2q2t+ q2 − qt3 +2qt2 − qt. (84)

as can be checked on the 16 signed words

(σ, ǫ) m(ǫ) maj (σ, ǫ) (σ, ǫ) m(ǫ) maj (σ, ǫ)
1324 0 2 1324 1 5
1324 1 2 1324 2 5
1324 1 1 1324 2 4
1324 2 1 1324 3 4
1324 1 2 1324 2 5
1324 2 2 1324 3 5
1324 2 1 1324 3 4
1324 3 1 1324 4 4

(85)

4.4 Hook-content formulas in FQSym

Let us denote by SPi the set of words ǫ ∈ {±1}n where ǫi = 1 and by SMi the set of
words ǫ ∈ {±1}n where ǫi = −1.

Let φi be the involution on signed permutations (σ, ǫ) which changes the sign of ǫi and
leaves the rest unchanged.
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Lemma 4.7 Let (σ, ǫ) be a signed permutation such that ǫi = 1 and let (σ, ǫ′) = φi(σ, ǫ).
Then

(−t)m(ǫ′)qmaj (σ,ǫ′) = (−t)
q(i−1)xi

qiyi
(−t)m(ǫ)qmaj (σ,ǫ), (86)

where xi = 0 if σi−1 > σi and xi = 1 otherwise, and yi = 0 if σi < σi+1 and yi = 1
otherwise. By convention, x1 = 0 and yn = 0, which is equivalent to fixing σ0 = σn+1 =
+∞. Note that xi+1 = 1 − yi.

Proof – The factor (−t) is obvious. The difference between the q-statistics of both words
depends only on the descents at position i−1 and position i. Let us discuss position i−1
(value of xi). If σi−1 > σi, we have

−σi−1 < −σi < σi < σi−1, (87)

so that there is a descent at position i − 1 in (σ, ǫ) iff there is a descent at the same
position in (σ, ǫ′). This proves the case xi = 0.

Now, if σi−1 > σi, we have

−σi < −σi−1 < σi−1 < σi, (88)

so that there is no descent at position i − 1 in (σ, ǫ) and there is a descent at the same
position in (σ, ǫ′). This proves the case xi = 1. The discussion of position i is similar.

Lemma 4.8 For i ∈ [1, n] and σ ∈ Sn,

(q)nFσ(X) =
∑

ǫ∈{±1}n

(−t)m(ǫ)qmaj (σ,ǫ) =

(

1 − t
q(i−1)xi

qiyi

)

∑

ǫ∈SPi

(−t)m(ǫ)qmaj (σ,ǫ). (89)

Proof – From Lemma 4.7, we see that each signed permutation (σ, ǫ′) with ǫ′i = −1 gives
the same contribution as φi(σ, ǫ′) up to the factor −t q(i−1)xi−iyi.

The following theorem may be regarded as an analog of the hook-content formula,
where the hook-length of cell #i is its “ribbon length” i, and its “content” is ci = (i −
1)xi−iyi. It gives in particular a factorized expression of the r.h.s of (83) in Corollary 4.6.

Theorem 4.9 Let σ ∈ Sn. Then

Fσ(X) = qmaj (σ)
n

∏

i=1

1 − q(i−1)xi−iyi t

1 − qi
=

n
∏

i=1

qiyi − q(i−1)xi t

1 − qi
, (90)

where xi and yi are as in Lemma 4.7.

Proof – The argument of the proof of Lemma 4.8 applies similarly to signed permutations
of the set SPi such that ǫ′j = −1, and so on, so that the whole expression factors and
gives the first formula of (90). The second expression is clearly equivalent.

For example, with σ = (1, 3, 2, 4), (4.9) gives

(q)4F1324(X) = (1 − t)(q2 − qt)(1 − t)(1 − q3t). (91)

Expanding this expression gives back the r.h.s. of Equation (84).
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4.5 Other approaches

We shall now see two alternative hook-content formulas for Fσ(X). All versions end
up with the same factorizations, but the factors do not arise in the same order, and
simplifications can occur beween numerators and denominators. The first one is obtained
from an induction formula expressing Fσ(X) from Fstd(σ1...σn−1)(X), and follows directly
from Theorem 4.9.

Corollary 4.10 Let ∂Fσ(X) := Fstd(σ1...σn−1)(X) as in [20]. Then,

Fσ(X) = ∂Fσ(X) ×































1 − qn−1t

1 − qn
if σn−1 <σn,

qn−1 − t

1 − qn
if σn−2 >σn−1 >σn,

(qn−1 − qn−2t)(1 − t)

(1 − qn−2t)(1 − qn)
if σn−2 <σn−1 >σn,

(92)

or, equivalently

Fσ(X) = ∂Fσ(X) ·
q(n−1)a − q(n−2)bt

1 − q(n−2)bt

1 − q(n−1)(1−a)t

1 − qn
, (93)

where a = 1 if σn−1 > σn and a = 0 otherwise, and b = 1 if σn−2 < σn−1 > σn and b = 0
otherwise.

For example, with σ = (1, 3, 2, 4), one obtains

F1324(X) = F132(X)
1 − tq3

1 − q4

= F12(X)
(q2 − qt)(1 − t)

(1 − qt)(1 − q3)

1 − tq3

1 − q4

= F1(X)
1 − qt

1 − q2

(q2 − qt)(1 − t)

(1 − qt)(1 − q3)

1 − tq3

1 − q4

=
1 − t

1 − q

1 − qt

1 − q2

(q2 − qt)(1 − t)

(1 − qt)(1 − q3)

1 − tq3

1 − q4

(94)

Simplifying the last expression gives back the r.h.s. of (91). Expanding it gives back the
r.h.s. of (84).

The “hook-content” factors of Corollary 4.10 can have either two or four terms. But
one easily checks that, if a factor has four terms, those terms simplify with the factors
associated to the preceding letter in the permutation. We recover in this way the partial
factors of [24] and obtain a third version of the hook-content formula:
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Corollary 4.11 ([24], (152))

Fσ(X) =
n

∏

i=1

1

1 − qi



















1 − qi−1t if σi−1 <σi <σi+1,

1 − t if σi−1 <σi >σi+1,

qi−1 − t if σi−2 >σi−1 >σi,

qi−1 − qi−2t if σi−2 <σi−1 >σi,

(95)

with the conventions σ0 = 0 and σn+1 = +∞.

For example, with σ = (1, 3, 2, 4), one finds

(q)4F1324(X) = (1 − t)(1 − t)(q2 − qt)(1 − q3t). (96)

Simplifying (94) gives this expression, which is the same as (91). Hence, its expansion
gives back the r.h.s. of (84).

4.6 Graphical representations

We shall see later that (90) is the special case of Formula (152) for binary trees, when the
tree is a zig-zag line. This is why we choose to represent graphically Fσ(X) with hook-
content type factors in the following way: let the mirror shape of a permutation σ be the
shape of the mirror image I = (ir, . . . , i1) of its descent composition I = (i1, . . . , ir). We
represent it as the binary tree in which each internal node has only one subtree, depending
on whether the corresponding cell of the composition is followed by a cell to its right or to
its bottom. For example, with σ = (5, 6, 7, 4, 3, 2, 8, 9, 10, 1, 11), the shape is (3, 1, 1, 4, 2),
the mirror shape is (2, 4, 1, 1, 3) and its binary tree is shown on Figure 1.

LLL

rrr
LLL

LLL

LLL

rrr

rrr

rrr
LLL

LLL

Figure 1: The mirror shape of σ = (5, 6, 7, 4, 3, 2, 8, 9, 10, 1, 11) and its representation as
a binary tree.

Theorem 4.9 can be visualized by placing into the i-th node (from bottom to top)
of the tree of σ the i-th factor of Fσ(X) in Equation (90). For example, the first
tree of Figure 2 shows the expansion of Fσ(X) with the hook-content factors of σ =
(5, 6, 7, 4, 3, 2, 8, 9, 10, 1, 11).

Similarly, Formula (92) of Corollary 4.10 can be represented graphically with analogs
of the hook-content factors, by placing into node i (from bottom to top) the i-th factor
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q5−t
1−q6

++
+

q4−t
1−q5

//
/

q3−q2t
1−q4

11
1

1−t
1−q3

��
�

1−qt
1−q2

��
�

1−t
1−q

Figure 2: The three hook-content formulas for the permutation
(5, 6, 7, 4, 3, 2, 8, 9, 10, 1, 11): signed permutations (left diagram), induction (middle
diagram), and simplification of the induction (right diagram).

of Fσ(X). For example, the second tree of Figure 2 shows the expansion of Fσ(X) with
our second hook-contents.

Finally, the third tree of Figure 2 shows the expansion of Fσ(X) given by Formula (95)
of Corollary 4.11. Note that it is obtained by permuting cyclically the numerators of the
first formula among right branches.

5 Dendriform operations and (q, t)-specialization

5.1 Dendriform algebras

A dendriform algebra [27] is an associative algebra whose multiplication · is the sum of
two operations

a · b = a ≺ b + a ≻ b (97)
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satisfying






(x ≺ y) ≺ z = x ≺ (y · z) ,
(x ≻ y) ≺ z = x ≻ (y ≺ z) ,
(x · y) ≻ z = x ≻ (y ≻ z) .

(98)

For example, FQSym is dendriform with the following rules

Gα ≺ Gβ =
∑

γ=uv|std(u)=α; std(v)=β

max(v)<max(u)

Gγ , (99)

Gα ≻ Gβ =
∑

γ=uv|std(u)=α; std(v)=β

max(v)>max(u)

Gγ . (100)

Note that x = G1 = F1 generates a free dendriform algebra in FQSym, isomorphic to
PBT, the Loday-Ronco algebra of planar binary trees [28].

5.2 The half-products

5.2.1 Descent statistics on half-shuffles

On the basis Fσ, the half-products are shifted half-shuffles. Recall that the half-shuffles
are the two terms of the recursive definition of the shuffle product. For an alphabet A,
and two words u = u′a, v = v′b, a, b ∈ A, one has

u v = u ≺ v + u ≻ v , (101)

where the half-products are now

u ≺ v = (u′ v)a and u ≻ v = (u v′)b . (102)

Assuming now that A is totally ordered, we want to investigate the distribution of descents
on half-shuffles. To this aim we introduce a linear map

〈w〉 = FC(w)(X) = 〈w|σ1(XA)〉 (103)

from K〈A〉 to QSym(X), the scalar product on K〈A〉 being defined by 〈u|v〉 = δu,v.
For w ∈ A∗, let alph(w) ⊆ A be the set of letters occuring in w.

Lemma 5.1 If alph(u) ∩ alph(v) = ∅, then

〈u v〉 = 〈u〉〈v〉 . (104)

In particular, the descents of the words occuring in the shuffle of two words u and v on
disjoint alphabets depend only on the descents of u and v.
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Proof – Denote by ∆ the canonical (unshuffle) coproduct of K〈A〉, and write u′v′′ for
u ⊗ v, so that ∆(a) = 1 ⊗ a + a ⊗ 1 = a′ + a′′ for a ∈ A. Then,

〈u v〉 = 〈u v|σ1(XA)〉 =

〈

u′v′′|
→
∏

x∈X

∆σx(A)

〉

=

〈

u′v′′|
→
∏

x∈X

→
∏

a∈A

(1 − x(a′ + a′′))−1

〉

=

〈

u′v′′|
→
∏

x∈X

→
∏

a′∈alph(u′)

(1 − xa′)−1
→
∏

a′′∈alph(v′′)

(1 − xa′′)−1

〉

= 〈u|σ1(XA)〉〈v|σ1(XA)〉 = 〈u〉〈v〉 .

(105)

There is a refined statement for the dendriform half-products.

Theorem 5.2 Let u = u1 · · ·uk and v = v1 · · · vℓ of respective lengths k and ℓ. If alph(u)∩
alph(v) = ∅, then

〈u ≺ v〉 = 〈σ ≺ τ〉 (106)

where σ = std(u) and τ = std(v)[k] if uk < vℓ, and σ = std(u)[ℓ] and τ = std(v) if
uk > vℓ.

Proof – It is enough to check the first case, so we assume uk < vℓ. The proof proceeds by
induction on n = k + ℓ. Let us set u = u′a′a and std(u) = u′1a

′
1a1.

If a′ > a, since u ≺ v = (u′a′ v)a, we have

〈u ≺ v〉 =
∑

w∈u′a′ v

FC(w)·1 = 〈(u′1a
′
1 τ) · a1〉 (107)

with τ = std(v)[k], according to Lemma 5.1.
If a′ < a, write u ≺ v = (u′a′ ≺ v) · a + (u′a′ ≻ v) · a. From the induction hypothesis,

we have, with τ as above, 〈u′a′ ≺ v〉 = 〈u′1a
′
1 ≺ τ〉 and 〈u′a′ ≻ v〉 = 〈u′1a

′
1 ≻ τ〉, so that

〈u ≺ v〉 =
∑

w∈u′
1a′

1≺τ

FC(w)⊲1 +
∑

w∈u′
1a′

1≻τ

FC(w)·1 , (108)

as required.

For example,

〈634 ≺ 125〉 =〈631254 + 613254 + 612354 + 612534 + 163254

+162354 + 162534 + 126354 + 126534 + 125634〉,
(109)

〈312 ≺ 456〉 =〈314562 + 341562 + 345162 + 345612 + 431562

+435162 + 435612 + 453162 + 453612 + 456312〉,
(110)

and one can check that both expressions are equal to

F132 + F141 + F1131 + F1221 + F222 + F231 + F2121 + F312 + F321 + F42. (111)
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5.2.2 Special case: the major index

Corollary 5.3 Let u and v be two words of respective lengths k and ℓ. Then, if alph(u)∩
alph(v) = ∅,

∑

x∈u≺v

qmaj (x) =
∑

y∈σ≺τ

qmaj (y). (112)

where σ = std(u) and τ = std(v)[k] if uk < vℓ, and σ = std(u)[ℓ] and τ = std(v) if
uk > vℓ.

5.3 (q, t)-specialization

We shall now see that Corollary 5.3 implies a hook-content formula for half-products
evaluated over X. Let σ ∈ Sk and τ ∈ Sℓ. Recall that τ [k] denotes the word τ1 + k, τ2 +
k, . . . , τ + ℓ + k. We have

(q)k+ℓ (Fσ ≺ Fτ ) (X) =
∑

ǫ∈{±1}k+ℓ

∑

µ∈σ≺τ [k]

(−t)m(ǫ)qmaj (µ,ǫ)

=
∑

ǫ′∈{±1}k

ǫ′′∈{±1}ℓ

(−t)m(ǫ′)(−t)m(ǫ′′)
∑

(ν,η)∈u≺v

qmaj (ν,η),
(113)

where u := (σ, ǫ′), v := (τ [k], ǫ′′), and (ν, η) are regarded as words over the alphabet
{· · · < −2 < −1 < 1 < 2 < . . . }. The inner sum is of the form

(q)k+ℓ〈u ≺ v〉|X= 1
1−q

. (114)

According to Theorem 5.2, 〈u ≺ v〉 can be replaced by 〈α ≺ β〉, where α and β are the
two permutations

{

α = std(u), β = std(v)[k] if ǫ′′ℓ = +1,

α = std(u)[ℓ], β = std(v) if ǫ′′ℓ = −1.
(115)

Translating Formulas (34) and (35) of [20] in the language of the present paper (in [20],
α ≺ β (resp. α ≻ β) represents what we would denote here by α−1 ≺ β−1[k] (resp.
β−1[k] ≺ α−1)), we have

∑

(ν,η)∈u≺v

qmaj (ν,η) = qmaj (α)qmaj (β)qℓ

[

k + ℓ − 1
ℓ

]

q

= qmaj (u)qmaj (v)qℓ

[

k + ℓ − 1
ℓ

]

q

(116)

if ǫ′′ℓ = +1, and
∑

(ν,η)∈u≺v

qmaj ((ν,η)) = qmaj (u)qmaj (v)

[

k + ℓ − 1
ℓ − 1

]

q

(117)
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if ǫ′′ℓ = −1. We then deduce

∑

ǫ∈{±1}k+ℓ

∑

µ∈σ≺τ [k]

(−t)m(ǫ)qmaj (µ,ǫ) =





∑

ǫ′∈{±1}k

(−t)m(ǫ′)qmaj (σ,ǫ′)





×









∑

ǫ′′∈{±1}ℓ

ǫ′′
ℓ
=+1

(q)k+ℓ−1

(q)k−1(q)ℓ

(−t)m(ǫ′′)qℓqmaj (τ,ǫ′′) +
∑

ǫ′′∈{±1}ℓ

ǫ′′
ℓ
=−1

(q)k+ℓ−1

(q)k−1(q)ℓ

(−t)m(ǫ′′)qmaj (τ,ǫ′′)









.

(118)

This equality will now be rewritten in two different ways, leading to two interpretations
of the specialization of the left dendriform product Fσ ≺ Fτ .

5.3.1 Regrouping signed words into blocks

First, instead of summing over all signed words, one can sum over the subset where one
value has been assigned a plus sign. This yields identities similar to Lemma 4.8 and
Theorem 4.9:

Lemma 5.4 Let σ ∈ Sk, τ ∈ Sℓ, and i ∈ [1, k + ℓ]. Then

∑

µ∈σ≺τ [k]

∑

ǫ∈{±1}k+ℓ

(−t)m(ǫ)qmaj (µ,ǫ) =

(

1 − t
q(i−1)xi

qiyi

)

∑

µ∈σ≺τ [k]

∑

ǫ∈{±1}k+ℓ

ǫz(µ)=+1

(−t)m(ǫ)qmaj (µ,ǫ),

(119)
where z(µ) is either µ−1(σi) if i 6 k or µ−1(k + τi−k) otherwise, and where xi and yi are
defined, for i 6 k, as the xi and yi associated to σ as in Lemma 4.7, and, for i > k, as
xi−k and yi−k associated to τ , except the (new) convention yk+ℓ = 1.

Proof – Equation (118) is equivalent to

∑

ǫ∈{±1}k+ℓ

∑

µ∈σ≺τ [k]

(−t)m(ǫ)qmaj (µ,ǫ) =





∑

ǫ′∈{±1}k

(−t)m(ǫ′)qmaj (σ,ǫ′)





×

[

k + ℓ − 1
k − 1

]

q

(qℓ − t q(ℓ−1)xk+ℓ)









∑

ǫ′′∈{±1}ℓ

ǫ′′
ℓ
=+1

(−t)m(ǫ′′)qmaj (τ,ǫ′′)









.

(120)

The required factor will then come from the first, third or second factor, according to
whether i 6 k, k < i < k + ℓ or i = k + ℓ.
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For example, let us take σ = 12 and τ = 1. We have F12 ≺ F1 = F132 + F312 so that

(q)3 (F12 ≺ F1)(X) = q2 − (q + 2q2) t + (2q + q2) t2 − q t3 +

q − (1 + q + q3) t + (1 + q2 + q3) t2 − q2 t3

= q + q2 − (1+2q+2q2+q3) t + (1+2q+2q2+q3) t2 − (q + q2) t3

= (1 + q)(q − t)(1 − t)(1 − qt). (121)

Now, summing the (q, t) statistic over the signed words obtained by signing the values 1
and 2 in 132 or 312 in all possible ways,

−q3 t + q3 + q2 t2 − 2q2 t + q2 + q t2 − qt = q(1 − t)(1 + q)(q − t). (122)

Dividing the whole sum by this expression, one gets the factor 1 − t/q, which is indeed
the result predicted by the lemma for i = 3.

Let us now consider the case σ = 25134, τ = 3421, and i = 4. Then one easily checks
with a computer that the whole (q, t) polynomial obtained by summing over all signed
words divided by the polynomial obtained by summing over all signed words obtained by
putting plus or minus signs on all values except σi = 3, is 1 − q3t. The same example
with i = 7, which assigns a plus sign to 5 + τ2 = 9, gives the factor 1 − tq−1.

Note 5.5 Lemma 5.4 means that one can split the set of signed words occuring in a left
(or right) dendriform product according to the sign of a given value and that the quotient
of the (q, t) polynomials of those sets is 1− r where r is a monomial in q and t or t−1. We
shall refer to this factor as the contribution of a letter a to the whole sum. The value of
i in Lemma 5.4 is i = σ−1(a) if a 6 k or i = k + τ−1(a − k) otherwise.

5.3.2 Extraction of Fσ(X) and Fτ (X)

One can also rewrite the r.h.s. of Equation (118) as

(q)kFσ(X)
(q)k+ℓ−1

(q)k−1(q)ℓ

(

qℓ(q)ℓ
1

(1 − tq(ℓ−1)xℓ)
+ (q)ℓ

−tq(ℓ−1)xℓ

(1 − tq(ℓ−1)xℓ)

)

Fτ (X), (123)

thanks to Equation (89) and to its analog for ǫ′′ℓ = −1, where xℓ is defined on τ as in
Lemma 4.7. This yields

(Fσ ≺ Fτ ) (X) =
1 − qk

1 − qk+ℓ

qℓ − q(ℓ−1)xℓ t

1 − q(ℓ−1)xℓ t
Fσ(X)Fτ (X). (124)

Hence, we have, deducing (126) from (125), since their sum is Fσ(X)Fτ (X):

Corollary 5.6 Let σ ∈ Sk and τ ∈ Sℓ. Then

(Fσ ≺ Fτ ) (X) =
1 − qk

1 − qk+ℓ

qℓ − q(ℓ−1)dt

1 − q(ℓ−1)dt
Fσ(X)Fτ (X), (125)
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and

(Fσ ≻ Fτ ) (X) =
1 − qℓ

1 − qk+ℓ

1 − qk+(ℓ−1)dt

1 − q(ℓ−1)dt
Fσ(X)Fτ (X), (126)

where d is 1 if τℓ−1 < τℓ and 0 otherwise.

Example 5.7 Let us present all possible cases on the left dendriform product.

(F3241 ≺ F213)(X) =
1 − q4

1 − q7

q3 − q2t

1 − q2t
F3241(X)F213(X). (127)

(F25134 ≺ F3421)(X) =
1 − q5

1 − q9

q4 − t

1 − t
F25134(X)F3421(X). (128)

6 A hook-content formula for binary trees

6.1 Classical constructions on trees

Let us first fix some notations and recall the construction of some binary trees associated
with a permutation.

The tree with a root and no other vertex is represented by •. The size of a tree is its
number of nodes.

The decreasing tree T (w) of a permutation, or more generally, of a word w with distinct
letters, is defined recursively as follows: if w consists of one letter x, then the tree has a
single node, labelled x. Otherwise, write w = unv, where n is its maximal letter. Then,
T (w) is the binary tree with root n, left subtree T (u) and right subtree T (v).

The classical hook-length formula for binary trees [23] gives the number of permuta-
tions whose decreasing tree has a given shape. Its q-analog, due to Björner and Wachs
[5, 6], counts these permutations by inverse major index or inversion number. New proofs
of these identities, relying on combinatorial Hopf algebras, are given in [20].

The decreasing tree can be interpreted as the Q-symbol of an analog of the Robinson-
Schensted correspondence [18]. Here, it will be easier to work with the corresponding
analog of the P -symbol. To define it, we need a simple classical algorithm: the binary
search tree insertion, such as presented, for example, by Knuth in [23].

Recall that a right strict binary search tree T is a labeled binary tree such that for
each internal node n, its label is greater than or equal to the labels of its left subtree and
strictly smaller than the labels of its right subtree.

Let σ be a permutation. Its binary search tree P(σ) is obtained as follows: reading
σ from right to left, one inserts each letter in a binary search tree in the following way:
if the tree is empty, one creates a node labeled by the letter ; otherwise, this letter is
recursively inserted in the left (resp. right) subtree if it is smaller than or equal to (resp.
strictly greater than) the root. Figure 3 shows the iterative construction of the binary
search tree of (2, 10, 6, 5, 11, 7, 4, 8, 1, 9, 3).

The binary search tree of a permutation has the same shape as the decreasing tree of
its inverse.
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∅
3

−−−→ '&%$ !"#3
9

−−−→
'&%$ !"#3 ??

'&%$ !"#9

1
−−−→

'&%$ !"#3 ??��
'&%$ !"#1 '&%$ !"#9

8
−−−→

'&%$ !"#3 ??��
'&%$ !"#1 '&%$ !"#9

��
'&%$ !"#8

4
−−−→

'&%$ !"#3 ??��
'&%$ !"#1 '&%$ !"#9

��
'&%$ !"#8

��
'&%$ !"#4

7
−−−→

'&%$ !"#3 ??��
'&%$ !"#1 '&%$ !"#9

��
'&%$ !"#8

��
'&%$ !"#4 ??

'&%$ !"#7

11
−−−→

'&%$ !"#3 ??��
'&%$ !"#1 '&%$ !"#9

�� ??
'&%$ !"#8

��
'&%$ !"#11

'&%$ !"#4 ??
'&%$ !"#7

5
−−−→

'&%$ !"#3 ??��
'&%$ !"#1 '&%$ !"#9

�� ??
'&%$ !"#8

��
'&%$ !"#11

'&%$ !"#4 ??
'&%$ !"#7

��
'&%$ !"#5

6
−−−→

'&%$ !"#3 ??��
'&%$ !"#1 '&%$ !"#9

�� ??
'&%$ !"#8

��
'&%$ !"#11

'&%$ !"#4 ??
'&%$ !"#7

��
'&%$ !"#5 ??

'&%$ !"#6

10
−−−→

'&%$ !"#3 ??��
'&%$ !"#1 '&%$ !"#9

�� ??
'&%$ !"#8

��
'&%$ !"#11

��
'&%$ !"#4 ??

'&%$ !"#10

'&%$ !"#7
��

'&%$ !"#5 ??
'&%$ !"#6

2
−−−→

'&%$ !"#3

TTTTTTT
��

'&%$ !"#1 ??
'&%$ !"#9

�� ??
'&%$ !"#2 '&%$ !"#8

��
'&%$ !"#11

��
'&%$ !"#4 ??

'&%$ !"#10

'&%$ !"#7
��

'&%$ !"#5 ??
'&%$ !"#6

Figure 3: The binary search tree of (2, 10, 6, 5, 11, 7, 4, 8, 1, 9, 3).

6.2 PBT: a subalgebra of FQSym

Recall that PBT, the Loday-Ronco algebra of planar binary trees [28], is naturally a
subalgebra of FQSym, the embedding being

PT (A) =
∑

shape (P(σ))=T

Fσ(A) , (129)

where shape (P(σ)) is the shape of the binary search tree associated with σ [18]. Hence,
PT (X) is well-defined.

The algebra PBT was originally defined in [28] as the free dendriform algebra on one
generator as follows: if T is a binary tree T1 (resp. T2) be its left (resp. right) subtree,
then

PT = PT1 ≻ P1 ≺ PT2. (130)

6.3 A hook-content formula in PBT

Thanks to Corollary 4.6, the X-specialization of PT can be expressed as a sum over signed
permutations:

Corollary 6.1 Let T be a binary tree of size k. Then

PT (X) =
1

(q)k

∑

(σ,ǫ)|shape (P(σ))=T

(−t)m(ǫ)qmaj (σ,ǫ). (131)
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In particular, replacing t by −t gives the following combinatorial interpretation:

Corollary 6.2 Let T be a binary tree of size k. The generating function by number of
signs and major index of all signed permutations (σ, ǫ) such that the binary search tree of
the underlying unsigned permutation σ has shape T is

(q)kPT (X)|t=−t =
∑

(σ,ǫ)|shape (P(σ))=T

tm(ǫ)qmaj (σ,ǫ). (132)

The smallest interesting example is the tree T of size 3

T =
•

33
33

3

��
��
�

• •
(133)

Indeed, PT = F132 + F312 and one gets

(q)3PT (X)t=−t = (1 + q)(q + t)(1 + t)(1 + qt), (134)

thanks to (121). The factorization property of PT (X) is general, as we shall see below,
and is of the same nature as the factorizations of Fσ(X) and (Fσ ≺ Fτ )(X), whence the
denomination (q, t)-hook-content formulas for trees. Recall that any binary tree has a
unique standard labelling that makes it a binary search tree.

Let T be a tree of size k. Define

ΣT := (q)kPT (X) =
∑

(σ,ǫ)|shape (P(σ))=T

(−t)m(ǫ)qmaj (σ,ǫ), (135)

and, for all i ∈ [1, k],

Σ
(i)
T :=

∑

(σ,ǫ)|shape (P(σ))=T

sign(i)=+1

(−t)m(ǫ)qmaj (σ,ǫ). (136)

Imitating the argument of Lemma 5.4 and taking into account Equation (130), we
have:

Lemma 6.3 Let T be a binary tree of size k and i ∈ [1, k]. Let s be the node labelled i in
the binary search tree associated with T . Then

ΣT

Σ
(i)
T

= 1 − t qn′−na, (137)

where n is the size of the subtree of root s, n′ is the size of the left subtree of the previous
one, and a = 1 if s is the right son of its father, and 0 otherwise.

Applying now Corollary 5.6, we get a two-parameter version of the q-hook-length
formula of Björner and Wachs [5, 6] (see also [20]):
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Theorem 6.4 Let T be a tree and s a node of T . Let n be the size of the subtree of root s
and let n′ be the size of the left subtree of the previous one. The (q, t)-hook-content factor
of s into T is given by the following rules:

hs(q, t) :=
1

1 − qn

{

qn − qn′
t if s is the right son of its father,

1 − qn′
t otherwise.

(138)

We then have
PT (X) =

∏

s∈T

hs(q, t). (139)

Proof – As in the cases of Fσ(X) and of the left dendriform product (Fσ ≺ Fτ )(X), the
formula follows from Lemma 6.3, since one can fix the signs of different values of [1, k]
independently, hence having a factorization of (q)kPT (X) as the product of the right-hand
sides of (137) for all i ∈ [1, k] multiplied by (q)kPT (1/(1−q)). The complete factorization
follows by induction.

For example, let T be the tree (133). Then, picking the hs(q, t) of all vertices by
reading T in postfix order (left subtree, then right subtree, then root), one obtains

PT (X) =
1 − t

1 − q

q − t

1 − q

1 − qt

1 − q3
, (140)

which gives back the factorization (134) of PT (X). Let now T be the following tree,
labelled as a binary search tree:

T =

3

GG
GG

GG
GG

ww
ww

ww
ww

1

11
11

5

��
��
�

11
11

2 4 6

(141)

then, the product h1 · · ·h6 (in this order) is one gets:

PT (X) =
q − t

1 − q

1 − t

1 − q2

1 − t

1 − q

q − t

1 − q

q3 − qt

1 − q3

1 − q2t

1 − q6

=
(q − t)2(1 − t)2(1 − q2t)(q3 − qt)[4]q[5]q

(1 − q)(1 − q2)(1 − q3)(1 − q4)(1 − q5)(1 − q6)
.

(142)

Larger examples with their graphical representation are given in the next section.

6.4 Other versions

Here are the analogs of the other two hook-content formulas of FQSym.
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Theorem 6.5 Let T be a binary tree and T1 (resp. T2) be its left (resp. right) subtree.
Let T ′2 be the left subtree of T2. We then have

PT (X) =
(q#T2 − q#T ′

2t)(1 − q#T1t)

(1 − q#T ′
2t)(1 − qn)

PT1(X)PT2(X), (143)

where #U denotes the size of U .

Proof – Let T ′ be the tree having T2 as right subtree and no left subtree. Then, thanks
to (130), we have

PT = PT1 ≻ (P• ≺ PT2) = PT1 ≻ PT ′. (144)

Now, since all permutations whose inverse have T ′ as decreasing tree end by 1, if one
regards PT1 and PT ′ as elements of FQSym, all products Fσ ≻ Fτ with T (σ−1) = T1

and T (τ−1) = T ′ are given by Formula (126) with d = 0. Hence,

PT =
1 − q#T ′

1 − q#T

1 − q#T1t

1 − t
PT1PT ′. (145)

This equation is equivalent to the claim in the special case where T1 is the empty tree.
Thus, we only have to prove the following identity to establish the general case:

PT ′ =
q#T2 − q#T ′

2t

1 − q#T ′
2t

1 − t

1 − q#T ′ PT2. (146)

We have first

PT ′ = P• ≺ PT2 = P•PT2 − P• ≻ PT2 = P•PT2 −P• ≻ (PT ′
2
≻ PT3), (147)

where T3 is the tree having the right subtree of T2 as right subtree and no left subtree.
Applying one of the basic dendriform relations, one gets

PT ′ = P•PT2 − (P•PT ′
2
) ≻ PT3 , (148)

and as above, since T3 has no left subtree, the right dendriform product is given uniformly
by (126) with d = 0. We arrive at

PT ′ =P•PT2 −
1 − q#T3

1 − q1+#T2

1 − q1+#T ′
2t

1 − t
P•PT ′

2
PT3

=P•PT2 −
1 − q#T3

1 − q1+#T2

1 − q1+#T ′
2t

1 − t
P•

1 − q#T2

1 − q#T3

1 − t

1 − q#T ′
2t

PT2 ,

(149)

by application of (145) from left to right. Simplifying the fractions, we obtain

PT ′ =P•PT2

(1 − q1+#T2)(1 − q#T ′
2t) − (1 − q#T2)(1 − q1+#T ′

2t)

(1 − q1+#T2)(1 − q#T ′
2t)

=P•PT2

−q1+#T2 + q#T ′
2t + q#T2 − q1+#T ′

2t

(1 − q1+#T2)(1 − q#T ′
2t)

=PT2

1 − t

1 − q

(1 − q)(q#T2 − q#T ′
2t)

(1 − q1+#T2)(1 − q#T ′
2t)

=
(1 − t)(q#T2 − q#T ′

2t)

(1 − q1+#T2)(1 − q#T ′
2t)

PT2,

(150)
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whence the result.

For example, with the tree T represented in (141), we get

PT (X) =
(q3 − qt)(1 − q2t)

(1 − qt)(1 − q6)
PT1PT2

=
(q3 − qt)(1 − q2t)

(1 − qt)(1 − q6)

(q − t)(1 − t)

(1 − t)(1 − q2)
P•

(q − t)(1 − qt)

(1 − t)(1 − q3)
P2
•

=
(q3 − qt)(1 − q2t)

(1 − qt)(1 − q6)

(q − t)

(1 − q2)
P•

(q − t)(1 − qt)

(1 − t)(1 − q3)
P2
•

=
(q3 − qt)(1 − q2t)(q − t)2(1 − t)2

(1 − q)3(1 − q2)(1 − q3)(1 − q6)

(151)

which is the same as Formula (142).
As in the case of FQSym, the product can be simplified so as to get a single quotient

at each node: as before, the simplification occurs among nodes belonging to the same
right branch.

Corollary 6.6 Let T be a tree. Then PT (X) is given by the product of the (q, t)-hook-
content factors of the nodes s of T , given by the following rules:

1

1 − qn







qn′
− qn′′

t if s has a right son,
1 − qn−1t if s has no right son and is not the right son of its father,
1 − qdt if s has no right son and is the right son of its father,

(152)

where n is the size of the subtree of root s, n′ is the size of the right subtree of s, n′′ is
the size of the left subtree of the right subtree of s, and d is the size of the left subtree of
the topmost ancestor of s leading to s only by right branches.

Again, with the tree T represented in (141), we get

PT (X) =
1 − t

1 − q

q − t

1 − q2

1 − t

1 − q

1 − q2t

1 − q

q − t

1 − q3

q3 − qt

1 − q6

=
(q − t)2(1 − t)2(1 − q2t)(q3 − qt)[4]q[5]q

(1 − q)(1 − q2)(1 − q3)(1 − q4)(1 − q5)(1 − q6)
,

(153)

which is the same as (142) and (151).

6.5 Graphical representations

As in the case of FQSym, the first (q− t)-hook-length formula can be represented graph-
ically by placing into each node the fraction appearing in Equation (138). For example,
the first tree of Figure 2 shows the expansion of Fσ(X) with the first hook-content factors
of a zig-zag tree. Figure 4 gives another example of this construction.
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Figure 4: A binary tree (left diagram) labelled as a standard binary search tree and the
first (q, t)-hook-content formula on trees (right diagram).

Let us now illustrate the second and third (q, t)-hook-content formulas for binary
trees. For example, on Figure 5, the rightmost node of the second tree has coefficient
1−q2t
1−q2 : its topmost ancestor is the root of the tree and the left subtree of the root is of

size 2 (see Corollary 6.6). Note that it is obtained by permuting cyclically the numerators
of the second formula (see Theorem 6.5) among right branches, as was already the case
in FQSym.

7 Word Super-quasi-symmetric functions

It has been explained in [20] that the use of FQSym to recover the Björner-Wachs q-
hook-length formulas could be extended to other combinatorial Hopf algebras. This was
illustrated on a construction associating a plane tree to a packed word, interpreted as a
map from WQSym to the free tridendriform algebra on one generator. In this section,
we will give a (q, t)-analog of the formula of [20] counting the number of packed words
yielding a given tree according to the length of their evaluation. To this aim, we first need
to extend the superization map to WQSym.

7.1 An algebra on signed packed words

Let us define WQSym(2) as the space spanned by the Mu,ǫ, where for a signed packed
word (u, ǫ),

Mu,ǫ(A) :=
∑

(w,ǫ)
pack(w)=u

(w, ǫ). (155)
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Figure 5: Second and third (q, t)-hook-content formulas of a binary tree: by induction
(left diagram) and simplification of the induction (right diagram).

Again, it is self-dual as a graded Hopf algebra for the standard operations. We denote
by Nu,ǫ the dual basis of Mu,ǫ. This algebra contains Sym(2), the Mantaci-Reutenauer
algebra of type B. To show this, let us describe the embedding.

A signed word is said to be regular if all occurences of any letter have same sign. For
example, 112231 is regular, but 111 and 11212 are not.

The signed evaluation sev(w, ǫ) of a regular word is the signed composition (I, µ) where
ij is the number of occurrences of the (unsigned) letter j and µj is the sign of j in (w, ǫ).

Let φ be the morphism from Sym(2) into WQSym(2) defined by

φ(Sn) = N1n , φ(Sn) = N1
n. (156)

We then have :

Lemma 7.1
φ(S(I,ǫ)) =

∑

(u,ǫ′)regular

sev(u,ǫ′)=(I,ǫ)

Nu,ǫ′. (157)

Proof – This follows from the product formula of the Nu,ǫ, which is a special case of the
multiplication of signed parking functions [34].

The image of Sym(2) by this embedding is contained in the vector space BW of
WQSym(2) spanned by the Nu,ǫ indexed by regular signed packed words. Although
this property will not be used in the sequel, it is worth mentionning that BW is a Hopf
subalgebra of WQSym(2). The dimensions of its homogeneous components BW n are
given by Sequence A004123 of [42] whose first values are

1, 2, 10, 74, 730, 9002, 133210. (158)
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Note in particular that σ#
1 has a simple expression in terms of Nu,ǫ.

Lemma 7.2 Let PW denote the set of packed words, and max(u) the maximal letter of
u. Then

σ#
1 =

∑

u∈PW

(

(−1)n−max(u)Nu,(−1)n + (−1)m(ǫ′)−(max(u)−1)Nu,ǫ′

)

, (159)

where (u, ǫ′) is such that all letters of u except the maximal one are signed.

Example 7.3
S#

2 = −N11 + N11 + N12 + N12 + N21 + N21. (160)

S#
3 = + N111 + N111

− N112 −N112 − N121 −N121 − N211 − N211

− N221 + N221 −N212 + N212 −N122 + N122

+ N123 + N123 + N132 + N132 + N213 + N213

+ N231 + N231 + N312 + N312 + N321 + N321.

(161)

7.2 An internal product on signed packed words

The internal product of WQSym∗ (29) can be extended to WQSym(2)∗ by

Nu,ǫ ∗Nv,ρ = Npack(u,v),ǫρ, (162)

where ǫρ is the componentwise product. One obtains in this way the (opposite) Solomon-
Tits algebra of type B. This product is induced from the internal product of signed
parking functions [34] and can be shown to coincide with the one introduced by Hsiao
[22].

From this definition, we have immediately:

Proposition 7.4 BW is a subalgebra of WQSym(2)∗ for the internal product.

Since σ#
1 belongs to WQSym(2)∗, we can define

N#
u := Nu(A|Ā) = Nu ∗ σ#

1 . (163)

Example 7.5 Let us compute the first Nu(A|Ā).

N#
11 = −N11 + N11 + N12 + N12 + N21 + N21. (164)

N#
12 = N12 + N12 + N12 + N12. (165)

N#
21 = N21 + N21 + N21 + N21. (166)

N#
112 = −N112 − N112 + N112 + N112

+ N123 + N123 + N123 + N123

+ N213 + N213 + N213 + N213

(167)

N#
121 = −N121 − N121 + N121 + N121

+ N132 + N132 + N132 + N132

+ N231 + N231 + N231 + N231

(168)
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In the light of the previous examples, let us say that a packed word v is finer than
a packed word u, and write v > u if u can be obtained from v by application of a
nondecreasing map φ : N

∗ → N
∗. If u = φ(v), that is, ui = φ(vi), we say that vi goes

to ui. Note that this definition is also easily described on set compositions: u is then
obtained by gluing together consecutive parts of v. For example, the words finer than 121
are 121, 132, and 231.

Theorem 7.6 Let u be a packed word. Then

N#
u =

∑

v>u

∑

ǫ

(−1)m(ǫ)+m′(v,ǫ)Nv,ǫ (169)

where m′(v, ǫ) is equal to the number of different signed letters of (v, ǫ) and where the
sum over ǫ is such that the words (v, ǫ) are regular and such that if more than two letters
of v go to the same letter of u, all letters but the greatest are signed (the greatest can be
either signed or not). In particular, the number of such ǫ for a given v is equal to 2max(u),
so is independent of v.

Proof – From the definitions of σ#
1 and of the packing algorithm, it is clear that the words

appearing on the expansion of N#
u are exactly the words given in the previous statement.

Moreover, the coefficient of a signed word (w, ǫ) in σ#
1 is equal to the coefficient of any

of its rearrangements (where the signs follow their letter). Now, given a permutation σ
and two words u and u′ having a word v as packed word, the packed word of u · σ and
u′ · σ is v · σ. So we can restrict ourselves to compute N#

u for all nondecreasing words u
since all the other ones are obtained by permutation of the entries.

Assume now that u is a nondecreasing word, and let us show that the coefficient
of (v, ǫ) in N#

u is either 1 or −1. The only terms N in σ#
1 that can yield (v, ǫ) when

multiplied on the left by Nu are the signed words with negative entries exactly as in ǫ.
Let Tǫ denote this set. Thanks to Lemma 7.2, the N appearing in the expansion of σ#

1

with negative signs at k given slots are the following packed words: all the elements of
PWk at the negative slots and one letter greater than all the others at the remaining slots.
In particular, the cardinality of Tǫ depends only on k and is equal to |PWk|. Since there
is only one positive value for each element, two words w and w′ of Tǫ give the same result
by packing (u, w) and (u, w′) if they coincide on the negative slots.

This means that we can restrict to the special case where ǫ = (−1)n since the positive
slot do not change the way of regrouping the elements of Tǫ to obtain (v, ǫ). Now, the
sign has been disposed of and we can concentrate on the packing algorithm. The previous
discussion shows that we only need to prove that, given a word v finer than a word u, the
set T of packed words w such that pack(u, w) = v satisfies the following property: if td is
the number of elements of T with maximum d, then

∑

d

(−1)dtd = ±1. (170)

From the definition of the packing algorithm, we see that T is the set of packed words
with (in)equalities coming from the values of v at the places where u have equal letters.
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So T is a set of packed words with (in)equalities between adjacent places with no other
relations. Hence, if u has l different letters, T is obtained as the product of l quasi-
monomial functions Mw. The conclusion of the proof comes from the following lemma.

Lemma 7.7 Let w1, . . . , wk be k packed words with respective maximum letters a1, . . . , ak.
Let T be the set of packed words appearing in the expansion of

Mw1 . . .Mwk
. (171)

Then, if td is the number of elements of T with maximum d, then
∑

d

(−1)dtd = (−1)a1+···+ak . (172)

Proof – We only need to prove the result for k = 2 since the other cases follow by induction:
compute Mw1 . . .Mwk−1

and multiply this by Mwk
to get the result.

Let us compute Mw1Mw2 . The number of words with maximum a1 + a2 − d in this
product is equal to

(

a1

d

)(

a1 + a2 − d

a1

)

. (173)

Indeed, a word in Mw1Mw2 with maximum a1 + a2 − d is completely characterized by
the d integers between 1 and a1 + a2 − d common to the prefix of size |w1| and the suffix
of size |w2| of w, by the (a1 − d) integers only appearing in the prefix, and the (a2 − d)
integers only appearing in the suffix, which hence gives the enumeration formula

ta1+a2−d =
(a1 + a2 − d)!

d!(a1 − d)!(a2 − d)!
, (174)

equivalent to the previous one.
It remains to compute

∑

d

(−1)a1+a2−d

(

a1

d

)(

a1 + a2 − d

a1

)

, (175)

which is, with the usual notation for elementary and complete homogeneous symmetric
functions, understood as operators of the λ-ring Z,

(−1)a1+a2
∑

d

(−1)ded(a1)ha2−d(a1 + 1)

= (−1)a1+a2

∑

d

hd(−a1)ha2−d(a1 + 1)

= (−1)a1+a2ha2(−a1 + a1 + 1)

= (−1)a1+a2ha2(1) = (−1)a1+a2 .

(176)

This combinatorial interpretation of (173) gives back in particular one interpretation of
the Delannoy numbers (sequence A001850 of [42]) and of their usual refinement (sequence
A008288 of [42]).
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7.3 Specializations

The internal product of WQSym∗ allows in particular to define

Nu((1 − t)A) := Nu(A) ∗ σ1((1 − t)A) = ηt(Nu), (177)

so that we have
SI((1 − t)A) =

∑

Ev(u)=I

Nu((1 − t)A). (178)

Example 7.8 Taking the same five examples as in Example 7.5, we get

N11((1 − t)A) = (1 − t2)N11 − t(1 − t)N12 − t(1 − t)N21. (179)

N12((1 − t)A) = (1 − t)2N12 and N21((1 − t)A) = (1 − t)2N21. (180)

N112((1 − t)A) = (1 − t)(1 − t2)N112 − t(1 − t)2N123 − t(1 − t)2N213. (181)

N121((1 − t)A) = (1 − t)(1 − t2)N121 − t(1 − t)2N132 − t(1 − t)2N231. (182)

Theorem 7.9 Let u be a packed word. Then

Nu((1 − t)A) =
∑

v>u

(−1)max(v)−max(u)tf(u,v)

max(u)
∏

k=1

(1 − tg(u,v,k)) Nv(A). (183)

where, if one writes

Ev(u) = (i1, . . . , ip) and Ev(v) = ((i
(1)
1 , . . . , i

(q1)
1 ), . . . , (i(1)p , . . . , i(qp)

p )), (184)

then

f(u, v) :=

p
∑

k=1

qk−1
∑

j=1

i
(j)
k and g(u, v, k) := i

(qk)
k . (185)

Proof – This is a direct consequence of Theorem 7.6.

7.4 Duality

By duality, one defines
Mu(A · (1 − t)) := η∗t (Mu(A)), (186)

since
∑

u

Mu(A · (1 − t)) ⊗Nu(B) =
∑

u

Mu(A) ⊗ Nu((1 − t)B). (187)
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Example 7.10
M11(A · (1 − t)) = (1 − t2)M11(A). (188)

M12(A · (1 − t)) = −t(1 − t)M11(A) + (1 − t)2M12(A). (189)

M21(A · (1 − t)) = −t(1 − t)M11(A) + (1 − t)2M21(A). (190)

M112(A · (1 − t)) = (1 − t)(1 − t2)M112(A) − t2(1 − t)M111(A). (191)

M121(A · (1 − t)) = (1 − t)(1 − t2)M121(A) − t2(1 − t)M111(A). (192)

M123(A · (1 − t)) =(1 − t)3M123(A) − t(1 − t)2M112(A)

− t(1 − t)2M122(A) + t2(1 − t)M111(A).
(193)

Since the transition matrix from M(A·(1−t)) to M(A) is the transpose of the transition
matrix from N((1 − t)A) to N(A), we can obtain a simple combinatorial interpretation
of M(A · (1 − t)).

First, let us define the super-packed word v := spack(u, ǫ) associated with a regular
signed word (u, ǫ). Let fǫ be the nondecreasing function sending 1 to 1 and each value i
either to fǫ(i− 1) if the value i− 1 is signed in ǫ or to 1 + fǫ(i− 1) if not. Extend fǫ to a
morphism of A∗. Then v = fǫ(u).

For example,
spack(75121534461) = 42111212231. (194)

Let [v, u] be the interval for the refinement order on words, that is, the set of packed
words w such that u > w > v.

Proposition 7.11 Let u be a word. Then

Mu(A · (1 − t)) =
∑

(u,ǫ) regular

(−1)m′(u,ǫ)tm(ǫ)
∑

w∈[spack(u,ǫ),u]

Mw(A). (195)

Proof – Observe that if a signed word (u, ǫ) appears in N#
w then it also appears in N#

v for
all v ∈ [u, w]. The rest comes directly from Theorem 7.6 and from the fact that N(u,ǫ) is
sent to (−t)m(ǫ)Nu when sending A to −tA.

Example 7.12

M21(A · (1 − t)) = (−t + t2)(M11 + M21) + (1 − t)M21. (196)

M112(A · (1 − t)) = (−t2 + t3)(M111 + M112) + (1 − t)M112. (197)

M123(A · (1 − t)) =(t2 − t3)(M111 + M112 + M122 + M123)

+ (−t + t2)(M112 + M123)

+ (−t + t2)(M122 + M123)

+ (1 − t)M123.

(198)
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When A is a commutative alphabet X, this specializes to MI(X(1 − t)) where I =
Ev(u) and in particular, for X = 1

1−q
, we recover a result of [24]:

Theorem 7.13 ([24]) Let u be a packed word of size n.

Mu(X) = MI(X) =
1 − tip

1 − qn

p−1
∏

k=1

qi1+···+ik − tik

1 − qi1+···+ik
. (199)

where the composition I = (i1, . . . , ip) is the evaluation of u.

Proof – From Proposition 7.11 giving a combinatorial interpretation of Mu(A · (1 − t)),
we have:

Mu(X) =
∑

(u,ǫ) regular

(−1)m′(u,ǫ)tm(ǫ)
∑

w∈[spack(u,ǫ),u]

Mw(1/(1 − q)). (200)

We now have to evaluate the sum of Mw(1/(1 − q)) over an interval of the composition
lattice. Thanks to Lemma 7.14 below, it is equal to

qmaj (I)

(1 − qk1)(1 − qk1+k2) · · · (1 − qk1+k2+···+ks)
, (201)

where I = Ev(spack(u, ǫ)) and K = Ev(u), which implies the result.

Lemma 7.14 Let I and K be two compositions of n such that K > I. Then

∑

J∈[I,K]

MJ (1/(1 − q)) =
1

1 − qn

qmaj (I)

∏

d∈Des(K) 1 − qd
. (202)

Proof – We have

MJ(1/(1 − q)) =
1

1 − qn

∏

d∈Des(J)

qd

1 − qd
. (203)

Factorizing by the common denominator of all these elements and by qmaj (K), we have to
evaluate

∑

D⊆Des(K)\Des(I)

∏

d∈D

(1 − qd)q−d (204)

which is equal to

∏

d∈Des(K)/ Des(I)

(1 − 1 + q−d) = q−(maj (K)−maj (I)). (205)

Putting together Proposition 7.11 and Lemma 7.14, one obtains:
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Corollary 7.15 Let u be a word of size n. Then

(q)Ev(u)Mu(X) =
∑

(u,ǫ)regular

(−1)m′(u,ǫ)tm(ǫ)qmaj (spack(u,ǫ)), (206)

where (q)I is defined as (1 − qn)
∏

d∈Des(I)(1 − qd).

Corollary 7.16 Let u be a word of size n. Then the generating function of signed packed
words of unsigned part u by major index of their super-packed word and number of signs
is:

∑

(u,ǫ) regular

tm(ǫ)qmaj (spack(u,ǫ)) = (1 + tip)

p−1
∏

k=1

(qi1+···+ik + tik). (207)

Example 7.17 For example, with u = 112333344, one has:

∑

(u,ǫ) regular

tm(ǫ)qmaj (spack(u,ǫ)) = (1 + t2)(q2 + t2)(q3 + t)(q7 + t4), (208)

since we have the following 16 words with their t and q statistics:

(u, ǫ) m(ǫ) maj (spack(u, ǫ)) (u, ǫ) m(ǫ) maj (spack(u, ǫ))
112333344 0 12 112333344 2 12
112333344 4 5 112333344 6 5
112333344 1 9 112333344 3 9
112333344 5 2 112333344 7 2
112333344 2 10 112333344 4 10
112333344 6 3 112333344 8 3
112333344 3 7 112333344 5 7
112333344 7 0 112333344 9 0

(209)

8 Tridendriform operations and (q, t)-specialization

8.1 Tridendriform structure of WQSym

A dendriform trialgebra [29] is an associative algebra whose multiplication · splits into
three pieces

x · y = x≺y + x ◦ y + x≻y , (210)

where ◦ is associative, and

(x≺y)≺z = x≺(y · z) , (x≻y)≺z = x≻(y≺z) , (x · y)≻z = x≻(y≻z) , (211)

(x≻y) ◦ z = x≻(y ◦ z) , (x≺y) ◦ z = x ◦ (y≻z) , (x ◦ y)≺z = x ◦ (y≺z) . (212)
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It has been shown in [36] that the augmentation ideal K〈A〉+ has a natural structure
of dendriform trialgebra: for two non empty words u, v ∈ A∗, we set

u≺v =

{

uv if max(u) > max(v)

0 otherwise,
(213)

u ◦ v =

{

uv if max(u) = max(v)

0 otherwise,
(214)

u≻v =

{

uv if max(u) < max(v)

0 otherwise.
(215)

WQSym+ is a sub-dendriform trialgebra of K〈A〉+, the partial products being given
by

Mw′ ≺Mw′′ =
∑

w=u·v∈w′∗W w′′,|u|=|w′|;max(v)<max(u)

Mw, (216)

Mw′ ◦ Mw′′ =
∑

w=u·v∈w′∗W w′′,|u|=|w′|;max(v)=max(u)

Mw, (217)

Mw′ ≻Mw′′ =
∑

w=u·v∈w′∗W w′′,|u|=|w′|;max(v)>max(u)

Mw, (218)

where the convolution u′ ∗W u′′ of two packed words is defined as

u′ ∗W u′′ =
∑

v,w;u=v·w∈PW,pack(v)=u′,pack(w)=u′′

u . (219)

8.2 Specialization of the partial products

If w is a packed word, let nmax(w) be the number of maximal letters of w in w.

Theorem 8.1 Let u1 ∈ PW(n) and u2 ∈ PW(m). Then

(Mu1 ≺Mu2)(X) =
1 − qn

1 − qn+m

qm − tnmax(u2)

1 − tnmax(u2)
Mu1(X)Mu2(X), (220)

(Mu1 ◦Mu2)(X) =
(1 − qn)(1 − qm)

1 − qn+m

1 − tnmax(u1)+nmax(u2)

(1 − tnmax(u1))(1 − tnmax(u2))
Mu1(X)Mu2(X), (221)

and

(Mu1 ≻Mu2)(X) =
1 − qm

1 − qn+m

qn − tnmax(u1)

1 − tnmax(u1)
Mu1(X)Mu2(X). (222)

Proof – Thanks to the combinatorial interpretation of Mu(X) in terms of signed words
(Proposition 7.11 and Lemma 7.14), one only has to check what happens to the major
index of the evaluation of signed words in the cases of the left, middle, or right tridendri-
form products. The analysis is similar to (but simpler than) the analysis in the FQSym
case done previously.
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Example 8.2 Note that the left tridendriform product does not depend on the actual
value of w1 but only on its length. For example,

(M111≺M2122)(X) =
1 − q3

1 − q7

q4 − t3

1 − t3
M111(X)M2122(X) (223)

(M132≺M2122)(X) =
1 − q3

1 − q7

q4 − t3

1 − t3
M132(X)M2122(X) (224)

But the result depends on the number of maximum values of w2:

(M121≺M3122)(X) =
1 − q3

1 − q7

q4 − t

1 − t
M121(X)M3122(X) (225)

One can check on these examples the relation of dendriform trialgebras: MuMv = Mu≺
Mv + Mu ◦ Mv + Mu≻Mv:

(M1212≺M33231)(X) =
1 − q4

1 − q9

q5 − t3

1 − t3
M1212(X)M33231(X) (226)

(M1212 ◦ M33231)(X) =
(1 − q4)(1 − q5)

1 − q9

1 − t5

(1 − t2)(1 − t3)
M1212(X)M33231(X) (227)

(M1212≻M33231)(X) =
1 − q5

1 − q9

q4 − t2

1 − t2
M1212(X)M33231(X). (228)

9 The free dendriform trialgebra

9.1 A subalgebra of WQSym

Recall that TD, the Loday-Ronco algebra of plane trees [29], or the free tridendriform
algebra on one generator, is naturally a subalgebra of WQSym [37], the embedding being

MT (A) =
∑

T (u)=T

Mu(A) , (229)

where T (u) is the plane tree associated with u [37]. Hence, MT (X) is well-defined.
TD was originally defined [29] as the free tridendriform algebra on one generator as

follows: if T is a planar tree and T1, . . . , Tk are its subtrees, then

MT = (MT1 ≻M1≺MT2) ◦ (M1≺MT3) ◦ . . . ◦ (M1≺MTk
). (230)
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9.2 A hook-content formula for plane trees

Let T be a plane tree. Let Int(T ) denote all internal nodes of T (i.e., nodes which are
not leaves) except the root. Let us define a region of T as any part of the plane between
two edges coming from the same vertex. The regions are the places where one writes the
values of a packed word when inserting it (see [37]). For example, with w = 243411, one
gets

yyy
yy

KKKKKK

��
� ++
+ 4

��
� ++
+ 4

��
�� 88

88

2 3 1 1

(231)

Theorem 9.1 Let T be a plane tree with n regions. Then

MT (X) =
1 − ta(root)−1

1 − qn

∏

i∈Int(T )

qr(i) − ta(i)−1

1 − qr(i)
, (232)

where a(i) is the number of children of i, and r(i) the total number of regions of T below
i.

Proof – This is obtained by applying the tridendriform operations in WQSym, according
to the decomposition (230), exactly as Formulas (143) and (152) are obtained from (130)
in the cases of PBT and FQSym.

Writing for each node the numerator of its (q, t) contribution, one has for the tree
(231)

1−t2

sssss
MMMMM

q−t

��
�� 77

77
q−t

��
�� ;;

;;
q2−t2

~~
~~ @@

@@
(233)

A more complicated example would be

1−t

ttttt
SSSSSSSSSSS

q−t

��
��
�

22
22

2 q4−t

yy
yy

77
77

7

q3−t3

rrrrrr
��
�� ::

::
KKKKK

(234)

Putting together Corollaries 7.15 and 7.16, Definition (229) and Theorem 9.1, one
obtains finally

Corollary 9.2 Let T be a plane tree with n regions. Then

∑

(u,ǫ) regular
T (u)=T

tm(ǫ)qmaj (spack(u,ǫ))

(q)Ev(u)

=
1 + ta(root)−1

1 − qn

∏

i∈Int(T )

qr(i) + ta(i)−1

1 − qr(i)
. (235)
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