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Abstract

We define an extension of matroid rank submodularity called R-submodularity,
and introduce a minor-closed class of matroids called extended submodular matroids
that are well-behaved with respect to R-submodularity. We apply R-submodularity
to study a class of matroids with negatively correlated multivariate Tutte polyno-
mials called the Z-Rayleigh matroids. First, we show that the class of extended
submodular matroids are Z-Rayleigh. Second, we characterize a minor-minimal
non-Z-Rayleigh matroid using its R-submodular properties. Lastly, we use R-
submodularity to show that the Fano and non-Fano matroids (neither of which
is extended submodular) are Z-Rayleigh, thus giving the first known examples of
Z-Rayleigh matroids without the half-plane property.

1 Introduction and background

One of the fundamental axioms of a matroid rank function is its submodular property.
For a matroid, M(E, ρ), this is stated as follows [11, p.23].

(SM) For all X, Y ⊆ E, ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ).

In this paper we define the following extension of submodularity. For mutually disjoint
P1, P2, R ⊆ E, we say P1 and P2 are R-submodular in M if there exists a bijection
π : 2R → 2R such that for all C ⊆ R, ρ(P1∪P2∪C)+ρ(R\C) ≤ ρ(P1∪πC)+ρ(P2∪R\πC).
Under our definition, the property (SM) is equivalent to the ∅-submodularity of sets X\Y
and Y \X in the minor M/X ∩ Y for all X, Y ⊆ E. We further say the matroid M(E, ρ)
is extended submodular if for all mutually disjoint subsets P1, P2, R ⊆ E, the sets P1

and P2 are R-submodular in M and its minors. We show that the class of all extended
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submodular matroids is closed under some fundamental matroid operations, and includes
the uniform matroids and series-parallel networks among others.

A primary application of extended submodularity is in the study of Rayleigh properties
of the multivariate Tutte polynomial of matroids. Following Sokal [13], we define the
multivariate Tutte polynomial of a matroid M(E, ρ) to be

Z(M, q;y) =
∑

A⊆E

q−ρ(A)
∏

e∈A

ye, (1)

where q and y = (ye : e ∈ E) are commuting indeterminates. (An equivalent function
called the Tugger polynomial was defined earlier by Kung [7].) We refer to [13] for the
many useful properties of Z(M, q;y). The Tutte polynomial of M(E, ρ) is the two variable
polynomial

T (M ; x, y) =
∑

A⊆E

(x − 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A),

and is known to be a special case of Z(M, q;y). For e, f ∈ E let

∆Z{e, f}(M, q;y) = Z(M/e \ f, q;y) · Z(M \ e/f, q;y)

− qρ({e})+ρ({f})−ρ({e,f})Z(M/e/f, q;y) · Z(M \ e \ f, q;y).
(2)

Sokal [14] calls M(E, ρ) Z-Rayleigh if for all distinct e, f ∈ E, 0 < q ≤ 1 and y > 0,
∆Z{e, f}(M, q;y) ≥ 0. Here we use the notation y > 0 to denote ye > 0 for all e ∈ E. We
shall often consider ∆Z{e, f}(M, q;y) to be a multivariate polynomial, called a Z-Rayleigh
difference polynomial, in the elements of y. Note that our definition of ∆Z{e, f}(M, q;y)
follows Wagner [16, Section 3].

The generating polynomial of the bases of a matroid M(E, ρ) is

B(M ;y) =
∑

A⊆E
A∈B

∏

e∈A

ye,

where B is the collection of bases of M [7]. Choe and Wagner [4] initiated the discussion
on Rayleigh matroids by calling M(E, ρ) Rayleigh if for all distinct e, f ∈ E and y > 0,
∆B{e, f}(M ;y) = B(M/e \ f ;y)B(M \ e/f ;y) − B(M/e/f ;y)B(M \ e \ f ;y) ≥ 0.
Matroids with analogous properties for the collection of independent and spanning sets
were termed independence correlated and spanning correlated matroids by Semple and
Welsh [12] and Cocks [5]. In the rest of this paper, we follow Wagner [16] and use
the terms B-Rayleigh, I-Rayleigh and S-Rayleigh for Rayleigh, independence correlated
and spanning correlated matroids, respectively. Wagner [16] also called M(E, ρ) Potts-
Rayleigh if ∆Z{e, f}(M, q;y) ≥ 0 for all distinct e, f ∈ E with q in some interval 0 < q ≤
q∗(M) ≤ 1 and y > 0. It is easy to show that all Z-Rayleigh matroids are Potts-Rayleigh,
and all Potts-Rayleigh matroids are also B-Rayleigh, I-Rayleigh and S-Rayleigh. Semple
and Welsh [12] further showed that the class B-Rayleigh includes both the I-Rayleigh
and S-Rayleigh matroids. However, no other inclusion relationship is known among these
classes.
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It is known that all uniform matroids and series parallel networks are Z-Rayleigh [16].
In this paper, we show that every extended submodular matroid is Z-Rayleigh with the
additional property that all coefficients of its Z-Rayleigh difference polynomials are non-
negative for all q in the interval 0 < q ≤ 1. This provides a combinatorial explanation
for the occurrences of only non-negative coefficients in the B-Rayleigh, I-Rayleigh and S-
Rayleigh difference polynomials of some matroids as reported in [12], [5] and [16]. More
generally, for any e, f ∈ E, we show that the R-submodularity of sets {e} and {f}
in a minor of M(E, ρ) is a sufficient condition for non-negativity of a corresponding
coefficient in ∆Z{e, f}(M, q;y) whenever 0 < q ≤ 1. Even when a matroid is not extended
submodular, this result allows us to quickly test the non-negativity of the coefficients of
its Z-Rayleigh difference polynomials for all q in 0 < q ≤ 1, which in turn reduces the
amount of computation required to verify if the matroid is Z-Rayleigh. We illustrate this
by showing that the Fano and non-Fano matroids are Z-Rayleigh.

The remainder of the paper is organized as follows. The next section defines R-
submodularity in matroids, and Section 3 introduces the class of extended submodular ma-
troids. Section 4 discusses the relationship between R-submodularity and the Z-Rayleigh
property of matroids. We conclude with a discussion of open problems in Section 5.
Throughout the paper, we assume familiarity with fundamental matroid concepts and
notations [11]. Additionally, if N is a minor of matroid M(E, ρ), we use ρN to denote the
rank function of N . Finally, we note that the term extended submodular inequality has
been used previously with a meaning very different from ours by Greene and Magnanti [6,
Section 3] for an inequality that is valid in all matroids, and by Bouchet [1, Section 2] as
an axiom for multimatroids.

2 R-submodularity in matroids

The notion of R-submodularity is based on matroid rank dominations that were intro-
duced in [9].

Given three mutually disjoint sets, P1, P2, R, we first define a set, S(P1, P2, R), of
disjoint pairs as follows.

S(P1, P2, R) = {(P1 ∪ C, P2 ∪ R \ C) : C ⊆ R}.

Equivalently, the set S(P1, P2, R) is the collection of all partitions (X, Y ) of the set P1 ∪
P2 ∪ R subject to the constraints P1 ⊆ X and P2 ⊆ Y . There is one such pair (X, Y ) for
every subset of R, and hence |S(P1, P2, R)| = 2|R|.

For the sake of brevity, henceforth any reference to the set S(P1, P2, R) will be under-
stood to imply that the three sets P1, P2 and R are mutually disjoint.

Definition 1 (Rank domination and equivalence [9]). Let M(E, ρ) be a matroid
and P1, P2, Q1, Q2, R ⊆ E such that (P1, P2, R) and (Q1, Q2, R) are triples of mutually
disjoint sets. We say the set S(P1, P2, R) is rank dominated by S(Q1, Q2, R) in M if there
exists a bijection π : 2R → 2R such that for all C ⊆ R, ρ(P1 ∪ C) + ρ(P2 ∪ R \ C) ≤
ρ(Q1 ∪ πC) + ρ(Q2 ∪ R \ πC). We write S(P1, P2, R) ≤M S(Q1, Q2, R) to denote such a
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relationship, omitting the subscript M when the matroid is clear from the context, and
call π a rank dominating bijection of the 4-tuple (P1, P2, Q1, Q2) in M .

Additionally, if for all C ⊆ R, ρ(P1 ∪ C) + ρ(P2 ∪ R \ C) = ρ(Q1 ∪ πC) + ρ(Q2 ∪ R \
πC), we also say the set S(P1, P2, R) is rank equivalent to S(Q1, Q2, R) in M , and write
S(P1, P2, R) ≡M S(Q1, Q2, R) (omitting the subscript M if the matroid is clear from the
context).

Note that despite a notational change in the definition of a rank dominating bijection
from the one used in [9, Section 2], it is easy to check that the two definitions are equivalent.
The following properties of rank domination and equivalence were shown in [9].

Proposition 2 (Mani [9]). In any matroid M(E, ρ) for all P1, P2, Q1, Q2, T1, T2, R ⊆ E:

1. (Reflexivity). S(P1, P2, R) ≡ S(P1, P2, R). (Thus rank domination is also reflexive.)

2. (Transitivity). If S(P1, P2, R) ≤ S(Q1, Q2, R) and S(Q1, Q2, R) ≤ S(T1, T2, R), then
S(P1, P2, R) ≤ S(T1, T2, R). (Hence rank equivalence is also transitive.)

3. (Symmetry of ≡). If S(P1, P2, R) ≡ S(Q1, Q2, R) then S(Q1, Q2, R) ≡ S(P1, P2, R).

4. (Antisymmetry of ≤). S(P1, P2, R) ≤ S(Q1, Q2, R) and S(Q1, Q2, R) ≤ S(P1, P2, R)
if and only if S(P1, P2, R) ≡ S(Q1, Q2, R).

5. S(P1, P2, R) ≡ S(P2, P1, R).

Rank submodularity provides an useful example of rank dominations as shown in our
next example.

Example 3. In any matroid M(E, ρ), for all disjoint pairs P1, P2 ⊆ E, we have S(P1 ∪
P2, ∅, ∅) ≤ S(P1, P2, ∅). This can be shown to be equivalent to the property (SM).

2.1 Definition and properties

We now define R-submodularity as follows.

Definition 4 (R-submodularity). Let M(E, ρ) be a matroid and R ⊆ E. We say two
disjoint sets P1, P2 ⊆ E \R are R-submodular in M if there exists a bijection π : 2R → 2R

such that for all C ⊆ R, ρ(P1 ∪ P2 ∪ C) + ρ(R \ C) ≤ ρ(P1 ∪ πC) + ρ(P2 ∪ R \ πC). We
call π an R-submodular bijection of the ordered pair (P1, P2) in M .

Additionally, if for all C ⊆ R, ρ(P1∪P2∪C)+ρ(R\C) = ρ(P1∪πC)+ρ(P2∪R\πC),
we say P1 and P2 are R-modular in M , and π an R-modular bijection of the ordered pair
(P1, P2).

Equivalently, P1 and P2 are R-submodular in M if S(P1 ∪ P2, ∅, R) ≤M S(P1, P2, R),
and R-modular if S(P1 ∪ P2, ∅, R) ≡M S(P1, P2, R). The next result is easy to establish
for all M(E, ρ).

Proposition 5. 1. All disjoint P1, P2 ⊆ E are ∅-submodular in M . (See Example 3.)
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2. For all disjoint P, R ⊆ E, the sets P and ∅ are R-modular in M .

We further know of the following instances of R-submodularity for a matroid M(E, ρ).
The first of these was communicated to us by Noble [10]. Recall that the closure operator
in M is the map clM : 2E → 2E defined by clM(X) = {e : ρ(X ∪ {e}) = ρ(X)}.

Proposition 6 (Noble [10]). All disjoint P1, P2 ⊆ E are R-submodular in M whenever
R ⊆ clM(P1 ∪ P2) \ (P1 ∪ P2).

Proposition 7 (Mani [9]). All disjoint P1, P2 ⊆ E are R-submodular in M whenever
R ⊆ E \ (P1 ∪ P2) and |R| ≤ 3.

However, as the following counterexamples demonstrate, in general Proposition 7 is
false if |R| > 3.

Example 8. Consider the matroids W3 and W3 with geometric representations as shown
in Figure 1. W3 and W3 are called the rank-three wheel and whirl matroids, respec-
tively [11, p.293]. If we let P1 = {1}, P2 = {4} and R = {2, 3, 5, 6}, then Table 1 shows
that P1 and P2 are not R-submodular in W3 and W3.

3 5

2 6

1

4
W3

3 5

2 6

1

4
W3

Figure 1: Rank 3-wheel and whirl

Nevertheless, in Section 3 we introduce a minor closed class of matroids where all
disjoint P1, P2 ⊆ E are R-submodular whenever R ⊆ E \ (P1 ∪ P2).

We next look at the effect of some common matroid operations on its R-submodularity.
First, the deletion operation is easily seen to preserve R-submodularity.

Proposition 9. Let M(E, ρ) be a matroid. Then for all mutually disjoint P1, P2, R ⊆ E
and F ⊆ E \ (P1 ∪ P2 ∪R), π : 2R → 2R is an R-submodular bijection of the pair (P1, P2)
in M if and only if π is an R-submodular bijection of (P1, P2) in M \ F .

Proof. Use ρM\F (X) = ρ(X) for all X ⊆ E \ F in Definition 4.

In contrast, the next counterexample demonstrates that a contraction operation (and
by inference, also duality) does not necessarily preserve R-submodularity.
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C
W3 W3

ρ({1, 4} ∪ C) + ρ({1} ∪ C) + ρ({1, 4} ∪ C) + ρ({1} ∪ C) +
ρ({2, 3, 5, 6}\C) ρ({2, 3, 4, 5, 6}\C) ρ({2, 3, 5, 6}\C) ρ({2, 3, 4, 5, 6}\C)

∅ 5 4 5 4
{2} 6 5 6 5
{3} 6 5 6 5
{5} 6 5 6 5
{6} 6 5 6 5
{2,3} 5 5 5 5
{2,5} 5 6 5 6
{2,6} 5 5 5 5
{3,5} 5 5 5 6
{3,6} 5 6 5 6
{5,6} 5 5 5 5
{2,3,5} 4 5 4 5
{2,3,6} 4 5 4 5
{2,5,6} 4 5 4 5
{3,5,6} 4 5 4 5
{2,3,5,6} 3 4 3 4

Table 1: {1} and {4} are not {2, 3, 5, 6}-submodular in W3 and W3. (Submodular bijec-
tions in these two cases are impossible as columns two and four contain more number of
6’s than columns three and five, respectively).

Example 10. Let M(G) be the cycle matroid of graph G with edges labeled as shown
in Figure 2. Also let P1 = {1}, P2 = {4} and R = {2, 3, 5, 6}. Then it can be checked
from Proposition 5-2 and Lemma 14-1 below, that P1 and P2 are R-submodular in M(G),
while Example 8 implies that P1 and P2 are not R-submodular in M(G)/7 = W3.

Despite this observation, our next result shows that an R-submodularity relationship
in M(E, ρ) manifests itself in a particular minor of its dual matroid. The dual of M(E, ρ)
is the matroid M∗(E, ρ∗), where for all X ⊆ E,

ρ∗(X) = |X| − ρ(E) + ρ(E \ X). (3)

Proposition 11. Let M(E, ρ) be a matroid. Then for all mutually disjoint P1, P2, R ⊆ E,
π : 2R → 2R is an R-submodular bijection of the pair (P1, P2) in M if and only if π is an
R-submodular bijection of (P1, P2) in M∗/F , where F = E \ (P1 ∪ P2 ∪ R).

Proof. By definition, π : 2R → 2R is an R-submodular bijection of (P1, P2) in M if and
only if for all C ⊆ R,

ρ(P1 ∪ P2 ∪ C) + ρ(R \ C) ≤ ρ(P1 ∪ πC) + ρ(P2 ∪ R \ πC).
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2

3 5

6
7

1

Figure 2: A Graph G such that M(G)/7 = W3

Since F ∪ P1 ∪ P2 ∪ R = E, we also have

P1 ∪ P2 ∪ C = E \ (F ∪ R \ C), R \ C = E \ (F ∪ P1 ∪ P2 ∪ C)

P1 ∪ πC = E \ (F ∪ P2 ∪ R \ πC), and P2 ∪ R \ πC = E \ (F ∪ P1 ∪ πC).

It follows that π is an R-submodular bijection of (P1, P2) in M if and only if for all C ⊆ R,

ρ(E\(F ∪R\C))+ρ(E\(F ∪P1∪P2∪C)) ≤ ρ(E\(F ∪P2∪R\πC))+ρ(E\(F ∪P1∪πC)).

Now, applying (3) we see, equivalently, for all C ⊆ R,

ρ∗(F ∪ P1 ∪ P2 ∪ C) + ρ∗(F ∪ R \ C) ≤ ρ∗(F ∪ P1 ∪ πC) + ρ∗(F ∪ P2 ∪ R \ πC).

That is, π is an R-submodular bijection of (P1, P2) in both M and M∗/F .

When P1 ∪ P2 ∪ R = E, we get the following useful corollary.

Corollary 12. Let M(E, ρ) be a matroid, and P1, P2, R ⊆ E be three mutually disjoint
sets such that P1∪P2∪R = E. Then π : 2R → 2R is an R-submodular bijection of (P1, P2)
in M if and only if π is an R-submodular bijection of (P1, P2) in M∗.

If M1(E1, ρ1) and M2(E2, ρ2) are two matroids defined on disjoint sets E1 and E2,
then their direct sum is the matroid M1 ⊕ M2(E, ρ), where E = E1 ∪ E2, and ρ(X) =
ρ1(X ∩ E1) + ρ2(X ∩ E2) for all X ⊆ E. We now show that R-submodularity extends
itself over the direct sum of matroids.

Proposition 13. Let M1(E1, ρ1) and M2(E2, ρ2) be two matroids such that E1 and E2

are disjoint. Also let P11, P21, R1 ⊆ E1 and P21, P22, R2 ⊆ E2 such that P11 and P21 are
R1-submodular in M1, and P12 and P22 are R2-submodular in M2. Then P11 ∪ P12 and
P21 ∪ P22 are R1 ∪ R2-submodular in the matroid M1 ⊕ M2.

Proof. For i = 1, 2, let πi : 2Ri → 2Ri be an Ri-submodular bijection of the pair (P1i, P2i) in
Mi. Also let P1 = P11∪P12, P2 = P21∪P22 and R = R1∪R2. It is straightforward to verify
that the bijection π : 2R → 2R defined by, for all C ⊆ R, πC = π1(C ∩ R1) ∪ π2(C ∩ R2)
is an R-submodular bijection of (P1, P2) in M1 ⊕ M2.
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2.2 Useful R-submodularity constructions

Our next series of results shows R-submodularity in minors can sometimes be used to
construct larger pairs of R-submodular sets in a matroid.

Lemma 14. Let M(E, ρ) be a matroid, P1, P2, R ⊆ E and p ∈ E such that P1 and P2

are R-submodular in M \ p.

1. If p ∈ clM(P1∪P2), then for i, j ∈ {1, 2}, i 6= j, sets Pi∪{p} and Pj are R-submodular
in M .

2. For i, j ∈ {1, 2}, i 6= j, if p ∈ E \ clM(Pi ∪ R) then:

(a) Pi ∪ {p} and Pj are R-submodular in M , and

(b) S(Pi ∪ Pj, {p}, R) ≤M S(Pi ∪ {p}, Pj, R).

Proof. Let π : 2R → 2R be an R-submodular bijection of (P1, P2) in M \ p. Then, from
Proposition 9, π is also an R-submodular bijection of (P1, P2) in M . Hence for all C ⊆ R,

ρ(P1 ∪ P2 ∪ C) + ρ(R \ C) ≤ ρ(P1 ∪ πC) + ρ(P2 ∪ R \ πC). (4)

(1). We prove the case i = 1, j = 2 below, and skip the similar proof when i = 2, j = 1.
When p ∈ clM(P1 ∪P2), we know for all C ⊆ R, ρ(P1 ∪P2 ∪{p}∪C) = ρ(P1 ∪P2 ∪C).

Since ρ(X) ≤ ρ(X ∪ {p}) for all X ⊆ E (4) implies, for all C ⊆ R,

ρ(P1 ∪ P2 ∪ {p} ∪ C) + ρ(R \ C) ≤ ρ(P1 ∪ {p} ∪ πC) + ρ(P2 ∪ R \ πC).

In other words, π is also an R-submodular bijection of the pair (P1 ∪ {p}, P2).
(2). We prove the case i = 1, j = 2, and omit the similar proof for the case i = 2, j = 1.
When p ∈ E \ clM(P1 ∪ R), we know for all C ⊆ R, p 6∈ clM(P1 ∪ πC) and so

ρ(P1 ∪ {p} ∪ πC) = ρ(P1 ∪ πC) + 1. Also ρ(X ∪ {p}) ≤ ρ(X) + 1 for all X ⊆ E, and
thus (4) implies for all C ⊆ R,

ρ(P1 ∪ P2 ∪ {p} ∪ C) + ρ(R \ C) ≤ ρ(P1 ∪ {p} ∪ πC) + ρ(P2 ∪ R \ πC),

and
ρ(P1 ∪ P2 ∪ C) + ρ({p} ∪ R \ C) ≤ ρ(P1 ∪ {p} ∪ πC) + ρ(P2 ∪ R \ πC).

Thus π is an R-submodular bijection of the pair (P1 ∪ {p}, P2), and a rank dominating
bijection of the 4-tuple (P1 ∪ P2, {p}, P1 ∪ {p}, P2) in M .

Lemma 15. Let M(E, ρ) be a matroid, P1, P2, R ⊆ E and p ∈ E such that P1 and P2

are R-submodular in M/p.

1. If p ∈ E\clM(R), then for i, j ∈ {1, 2}, i 6= j, sets Pi∪{p} and Pj are R-submodular
in M .

2. For i, j ∈ {1, 2}, i 6= j, if p ∈ clM(Pi) then:
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(a) Pi and Pj ∪ {p} are R-submodular in M , and

(b) S(Pi ∪ Pj, {p}, R) ≤M S(Pi, Pj ∪ {p}, R).

Proof. Let π : 2R → 2R be an R-submodular bijection of (P1, P2) in M/p. Then, for all
C ⊆ R,

ρM/p(P1 ∪ P2 ∪ C) + ρM/p(R \ C) ≤ ρM/p(P1 ∪ πC) + ρM/p(P2 ∪ R \ πC).

Since ρM/p(X) = ρ(X ∪ {p}) − ρ({p}) for all X ⊆ E \ {p}, this can be rewritten as, for
all C ⊆ R,

ρ(P1 ∪ P2 ∪ {p} ∪ C) + ρ({p} ∪ R \ C) ≤ ρ(P1 ∪ {p} ∪ πC) + ρ(P2 ∪ {p} ∪ R \ πC). (5)

(1). We prove the case i = 1, j = 2. The proof for i = 2, j = 1 is similar.
When p ∈ E \ clM(R), for all C ⊆ R, ρ({p} ∪ (R \ C)) = ρ(R \ C) + 1. Using

ρ(X) ≥ ρ(X ∪ {p}) − 1 for all X ⊆ E, we get from (5),

ρ(P1 ∪ P2 ∪ {p} ∪ C) + ρ(R \ C) ≤ ρ(P1 ∪ {p} ∪ πC) + ρ(P2 ∪ R \ πC),

for all C ⊆ R. Hence π is an R-submodular bijection of the pairs (P1 ∪ {p}, P2) and
(P1, P2 ∪ {p}) in M .

(2). Again we only prove the case i = 1, j = 2.
When p ∈ clM(P1), for all C ⊆ R, ρ(P1 ∪ {p} ∪ πC) = ρ(P1 ∪ πC). Now applying

ρ(X) ≤ ρ(X ∪ {p}) for all X ⊆ E to (5) we obtain

ρ(P1 ∪ P2 ∪ {p} ∪ C) + ρ(R \ C) ≤ ρ(P1 ∪ πC) + ρ(P2 ∪ {p} ∪ R \ πC),

and

ρ(P1 ∪ P2 ∪ C) + ρ({p} ∪ R \ C) ≤ ρ(P1 ∪ πC) + ρ(P2 ∪ {p} ∪ R \ πC),

for all C ⊆ R. Thus π is an R-submodular bijection of (P1, P2∪{p}) and a rank dominating
bijection of the 4-tuple (P1 ∪ P2, {p}, P1, P2 ∪ {p}) in M .

Lemma 16. Let M(E, ρ) be a matroid, P1, P2, R ⊆ E and r ∈ E such that P1 and P2

are R-submodular in minors M \ r and M/r. If r ∈ clM(Pi) or r ∈ E \ clM(Pi ∪ R) for
some i ∈ {1, 2}, then P1 and P2 are R ∪ {r}-submodular in M .

Proof. Note that,

S(P1 ∪ P2, ∅, R ∪ {r}) = S(P1 ∪ P2 ∪ {r}, ∅, R) ∪ S(P1 ∪ P2, {r}, R), (6a)

and S(P1, P2, R ∪ {r}) = S(P1 ∪ {r}, P2, R) ∪ S(P1, P2 ∪ {r}, R), (6b)

where all unions are over disjoint sets. We look at two possible cases.
Case r ∈ clM(Pi), i ∈ {1, 2}: We prove the case r ∈ clM(P1), and omit the similar proof
of the case r ∈ clM(P2).
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When r ∈ clM(P1) we know from Lemma 14-1 that S(P1 ∪ P2 ∪ {r}, ∅, R) ≤M S(P1 ∪
{r}, P2, R), and from Lemma 15-2(b) that S(P1∪P2, {r}, R) ≤M S(P1, P2∪{r}, R). Hence
from (6a)-(6b), S(P1 ∪ P2, ∅, R ∪ {r}) ≤M S(P1, P2, R ∪ {r}).
Case r ∈ E \ clM(Pi ∪ R), i ∈ {1, 2}: We prove the case r ∈ E \ clM(P1 ∪ R), and the
proof when r ∈ E \ clM(P2 ∪ R) is similar.

When r ∈ E \ clM(P1 ∪ R), we have from Lemma 14-2(b), S(P1 ∪ P2, {r}, R) ≤M

S(P1 ∪ {r}, P2, R), and from Lemma 15-1, S(P1 ∪ P2 ∪ {r}, ∅, R) ≤M S(P1, P2 ∪ {r}, R).
The result then follows from (6a)-(6b).

Lemma 17. Let M(E, ρ) be a matroid, P1, P2, R ⊆ E and r ∈ E such that P1 and P2 be
R-submodular in M \ r and M/r. If there exists an element s ∈ R such that {r, s} is a
circuit or a cocircuit in M , then P1 and P2 are R ∪ {r}-submodular in M .

Proof. We consider the two cases separately.
Case 1 ({r, s} is a circuit in M): Let R′ = R \ {s}. Also let,

S1 = S(P1 ∪ P2 ∪ {r, s}, ∅, R′) ∪ S(P1 ∪ P2, {r, s}, R
′), (7a)

S2 = S(P1 ∪ P2 ∪ {r}, {s}, R′) ∪ S(P1 ∪ P2 ∪ {s}, {r}, R′), (7b)

S3 = S(P1 ∪ {r, s}, P2, R
′) ∪ S(P1, P2 ∪ {r, s}, R′), and (7c)

S4 = S(P1 ∪ {r}, P2 ∪ {s}, R′) ∪ S(P1 ∪ {s}, P2 ∪ {r}, R′), (7d)

where all unions are over disjoint sets. Clearly, then

S(P1 ∪ P2, ∅, R ∪ {r}) = S1 ∪ S2, and

S(P1, P2, R ∪ {r}) = S3 ∪ S4.

For i, j ∈ {1, 2, 3, 4} we say Si ≤M Sj if there exists a bijection σ : Si → Sj such that
ρ(W ) + ρ(Z) ≤ ρ(X) + ρ(Y ) whenever σ(W, Z) = (X, Y ). To prove S(P1 ∪ P2, ∅, R ∪
{r}) ≤M S(P1, P2, R∪ {r}), note that it is enough to show that S1 ≤M S3 and S2 ≤M S4.

Since {r, s} is a circuit in M , using the rank dominating bijection defined by πC = C
for all C ⊆ R′, we have

S(P1 ∪ P2 ∪ {r, s}, ∅, R′) ≡M S(P1 ∪ P2 ∪ {s}, ∅, R′), (8a)

S(P1 ∪ P2, {r, s}, R
′) ≡M S(P1 ∪ P2, {s}, R

′), (8b)

S(P1 ∪ {r, s}, P2, R
′) ≡M S(P1 ∪ {s}, P2, R

′), and (8c)

S(P1, P2 ∪ {r, s}, R′) ≡M S(P1, P2 ∪ {s}, R′). (8d)

However, by definition,

S(P1 ∪ P2, ∅, R) = S(P1 ∪ P2 ∪ {s}, ∅, R′) ∪ S(P1 ∪ P2, {s}, R
′), and

S(P1, P2, R) = S(P1 ∪ {s}, P2, R
′) ∪ S(P1, P2 ∪ {s}, R′).

Since P1 and P2 are R-submodular in M \ r, it follows that,

S(P1 ∪ P2 ∪ {s}, ∅, R′) ∪ S(P1 ∪ P2, {s}, R
′) ≤M S(P1 ∪ {s}, P2, R

′) ∪ S(P1, P2 ∪ {s}, R′).
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From (7a), (7c) and (8a)-(8d), this is equivalent to S1 ≤M S3.
Also when {r, s} is a circuit in M , s is a loop in M/r. Thus, if P1 and P2 are R-

submodular in M/r, then they are also R′-submodular in M/r, and so

S(P1 ∪ P2, ∅, R
′) ≤M/r S(P1, P2, R

′). (9)

Using the facts ρM/r(X) = ρ(X ∪{r})− ρ({r}) for all X ⊆ E \ {r}, and {r, s} is a circuit
in M in (9), we obtain

S(P1 ∪ P2 ∪ {r},{s}, R′) ≡M S(P1 ∪ P2 ∪ {s}, {r}, R′) ≤M

S(P1 ∪ {s}, P2 ∪ {r}, R′) ≡M S(P1 ∪ {r}, P2 ∪ {s}, R′).
(10)

From (7b), (7d) and (10), it follows that S3 ≤M S4, which proves this case.
Case 2 ({r, s} is a cocircuit in M): Let F = E \ (P1 ∪P2 ∪R), and consider the matroid
N = M∗/F . Since P1 and P2 are R-submodular in M \ r and M/r, from Proposition 11,
they are also R-submodular in N \ r and N/r.

Further, the set {r, s} is a cocircuit in M \ F , and hence is a circuit in N = M∗/F .
Thus, using the previous case, P1 and P2 are R ∪ {r}-submodular in N . Finally, another
application of Proposition 11 gives P1 and P2 are R ∪ {r}-submodular in M .

3 Extended submodular matroids

Considering Example 8, we may ask if there exist minor closed classes of matroids in
which P1 and P2 are R-submodular for all mutually disjoint P1, P2, R ⊆ E. In this section
we show that there are some well-known classes of matroids with this property.

3.1 Definition and properties

Definition 18 (R-family of minors). Let M(E, ρ) be a matroid. Given an R ⊆ E, we
define the R-family of minors of M , MF(M, R), to be

MF(M, R) = {M/C \ (R \ C) : C ⊆ R}. (11)

That is, the R-family of minors is the set of all minors of M obtained by deleting or
contracting every element in R.

Definition 19 (Extended submodular matroids). A matroid M(E, ρ) is extended
submodular if for all mutually disjoint P1, P2, R ⊆ E and minors N ∈ MF(M, E \ (P1 ∪
P2 ∪R)), P1 and P2 are R-submodular in N. We denote the class of extended submodular
matroids by ESM.

We first show that the class ESM is closed under some well-known matroid operations.

Proposition 20. If M(E, ρ) ∈ ESM then M∗ ∈ ESM.
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Proof. Let P1, P2, R ⊆ E, and N∗ ∈ MF(M∗, E \ (P1 ∪ P2 ∪ R)). Clearly, if N = (N∗)∗,
then N ∈ MF(M, E\(P1∪P2∪R)). By definition, we know P1 and P2 are R-submodular
in N . Since the ground set of N is P1 ∪P2 ∪R, from Corollary 12, sets P1 and P2 are also
R-submodular in N∗.

Proposition 21. If M1(E1, ρ1), M2(E2, ρ2) ∈ ESM then their direct sum M1 ⊕ M2 ∈
ESM.

Proof. Let E = E1∪E2, and M = M1⊕M2. Now, let P1, P2, R ⊆ E, T = E \(P1∪P2∪R)
and suppose N ∈ MF(M, T ). By definition, N = M/X \ (T \X) for some X ⊆ T . If we
let, for i = 1, 2,

P1i = P1 ∩ Ei, P2i = P2 ∩ Ei, Ri = R ∩ Ei,

Ti = Ei \ (P1 ∪ P2 ∪ R), and Ni = Mi/(X ∩ Ei) \ (Ti \ X),

then it can be checked that N1 ∈ MF(M1, T1), N2 ∈ MF(M2, T2), and N = N1 ⊕ N2.
As M1, M2 ∈ ESM, for i = 1, 2, the sets P1i and P2i are Ri-submodular in Ni. Hence,

from Proposition 13, P1 and P2 are R-submodular in N .

We say a matroid Mp is a parallel extension of M(E, ρ) if Mp \ e = M , and there
exists an f ∈ E such that {e, f} is a circuit in Mp [11, p.155]. Similarly, Ms is a series
extension of M(E, ρ) if Ms/e = M , and there is an f ∈ E such that {e, f} is a cocircuit
in Ms.

Proposition 22. Let M(E, ρ) ∈ ESM.

1. If Mp is a parallel extension of M , then Mp ∈ ESM.

2. If Ms is a series extension of M , then Ms ∈ ESM.

Proof. (1). [Mp ∈ ESM]. Let Mp \ e = M , Ep = E ∪ {e} and f ∈ E such that {e, f} is
a circuit in Mp. Also, let P1, P2, R ⊆ Ep, T = Ep \ (P1 ∪ P2 ∪ R) and N ∈ MF(Mp, T ).
Then, by definition, N = Mp/C \ (T \ C) for some C ⊆ T .

We have the following two possible cases.
Case 1 (e 6∈ P1 ∪ P2 ∪ R): Then e ∈ T . There are three possibilities in this case.
Subcase 1a (e 6∈ C): Let Te = T \ {e}. As M = Mp \ e, we see that

N = Mp/C \ (T \ C) = M/C \ (Te \ C).

Thus, N ∈ MF(M, Te) and since M ∈ ESM, it follows that P1 and P2 are R-submodular
in N .
Subcase 1b (e ∈ C, f 6∈ P1 ∪ P2 ∪ R): Then f ∈ T . As {e, f} is a circuit in Mp, we
know f is a loop in Mp/e. Let Cf = C \ {f}. Then,

N = Mp/C \ (T \ C) = Mp/Cf \ (T \ Cf).
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However, as e and f are parallel elements in Mp and f 6∈ Cf , this is now similar to Subcase
1a.
Subcase 1c (e ∈ C, f ∈ P1∪P2∪R): Let Cf

e = C∪{f}\{e}, and Nf
e = Mp/C

f
e \(T \C).

Then Nf
e ∈ MF(M, T ∪ {f}).

Also, let P f
1 = P1 \ {f}, P

f
2 = P2 \ {f} and Rf = R \ {f}. Since M ∈ ESM, the sets

P f
1 and P f

2 are Rf -submodular in Nf
e . But e and f are parallel in Mp, and so P f

1 and P f
2

are also Rf -submodular in N = Mp/C \ (T \C). Finally, as f is a loop in N , this implies
P1 and P2 are R-submodular in N as required in this case.
Case 2 (e ∈ P1 ∪ P2 ∪ R): There are again three different possibilities.
Subcase 2a (f 6∈ P1∪P2∪R): If f 6∈ P1∪P2∪R, then as e and f are parallel elements in
Mp, this is equivalent to e 6∈ P1 ∪P2 ∪R, f ∈ P1 ∪P2 ∪R, which was handled in Subcases
1a and 1c above.
Subcase 2b (e ∈ R, f ∈ P1∪P2∪R): Let Re = R\{e}. Then, N \e, N/e ∈ MF(M, T ),
and as M ∈ ESM, we know P1 and P2 are Re-submodular in N \ e and N/e.

Now, if f ∈ R, since {e, f} is a circuit in N , we can deduce P1 and P2 are R-submodular
in N from Lemma 17.

Also, if f ∈ P1 or f ∈ P2, then e ∈ clN(Pi) for some i ∈ {1, 2}, and we can use
Lemma 16 to obtain P1 and P2 are R-submodular in N .
Subcase 2c (e ∈ P1 ∪ P2, f ∈ P1 ∪ P2 ∪ R): Without loss of generality assume e ∈ P1,
and let P e

1 = P1 \ {e}. As N \ e ∈ MF(M, T ) and M ∈ ESM, we know P e
1 and P2 are

R-submodular in N \ e.
Now, if f ∈ P1 ∪ P2, then e ∈ clN (P1 ∪ P2) and hence, from Lemma 14-1, we deduce

P1 and P2 are R-submodular in N .
Alternatively, if f ∈ R, as e and f are parallel elements in N , the case is analogous to

e ∈ R and f ∈ P1, which was handled in Subcase 2b.
(2). [Ms ∈ ESM]. Let Ms/e = M . Then its dual M∗

s is a parallel extension
of M∗, the dual matroid of M , such that M∗

s \ e = M∗ [11, p.155]. We know from
Proposition 20 that M∗ ∈ ESM, and consequently, from the previous case, its parallel
extension M∗

s ∈ ESM. Finally, applying Proposition 20 again, we find Ms ∈ ESM.

A parallel class of M(E, ρ) is a maximal set X ⊆ E without loops such that ρ(X) = 1.
A loopless matroid is called simple if all its parallel classes are of size one. Every matroid
M has an associated simple matroid M̃ obtained by deleting its loops and all but one
distinguished element from each parallel class of M [11, p.52]. The next result is an
immediate consequence of Proposition 22.

Corollary 23. A matroid M(E, ρ) ∈ ESM if and only if its associated simple matroid

M̃ ∈ ESM.

3.2 Examples and characterization results

We now identify some well-known classes of matroids that are extended submodular.
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Lemma 24. Let M(E, ρ) = Um,n be a uniform matroid of rank m and size n. Then, for
any disjoint P, R ⊆ E, there exists an R-modular bijection π : 2R → 2R of the ordered
pair (P, ∅) in M such that for all C ⊆ R, |πC| ≥ |R| − |P | − |C|.

Proof. When |R| ≤ |P |, the map πC = C will satisfy our requirement.
When |R| > |P |, let k = |R| − |P |. In this case, first note that when 0 ≤ |C| < k/2,

the map πC = C will not satisfy our lemma because then

|πC| = |C| < |R| − |P | − |C|.

We instead define π as follows.
Let Ri and Rk

i be the set of all subsets of R of size i and k − i respectively. We make
the following claim.

Claim 25. If 0 ≤ i < k/2, then |Ri| ≤ |Rk
i |.

Proof. Let r = |R| and ∆ = |Ri| − |Rk
i |. Clearly when |P | = 0, we have k − i = r − i,

and so ∆ = 0. When 0 < |P | < r and 0 ≤ i < k/2,

∆ =

(
r

i

)
−

(
r

k − i

)

=
r!

i!(k − i)!

(
1

(k − i + 1) · · · (k − i + r − k)
−

1

(i + 1) · · · (i + r − k)

)
.

Since i < k/2, for all j ∈ Z we have k − i + j > i + j, and thus ∆ < 0.

It follows that for each 0 ≤ i < k/2 there is an injection σi : Ri → Rk
i . Additionally,

for each 0 ≤ i < k/2 we define a map µi : Rk
i → Ri ∪Rk

i , which is really the inverse map
of σi extended to all elements of Rk

i as follows. For all X ∈ Rk
i ,

µi(X) =

{
X ′, if there is a X ′ ∈ Ri such that σiX

′ = X

X, otherwise.
(12)

We are finally ready to define the bijection π that satisfies our lemma. For all C ⊆ R,
let

πC =





σ|C|(C), if 0 ≤ |C| < k/2

µk−|C|(C), if k/2 < |C| ≤ k

C, otherwise.

(13)

It remains to show that (13) satisfies our requirements.
When 0 ≤ |C| < k/2, clearly

|πC| = |σ|C|(C)| = k − |C| = |R| − |P | − |C|.

Consequently, in this case |P ∪ C| = |R \ πC| and |R \ C| = |P ∪ πC|, and as M is a
uniform matroid, this implies ρ(P ∪ C) + ρ(R \ C) = ρ(P ∪ πC) + ρ(R \ πC).
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When k/2 < |C| ≤ k, we have |πC| = |µk−|C|(C)|. Hence, from (12) we have two
possibilities. First, it can be that

|πC| = k − |C| = |R| − |P | − |C|,

and the proof that π satisfies our requirements are similar to the previous case. Alterna-
tively, when k/2 < |C| ≤ k, from (12), we can have

|πC| = k − (k − |C|) = |C| > |R| − |P | − |C|.

It also follows trivially in this case that ρ(P ∪ C) + ρ(R \ C) = ρ(P ∪ πC) + ρ(R \ πC).
Finally when |C| = k/2 or k < |C| ≤ |R|, from (13), we have

|πC| = |C| ≥ |R| − |P | − |C|.

Also, trivially, ρ(P ∪C)+ρ(R \C) = ρ(P ∪πC)+ρ(R \πC), in this case as required.

Lemma 26. Let M(E, ρ) = Um,n be a uniform matroid of rank m and size n. Then, for
any mutually disjoint P1, P2, R ⊆ E, there exists an R-submodular bijection π : 2R → 2R

of the pair (P1, P2) in M such that for all C ⊆ R, |πC| ≥ |R| − |P1| − |C|.

Proof. We use induction on |P2|. When |P2| = 0, the statement follows from Lemma 24.
Let k ∈ Z>0, and assume the lemma is true whenever |P2| < k.

Suppose |P2| = k, and let P ′
2 = P2 \ {p} for some p ∈ P2. By the inductive hypothesis,

there exists an R-submodular bijection π : 2R → 2R of (P1, P
′
2) in M such that for all C ⊆

R, |πC| ≥ |R|−|P1|−|C|. Equivalently, for all C ⊆ R, we have |P ′
2∪R\πC| ≤ |P1∪P ′

2∪C|.
Since M is uniform, this implies if p 6∈ clM(P1∪P ′

2∪C) then p 6∈ clM(P ′
2∪R\πC). Hence,

for all C ⊆ R,

ρ(P1 ∪ P ′
2 ∪ {p} ∪ C) + ρ(R \ C) ≤ ρ(P1 ∪ πC) + ρ(P ′

2 ∪ {p} ∪ R \ πC).

Equivalently, π is also an R-submodular bijection of the pair (P1, P
′
2 ∪ {p}) in M .

We note that it is a curious result of the proofs of Lemmas 24 and 26 that for any
mutually disjoint P1, P2, R ⊆ E, there exists an R-submodular bijection of the pair (P1, P2)
in the uniform matroid Um,n that depends only on the sizes of the sets P2 and R. In
particular, this bijection is entirely independent of the rank m and size n of the matroid.

More importantly, as the class of uniform matroids is minor closed, these results show
that all such matroids are extended submodular.

Corollary 27. All uniform matroids are extended submodular.

Chaourar and Oxley [3] showed that the excluded minors for the class of uniform
matroids and their series-parallel extensions are W3,W3, Q6, P6 and R6. We refer to [11,
p.503–504] for a description of the matroids Q6, P6 and R6. Among these excluded minors,
we can see from Example 8 that the matroids W3 and W3 are not extended submodular.
However, a routine computational verification shows that Q6, P6, R6 ∈ ESM [8, Appendix
A]. Following Oxley [11, p.365], for a set {M1, M2, . . .} of matroids, we use the notation
EX(M1, M2, . . . ) to denote the class of matroids with no minors isomorphic to any element
of {M1, M2, . . . }. Then, from the previous discussion, we get the following result.
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Proposition 28. EX(W3,W3, Q6, P6, R6) ( ESM.

Since all matroids in the excluded minor list of the previous result are of rank three,
and the class ESM is dual closed, we can say the following.

Corollary 29. Every matroid of rank or corank at most two is extended submodular.

Brylawski [2] showed that the series-parallel networks are precisely the class of binary
matroids without a minor isomorphic to W3. Since W3, Q6, P6 and R6 are known to be
non-binary matroids, from Proposition 28 and Example 8, we get our next corollary.

Corollary 30. A binary matroid is extended submodular if and only if it is a series-
parallel network.

4 R-submodularity and the Z-Rayleigh property

We now show that R-submodularity in minors of a matroid enforce non-negativity of
corresponding coefficients (explained below in Lemma 33) in its Z-Rayleigh difference
polynomials defined in (2). We begin by listing some existing results for the class of
Z-Rayleigh matroids.

Let M1(E1, ρ1) and M2(E2, ρ2) be two matroids such that E1 ∩ E2 = {e}. Then their
2-sum is the matroid M1 ⊕2 M2(E, ρ) with ground set E = E1 ∪ E2 \ {e} and for all
X ⊆ E,

ρ(X) =

{
ρ1(X ∩ E1) + ρ2(X ∩ E2) − 1, if e ∈ clM1

(X ∩ E1) ∩ clM2
(X ∩ E2);

ρ1(X ∩ E1) + ρ2(X ∩ E2), otherwise.

Proposition 31. 1. The class of Z-Rayleigh matroids is closed under duals, minors
and 2-sums [16, Lemma 4.1, Theorem 5.8].

2. All uniform matroids are Z-Rayleigh [16, Section 5].

Note that Theorem 5.8 in [16] states that the class of Potts-Rayleigh matroids is closed
under 2-sums. Nevertheless, the same argument is readily seen to show that the restricted
class of Z-Rayleigh matroids is also closed under 2-sums.

It is an immediate consequence of Proposition 31 that all 2-sum extensions of uniform
matroids including the series-parallel networks are Z-Rayleigh. Our results in the first half
of this section shows that uniform matroids and their series-parallel extensions also have
the additional property that every coefficient of their Z-Rayleigh difference polynomials
is non-negative for all q in the interval 0 < q ≤ 1.

4.1 The basic results

Let M(E, ρ) be a matroid. For any subset A ⊆ E, we frequently use the convenient
notation yA =

∏
e∈A

ye with the convention yA = 1 if A is empty. For disjoint sets A, B ⊆
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E \ {e, f}, we denote the coefficient of the monomial yA(yB)2 in ∆Z{e, f}(M, q;y) by
[yA(yB)2]∆Z{e, f}(M, q;y).

The following result is useful to establish the connection between R-submodularity of
{e} and {f}, and the non-negativity of the coefficients in a ∆Z{e, f}(M, q;y).

Lemma 32. Let M(E, ρ) be a matroid and e, f ∈ E be two distinct non-loop elements.
Then, for any disjoint pair of sets R, T ⊆ E \ {e, f} and a bijection σ : 2R → 2R,
[yR(yT )2]∆Z{e, f}(M, q;y) = q2βR,T (q), where

βR,T (q) =
∑

C⊆R

(
q−ρ({e}∪T∪σC)−ρ({f}∪T∪R\σC) − q−ρ({e,f}∪T∪C)−ρ(T∪R\C)

)
.

Proof. Let E = E \ {e, f}. Recall that for any disjoint U, V ⊆ E and all A ⊆ E \ (V ∪U),

ρM/V \U (A) = ρ(A ∪ V ) − ρ(V ). (14)

Using (1), (2), (14), we get

∆Z{e, f}(M, q;y) = q2α(q;y), (15)

where

α(q;y) =
∑

(X,Y )∈2E×2E

q−ρ(X∪{e})−ρ(Y ∪{f})yX∪Y yX∩Y

−
∑

(W,Z)∈2E×2E

q−ρ(W∪{e,f})−ρ(Z)yW∪ZyW∩Z .
(16)

We can now split each of the two sums in (16) into smaller sums on pairs (X, Y ) (and
(W, Z), respectively) according to X ∪Y and X ∩Y (and W ∪Z and W ∩Z, respectively).
That is,

α(q;y) =
∑

(A,B)∈2E×2E

A∩B=∅

γA,B(q) · yA(yB)2, (17)

where

γA,B(q) =
∑

(X,Y )∈2E×2E

X∩Y =B,X∪Y =A∪B

q−ρ(X∪{e})−ρ(Y ∪{f}) −
∑

(W,Z)∈2E×2E

W∩Z=B,W∪Z=A∪B

q−ρ(W∪{e,f})−ρ(Z). (18)

From (15) and (17), it is plain that

[yR(yT )2]∆Z{e, f}(M, q;y) = q2γR,T (q). (19)

Also, note that,

{(X ∪ {e}, Y ∪ {f}) : (X, Y ) ∈ 2E × 2E, X ∩ Y = T, X ∪ Y = R ∪ T} =

{({e} ∪ T ∪ C, {f} ∪ T ∪ R \ C) : C ⊆ R}, and
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{(W ∪ {e, f}, Z) : (W, Z) ∈ 2E × 2E , W ∩ Z = T, W ∪ Z = R ∪ T} =

{({e, f} ∪ T ∪ C, T ∪ R \ C) : C ⊆ R}.

Hence, given any bijection σ : 2R → 2R, we can rewrite (18) as

γR,T (q) =
∑

C⊆R

(
q−ρ({e}∪T∪σC)−ρ({f}∪T∪R\σC) − q−ρ({e,f}∪T∪C)−ρ(T∪R\C)

)

= βR,T (q).

The result now follows from (19).

One consequence of this observation is particularly relevant for our purposes.

Lemma 33. Let M(E, ρ) be a matroid, e, f ∈ E be two distinct elements and E =
E \ {e, f}. Also for any disjoint R, T ⊆ E, let T = E \ (T ∪ R). If the sets {e} and
{f} are R-submodular in the minor N = M/T \ T ∈ MF(M, E \R), then the coefficient
[yR(yT )2]∆Z{e, f}(M, q;y) ≥ 0 for all q in the interval 0 < q ≤ 1.

Furthermore, [yR(yT )2]∆Z{e, f}(M, q;y) = 0 for all q in the interval 0 < q ≤ 1 if
and only if the sets {e} and {f} are R-modular in N .

Proof. It is easy to check that if e or f is a loop in M then ∆Z{e, f}(M, q;y) = 0, and
the lemma is vacuously true. Henceforth we assume that neither e nor f is a loop in M .

Let π : 2R → 2R be an R-submodular bijection for the pair ({e}, {f}) in N = M/T \T .
Then, we know from Lemma 32, [yR(yT )2]∆Z{e, f}(M, q;y) = q2βR,T (q), where

βR,T (q) =
∑

C⊆R

(
q−ρ({e}∪T∪πC)−ρ({f}∪T∪R\πC) − q−ρ({e,f}∪T∪C)−ρ(T∪R\C)

)
. (20)

Since ρN(A) = ρ(A ∪ T ) − ρ(T ) for all A ⊆ R ∪ {e, f} and π is an R-submodular
bijection, we have for all C ⊆ R,

ρ({e, f} ∪ T ∪ C) + ρ(T ∪ R \ C) ≤ ρ({e} ∪ T ∪ πC) + ρ({f} ∪ T ∪ R \ πC).

Hence, each term of the sum in (20) is at least zero whenever 0 < q ≤ 1, which gives
[yR(yT )2]∆Z{e, f}(M, q;y) ≥ 0.

However, if π is an R-modular bijection of ({e}, {f}) in N , then for all C ⊆ R,

ρ({e, f} ∪ T ∪ C) + ρ(T ∪ R \ C) = ρ({e} ∪ T ∪ πC) + ρ({f} ∪ T ∪ R \ πC),

and again from (20) it follows that [yR(yT )2]∆Z{e, f}(M, q;y) = 0 whenever 0 < q ≤ 1.
Conversely, if [yR(yT )2]∆Z{e, f}(M, q;y) = 0 whenever 0 < q ≤ 1, from Lemma 32,

we must have βR,T (q) = 0 whenever 0 < q ≤ 1. This implies βR,T (q) is zero everywhere,
for otherwise, as a polynomial in q−1, it can only have finitely many roots for q in the
interval 0 < q ≤ 1. That is, there exists a bijection π : 2R → 2R such that every term of
the sum in (20) is zero, which implies for all C ⊆ R,

ρ({e, f} ∪ T ∪ C) + ρ(T ∪ R \ C) = ρ({e} ∪ T ∪ πC) + ρ({f} ∪ T ∪ R \ πC),

In other words, π is an R-modular bijection of ({e}, {f}) in N .
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It is worth noting that while R-submodularity of sets {e} and {f} in a minor is
sufficient for non-negativity of the corresponding coefficient in the Z-Rayleigh difference
polynomial, we do not know if it is also a necessary condition.

Following Wagner [16], we use the notation Z1(y) ≫ Z2(y) for two multivariate poly-
nomials Z1(y), Z2(y), if Z1(y)−Z2(y) has only non-negative coefficients. The next result
is an immediate consequence of Lemma 33, and is often useful in identifying cases where
∆Z{e, f}(M, q;y) ≫ 0 for all q in the interval 0 < q ≤ 1.

Theorem 34. Let M(E, ρ) be a matroid, e, f ∈ E be distinct elements and E = E\{e, f}.
If for all R ⊆ E and minors N ∈ MF(M, E \R), the sets {e} and {f} are R-submodular
in N , then ∆Z{e, f}(M, q;y) ≫ 0 whenever 0 < q ≤ 1.

In particular, all extended submodular matroids are also Z-Rayleigh because the
R-submodularity conditions of Theorem 34 are satisfied by definition, for all distinct
elements e, f in its ground set.

Proposition 35. If M(E, ρ) ∈ ESM then M is Z-Rayleigh, and for all distinct e, f ∈ E,
∆Z{e, f}(M, q;y) ≫ 0 whenever 0 < q ≤ 1.

4.2 Beyond extended submodular matroids

We next apply R-submodularity to obtain some results on the Z-Rayleigh properties of
matroids that are not extended submodular. We begin with the following result which
shows that a Theorem proved by Semple and Welsh [12, Theorem 4.2] for the I-Rayleigh
property also extends to the Z-Rayleigh property.

Theorem 36. Let M(E, ρ) = M(G) be the cycle matroid of a graph G. Also let e, f be
distinct edges in E, and E = E \ {e, f}. If [yR(yT )2]∆Z{e, f}(M, q;y) < 0 for some
disjoint R, T ⊆ E, 0 < q ≤ 1 and y > 0, then the graph G/T \ T contains a K4 minor,
where T = E \ (R ∪ T ).

Proof. Let H = G/T \ T . Then, from Lemma 33 we know {e} and {f} are not R-
submodular in M(H), and thus, from Corollary 30, H has a K4 minor.

Wagner [16, Conjecture 5.4] proposed a stronger conjecture for the I-Rayleigh property
of graphic matroids requiring the edges e and f in the above result to also be non-adjacent
edges of the K4 minor in G. It is likely that an analogous result is true for the Z-Rayleigh
property of graphic matroids, and we offer the following conjecture.

Conjecture 37. Let M(E, ρ) = M(G) be the cycle matroid of a graph G. Also let e, f
be distinct edges in E, and E = E \ {e, f}. If [yR(yT )2]∆Z{e, f}(M, q;y) < 0 for some
disjoint R, T ⊆ E, 0 < q ≤ 1 and y > 0, then the graph G/T \ T contains a K4 minor
with e and f as non-adjacent edges, where T = E \ (R ∪ T ).

We next give a characterization of minor-minimal non-Z-Rayleigh matroids using R-
submodularity.
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Lemma 38. Let M(E, ρ) be a matroid with distinct elements e, f, g ∈ E, and let E =
E \ {e, f, g}. If for all R ⊆ E, the sets {e} and {f} are R ∪ {g}-submodular in every
minor N ∈ MF(M, E \ R), then

∆Z{e, f}(M, q;y) ≫ ∆Z{e, f}(M \ g, q;y) + y2
g∆Z{e, f}(M/g, q;y),

whenever 0 < q ≤ 1.

Proof. Applying a routine manipulation, we can write

∆Z{e, f}(M, q;y) = ∆Z{e, f}(M \ g, q;y) + y2
g∆Z{e, f}(M/g, q;y) + ∆g(y),

where ∆g(y) contains precisely those monomials of ∆Z{e, f}(M, q;y) that are of the form
yR∪{g}(yT )2 for disjoint R, T ⊆ E. It follows then from Lemma 33 that ∆g(y) ≫ 0 for all
q in the interval 0 < q ≤ 1, and hence the result.

Corollary 39. Let M(E, ρ) be a minor-minimal matroid that is not Z-Rayleigh, with
e, f ∈ E such that ∆Z{e, f}(M, q;y) < 0 for some q in the interval 0 < q ≤ 1 and y > 0.
Then for every g ∈ E \ {e, f} there exists an R ⊆ Eg and a minor N ∈ MF(M, Eg \ R)
such that {e} and {f} are not R ∪ {g}-submodular in N , where Eg = E \ {e, f, g}.

Proof. Suppose for a contradiction that there exists a g ∈ E \ {e, f} such that for all
R ⊆ Eg, the sets {e} and {f} are R∪{g}-submodular in every minor N ∈ MF(M, Eg\R).
Then, by Lemma 38

∆Z{e, f}(M, q;y) ≫ ∆Z{e, f}(M \ g, q;y) + y2
g∆Z{e, f}(M/g, q;y).

However, since M is a minor-minimal non-Z-Rayleigh matroid, both M \ g and M/g are
Z-Rayleigh, which implies ∆Z{e, f}(M, q;y) ≥ 0 whenever 0 < q ≤ 1 and y > 0, a
contradiction.

In particular, this leads us to a characterization of minor-minimal non-Z-Rayleigh ma-
troids that is similar to a result by Wagner [15, Proposition 3.2] for B-Rayleigh matroids.
We first need the following R-submodularity result, which despite notational differences,
is really an extension of the argument used in the proof of [15, Lemma 3.1].

Lemma 40. Let M(E, ρ) be a simple and cosimple matroid with distinct elements e, f, g ∈
E such that {e, f, g} is a circuit or a cocircuit in M . Then for all R ⊆ E \ {e, f, g}, the
sets {e} and {f} are R ∪ {g}-submodular in M .

Proof. Let E = E \ {e, f, g} and R ⊆ E. We consider the two cases separately.
Case 1 ({e, f, g} is a circuit in M): We define the R ∪ {g}-submodular bijection of
({e}, {f}) in M as follows. For all C ⊆ R, let

πC =

{
R \ C, if e, g 6∈ clM(R \ C);

{g} ∪ C, otherwise,
(21a)

π({g} ∪ C) =

{
{g} ∪ C, if e, g 6∈ clM(R \ C);

R \ C, otherwise.
(21b)
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We first show that π : 2{g}∪R → 2{g}∪R is a bijection.
Suppose there exist C1, C2 ⊆ R such that πC1 = πC2 or π({g} ∪ C1) = π({g} ∪ C2),

then since g 6∈ R, it is easy to see from (21a) and (21b) that C1 = C2.
Alternatively, suppose there exist C1, C2 such that πC1 = π({g} ∪ C2). Then, if

g ∈ πC1, from (21a) and (21b), we get C1 = C2, at least one of e, g ∈ clM(R\C1), and both
e, g 6∈ clM(R\C2), which is a contradiction. A very similar argument gives a contradiction
when g 6∈ πC1. Hence there cannot be C1, C2 ⊆ R such that πC1 = π({g} ∪C2), and π is
a bijection.

It remains to show that π is a R ∪ {g}-submodular bijection of ({e}, {f}) in M . As
{e, f, g} is a circuit in M , we have for all C ⊆ R,

ρ({e, f, g} ∪ C) = ρ({e, f} ∪ C) = ρ({e, g} ∪ C) = ρ({f, g} ∪ C). (22)

We have the following three possibilities for a subset C ⊆ R.
Subcase 1a (g ∈ clM(R\C)): Then ρ({g}∪R\C) ≤ ρ({f}∪R\C). Hence, from (21a),
(21b) and (22),

ρ({e, f} ∪ C) + ρ({g} ∪ R \ C) ≤ ρ({e, g} ∪ C) + ρ({f} ∪ R \ C),

= ρ({e} ∪ πC) + ρ({f, g} ∪ R \ πC), and

ρ({e, f, g} ∪ C) + ρ(R \ C) ≤ ρ({e} ∪ R \ C) + ρ({f, g} ∪ C)

= ρ({e} ∪ π({g} ∪ C)) + ρ({f, g} ∪ R \ π({g} ∪ C)).

Subcase 1b (e, g 6∈ clM(R \ C)): Then ρ({e} ∪ R \ C) = ρ({g} ∪ R \ C). Thus, from
(21a), (21b) and (22),

ρ({e, f} ∪ C) + ρ({g} ∪ R \ C) = ρ({e} ∪ R \ C) + ρ({f, g} ∪ C)

= ρ({e} ∪ πC) + ρ({f, g} ∪ R \ πC), and

ρ({e, f, g} ∪ C) + ρ(R \ C) ≤ ρ({e, g} ∪ C) + ρ({f} ∪ R \ C)

= ρ({e} ∪ π({g} ∪ C)) + ρ({f, g} ∪ R \ π({g} ∪ C)).

Subcase 1c (e ∈ clM(R \ C), g 6∈ clM(R \ C)): Then observe that f 6∈ clM(R \ C). For
otherwise, if both e, f ∈ clM(R \ C) then

g ∈ clM({e, f} ∪ (R \ C)) = clM(R \ C),

which is a contradiction. So we have ρ({g} ∪ R \ C) = ρ({f} ∪ R \ C), and from (21a),
(21b) and (22), it follows that

ρ({e, f} ∪ C) + ρ({g} ∪ R \ C) = ρ({e, g} ∪ C) + ρ({f} ∪ R \ C),

= ρ({e} ∪ πC) + ρ({f, g} ∪ R \ πC), and

ρ({e, f, g} ∪ C) + ρ(R \ C) ≤ ρ({e} ∪ R \ C) + ρ({f, g} ∪ C)

= ρ({e} ∪ π({g} ∪ C)) + ρ({f, g} ∪ R \ π({g} ∪ C)).

the electronic journal of combinatorics 18 (2011), #P113 21



Hence, π is a {g} ∪ R-submodular bijection of ({e}, {f}) in M in this case.
Case 2 ({e, f, g} is a cocircuit in M): Consider the matroid N∗ = M∗/(E \ R). Clearly,
{e, f, g} is a circuit in N∗, and hence by Case 1, we know {e} and {f} are R ∪ {g}-
submodular in N∗. Now, applying Proposition 11, we get {e} and {f} are also R ∪ {g}-
submodular in M as required.

Corollary 41. Let M(E, ρ) be a simple and cosimple matroid with distinct elements
e, f, g ∈ E such that {e, f, g} is a circuit or a cocircuit in M , and let E = E \ {e, f, g}.
Then for all R ⊆ E, the sets {e} and {f} are R ∪ {g}-submodular in every minor N ∈
MF(M, E \ R).

Proof. Clearly, for all R ⊆ E, {e, f, g} is a circuit or a cocircuit in every minor N ∈
MF(M, E \ R), and the result follows from Lemma 40.

We can now obtain the following characterization for a minor-minimal non-Z-Rayleigh
matroid analogous to Proposition 3.2 in [15] for minon-minimal non-B-Rayleigh matroids.

Corollary 42. Let M(E, ρ) be a minor-minimal matroid that is not Z-Rayleigh. Then,
for all e, f ∈ E such that ∆Z{e, f}(M, q;y) < 0 for some q in the interval 0 < q ≤ 1 and
y > 0, the set {e, f} is independent and closed in both M and M∗.

Proof. From Proposition 31-1, we know that if M is a minor-minimal non-Z-Rayleigh
matroid, then M is both simple and cosimple. Hence {e, f} is independent in both M
and M∗.

Let e, f ∈ E be such that ∆Z{e, f}(M, q;y) < 0 for some q in the interval 0 < q ≤ 1
and y > 0. To show that {e, f} is closed in M and M∗, suppose for a contradiction that
there exists an element g ∈ E \ {e, f} such that {e, f, g} is a circuit or a cocircuit in M .
However, applying Corollaries 41 and 39, we note that this contradicts our choice of e and
f . Thus {e, f} must be closed in M and M∗.

4.3 Rank-three matroids

When considering matroids of rank three, Lemma 38 gives us the following useful reduction
lemma (see [15, Lemma 3.3] for an analogous result on B-Rayleigh matroids).

Corollary 43. Let M(E, ρ) be a rank-three simple and cosimple matroid with distinct
elements e, f, g ∈ E, and let E = E \ {e, f, g}. If for all R ⊆ E, the sets {e} and {f}
are R ∪ {g}-submodular in every minor N ∈ MF(M, E \ R), then ∆Z{e, f}(M, q;y) ≫
∆Z{e, f}(M \ g, q;y) for all q in the interval 0 < q ≤ 1.

Proof. From Lemma 38, we have

∆Z{e, f}(M, q;y) ≫ ∆Z{e, f}(M \ g, q;y) + y2
g∆Z{e, f}(M/g, q;y),

whenever 0 < q ≤ 1. Additionally, when M is of rank three, we know M/g is of rank
two, and so by Corollary 29 and Proposition 35, ∆Z{e, f}(M/g, q;y) ≫ 0 whenever
0 < q ≤ 1.
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Figure 3: The Fano and non-Fano matroids

We are now ready to show that some important rank three matroids are Z-Rayleigh.

Theorem 44. The matroids W3, W3, F7 and F−
7 are Z-Rayleigh.

Proof. We look at each of the matroids individually.
Case M = W3: Using symmetry in Figure 1, it is enough to check ∆Z{1, 2}(M, q;y) and
∆Z{1, 4}(M, q;y) are non-negative whenever 0 < q ≤ 1 and y > 0.

Since {1, 2, 3} is a circuit, from Corollaries 41 and 43, we have ∆Z{1, 2}(M, q;y) ≫
∆Z{1, 2}(M \ 3, q;y) ≫ 0 whenever 0 < q ≤ 1, as M \ 3 ∈ ESM by Proposition 28.

From Proposition 7 and Lemma 33, the only monomial whose coefficient can be non-
negative in ∆Z{1, 4}(M, q;y) for some q in the interval 0 < q ≤ 1 is y2y3y5y6. Hence, we
can write

∆Z{1, 4}(M, q;y) = A1(q)y2y3y5y6 + A2(q)y
2
2y

2
5 + A3(q)y

2
3y

2
6 + ∆1(y), (23)

where A1(q), A2(q) and A3(q) are the coefficients of the monomials y2y3y5y6, y2
2y

2
5 and

y2
3y

2
6 in ∆Z{1, 4}(M, q;y) respectively, and ∆1(y) ≫ 0 whenever 0 < q ≤ 1.
Using the identity map between columns two and three of Table 1 as the bijection in

Lemma 32, we obtain

A1(q) = 2(q−3 − q−4) + 3(q−3 − q−2) + (q−2 − q−1). (24)

Also, using Lemma 32, it is straightforward to get

A2(q) = A3(q) = q−4 − q−3. (25)

Using (24) and (25) in (23), we get

∆Z{1, 4}(M, q;y) = (q−4 − q−3)(y2y5 − y3y6)
2+(

3(q−3 − q−2) + (q−2 − q−1)
)
y2y3y5y6 + ∆1(y),

which is non-negative whenever 0 < q ≤ 1 and y > 0. Hence, W3 is Z-Rayleigh.
Case M = W3: Using symmetry in Figure 1, it is enough to check ∆Z{1, 2}(M, q;y),
∆Z{2, 6}(M, q;y) and ∆Z{1, 4}(M, q;y) are non-negative whenever 0 < q ≤ 1 and y > 0.
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As {1, 2, 3} is a circuit, from Corollaries 41 and 43, we get ∆Z{1, 2}(M, q;y) ≫
∆Z{1, 2}(M \ 3, q;y) ≫ 0 because M \ 3 ∈ ESM by Proposition 28.

Also {1, 2, 6} is a cocircuit in M , and again from Corollaries 41 and 43, we get
∆Z{2, 6}(M, q;y) ≫ ∆Z{2, 6}(M \ 1, q;y) ≫ 0 whenever 0 < q ≤ 1, as M \ 1 ∈ ESM
by Proposition 28.

Lastly, from Proposition 7 and Lemma 33, the only monomial whose coefficient can
be non-negative in ∆Z{1, 4}(M, q;y) is y2y3y5y6. Hence,

∆Z{1, 4}(M, q;y) = A4(q)y2y3y5y6 + A5(q)y
2
2y

2
5 + A6(q)y

2
3y

2
6 + ∆2(y), (26)

where A4(q), A5(q) and A6(q) are the coefficients of the monomials y2y3y5y6, y2
2y

2
5 and

y2
3y

2
6 in ∆Z{1, 4}(M, q;y) respectively, and ∆2(y) ≫ 0 whenever 0 < q ≤ 1.
Using the identity map between columns four and five in Table 1 as the bijection in

Lemma 32, we get

A4(q) = (q−3 − q−4) + 3(q−3 − q−2) + (q−2 − q−1). (27)

Again using Lemma 32 we can get,

A5(q) = A6(q) = q−4 − q−3. (28)

Using (27) and (28) in (26), we find

∆Z{1, 4}(M, q;y) = (q−4 − q−3)(y2y5 − y3y6)
2+(

(q−4 − q−3) + 3(q−3 − q−2) + (q−2 − q−1)
)
y2y3y5y6 + ∆2(y),

which is non-negative whenever 0 < q ≤ 1 and y > 0. Thus W3 is Z-Rayleigh.
Case M = F7: Using symmetry in Figure 3, it is enough to check ∆Z{1, 4}(M, q;y) is
non-negative whenever 0 < q ≤ 1 and y > 0. Since {1, 4, 7} is a circuit, from Corollaries 41
and 43, ∆Z{1, 4}(M, q;y) ≫ ∆Z{1, 4}(M \ 7, q;y). But M \ 7 = W3, and we showed in
a previous case ∆Z{1, 4}(M \ 7, q;y) ≥ 0 whenever 0 < q ≤ 1 and y > 0. Hence, F7 is
Z-Rayleigh.
Case M = F−

7 : Using symmetry in Figure 3, it is enough to check ∆Z{1, 2}(M, q;y) and
∆Z{1, 4}(M, q;y) are non-negative whenever 0 < q ≤ 1 and y > 0.

Since {1, 2, 3} is a circuit, from Corollaries 41 and 43, we know ∆Z{1, 2}(M, q;y) ≫
∆Z{1, 2}(M \ 3, q;y). However, M \ 3 is isomorphic to W3, and hence from a previous
case, ∆Z{1, 2}(M, q;y) is non-negative whenever 0 < q ≤ 1 and y > 0.

For ∆Z{1, 4}(M, q;y), we first show that {1} and {4} are R ∪ {7}-submodular in
N for all R ⊆ E and minors N ∈ MF(M, E \ R), where E = {2, 3, 5, 6}. First, it
can be computationally checked that {1} and {4} are {2, 3, 5, 6, 7}-submodular in F−

7 [8,
Appendix B]. Also {1, 4, 5} is a cocircuit in M \2. Hence, from Lemma 40, {1} and {4} are
{3, 5, 6, 7}-submodular in M \ 2. A similar argument shows that for each e ∈ E, the sets
{1} and {4} are R∪ {7}-submodular in M \ e, where R = E \ {e}. Since for every e ∈ E,
M/e is a rank-two matroid, by Corollary 29, {1} and {4} are also R ∪ {7}-submodular
in M/e, where R = E \ {e}. Together with Proposition 7, these observations imply that
{1} and {4} are R ∪ {7}-submodular in N for all R ⊆ E and N ∈ MF(M, E \ R).
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Hence, using Corollary 43, ∆Z{1, 4}(M, q;y) ≫ ∆Z{1, 4}(M \ 7, q;y) for all q in the
interval 0 < q ≤ 1. But M \ 7 = W3, and thus we get ∆Z{1, 4}(M, q;y) ≥ 0 whenever
0 < q ≤ 1 and y > 0 from a previous case, and F−

7 is Z-Rayleigh.

From Proposition 31-1, we know that the class of Z-Rayleigh matroids is closed under
duality, and we get the following corollary.

Corollary 45. The matroids F ∗
7 and (F−

7 )∗ are Z-Rayleigh.

5 Summary and open problems

We introduced R-submodularity as an extension of rank submodularity of matroids. While
some instances of R-submodularity are known for all matroids, we also showed that there
exists a class of well-behaved matroids with respect to R-submodularity, namely the class
of extended submodular matroids, ESM. Also the class of binary extended submodular
matroids is identical to series-parallel networks. Yet a complete characterization of ex-
tended submodular matroids remains unresolved and is our first open problem. A positive
step towards resolving this problem will be to find example matroids (if any) that are not
extended submodular and without a W3 or a W3 minor. The related question of whether
the class ESM is closed under 2-sums is also unresolved.

As discussed in Section 4, the R-submodularity property has important consequences
for the Rayleigh properties of matroids, and deserves further study. We suggest that R-
submodularity can be a particularly effective tool in establishing the Rayleigh property for
cases where the Rayleigh difference polynomials are expected to have only non-negative
coefficients. As an example, we offer the following conjecture for graphs.

Conjecture 46. Let M(G) be the cycle matroid of a graph G with edge set E. If e, f ∈ E
are two distinct incident edges in G then for all R ⊆ E \ {e, f}, the sets {e} and {f} are
R-submodular in M(G).

Since the class of graphic matroids is minor closed and the incidence property is
preserved in minors, if true, this conjecture will show that ∆Z{e, f}(M, q;y) ≫ 0 for all
q in 0 < q ≤ 1 when M is graphic and e, f are incident edges of its graph representation.
We note that it is a consequence of Corollary 42 that a minor-minimal counterexample
of Conjecture 46 cannot have triangles including the edges e and f , and thus is not a
complete graph.

We also illustrate in Theorem 44 that even in cases where ∆Z{e, f}(M, q;y) contains
a few negative coefficients for some q in the interval 0 < q ≤ 1, R-submodularity can
significantly reduce the computation required to verify if ∆Z{e, f}(M, q;y) ≥ 0 whenever
0 < q ≤ 1 and y > 0. Based on our empirical results with a few different rank-three
matroids, we also pose the following open problem that is a significant strengthening of
Theorem 1.1 in [15].

Conjecture 47. Every matroid of rank or corank at most three is Z-Rayleigh.
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Lastly, an important unanswered question in the study of the various Rayleigh proper-
ties of matroids is if their respective classes are different from one another. For example,
while it is likely there are matroids that are B-Rayleigh but not Z-Rayleigh, finding an
example of such a matroid still remains open.
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