Critical exponents of words over 3 letters

Elise Vaslet
Institut de Mathématiques de Luminy, Université Aix-Marseille II
Marseille, France
vaslet@iml.univ-mrs.fr

Submitted: Oct 5, 2010; Accepted: May 25, 2011; Published: Jun 6, 2011
Mathematics Subject Classification: 68R15

Abstract

For all $\alpha \geq R T(3)$ (where $R T(3)=7 / 4$ is the repetition threshold for the 3-letter alphabet), there exists an infinite word over 3 letters whose critical exponent is α.

1 Introduction

Let A be a finite alphabet. Any finite word v over $A, v \neq \epsilon$, can be factorized as $v=p^{k} e$, where:

- $k \geq 1$
- e is a prefix of p
- $|p|$ is minimal

We then say that v has period p, excess e, and exponent $E(v)=|v| /|p|$. For example, the English word church has period chur, excess ch, and exponent 3/2, while the French word entente has period ent, excess e, and exponent $7 / 3$. A (finite or infinite) word is said to be α-free (resp. α^{+}-free) if none of its subwords has exponent β, with $\beta \geq \alpha$ (resp. $\beta>\alpha$).

The critical exponent of an infinite word w over A is defined as

$$
E_{c}(w)=\sup \{E(v) \in \mathbb{Q}, v \text { subword of } w\}
$$

For example, the binary word $a b a b^{2} \cdots a b^{n} \cdots$ has critical exponent $+\infty$. The Thue-Morse word, fixed point of the morphism $0 \mapsto 01,1 \mapsto 10$, has critical exponent 2 ([10] and [1]). The Fibonacci word, fixed point of the morphism $0 \mapsto 01,1 \mapsto 0$, has critical exponent $2+\phi$, where ϕ is the golden number [8].

The problem to determine if, for a given real number $\alpha>1$, there is an infinite word w_{α} with critical exponent α, has been solved by Krieger and Shallit [7]. The number of
letters they use to construct the word w_{α} grows very fast as α tends to 1 , and they left open the construction of w_{α} over an alphabet with a fixed size.

Let k be a natural number, and let A_{k} be the k-letter alphabet. The repetition threshold on k letters is the real number (see [6] and [3] for more details)

$$
R T(k)=\inf \left\{E_{c}(w), w \in A_{k}^{\omega}\right\}
$$

Dejean [6] conjectured that

$$
R T(k)= \begin{cases}2 & \text { if } k=2 \\ 7 / 4 & \text { if } k=3 \\ 7 / 5 & \text { if } k=4 \\ k /(k-1) & \text { if } k>4\end{cases}
$$

and this conjecture is now proved (see [9] and [5]).
It is clear that if $\alpha<R T(k)$, no word over A_{k} has critical exponent α. Currie and Rampersad [4] proved the following result for a binary alphabet:

For each $\alpha \geq 2=R T(2)$, there is an infinite binary word with critical exponent α.
And they conjectured:
Let $k \geq 2$. For each $\alpha \geq R T(k)$, there is an infinite word over k letters with critical exponent α.

We will prove that this is true for $k=3$. Let $A_{3}=\{a, b, c\}$ be the 3-letter alphabet. Dejean [6] proved that $R T(3)=7 / 4$. We immediately remark that if $\alpha \geq 2$, the result of Currie and Rampersad gives us a binary word, and then also a word over A_{3}, with critical exponent α. That's why we only have to consider the case $7 / 4 \leq \alpha<2$. To demonstrate her result, Dejean considered the morphism μ (which we will call Dejean's morphism) defined as follows:

$$
\mu:\left\{\begin{array}{l}
a \mapsto a b c a c b c a b c b a c b c a c b a \\
b \mapsto \pi(\mu(a))=b c a b a c a b c \text { a cba cab acb } \\
c \mapsto \pi^{2}(\mu(a))=c a b \text { cba bca b acb abc bac }
\end{array}\right.
$$

where π is the permutation ($a b c$), and proved that its fixed point $\mu^{\infty}(a)$ has critical exponent 7/4.

2 Exponents and Dejean's morphism

Dejean [6] noticed the existence of specific subwords in $\mu(a), \mu(b)$, and $\mu(c)$, which can be used to desubstitute μ. She called them characteristic factors:

Proposition 1. The words $f_{1}=a b c a c b c, f_{2}=c a b c b a c$ and $f_{3}=c b c a c b a$ only appear in $\mu\left(A_{3}^{*}\right)$ respectively as prefix, central factor, and suffix, of $\mu(a)$.
Similarly, $\pi\left(f_{1}\right), \pi\left(f_{2}\right), \pi\left(f_{3}\right)$ only appear as prefix, central factor, and suffix of $\mu(b)$, and $\pi^{2}\left(f_{1}\right), \pi^{2}\left(f_{2}\right), \pi^{2}\left(f_{3}\right)$ as prefix, central factor, and suffix of $\mu(c)$.

Definition 1. The words f_{1}, f_{2}, and f_{3} (resp. $\pi\left(f_{1}\right), \pi\left(f_{2}\right), \pi\left(f_{3}\right)$; resp. $\pi^{2}\left(f_{1}\right), \pi^{2}\left(f_{2}\right)$, $\pi^{2}\left(f_{3}\right)$) are called characteristic factors of $\mu(a)$ (resp. $\mu(b)$; resp. $\mu(c)$).

We use these characteristic factors to prove the following desubstitution results for μ.
Proposition 2. Let w be a word over A_{3}, and u a subword of $\mu(w)$. If $|u| \geq 18$, then, there exists a unique $x \in A_{3}$, a unique $y \in A_{3}$, and there exist some unique $s, v, p \in A_{3}^{*}$, such that $u=s \mu(v) p$, where $s \neq \epsilon$ is a suffix of $\mu(x)$, and $p \neq \epsilon$ is a prefix of $\mu(y)$.

Proof. As $|u| \geq 18, u$ has a characteristic factor as a subword. The result is then clear since μ is a 19-uniform morphism, and since $\forall x \in A_{3}, \mu(x)$ begins and ends with x.

Theorem 1. Let $w \in A_{3}^{*}$, and let u be a subword of $\mu(w)$. Assume u has period p, excess e and exponent $7 / 4<|u| /|p|<2$. Then, w has a subword v of length $|v| \geq\lceil|u| / 19\rceil$, with period q such that $|q|=\lceil|p| / 19\rceil$, and with exponent $E(v) \geq|u| /|p|$.

Proof. There are two cases: either $|e| \geq 18$, or $|e|<18$.
Suppose first that $|e| \geq 18$. Then, we also have $|u| \geq 18$. Then, by Proposition 2,

- There exist some unique $x_{u}, y_{u} \in A_{3}$, and some unique $m_{u}, s_{u}, p_{u} \in A_{3}^{*}, s_{u} \neq \epsilon$ suffix of $\mu\left(x_{u}\right), p_{u}$ prefix of $\mu\left(y_{u}\right)$, such that $u=s_{u} \mu\left(m_{u}\right) p_{u}$,
- There exist some unique $x_{e}, y_{e} \in A_{3}$, and some unique $m_{e}, s_{e}, p_{e} \in A_{3}^{*}, s_{e} \neq \epsilon$ suffix of $\mu\left(x_{e}\right), p_{e}$ prefix of $\mu\left(y_{e}\right)$, such that $e=s_{e} \mu\left(m_{e}\right) p_{e}$.

Let:

$$
\begin{aligned}
& f=x_{e} m_{e} y_{e} \\
& v=x_{u} m_{u} y_{u}
\end{aligned}
$$

As e is a suffix of u, we have: $p_{u}=p_{e}, y_{u}=y_{e}$, and $\mu\left(x_{e}\right) \mu\left(m_{e}\right)$ is a suffix of $\mu\left(x_{u}\right) \mu\left(m_{u}\right)$, thus $x_{e} m_{e}$ is a suffix of $x_{u} m_{u}$. Moreover, e is a prefix of u, so $s_{u}=s_{e}$, $x_{e}=x_{u}, \mu\left(m_{e}\right) \mu\left(y_{e}\right)$ is a prefix of $\mu\left(m_{u}\right) \mu\left(y_{u}\right)$, and $m_{e} y_{e}$ is a prefix of $m_{u} y_{u}$ (see the following figure).

Therefore, f is a prefix and a suffix of v, and v has excess $f(|f|$ is maximal, otherwise $|e|$ would not be maximal in $u)$. Let us denote its period by q, i.e. $v=q f$. It is clear that

$$
|v| \geq\left\lceil\frac{|u|}{19}\right\rceil .
$$

Moreover, q has length

$$
\begin{aligned}
|q| & =|v|-|f|=\left|m_{u}\right|-\left|m_{e}\right| \\
& =\frac{\left|\mu\left(m_{u}\right)\right|-\left|\mu\left(m_{e}\right)\right|}{19} \\
& =\frac{\left(|u|-\left|s_{u}\right|-\left|p_{u}\right|\right)-\left(|e|-\left|s_{e}\right|-\left|p_{e}\right|\right)}{19} \\
& =\frac{|u|-|e|}{19}\left(\text { because } s_{u}=s_{e} \text { and } p_{u}=p_{e}\right) \\
& =\frac{|p|}{19}
\end{aligned}
$$

Finally, v has exponent

$$
E(v)=\frac{|v|}{|q|} \geq\left\lceil\frac{|u|}{19}\right\rceil / \frac{|p|}{19} \geq \frac{|u|}{19} \cdot \frac{19}{|p|}=E(u)
$$

Thus, v is the word we were looking for.
Suppose now that $|e|<18$. Then, as $E(u)>7 / 4,|u| \leq 24+18=42$. As μ is 19uniform, u is a subword of a word $\mu(x)$, where $x \in A_{3}^{*},|x| \leq 4$. Moreover, $E(u)>7 / 4$, so x is not a subword of $\mu^{\infty}(a)$. Then, by looking at the $\mu(x)$ obtained if x is not a subword of $\mu^{\infty}(a)$, we can again reduce the set of possible x :

$$
x \in\{a a, b b, c c, a a a, b b b, c c c, a a a a, b b b b, c c c c, a b a b, a c a c, b a b a, b c b c, c a c a, c b c b\}
$$

since in the other cases, $\mu(x)$ has no subword u such that $|u| \leq 42$ and $E(u)>7 / 4$. Then, we have:

- if u is a subword of $\mu(x)$, with $x \in\{a a, b b, c c\}$, consider $v=x . v$ has exponent 2 , and period q of length $|q|=1$. We can also remark that u necessarily has a period of length $19=19 \cdot|q|$, and has exponent $E(u) \leq 2=E(v)$. Therefore, v is the word we were looking for.
- if u is a subword of $\mu(x)$, with $x \in\{a a a, b b b, c c c\}$, consider $v=x . v$ has exponent 3 , and period q of length $|q|=1$. As u necessarily has a period of length $19=19 .|q|$, and has exponent $E(u) \leq 3=E(v), v$ is the word we were looking for.
- if u is a subword of $\mu(x)$, with $x \in\{a a a a, b b b b, c c c c\}$, consider $v=x . v$ has exponent 4, and period q of length $|q|=1$. As u necessarily has a period of length $19=19 .|q|$, and has exponent $E(u) \leq 4=E(v), v$ is the word we were looking for.
- finally, if u is a subword of $\mu(x)$, with $x \in\{a b a b, a c a c, b a b a, b c b c, c a c a, c b c b\}$, consider $v=x . v$ has exponent 2 , and period q of length $q=2$. As u necessarily has a period of length $2.19=19 .|q|$, and has exponent $E(u) \leq 2=E(v), v$ is the word we were looking for.

3 Construction of an infinite α-free word over A_{3}

In the following, we will use the operator, denoted by δ, that removes the first letter of a word: for example, $\delta(0110)=110$.

Lemma 1. Let \mathfrak{L} be the set $F a c t\left(\mu\left(A_{3}^{*}\right)\right)$ of all subwords of the words in $\mu\left(A_{3}^{*}\right)$. Let $\alpha \in] 7 / 4,2\left[\right.$ and $v \in A_{3}^{*}$, such that:

- abcbabcv $\in \mathfrak{L}$
- abcbabcv is α-free.

Suppose that babcbabcv $=x u y$, where u has exponent $E(u) \geq \alpha$. Then, $x=\epsilon$, and $u=b a b c b a b c$.

Proof. By hypothesis, abcbabcv is α-free. Since $E(u) \geq \alpha, u$ is necessarily a prefix of $b a b c b a b c v$. Moreover, babcbab has exponent $7 / 4<\alpha \leq E(u)$. Therefore, $u=b a b c b a b c v^{\prime}$, where v^{\prime} is a prefix of v. Suppose that $v^{\prime} \neq \epsilon$.
By hypothesis, $a b c b a b c v^{\prime} \in \mathfrak{L}$. Moreover, the subword abcbabc only appears in \mathfrak{L} as a subword of $\mu(c)$. So $v^{\prime}=a b a c b a b c b a c \ldots$...
The excess of u is at most $b a b c b a b$. Indeed, otherwise, the word $b a b c b a b c$, whose exponent is 2 , is a subword of $a b c b a b c v$, which is impossible since $a b c b a b c v$ is α-free. Then, u has excess e, with $|e| \leq 7$, and so has period p with $|p| \leq 9$. So u is a subword of babcbabcabacbabc. By looking at the factors of this word, we deduce that the only possibility is $u=b a b c b a b c$.

Lemma 2. Let $\alpha \in] 7 / 4,2\left[\right.$ be given. Let s, t be natural numbers such that $\mu^{s}(b)=$ xabcbabcy, with $|x|=t$. Let $\beta=2-\frac{t}{4.9^{s}}$. Suppose that $7 / 4<\beta<\alpha$, and that $a b c b a b c v \in \mathfrak{L}$ is α-free. Consider the word $w=\delta^{t} \mu^{s}(b a b c b a b c v)$. Then, we have:

1. w has a prefix with exponent β.
2. If abcbabcv has a subword with exponent γ and period p, then, w has a subword with exponent γ and a period of length $19^{s}|p|$.
3. w is α-free.

Proof. 1. $\mu^{s}(b a b c b a b c)$ has exponent 2 and period $\mu^{s}(b a b c)$. We have $\left|\mu^{s}(b a b c)\right|=4.19^{s}$, and $\left|\mu^{s}(b a b c b a b c)\right|=8.19^{s}$, so the prefix $\delta^{t} \mu^{s}(b a b c b a b c)$ of w has exponent

$$
\frac{|w|}{\left|\mu^{s}(b a b c)\right|}=\frac{\left|\mu^{s}(b a b c b a b c)\right|-t}{\left|\mu^{s}(b a b c)\right|}=\beta
$$

2. Let u be a subword of abcbabcv, with exponent γ and period p. Then $\mu^{s}(u)$ is a subword of $\mu^{s}(a b c b a b c v)$, with exponent γ and period $19^{s}|p|$. Moreover, $\mu^{s}(a b c b a b c v)$ is a suffix of $\delta^{t} \mu^{s}(b a b c b a b c v)$, since $t=|x| \leq\left|\mu^{s}(b)\right|$. So $\mu^{s}(u)$ is a subword of w, with the required properties.
3. Suppose that w has a subword u, with exponent $\kappa \geq \alpha$ and period p. Then, by iteration of Theorem 2, babcbabcv has a subword u^{\prime} with exponent $\kappa^{\prime} \geq \kappa$ and q such that $|q|=\frac{|p|}{19^{s}}$. By Lemma 1 , as $\kappa^{\prime} \geq \alpha$, we deduce that $\kappa^{\prime}=2$ and that $u^{\prime}=b a b c b a b c$. Then $q=b a b c$, and $|p|=|q| \cdot 19^{s}=4.19^{s}$.
Moreover, u is not a subword of $\mu^{s}(a b c b a b c v)$, otherwise $a b c b a b c v$ has a subword with exponent $\geq \alpha . u$ is not a subword of $\delta^{t} \mu^{s}(b a b c b a b c)$ either, otherwise, we would have $|u| \leq\left|\delta^{t} \mu^{s}(b a b c b a b c)\right|=8.19^{s}-t$, and so:

$$
E(u)=\frac{|u|}{|p|} \leq \frac{8.19^{s}-t}{4.19^{s}}=\beta<\alpha
$$

which is absurd since $E(u) \geq \alpha$.
Therefore, u has a prefix z such that $z=z_{1} \mu^{s}(a b c b a b c) z_{2}$, where $z_{1} \neq \epsilon$ is a suffix of $\mu^{s}(b)$, and $z_{2} \neq \epsilon$ is a prefix of $\mu^{s}(a)$ (since we remarked that the first letter of v is a a). z being a prefix of u, z has a period of length 4.19s. Then, z has period $z_{1} \mu^{s}(a b c) z_{1}^{\prime}$, with z_{1}^{\prime} such that $\mu^{s}(b)=z_{1}^{\prime} z_{1}$. So we have:

$$
z=z_{1} \mu^{s}(a b c) z_{1}^{\prime} z_{1} \mu^{s}(a b c) z_{2}
$$

We deduce that either z_{2} is a prefix of z_{1}^{\prime}, or z_{1}^{\prime} is a prefix of z_{2}. Yet neither is possible. Indeed, z_{2} begins with the letter a, and z_{1}^{\prime} begins with the letter b.
Finally, w is α-free.

4 A word over A_{3} with critical exponent $\alpha \geq R T$ (3)

Definition 2. A real number $\beta<\alpha$ is said to be obtainable if β can be written as $\beta=2-\frac{t}{4.19^{s}}$, where the natural numbers s and t verify:
$-s \geq 3$

- the word $\delta^{t}\left(\mu^{s}(b)\right)$ begins with abcbabc.

We note that for any given $s \geq 3$, it is possible to choose t such that
$-7 / 4<\beta=2-\frac{t}{4.19^{s}}<\alpha$
$-|\alpha-\beta| \leq \frac{19^{2}}{4.19^{s}}$
Indeed, $\mu^{2}(a), \mu^{2}(b)$, and $\mu^{2}(c)$ have length 19^{2}, and each have $a b c b a b c$ as a subword. Therefore, choosing a large enough s, we can always find some obtainable real numbers β, arbitrarily close to α.

Theorem 2. Let $\alpha \geq R T(3)=7 / 4$. Then, there is an infinite word over A_{3} with critical exponent α.

Proof. If $\alpha=7 / 4$, we already know that $\mu^{\infty}(a)$ has critical exponent $7 / 4$. If $\alpha \geq 2$, by the theorem for $k=2$, we can find a word over A_{3}^{*} with critical exponent α. Now, let $\alpha \in] 7 / 4,2[$.
Let $\left(\beta_{i}\right)_{i \in \mathbb{N}}$ be an increasing sequence of obtainable numbers, converging to α. For each i, we write β_{i} as:

$$
\beta_{i}=2-\frac{t_{i}}{4.19^{s_{i}}}
$$

where s_{i} and t_{i} are such that:

- $s_{i} \geq 3$
- $\delta^{t_{i}} \mu^{s_{i}}(b)$ begins with $a b c b a b c$.

For all words $v \in \mathfrak{L}$, let $\Phi_{i}(v)$ denote the word $\delta^{t_{i}} \mu^{s_{i}}(b v)$, and consider the following sequence:

$$
\begin{aligned}
v_{1} & =\Phi_{1}(a b c b a b c)=\delta^{t_{1}} \mu^{s_{1}}(b a b c b a b c) \\
v_{2} & =\Phi_{1} \Phi_{2}(a b c b a b c)=\delta^{t_{1}} \mu^{s_{1}}\left(b \delta^{t_{2}} \mu^{s_{2}}(b a b c b a b c)\right) \\
v_{3} & =\Phi_{1} \Phi_{2} \Phi_{3}(a b c b a b c) \\
\vdots & \\
v_{n} & =\Phi_{1} \Phi_{2} \Phi_{3} \ldots \Phi_{n}(a b c b a b c)
\end{aligned}
$$

By iteration of Lemma 2, as abcbabc $\in \mathfrak{L}$ is α-free, we deduce that each v_{i} is α-free. Moreover, once again by Lemma 2, each v_{i} has a subword with exponent $\beta_{j}, j=1,2, \ldots, i$. Finally, consider the word $w=\lim _{n \rightarrow \infty} \in A_{3}^{\omega}$ (it is possible to take this limit since each v_{i} is a prefix of v_{i+1}). w then has critical exponent α : it is α-free, yet has subwords with exponents β_{i} converging to α.

The conjecture proposed by Currie and Rampersad in [4] is then true for alphabets of size 2 and 3. It still have to be proved for alphabets of size ≥ 4. For that, another method must be found, because of Brandenburg's result in [2]: if $k \geq 4$, there is no $R T(k)$-free morphism, i.e., no morphism which maps, as Thue-Morse morphism for $k=2$ or Dejean's morphism for $k=3$, every $R T(k)$-free word to an $R T(k)$-free word.

References

[1] J. Berstel. Axel Thue's papers on repetitions in words: a translation. Publications du LaCIM, 20, 1995.
[2] F. J. Brandenburg. Uniformly growing k-th powerfree homomorphisms. Theoret. Comput. Sci., 23:69-82, 1983.
[3] A. Carpi. On Dejean's conjecture over large alphabets. Theoret. Comput. Sci., 385:137-151, 2007.
[4] J. D. Currie and N. Rampersad. For each $\alpha>2$ there is an infinite binary word with critical exponent α. Electron. J. Combin., 15:N34, 2008.
[5] J. D. Currie and N. Rampersad. A proof of Dejean's conjecture. Preprint, http://arxiv.org/abs/0905.1129, 2009.
[6] F. Dejean. Sur un théorème de Thue. J. Comb. Theory A, 13:90-99, 1972.
[7] D. Krieger and J. Shallit. Every real number greater than 1 is a critical exponent. Theoret. Comput. Sci., 381:177-182, 2007.
[8] F. Mignosi and G. Pirillo. Repetitions in the Fibonacci infinite word. RAIRO Inform. Theor. Appl., 26:199-204, 1992.
[9] M. Rao. Last cases of Dejean's conjecture. WORDS 2009, http://www.labri.fr/perso/rao/publi/dejean.ps, 2009.
[10] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. Mat. Nat. Kl., 10:1-67, 1912.

