Critical exponents of words over 3 letters

Elise Vaslet

Institut de Mathématiques de Luminy, Université Aix-Marseille II Marseille, France

vaslet@iml.univ-mrs.fr

Submitted: Oct 5, 2010; Accepted: May 25, 2011; Published: Jun 6, 2011 Mathematics Subject Classification: 68R15

Abstract

For all $\alpha \ge RT(3)$ (where RT(3) = 7/4 is the repetition threshold for the 3-letter alphabet), there exists an infinite word over 3 letters whose critical exponent is α .

1 Introduction

Let A be a finite alphabet. Any finite word v over A, $v \neq \epsilon$, can be factorized as $v = p^k e$, where:

- $k \ge 1$

- e is a prefix of p
- |p| is minimal

We then say that v has period p, excess e, and exponent E(v) = |v|/|p|. For example, the English word *church* has period *chur*, excess *ch*, and exponent 3/2, while the French word *entente* has period *ent*, excess e, and exponent 7/3. A (finite or infinite) word is said to be α -free (resp. α^+ -free) if none of its subwords has exponent β , with $\beta \ge \alpha$ (resp. $\beta > \alpha$).

The critical exponent of an infinite word w over A is defined as

$$E_c(w) = \sup\{E(v) \in \mathbb{Q}, v \text{ subword of } w\}.$$

For example, the binary word $abab^2 \cdots ab^n \cdots$ has critical exponent $+\infty$. The Thue-Morse word, fixed point of the morphism $0 \mapsto 01, 1 \mapsto 10$, has critical exponent 2 ([10] and [1]). The Fibonacci word, fixed point of the morphism $0 \mapsto 01, 1 \mapsto 0$, has critical exponent $2 + \phi$, where ϕ is the golden number [8].

The problem to determine if, for a given real number $\alpha > 1$, there is an infinite word w_{α} with critical exponent α , has been solved by Krieger and Shallit [7]. The number of

letters they use to construct the word w_{α} grows very fast as α tends to 1, and they left open the construction of w_{α} over an alphabet with a fixed size.

Let k be a natural number, and let A_k be the k-letter alphabet. The repetition threshold on k letters is the real number (see [6] and [3] for more details)

$$RT(k) = \inf\{E_c(w), w \in A_k^\omega\}.$$

Dejean [6] conjectured that

$$RT(k) = \begin{cases} 2 & \text{if } k = 2\\ 7/4 & \text{if } k = 3\\ 7/5 & \text{if } k = 4\\ k/(k-1) & \text{if } k > 4 \end{cases}$$

and this conjecture is now proved (see [9] and [5]).

It is clear that if $\alpha < RT(k)$, no word over A_k has critical exponent α . Currie and Rampersad [4] proved the following result for a binary alphabet:

For each $\alpha \geq 2 = RT(2)$, there is an infinite binary word with critical exponent α .

And they conjectured:

Let $k \ge 2$. For each $\alpha \ge RT(k)$, there is an infinite word over k letters with critical exponent α .

We will prove that this is true for k = 3. Let $A_3 = \{a, b, c\}$ be the 3-letter alphabet. Dejean [6] proved that RT(3) = 7/4. We immediately remark that if $\alpha \ge 2$, the result of Currie and Rampersad gives us a binary word, and then also a word over A_3 , with critical exponent α . That's why we only have to consider the case $7/4 \le \alpha < 2$. To demonstrate her result, Dejean considered the morphism μ (which we will call Dejean's morphism) defined as follows:

 $\mu: \begin{cases} a \mapsto abc \ acb \ cab \ c \ bac \ bca \ cba \\ b \mapsto \pi(\mu(a)) = bca \ bac \ abc \ acb \ acb \ acb \ acb \\ c \mapsto \pi^2(\mu(a)) = cab \ cba \ bca \ b \ acb \ abc \ bac \end{cases}$

where π is the permutation $(a \ b \ c)$, and proved that its fixed point $\mu^{\infty}(a)$ has critical exponent 7/4.

2 Exponents and Dejean's morphism

Dejean [6] noticed the existence of specific subwords in $\mu(a)$, $\mu(b)$, and $\mu(c)$, which can be used to desubstitute μ . She called them characteristic factors:

Proposition 1. The words $f_1 = abcacbc$, $f_2 = cabcbac$ and $f_3 = cbcacba$ only appear in $\mu(A_3^*)$ respectively as prefix, central factor, and suffix, of $\mu(a)$. Similarly, $\pi(f_1)$, $\pi(f_2)$, $\pi(f_3)$ only appear as prefix, central factor, and suffix of $\mu(b)$, and

Similarly, $\pi(f_1)$, $\pi(f_2)$, $\pi(f_3)$ only appear as prefix, central factor, and suffix of $\mu(0)$, and $\pi^2(f_1)$, $\pi^2(f_2)$, $\pi^2(f_3)$ as prefix, central factor, and suffix of $\mu(c)$.

Definition 1. The words f_1 , f_2 , and f_3 (resp. $\pi(f_1)$, $\pi(f_2)$, $\pi(f_3)$; resp. $\pi^2(f_1)$, $\pi^2(f_2)$, $\pi^2(f_3)$) are called characteristic factors of $\mu(a)$ (resp. $\mu(b)$; resp. $\mu(c)$).

We use these characteristic factors to prove the following desubstitution results for μ .

Proposition 2. Let w be a word over A_3 , and u a subword of $\mu(w)$. If $|u| \ge 18$, then, there exists a unique $x \in A_3$, a unique $y \in A_3$, and there exist some unique $s, v, p \in A_3^*$, such that $u = s\mu(v)p$, where $s \ne \epsilon$ is a suffix of $\mu(x)$, and $p \ne \epsilon$ is a prefix of $\mu(y)$.

Proof. As $|u| \ge 18$, u has a characteristic factor as a subword. The result is then clear since μ is a 19-uniform morphism, and since $\forall x \in A_3$, $\mu(x)$ begins and ends with x. \Box

Theorem 1. Let $w \in A_3^*$, and let u be a subword of $\mu(w)$. Assume u has period p, excess e and exponent 7/4 < |u|/|p| < 2. Then, w has a subword v of length $|v| \ge \lceil |u|/19 \rceil$, with period q such that $|q| = \lceil |p|/19 \rceil$, and with exponent $E(v) \ge |u|/|p|$.

Proof. There are two cases: either $|e| \ge 18$, or |e| < 18.

Suppose first that $|e| \ge 18$. Then, we also have $|u| \ge 18$. Then, by Proposition 2,

- There exist some unique $x_u, y_u \in A_3$, and some unique $m_u, s_u, p_u \in A_3^*, s_u \neq \epsilon$ suffix of $\mu(x_u), p_u$ prefix of $\mu(y_u)$, such that $u = s_u \mu(m_u) p_u$,
- There exist some unique $x_e, y_e \in A_3$, and some unique $m_e, s_e, p_e \in A_3^*$, $s_e \neq \epsilon$ suffix of $\mu(x_e)$, p_e prefix of $\mu(y_e)$, such that $e = s_e \mu(m_e) p_e$.

Let:

$$f = x_e m_e y_e$$
$$v = x_u m_u y_u$$

As e is a suffix of u, we have: $p_u = p_e$, $y_u = y_e$, and $\mu(x_e)\mu(m_e)$ is a suffix of $\mu(x_u)\mu(m_u)$, thus x_em_e is a suffix of x_um_u . Moreover, e is a prefix of u, so $s_u = s_e$, $x_e = x_u$, $\mu(m_e)\mu(y_e)$ is a prefix of $\mu(m_u)\mu(y_u)$, and m_ey_e is a prefix of m_uy_u (see the following figure).

Therefore, f is a prefix and a suffix of v, and v has excess f(|f|) is maximal, otherwise |e| would not be maximal in u). Let us denote its period by q, i.e. v = qf. It is clear that

$$|v| \ge \lceil \frac{|u|}{19} \rceil.$$

Moreover, q has length

$$q| = |v| - |f| = |m_u| - |m_e|$$

$$= \frac{|\mu(m_u)| - |\mu(m_e)|}{19}$$

$$= \frac{(|u| - |s_u| - |p_u|) - (|e| - |s_e| - |p_e|)}{19}$$

$$= \frac{|u| - |e|}{19} \text{ (because } s_u = s_e \text{ and } p_u = p_e)$$

$$= \frac{|p|}{19}$$

Finally, v has exponent

$$E(v) = \frac{|v|}{|q|} \ge \lceil \frac{|u|}{19} \rceil / \frac{|p|}{19} \ge \frac{|u|}{19} \cdot \frac{19}{|p|} = E(u)$$

Thus, v is the word we were looking for.

Suppose now that |e| < 18. Then, as E(u) > 7/4, $|u| \le 24 + 18 = 42$. As μ is 19uniform, u is a subword of a word $\mu(x)$, where $x \in A_3^*$, $|x| \le 4$. Moreover, E(u) > 7/4, so x is not a subword of $\mu^{\infty}(a)$. Then, by looking at the $\mu(x)$ obtained if x is not a subword of $\mu^{\infty}(a)$, we can again reduce the set of possible x:

 $x \in \{aa, bb, cc, aaa, bbb, ccc, aaaa, bbbb, cccc, abab, acac, baba, bcbc, caca, cbcb\}$

since in the other cases, $\mu(x)$ has no subword u such that $|u| \leq 42$ and E(u) > 7/4. Then, we have:

- if u is a subword of $\mu(x)$, with $x \in \{aa, bb, cc\}$, consider v = x. v has exponent 2, and period q of length |q| = 1. We can also remark that u necessarily has a period of length 19 = 19.|q|, and has exponent $E(u) \leq 2 = E(v)$. Therefore, v is the word we were looking for.

- if u is a subword of $\mu(x)$, with $x \in \{aaa, bbb, ccc\}$, consider v = x. v has exponent 3, and period q of length |q| = 1. As u necessarily has a period of length 19 = 19.|q|, and has exponent $E(u) \leq 3 = E(v)$, v is the word we were looking for.
- if u is a subword of $\mu(x)$, with $x \in \{aaaa, bbbb, cccc\}$, consider v = x. v has exponent 4, and period q of length |q| = 1. As u necessarily has a period of length 19 = 19.|q|, and has exponent $E(u) \leq 4 = E(v)$, v is the word we were looking for.
- finally, if u is a subword of $\mu(x)$, with $x \in \{abab, acac, baba, bcbc, caca, cbcb\}$, consider v = x. v has exponent 2, and period q of length q = 2. As u necessarily has a period of length 2.19 = 19.|q|, and has exponent $E(u) \leq 2 = E(v)$, v is the word we were looking for.

3 Construction of an infinite α -free word over A_3

In the following, we will use the operator, denoted by δ , that removes the first letter of a word: for example, $\delta(0110) = 110$.

Lemma 1. Let \mathfrak{L} be the set $Fact(\mu(A_3^*))$ of all subwords of the words in $\mu(A_3^*)$. Let $\alpha \in [7/4, 2[$ and $v \in A_3^*$, such that:

- $abcbabcv \in \mathfrak{L}$
- abcbabcv is α -free.

Suppose that babcbabcv = xuy, where u has exponent $E(u) \ge \alpha$. Then, $x = \epsilon$, and u = babcbabc.

Proof. By hypothesis, *abcbabcv* is α -free. Since $E(u) \geq \alpha$, u is necessarily a prefix of *babcbabcv*. Moreover, *babcbab* has exponent $7/4 < \alpha \leq E(u)$. Therefore, u = babcbabcv', where v' is a prefix of v. Suppose that $v' \neq \epsilon$.

By hypothesis, $abcbabcv' \in \mathfrak{L}$. Moreover, the subword abcbabc only appears in \mathfrak{L} as a subword of $\mu(c)$. So v' = abacbabcbac....

The excess of u is at most *babcbab*. Indeed, otherwise, the word *babcbabc*, whose exponent is 2, is a subword of *abcbabcv*, which is impossible since *abcbabcv* is α -free. Then, u has excess e, with $|e| \leq 7$, and so has period p with $|p| \leq 9$. So u is a subword of *babcbabcabacbabc*. By looking at the factors of this word, we deduce that the only possibility is u = babcbabc. \Box

Lemma 2. Let $\alpha \in [7/4, 2[$ be given. Let s, t be natural numbers such that $\mu^s(b) = xabcbabcy$, with |x| = t. Let $\beta = 2 - \frac{t}{4.19^s}$. Suppose that $7/4 < \beta < \alpha$, and that $abcbabcv \in \mathfrak{L}$ is α -free. Consider the word $w = \delta^t \mu^s(babcbabcv)$. Then, we have:

1. w has a prefix with exponent β .

- 2. If abcbabcv has a subword with exponent γ and period p, then, w has a subword with exponent γ and a period of length $19^{s}|p|$.
- 3. w is α -free.
- *Proof.* 1. $\mu^s(babcbabc)$ has exponent 2 and period $\mu^s(babc)$. We have $|\mu^s(babc)| = 4.19^s$, and $|\mu^s(babcbabc)| = 8.19^s$, so the prefix $\delta^t \mu^s(babcbabc)$ of w has exponent

$$\frac{|w|}{|\mu^s(babc)|} = \frac{|\mu^s(babcbabc)| - t}{|\mu^s(babc)|} = \beta$$

- 2. Let u be a subword of *abcbabcv*, with exponent γ and period p. Then $\mu^s(u)$ is a subword of $\mu^s(abcbabcv)$, with exponent γ and period $19^s|p|$. Moreover, $\mu^s(abcbabcv)$ is a suffix of $\delta^t \mu^s(babcbabcv)$, since $t = |x| \leq |\mu^s(b)|$. So $\mu^s(u)$ is a subword of w, with the required properties.
- 3. Suppose that w has a subword u, with exponent $\kappa \ge \alpha$ and period p. Then, by iteration of Theorem 2, babcbabcv has a subword u' with exponent $\kappa' \ge \kappa$ and q such that $|q| = \frac{|p|}{19^s}$. By Lemma 1, as $\kappa' \ge \alpha$, we deduce that $\kappa' = 2$ and that u' = babcbabc. Then q = babc, and $|p| = |q| \cdot 19^s = 4 \cdot 19^s$. Moreover, u is not a subword of $\mu^s(abcbabcv)$, otherwise abcbabcv has a subword with

exponent $\geq \alpha$. u is not a subword of $\delta^t \mu^s(babcbabc)$ either, otherwise, we would have $|u| \leq |\delta^t \mu^s(babcbabc)| = 8.19^s - t$, and so:

$$E(u) = \frac{|u|}{|p|} \le \frac{8.19^s - t}{4.19^s} = \beta < \alpha,$$

which is absurd since $E(u) \ge \alpha$.

Therefore, u has a prefix z such that $z = z_1 \mu^s (abcbabc) z_2$, where $z_1 \neq \epsilon$ is a suffix of $\mu^s(b)$, and $z_2 \neq \epsilon$ is a prefix of $\mu^s(a)$ (since we remarked that the first letter of v is a a). z being a prefix of u, z has a period of length 4.19^s. Then, z has period $z_1 \mu^s(abc) z'_1$, with z'_1 such that $\mu^s(b) = z'_1 z_1$. So we have:

$$z = z_1 \mu^s(abc) z_1' z_1 \mu^s(abc) z_2.$$

We deduce that either z_2 is a prefix of z'_1 , or z'_1 is a prefix of z_2 . Yet neither is possible. Indeed, z_2 begins with the letter a, and z'_1 begins with the letter b. Finally, w is α -free.

4 A word over A_3 with critical exponent $\alpha \ge RT(3)$

Definition 2. A real number $\beta < \alpha$ is said to be obtainable if β can be written as $\beta = 2 - \frac{t}{4 \cdot 19^s}$, where the natural numbers s and t verify:

- $s \ge 3$

- the word $\delta^t(\mu^s(b))$ begins with abcbabc.

We note that for any given $s \geq 3$, it is possible to choose t such that

- $7/4 < \beta = 2 - \frac{t}{4.19^s} < \alpha$ - $|\alpha - \beta| \le \frac{19^2}{4.19^s}$

Indeed, $\mu^2(a)$, $\mu^2(b)$, and $\mu^2(c)$ have length 19², and each have *abcbabc* as a subword. Therefore, choosing a large enough s, we can always find some obtainable real numbers β , arbitrarily close to α .

Theorem 2. Let $\alpha \ge RT(3) = 7/4$. Then, there is an infinite word over A_3 with critical exponent α .

Proof. If $\alpha = 7/4$, we already know that $\mu^{\infty}(a)$ has critical exponent 7/4. If $\alpha \geq 2$, by the theorem for k = 2, we can find a word over A_3^* with critical exponent α . Now, let $\alpha \in [7/4, 2[$.

Let $(\beta_i)_{i \in \mathbb{N}}$ be an increasing sequence of obtainable numbers, converging to α . For each i, we write β_i as:

$$\beta_i = 2 - \frac{t_i}{4.19^{s_i}}$$

where s_i and t_i are such that:

- $s_i \geq 3$

- $\delta^{t_i} \mu^{s_i}(b)$ begins with *abcbabc*.

For all words $v \in \mathfrak{L}$, let $\Phi_i(v)$ denote the word $\delta^{t_i}\mu^{s_i}(bv)$, and consider the following sequence:

$$v_{1} = \Phi_{1}(abcbabc) = \delta^{t_{1}}\mu^{s_{1}}(babcbabc)$$

$$v_{2} = \Phi_{1}\Phi_{2}(abcbabc) = \delta^{t_{1}}\mu^{s_{1}}(b\delta^{t_{2}}\mu^{s_{2}}(babcbabc))$$

$$v_{3} = \Phi_{1}\Phi_{2}\Phi_{3}(abcbabc)$$

$$\vdots$$

$$v_{n} = \Phi_{1}\Phi_{2}\Phi_{3}...\Phi_{n}(abcbabc)$$

$$\vdots$$

By iteration of Lemma 2, as $abcbabc \in \mathfrak{L}$ is α -free, we deduce that each v_i is α -free. Moreover, once again by Lemma 2, each v_i has a subword with exponent β_j , j = 1, 2, ..., i. Finally, consider the word $w = \lim_{n \to \infty} \epsilon A_3^{\omega}$ (it is possible to take this limit since each v_i is a prefix of v_{i+1}). w then has critical exponent α : it is α -free, yet has subwords with exponents β_i converging to α . The conjecture proposed by Currie and Rampersad in [4] is then true for alphabets of size 2 and 3. It still have to be proved for alphabets of size ≥ 4 . For that, another method must be found, because of Brandenburg's result in [2] : if $k \geq 4$, there is no RT(k)-free morphism, i.e., no morphism which maps, as Thue-Morse morphism for k = 2 or Dejean's morphism for k = 3, every RT(k)-free word to an RT(k)-free word.

References

- [1] J. Berstel. Axel Thue's papers on repetitions in words: a translation. *Publications du LaCIM*, 20, 1995.
- [2] F. J. Brandenburg. Uniformly growing k-th powerfree homomorphisms. Theoret. Comput. Sci., 23:69-82, 1983.
- [3] A. Carpi. On Dejean's conjecture over large alphabets. Theoret. Comput. Sci., 385:137–151, 2007.
- [4] J. D. Currie and N. Rampersad. For each $\alpha > 2$ there is an infinite binary word with critical exponent α . *Electron. J. Combin.*, 15:N34, 2008.
- [5] J. D. Currie and N. Rampersad. A proof of Dejean's conjecture. *Preprint*, http://arxiv.org/abs/0905.1129, 2009.
- [6] F. Dejean. Sur un théorème de Thue. J. Comb. Theory A, 13:90–99, 1972.
- [7] D. Krieger and J. Shallit. Every real number greater than 1 is a critical exponent. *Theoret. Comput. Sci.*, 381:177–182, 2007.
- [8] F. Mignosi and G. Pirillo. Repetitions in the Fibonacci infinite word. RAIRO Inform. Theor. Appl., 26:199–204, 1992.
- [9] M. Rao. Last cases of Dejean's conjecture. WORDS 2009, http://www.labri.fr/perso/rao/publi/dejean.ps, 2009.
- [10] A. Thue. Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. Mat. Nat. Kl., 10:1–67, 1912.