
Enumerating all Hamilton Cycles and Bounding the

Number of Hamilton Cycles in 3-Regular Graphs ∗

Heidi Gebauer
Institute of Theoretical Computer Science
ETH Zurich, CH-8092 Zurich, Switzerland

gebauerh@inf.ethz.ch

Submitted: Sep 22, 2009; Accepted: Jun 10, 2011; Published: Jun 21, 2011

Mathematics Subject Classifications: 05C35, 05C45, 05C85

Abstract

We describe an algorithm which enumerates all Hamilton cycles of a given 3-
regular n-vertex graph in time O(1.276n), improving on Eppstein’s previous bound.
The resulting new upper bound of O(1.276n) for the maximum number of Hamilton
cycles in 3-regular n-vertex graphs gets close to the best known lower bound of
Ω(1.259n). Our method differs from Eppstein’s in that he considers in each step a
new graph and modifies it, while we fix (at the very beginning) one Hamilton cycle
C and then proceed around C, successively producing partial Hamilton cycles.

1 Introduction

The famous traveling salesman problem (TSP) is one of the most fundamental NP-
complete graph problems [4]. For decades the best known algorithm for TSP was the
dynamic programming algorithm by Held and Karp [6], which runs in time O(2n) with n
denoting the number of vertices of the given graph. This was also the strongest known
upper bound for the subproblem of deciding whether a given graph contains a Hamilton
cycle. In a recent breakthrough, Björklund [2] gave a Monte Carlo algorithm for detecting
whether a given graph contains a Hamilton cycle or not which runs in time 1.657npoly(n),
with false positives and false negatives occurring with probability exponentially small in
n. (We let “poly(n)” denote a polynomial factor in n.) For bipartite graphs this algorithm
even runs in time 2

n
2 poly(n).

Despite this major development it is still open whether the traveling salesman problem
in its general form can be solved in time O(1.999n) [9]. Therefore it is of interest to consider
some restricted problem classes, which – while still NP-complete – might be treated faster.

∗An extended abstract appeared in Proc. 5th Workshop on Analytic Algorithmics and Combinatorics
(ANALCO) (2008)

the electronic journal of combinatorics 18 (2011), #P132 1

3-regular graphs Eppstein established an algorithm which solves the traveling sales-
man problem in O(2

n
3) (2

1
3 ≈ 1.260). He additionally showed that this algorithm can be

modified to enumerate all Hamilton cycles in time O(2
3n
8) ≤ 1.297n. This value is also

the best known upper bound for the number of Hamilton cycles in 3-regular graphs. The
corresponding algorithm basically solves the more general problem of listing all Hamilton
cycles which contain a given set of forced edges. In each step it recursively deletes some
edges and marks others as “forced” and then continues with the resulting, new graph.

Iwama and Nakashima [7] reduced Eppstein’s time upper bound of O(2
n
3) to O(1.251n).

We note that all the results mentioned above were originally stated for the class of
maximum-degree-3 graphs.

4-regular graphs Eppstein also gave a randomized reduction from maximum-degree-4
graphs to maximum-degree-3 graphs, which allows to solve the traveling salesman problem
for a given 4-regular graph G in time O((3

2
)n · t3(n)) with t3(n) denoting the time needed

to solve the traveling salesman problem for graphs of maximum degree 3. By the result
of Iwama and Nakashima this is bounded by O(1.876n). In [5] we improve this upper
bound to

√
3

n
poly(n) (

√
3 ≈ 1.732) and show that all Hamilton cycles can be listed in

time O(1.783n).

Graphs of maximum degree k By modifying the classical Bellman-Held-Karp algo-
rithm Björklund, Husfeldt, Kaski and Koivisto [1] showed that the traveling salesman
problem for a graph with maximum degree k can be solved in O((2(k+1) − 2k− 2)n/(k+1)).
For 3-regular and 4-regular graphs the resulting bounds are weaker than the known
bounds, however, for k ≥ 5 this improves the previously best upper bound of O(2n).

Our contribution We improve Eppstein’s time upper bound of O(2
3n
8) (2

3
8 ≈ 1.297)

for listing all Hamilton cycles to O(1.276n). The resulting new upper bound of O(1.276n)
for the maximum number of Hamilton cycles in 3-regular graphs gets close to the corre-
sponding lower bound of 2

n
3 (2

1
3 ≈ 1.260) shown by Eppstein. It is important to note that

our method is not a refinement of Eppstein’s procedure but a new approach. Whereas
Eppstein in each step considers a new graph and recursively modifies it we let the orig-
inal graph stay as it is (throughout the whole algorithm) – at the beginning we fix one
Hamilton cycle C and then proceed around C, successively producing partial Hamilton
cycles.

We finally remark that every algorithm A which enumerates all Hamilton cycles of a
3-regular graph on n vertices in time T (n) can also be used to enumerate all Hamilton
cycles of a graph with degree at most 3 in time T (n) · poly(n). Indeed, if the given graph
G has a vertex of degree at most one then G does not have a Hamilton cycle. Otherwise,
let G′ be the graph obtained by replacing every maximal path P = v1, . . . , vk of degree-
two vertices with an edge eP connecting the (degree-3) neighbor of v1 with the (degree-3)
neighbor of vk. Note that the Hamilton cycles of G correspond to the Hamilton cycles
of G′ containing every edge of the form eP . By enumerating all Hamilton cycles of G′

and ignoring those which do not contain every edge of the form eP we obtain a list of all

the electronic journal of combinatorics 18 (2011), #P132 2

v3

v4

v5 v6

v7

v8

v9

v10

v11

v12
v1

v2

v3

v4

v5 v6

v8

v9

Figure 1: An example for the transformation of a graph G (on the left) into a 3-regular
graph G′ (on the right). The edges of the form eP are drawn thick.

Hamilton cycles of G 1. Hence our algorithm can also enumerate all Hamilton cycles of a
given graph of maximum degree 3 in time at most O(1.276n).

Lower bounds Eppstein exhibited an infinite family of 3-regular graphs with 2
n
3 (2

1
3 ≈

1.260) Hamilton cycles per graph, implying a lower bound of 2
n
3 for the maximum number

of Hamilton cycles in 3-regular graphs. Eppstein conjectures that this is tight, i.e., that
every 3-regular graph on n vertices has at most 2

n
3 Hamilton cycles. While this conjecture

is still open we can refute it for the class of graphs of average degree 3: In [5] we construct
for every n divisible by 8 a 4-regular graph Gn such that the number of Hamilton cycles
in Gn, hc(Gn), is 48

n
8 ≥ 1.622n. For every n divisible by 16 we fix a vertex v of Gn

2
. By a

straightforward average argument some edge e incident to v occurs in at least a quarter of
all Hamilton cycles of Gn

2
. We add n

2
vertices to e and let Hn denote the resulting graph.

Hn is an n-vertex graph of average degree 3 with hc(Hn) ≥ 1
4
·hc(Gn

2
) ≥ 1

4
·48

n/2
8 ≥ 1.273n

for n large enough. If Eppstein’s Conjecture is true this implies that the average-degree-3
graph maximizing the number of Hamilton cycles is not 3-regular. If it is not possible
to prove Eppstein’s Conjecture it would already be interesting to know whether one can
separate the average-degree-3 case from the 3-regular case, i.e., whether one can show
that the maximum number of Hamilton cycles in 3-regular graphs is strictly smaller than
the maximum number of Hamilton cycles in graphs of average degree 3.

Multigraphs A multigraph is a graph which – in contrast to ordinary graphs – is allowed
to have loops and multiple edges. Sharir and Welzl [8] implicitly showed that every 3-
regular multigraph has at most

√
2

n
Hamilton cycles and they also gave an algorithm

which lists all Hamilton cycles in time
√

2
n
poly(n). This bound is tight, since the graph

G obtained by taking a cycle v1, . . . , vn, v1 for an even number n, and adding an extra
edge (vi, vi+1) for every odd i with 1 ≤ i ≤ n−1, has exactly 2

n
2 Hamilton cycles (indeed,

1We note for completeness that the case where the addition of the eP lead to a loop or to multiple
edges needs a special treatment: Suppose first that G′ consists of at most two vertices. Then we can
easily enumerate all Hamilton cycles by hand. So let G′ be a graph on at least 3 vertices. If some eP

forms a loop in G′ or if two edges eP , eP ′ are parallel in G′ then G has no Hamilton cycle. Finally, if
some eP has a parallel edge e which is not of the form eP ′ then deleting e in G′ does not reduce the set of
Hamilton cycles we are interested in. So it suffices to list the Hamilton cycles of the graph G′′ obtained
by deleting every edge e which has a parallel edge of the form eP . (Note that since G′′ is not necessarily
3-regular we might need to recursively apply the steps described above.)

the electronic journal of combinatorics 18 (2011), #P132 3

for every even i we have to include (vi, vi+1) and for every odd i we can choose between
the two edges connecting vi and vi+1). So we cannot hope to obtain a faster algorithm
for listing all Hamilton cycles in multigraphs.

Notation Let G be a graph. An ordering σ = v1, v2, . . . , vn of the vertices of G is
called a Hamilton ordering if v1, v2, . . . , vn, v1 is a Hamilton cycle. For a given Hamilton
ordering σ = v1, v2, . . . , vn of the vertices, we call an edge e a diagonal if e is not on the
cycle v1, v2, . . . , vn, v1, and we call a vertex vi active if it is adjacent to a vertex vj with
j ≥ i + 2. A vertex which is not active is called passive.

Organization of this paper In Section 2 we describe our algorithm to enumerate all
Hamilton cycles in a 3-regular graph. In Section 3 we give some definitions and general
facts. In Section 4 we state two key lemmas, which help us to analyze the running time
of our algorithm, and show that they imply the following theorem.

Theorem 1.1. The Hamilton cycles of a given 3-regular n-vertex graph G can be enu-
merated in time

1.628
n
2 · poly(n) = O(1.276n).

Section 5 and 6 deal with the proofs of the two key lemmas.

2 The Algorithm

First we test whether G is Hamiltonian and, if yes, construct one Hamilton cycle. This
can be done rather quickly due to known algorithms for finding the minimum weight
Hamilton cycle, established, for example, by Eppstein [3], and Iwama and Nakashima
[7]. Their algorithms have running time O(1.260n) and O(1.251n), respectively, which,
compared to the claimed bound of O(1.276n), is negligible. So we have the following.

Observation 2.1. We can obtain a Hamilton ordering σ = v1, . . . , vn of the vertices of
G in time O(1.251n).

The basic idea of our algorithm is the following. First we take the Hamilton ordering
σ = v1, . . . , vn given by Observation 2.1 (possibly with slight modifications). Then we
consider the following procedure for constructing another Hamilton cycle H : We process
the vertices v1, . . . , vn−1 one by one and carefully decide for each vertex vi which of its
outgoing edges are included in H . It will turn out that there are many vertices where we
have only one option to decide on, implying that the number of outcomes of our procedure
(i.e. Hamilton cycles and attempts where we get stuck) is rather small.

We now give a more formal description of the above. We fix a Hamilton ordering
v1, . . . , vn of the vertices of G and direct each edge – except for (vn, v1) – from the vertex
with the lower index to the vertex with the higher index. (Figure 2 shows an example.)
Let (vi, vj) be a diagonal with i < j (recall that a diagonal is an edge which is not on the
cycle v1, . . . , vn, v1). Then (vi, vj) is an outgoing diagonal of vi, and an incoming diagonal

the electronic journal of combinatorics 18 (2011), #P132 4

v1

v2

v3

v4

v5

v6

v7

v8

Figure 2: An example for n = 8. Here v1, v2, v3, v6 are active while v4, v5, v7, v8 are
passive.

of vj. Note that the outdegree of every vertex is either one or two. The following is a
direct consequence of our definition of active and passive vertices.

Remark. A vertex is active if it has outdegree two, otherwise it is passive.

We will see that when we process an active vertex vi in our procedure for constructing
another Hamilton cycle then we might have more than one option to decide which of the
outgoing edges of vi to include.

Remark 2.2. v1 and v2 are active (since they can not have an incoming diagonal) whereas
vn−1 and vn are passive (since they can not have an outgoing diagonal). Since the edges
which are diagonals constitute a matching in G there are n

2
diagonals. Thus there are n

2

active vertices in total.

We now describe the procedure Pham for constructing another Hamilton cycle. For every
vertex vi ∈ {v1, . . . , vn} we will select some of its outgoing edges, and we will maintain a
set S which contains all edges that have been selected so far.

Procedure Pham First we decide whether or not to select (vn, v1). Then we process the
vertices v1, . . . , vn−1 one by one. We refer to the processing of vi by round i. In round i
we carefully select some outgoing edges of vi such that afterwards the following holds.

(i) Each vertex vj with j ≤ i is incident to exactly two selected edges.

(ii) The set of selected edges does not contain a cycle of length smaller than n.

(iii) If vi+1 has two incoming edges then at least one of them must be selected.

We call (i) - (iii) the postconditions (for round i). Note that these conditions only filter
out selections which can not be completed to a Hamilton cycle. If it is not possible to
select some of the outgoing edges of vi such that postcondition (i) - (iii) are fulfilled then
we give up and stop. We now have a closer look at round i.

the electronic journal of combinatorics 18 (2011), #P132 5

Processing of vi We distinguish two cases.

Case 1: vi is passive. In this case there is only one option.
Indeed, since postcondition (iii) is satisfied after round i− 1, at least one of the incoming
edges of vi is selected. If both incoming edges are selected then we do not select the
outgoing edge of vi (the only way to fulfill postcondition (i)), otherwise (also due to
postcondition (i)) we select the outgoing edge of vi. (It is of course possible that our
selection violates postcondition (ii) or (iii); in this case we give up and stop.)

Case 2: vi is active. In this case there might or might not be two options.
Let d denote the outgoing diagonal of vi. If the incoming edge of vi is not selected then (by
postcondition (i)) we select both of its outgoing edges and check whether postcondition
(ii) and (iii) are fulfilled (if this is not the case we give up and stop). Otherwise we select
one edge of {(vi, vi+1), d} such that postcondition (ii) and (iii) are satisfied (if this is not
possible we give up and stop).

If we did not give up we continue with vi+1 and go on. After processing vn−1 we check
whether the set S of selected edges forms a Hamilton cycle. If yes, we output S, otherwise
we do nothing.

Algorithm for enumerating all Hamilton cycles Note that every Hamilton cycle
can be obtained as an outcome of Pham (with the appropriate selections). So the algorithm
A which goes through all possible outcomes of Pham will list all Hamilton cycles. (Note
that A can easily be implemented, e.g., using backtracking.) We now bound the running
time of A.

Definition 2.3. Let v1, . . . , vn be a Hamilton ordering of the vertices of G and let 1 ≤
i ≤ n − 1. Each edge set which can be obtained by performing i rounds of Pham will be
called a choice for v1, . . . , vi. With ch(vi) we denote the set of choices for v1, . . . , vi.

By a slight abuse of notation we let ch(v0) denote the set of choices for the very first
decision (directly before round 1) and so ch(v0) consists of the empty set and the set
containing only the edge (vn, v1).

Let S be an edge set which is an outcome of Pham. Then either S forms a Hamilton cycle
or we gave up after having selected the edges in S. In the former case, S ∈ ch(vn−1),
whereas in the latter case, S ∈ ch(vi) for some i ≤ n − 1. So the number of outcomes of
Pham is bounded by |ch(v1)| + |ch(v2)| + . . . + |ch(vn−1)|. Since one iteration of Pham can
be done in time polynomial in n we get the following.

Observation 2.4. For every given Hamilton ordering v1, . . . , vn of the vertices of G the
algorithm A runs in time at most (|ch(v1)| + |ch(v2)| + . . . + |ch(vn−1)|) · poly(n).

Finding an appropriate Hamilton ordering of the vertices We now carefully
choose an ordering of the vertices which allows us to prove the claimed upper bound
on the running time of A. We first identify certain patterns which are beneficial and
disadvantageous, respectively, for our analysis of the running time of A.

the electronic journal of combinatorics 18 (2011), #P132 6

vi vj vi vj

Figure 3: An outward pattern (on the left) and an inward pattern (on the right).

Definition 2.5. Let v1, . . . , vn be a Hamilton ordering of the vertices of G. We call a
sequence (vi, vi+1, . . . , vj) with 1 ≤ i < i + 2 ≤ j ≤ n, (i) an outward pattern if there is
a diagonal (vi, vj) and vi, vi+1 . . . , vj−1 are all active, (ii) an inward pattern if there is a
diagonal (vi, vj) and vi+1, vi+2, . . . , vj are all passive.

Figure 3 depicts an outward pattern and an inward pattern. From now on we consider
a fixed Hamilton ordering v1, . . . , vn (by Observation 2.1 such an ordering can be found
quickly enough). It will turn out that inward patterns have a rather bad influence on the
running time of our algorithm whereas outward patterns have a good influence. So the
next observation is crucial.

Observation 2.6. We can assume that the number of outward patterns is at least the
number of inward patterns.

This can easily be achieved by possibly reversing the numbering of the vertices, by which
inward patterns become outward patterns and vice versa. Note that the number of out-
ward patterns and the number of inward patterns can readily be computed in polynomial
time.

We now state two simple but useful properties of outward patterns. Let vi be a vertex
of an outward pattern P and let j be the smallest index in {i, . . . , n} such that vj is
passive. Then P = (vk, . . . , vj) where vk is the source of the incoming diagonal of vj .
Thus P is uniquely determined and we have the following.

Observation 2.7. Every vertex belongs to at most one outward pattern.

Let vk be a passive vertex which belongs to an outward pattern P . Then vk−1 also belongs
to P and is active. By Remark 2.2 this directly implies the following.

Observation 2.8. vn does not belong to an outward pattern.

Finally, we identify those vertices which make our analysis of the running time of A a bit
more complicated, and we relate them to inward patterns.

Definition. An active vertex vi with i ≥ 2 is called unpleasant if the outgoing diagonal
of the previous active vertex vj points to a vertex in {vj+2, . . . , vi−1}. An active vertex
which is not unpleasant is called pleasant. In particular, v1 is pleasant.

the electronic journal of combinatorics 18 (2011), #P132 7

vi

vj

Figure 4: An unpleasant vertex vi.

Let vi be an unpleasant vertex and let vj be its previous active vertex. Then the outgoing
diagonal of vj points to a vertex vk in {vj+2, . . . , vi−1} and so (vj , . . . , vk) is an inward
pattern. So every unpleasant vertex corresponds to an inward pattern, and therefore the
number of unpleasant vertices is at most the number of inward patterns. By Observation
2.6 we get the following.

Observation 2.9. The number of unpleasant vertices is at most the number of outward
patterns.

Observation 2.9 is crucial for our analysis since it allows us to compensate (to a certain
extent) the bad effect of the unpleasant vertices with the good effect of the outward
patterns.

A rough sketch of the analysis of the algorithm We will basically choose an
appropriate constant c > 1 and inductively show that for every i ∈ {1, . . . , n − 1} we
have |ch(vi)| ≤ 1.628a · cu · c−p where a, u, and p, respectively, denote the number of
active vertices, unpleasant vertices, and outward patterns, respectively, in {v1, . . . , vi}. By
Remark 2.2, Observation 2.8 and Observation 2.9 this immediately gives that |ch(vn−1)| ≤
1.628

n
2 . A more careful analysis will allow us to show that the expression 1.628a ·cu ·c−p is

maximized when i = n−1. This implies that |ch(vi)| ≤ 1.628
n
2 for every i ∈ {1, . . . , n−1},

which together with Observation 2.4 implies Theorem 1.1.

3 Definitions and General Facts

Since we will frequently deal with choices we first state some definitions and auxiliary
facts.

Observation 3.1. Let C ∈ ch(vk). By postcondition (i), vi is incident to exactly two
edges in C for every i ≤ k. By postcondition (ii), C does not contain a cycle of length
smaller than n. Finally, if vk+1 is passive then by postcondition (iii), C contains an
incoming edge of vk+1.

We will partition the sequence v1, . . . , vn−1 into suitable subsequences and then reduce
our original claim to a statement on subsequences. Therefore we extend the notion of a
choice to subsequences.

the electronic journal of combinatorics 18 (2011), #P132 8

Definition 3.2. Let C ∈ ch(vk) and let D be any choice. D is an extension of C if for
every outgoing edge e of a vertex in {vn} ∪ {v1, . . . , vk} it holds: e ∈ D if and only if
e ∈ C.

Moreover, for every q ≥ k we let ch|C(vq) denote the set of all choices in ch(vq) which
are an extension of C. In particular, ch|C(vk) = {C}.
So we get the following (recall that by Definition 2.3 we have ch(v0) = {∅, {(vn, v1)}}).
Observation 3.3. Let 0 ≤ i ≤ j ≤ n − 1. Every choice D ∈ ch(vj) is an extension of
some choice C ∈ ch(vi). In particular, |ch(vj)| =

∑

C∈ch(vi)
|ch|C(vj)|.

Focussing on a subset of the vertices Let imax denote the index i which maximizes
|ch(vi)|. The following is a direct consequence of Observation 2.4.

Observation 3.4. A runs in time at most |ch(vimax
)| · poly(n).

So our goal is to bound |ch(vimax
)|. To this end we first give some basic properties of

{v1, . . . , vimax
}, and then reduce Theorem 1.1 to two key lemmas. Let a and a′ denote

the number of active vertices in {v1, . . . , vimax
}, and in {vimax+1, . . . , vn−1}, respectively. By

Remark 2.2 we get that

a + a′ =
n

2
. (1)

Let utot denote the number of unpleasant vertices in {v1, . . . , vn−1}. Moreover, let s, s′, and
stot, respectively, denote the number of outward patterns fully contained in {v1, . . . , vimax

},
in {vimax+1, . . . , vn−1}, and in {v1, . . . , vn−1}, respectively. By Observation 2.8, stot is the
number of outward patterns. Observation 2.9 gives that

utot ≤ stot. (2)

By Observation 2.7 there is at most one outward pattern which contains both vimax
and

vimax+1. Hence at least stot − 1 patterns are either fully contained in {v1, . . . , vimax
} or fully

contained in {vimax+1, . . . , vn−1}. So,

stot ≤ s + s′ + 1. (3)

4 Reduction of Theorem 1.1 to Two Key Lemmas

In this section we state two key lemmas and show that they imply Theorem 1.1. From
now on by a pattern we mean an outward pattern fully contained in v1, . . . , vimax

. We
partition the active vertices in v1, . . . , vimax

into disjoint sets W1, . . . , Wk where k is the
number of patterns plus the number of active vertices in v1, . . . , vk not belonging to a
pattern. Each Wi contains either all active vertices of a pattern or a single active vertex
which does not belong to a pattern. Note that v1 ∈ W1.

Definition 4.1. For i = 1, . . . , k we let f(i) denote the v-index of the first vertex in Wi

and we let l(i) denote the v-index of the last vertex in Wi. We define f(k +1) := imax +1.

the electronic journal of combinatorics 18 (2011), #P132 9

Note that Wi = {vf(i), vf(i)+1, . . . , vl(i)} and f(1) = 1.

Definition. For r = 0, . . . , k we let Ar (Br, respectively) denote the number of elements
of ch(vf(r+1)−1) which contain (do not contain, respectively) (vf(r+1)−1, vf(r+1)). (By a
slight abuse of notation we consider (v0, v1) as the edge (vn, v1).)

So for every r, r = 0, . . . , k we have

Ar + Br = |ch(vf(r+1)−1)|. (4)

Note that by Definition 2.3 we obtain that

A0 + B0 = 2. (5)

Finally, for every i ∈ {1, . . . , k} let wi := |Wi|; and let w̃i := 1 if wi ≥ 2, and w̃i := 0 if
wi = 1. The two key lemmas below will help us to prove Theorem 1.1.

Key Lemma 1. For r = 1, . . . , k we have the following.

(a) If wr = 1 then

Ar + Br ≤ 2 · Ar−1 + Br−1 (6)

Ar ≤ Ar−1 + Br−1, if vf(r+1) is pleasant. (7)

(b) If wr ≥ 2 then

Ar + Br ≤ 2 · Fwr · Ar−1 + (Fwr+1 − 1) · Br−1 (8)

Ar ≤ (Fwr + Fwr−2) · Ar−1 + Fwr · Br−1, if vf(r+1) is pleasant, (9)

where Fi denotes the ith Fibonacci number for i ∈ N0. (We assume that F0 = 0 and
F1 = 1.)

(c) If wr = 3 and vf(r+1) is pleasant then additionally one of the following inequalities
holds.

(c1) Ar ≤ 3 · Ar−1 + Br−1

(c2) Ar ≤ 2 · Ar−1 + 2 · Br−1

Key Lemma 2. Let 0 ≤ p < q ≤ k be integers such that for every i with p < i < q

the vertex vf(i+1) is pleasant. If (6) - (9) and (c) hold then Aq + Bq ≤ 1.628(
Pq

i=p+1 wi) ·
(

1.628
2

)(
Pq

i=p+1 w̃i)−1 · (Ap + Bp).

the electronic journal of combinatorics 18 (2011), #P132 10

Proving Theorem 1.1 using Key Lemma 1 and Key Lemma 2 We now show
that Key Lemma 1 and Key Lemma 2 imply Theorem 1.1. Let u denote the number of
unpleasant vertices in {vf(i) : 2 ≤ i ≤ k} and let i1 < i2 < . . . < iu be the indices in
{1, . . . , k− 1} such that vf(i1+1), vf(i2+1), . . . , vf(iu+1) are unpleasant. Moreover, let i0 := 0
and iu+1 := k. Note that for every j ∈ {0, 1, . . . , u} we have that vf(i+1) is pleasant for
every ij < i < ij+1. Hence, for every j ∈ {0, 1, . . . , u} Key Lemma 2 gives that

Aij+1
+ Bij+1

≤ 1.628

0

@

ij+1
P

i=ij+1
wi

1

A

·
(

1.628

2

)

0

@

ij+1
P

i=ij+1
w̃i

1

A−1

· (Aij + Bij). (10)

Recall that by Definition 4.1 we have that f(k + 1) = imax + 1. (10) together with (4)
gives that

|ch(vimax
)| = Ak + Bk ≤ 1.628(

Pk
i=1 wi) ·

(

1.628

2

)(
Pk

i=1 w̃i)−(u+1)

· (A0 + B0). (11)

Recall that a and s denote the number of active vertices and outward patterns, respec-
tively, in {v1, . . . , vimax

}. Since W1, . . . , Wk is a partition of the active vertices in v1, . . . , vimax

we get that
∑k

i=1 wi = a and
∑k

i=1 w̃i = s. Moreover, we have that u ≤ utot. Together
with (5) and (11) this yields that

|ch(vimax
)| ≤ 1.628a ·

(

1.628

2

)s−utot−1

· 2. (12)

If imax = n − 1 then a = n
2

(by Remark 2.2) and s = stot, which together with (12), (2)
and Observation 3.4 gives that A runs in time 1.628

n
2 ·poly(n), as claimed. If imax < n−1

we need one more argument. Since every outward pattern contains at least one active
vertex we have that

a′ ≥ s′. (13)

Intuitively, for every outward pattern P not contained in {v1, . . . , vimax
} there is at least

one active vertex not contained in {v1, . . . , vimax
}, hence for each such P we save (in (12))

a factor of 1.628 · 1.628
2

> 1. Formally, by (1) and (13) we get that a = n
2
− a′ ≤ n

2
− s′.

Together with (12), (3) and (2) this gives that

|ch(vimax
)| ≤ 1.628

n
2
−s′ ·

(

1.628

2

)stot−s′−utot−2

·2 ≤ 1.628
n
2 ·

(

2

1.6282

)s′

·O(1) ≤ 1.628
n
2 ·O(1).

By Observation 3.4 this implies that A runs in time 1.628
n
2 · poly(n), as claimed.

5 Proof of Key Lemma 2

5.1 Some Auxiliary Lemmas

We need some notation first. For i ∈ N we let N≥i and N 6=i denote the set of natural
numbers which are at least i, and the set of natural numbers which are different from i,

the electronic journal of combinatorics 18 (2011), #P132 11

respectively. For every matrix M we let Mij denote the element in row i and column j.
We will consider the alphabet A = N 6=3 ∪ {3′, 3′′}.

Definition 5.1. For every i ∈ A with i /∈ {1, 3′, 3′′} we let

g(i) :=

(

Fi + Fi−2 Fi

Fi−1 Fi−1 − 1

)

.

Moreover, we let

g(1) :=

(

1 1
1 0

)

, g(3′) :=

(

3 1
1 1

)

, g(3′′) :=

(

2 2
2 0

)

.

We set h(i) := g(i)11 + g(i)21 for every i ∈ A.
Finally, let s = (s1, s2, . . . , sl) be a sequence of elements of A. We define g(s) :=

g(s1) · g(s2) · · · g(sl), and h(s) := g(s)11 + g(s)21. For the empty string ε we define g(ε)
to be the identity matrix. Accordingly, h(ε) = 1.

Suppose that for every p + 1 ≤ r ≤ q the corresponding inequalities of (6) - (9) and (c)
are fulfilled with equality (the “corresponding inequalities” are (6) - (7) if wr = 1, (8)
- (9) if wr /∈ {1, 3}, and finally, (8) and one of {(c1), (c2)} if wr = 3). If we interpret
every wr with wr = 3 as 3′ if (c1) is fulfilled with equality, and as 3′′ otherwise, we

get

(

Ar

Br

)

= g(wr) ·
(

Ar−1

Br−1

)

, and thus

(

Aq

Bq

)

= g((wq, wq−1, . . . , wp+1))

(

Ap

Bp

)

. In the

following we will bound g((wq, wq−1, . . . , wp+1)) and show that Aq+Bq is at most (Ap+Bp)
times the sum of the elements in the first column of g((wq, wq−1, . . . , wp+1)). This will
allow us to prove Key Lemma 2.

Bounding g Unless otherwise indicated, by a sequence we always mean a sequence of
elements of A. The next two observations are a direct consequence of the definition of g.

Observation 5.2. Let s = (s1, . . . , sl) be a sequence and let s′ = (s1, . . . , si), s′′ =
(si+1, . . . , sl) for some i ≤ l. Then g(s) = g(s′)g(s′′).

Observation 5.3. For every i ∈ A we have g(i)11 ≥ g(i)12 and g(i)21 ≥ g(i)22. It follows
by induction that for every sequence s of length at least one we get g(s)i1 ≥ g(s)i2 for
i ∈ {1, 2}.
For a sequence s = (s1, . . . , sl) we let sum(s) and num6=1

(s) denote the sum of the si (we
interpret 3′ and 3′′ as 3), and the number of si different from 1, respectively. For instance,
for s = (2, 3′, 5, 1, 3′′, 1) we have sum(s) = 15 and num6=1

(s) = 4. Finally, s is called
sufficient if

h(s) ≤ 1.628sum(s) ·
(

1.628

2

)num6=1
(s)−1

, (14)

and insufficient otherwise. If (14) remains true when the right hand side is multiplied

with 1.628
2

(i.e., if h(s) ≤ 1.628sum(s) ·
(

1.628
2

)num6=1
(s)

) then s is called strong.

the electronic journal of combinatorics 18 (2011), #P132 12

We have h(ε) = 1 = 1.6280 ·
(

1.628
2

)0
, thus ε is strong. It can be checked that the

sequence (i) is sufficient for every i ∈ {1, 2, 3′, 3′′, 4, 5, 6, 7}. Moreover, due to the explicit
formula for the Fibonacci numbers, we have for every i ≥ 8,

h(i) = 2Fi ≤
2√
5
(1.6181i + 0.6181i) ≤ 1.6181i + 0.61818 ≤ 1.03 · 1.6181i ≤ 1.628i.

This directly implies the following.

Observation 5.4. Every sequence of length one is sufficient. Moreover, ε is strong.

We now consider the concatenation of two sequences. Let s = (s1, . . . , sl) be a sequence
and let s′ = (s1, . . . , si), s′′ = (si+1, . . . , sl) for some 1 ≤ i ≤ l − 1. By Observation 5.2
and Observation 5.3 we have

h(s′)h(s′′) = (g(s′)11 + g(s′)21)(g(s′′)11 + g(s′′)21)

= g(s′)11g(s′′)11 + g(s′)11g(s′′)21 + g(s′)21g(s′′)11 + g(s′)21g(s′′)21

≥ g(s′)11g(s′′)11 + g(s′)12g(s′′)21 + g(s′)21g(s′′)11 + g(s′)22g(s′′)21

= (g(s′)g(s′′))11 + (g(s′)g(s′′))21

= g(s)11 + g(s)21 = h(s).

Observation 5.5. Let s = (s1, . . . , sl) be a sequence and let s′ = (s1, . . . , si), s′′ =
(si+1, . . . , sl) for some 1 ≤ i ≤ l − 1. Then h(s) ≤ h(s′)h(s′′). Moreover, by definition of
h(ε) we have h(s) = h(ε)h(s) = h(s)h(ε).

It will turn out that sequences s = (s1, . . . , sl) containing at least one element si ≥ 50
can be analyzed quite conveniently. So we first restrict on sequences over A

′ := A\N≥50.
Unless otherwise indicated, by a prefix of a sequence s = (s1, . . . , sl) we denote a sequence
s′ = (s1, . . . , si) with 1 ≤ i ≤ l (so the empty sequence ε is not considered a prefix).

For every i ∈ N let Scritical(i) denote the set of sequences of length i over A′ where
every prefix is sufficient but not strong. (Here it is crucial that ε does not count as a
prefix since otherwise by Observation 5.4 every sequence would contain a strong prefix.)

Note that for every (s1, . . . , si+1) ∈ Scritical(i + 1) we have (s1, . . . , si) ∈ Scritical(i).
In particular, if Scritical(i) = ∅ for some i then Scritical(j) = ∅ for every j ≥ i. We can
obtain Scritical(i+1) by considering every pair ((s1, . . . , si), x) ∈ Scritical(i)×A′ and adding
(s1, . . . , si, x) to Scritical(i + 1) if and only if (s1, . . . , si, x) is sufficient but not strong.

We use a computer program to determine Scritical(i) for every i, i = 1, . . . , 32. A
second computer program checks for every i ∈ {1, . . . , 31}, every (s1, . . . , si) ∈ Scritical(i)
and every x ∈ A′ whether (s1, . . . , si, x) is sufficient.

Observation 5.6. Our computer programs find that

(i) Scritical(32) = ∅, and

(ii) for every i ∈ {1, . . . , 31}, every (s1, . . . , si) ∈ Scritical(i) and every x ∈ A
′ the sequence

(s1, . . . , si, x) is sufficient.

the electronic journal of combinatorics 18 (2011), #P132 13

By (i) we immediately get that Scritical(j) = ∅ for every j ≥ 32.

Proposition 5.7. Every sequence over A′ is sufficient.

Proof: Suppose, for a contradiction, that there is an insufficient sequence s = (s1, . . . , sl)
over A′ and let s be the shortest sequence with this property. By Observation 5.4 we have
l ≥ 2. By minimality of s every subsequence of s of length at most l − 1 is sufficient. If
s has a strong prefix s′ = (s1, . . . , si) then by Observation 5.5 and insufficiency of s, we
obtain for s′′ := (si+1, . . . , sl),

h(s′′) ≥ h(s)

h(s′)
> 1.628sum(s) ·

(

1.628

2

)num6=1
(s)−1

· 1.628−sum(s′) ·
(

1.628

2

)−num6=1
(s′)

= 1.628sum(s′′) ·
(

1.628

2

)num6=1
(s′′)−1

,

implying that s′′ is insufficient, which contradicts the minimality of s.
Hence s does not have a strong prefix and therefore (s1, . . . , sl−1) does not have a strong

prefix either. Moreover, by minimality of s, every prefix of (s1, . . . , sl−1) is sufficient. So
(s1, . . . , sl−1) ∈ Scritical(l − 1), and thus Scritical(l − 1) 6= ∅. Observation 5.6.(i) implies that
l − 1 ≤ 31. But then Observation 5.6.(ii) (for i = l − 1 and x = sl) yields that s is
sufficient, which leads to a contradiction.

We now generalize Proposition 5.7 to sequences over A.

Proposition 5.8. Every sequence over A is sufficient.

Proof: We apply induction on the length of the sequences. For sequences of length at
most one the claim holds due to Observation 5.4. So let s = (s1, . . . , sl) be a sequence
with l ≥ 2. If si ∈ A′ for every i ∈ {1, . . . , l} then s is sufficient due to Proposition 5.7.
Otherwise, si ≥ 50 for some i, and by the explicit formula for the Fibonacci numbers we
get

h(si) = 2Fsi
≤ 2√

5
(1.6181si +0.6181si) ≤ 2√

5
· 1.001 · 1.6181si ≤ 1.628si

(

1.628

2

)2

. (15)

That is, for s := (si), (14) remains true even when the right hand side is multiplied with
(

1.628
2

)2
. Let s′ = (s1, . . . , si−1) and s′′ = (si+1, . . . , sl) (if i = 1 or i = l then s′ or s′′,

respectively, is the empty sequence). Observation 5.5 gives that

h(s) ≤ h(s′)h(si)h(s′′). (16)

By induction we get that

h(s′)h(s′′) ≤ 1.628sum(s′) ·
(

1.628

2

)num6=1
(s′)−1

· 1.628sum(s′′) ·
(

1.628

2

)num6=1
(s′′)−1

. (17)

the electronic journal of combinatorics 18 (2011), #P132 14

(15) - (17) imply that

h(s) ≤ 1.628sum(s) ·
(

1.628

2

)num6=1
(s)−1

,

as claimed.
The following is a direct consequence of Proposition 5.8.

Lemma 5.9. Let A = N 6=3∪{3′, 3′′} and let g, h be defined as in Definition 5.1. For every

sequence s = (s1, . . . , sl) over A we have h(s) ≤ 1.628sum(s) ·
(

1.628
2

)num6=1
(s)−1

.

5.2 Derivation of Key Lemma 2

Note that by assumption, for every p + 1 ≤ r ≤ q − 1 with wr = 3 either (c1) or (c2) is
satisfied. For every i ∈ {p + 1, . . . , q} we set

si :=

wi, if wi 6= 3
3′, if wi = 3 and (c1) is satisfied
3′′, if wi = 3 and (c1) is not satisfied

and s := (sq, sq−1, . . . , sp+1). Moreover, we define two sequences Âp, . . . , Âq and B̂p, . . . , B̂q

by Âp := Ap, B̂p := Bp, and for every i ∈ {p + 1, . . . , q},
(

Âi

B̂i

)

= g(si)

(

Âi−1

B̂i−1

)

.

Note that
(

Âq

B̂q

)

= g(sq) · g(sq−1) · · · g(sp+1)

(

Âp

B̂p

)

= g(s)

(

Ap

Bp

)

=

(

g(s)11Ap + g(s)12Bp

g(s)21Ap + g(s)22Bp

)

,

thus by Observation 5.3,

Âq + B̂q ≤ g(s)11(Ap + Bp) + g(s)21(Ap + Bp) = h(s)(Ap + Bp). (18)

We now show by induction that (i) Ai ≤ Âi for every p ≤ i ≤ q − 1, and (ii) Ai + Bi ≤
Âi + B̂i for every p ≤ i ≤ q . For i = p the claim follows directly from the definition of
Âp, B̂p. We now let p + 1 ≤ i ≤ q − 1. By (6) - (9), (c) and induction we get

Ai ≤ g(si)11 · Ai−1 + g(si)12 · Bi−1

= g(si)12(Ai−1 + Bi−1) + (g(si)11 − g(si)12)Ai−1

≤ g(si)12(Âi−1 + B̂i−1) + (g(si)11 − g(si)12)Âi−1 = Âi.

Note that Observation 5.3 guarantees that on the second line, Ai−1 is multiplied with a
positive factor, which is crucial for the inequality on the third line. Finally, for p+1 ≤ i ≤ q

the electronic journal of combinatorics 18 (2011), #P132 15

we similarly get

Ai + Bi ≤ (g(si)11 + g(si)21)Ai−1 + (g(si)12 + g(si)22)Bi−1

= (g(si)12 + g(si)22)(Ai−1 + Bi−1) + (g(si)11 + g(si)21 − g(si)12 − g(si)22)Ai−1

≤ (g(si)12 + g(si)22)(Âi−1 + B̂i−1) + (g(si)11 + g(si)21 − g(si)12 − g(si)22)Âi−1

= Âi + B̂i.

Hence,
Aq + Bq ≤ Âq + B̂q. (19)

Lemma 5.9, (18) and (19) imply that

Aq + Bq ≤ h(s)(Ap + Bp) ≤ 1.628sum(s) ·
(

1.628

2

)num6=1
(s)−1

(Ap + Bp). (20)

Note that sum(s) =
∑q

i=p+1 wi and num6=1
(s) =

∑q
i=p+1 w̃i. Together with (20) this implies

Key Lemma 2.

6 Proof of Key Lemma 1

6.1 Some Auxiliary Lemmas

Before proving Key Lemma 1 we state some auxiliary lemmas. We first give some basic
properties of the vertices and choices we consider. Recall that whenever we process a
passive vertex vi in Pham we have at most one option to decide whether or not to select
the outgoing edge of vi. So we obtain the following.

Observation 6.1. Let j ≤ l such that vj+1, . . . , vl are all passive. Then every C ∈ ch(vj)
has at most one extension in ch(vl). In particular, for every i ≤ j and every D ∈ ch(vi)
we have

|ch|D(vl)| ≤ |ch|D(vj)|.
We now evaluate Observation 6.1 for the case where l = f(r + 1)− 1 for some 1 ≤ r ≤ k.

Observation 6.2. Let 1 ≤ r ≤ k. By assumption, vl(r)+1, . . . , vf(r+1)−1 are all passive.
Let l(r) ≤ j ≤ f(r + 1) − 1. Then every C ∈ ch(vj) has at most one extension in
ch(vf(r+1)−1). In particular, for every D ∈ ch(vf(r)−1),

|ch|D(vf(r+1)−1)| ≤ |ch|D(vl(r))|.
Figure 5 illustrates Observation 6.2. By Observation 3.1 we have the following.

Observation 6.3. Let istart < iend be integers where vistart+1, vistart+2, . . . , viend−1 are all
passive and let C ∈ ch(vj) for some j ≥ iend−1 such that for every i ∈ {istart+1, . . . , iend−
1} the incoming diagonal of vi belongs to C. Then for every i ∈ {istart + 1, . . . , iend − 1}
we have (vi−1, vi) ∈ C ⇔ (vi, vi+1) /∈ C. In particular,

(vistart , vistart+1) ∈ C ⇔ (viend−1, viend
) ∈ C, if iend − istart ≡ 1 (mod 2)

(vistart , vistart+1) ∈ C ⇔ (viend−1, viend
) /∈ C, if iend − istart ≡ 0 (mod 2)

the electronic journal of combinatorics 18 (2011), #P132 16

vl(r) vf(r+1)vl(r)

Figure 5: Every vertex vi with l(r) < i < f(r + 1) is passive. Thus, for l(r) ≤ j ≤
f(r + 1) − 1, every choice C ∈ ch(vj) has at most one extension in ch(vf(r+1)−1).

Since we will often deal with extensions containing a particular edge the next definition
will be helpful.

Definition. Let i ≤ j. For every choice D ∈ ch(vi) and every edge e we let ch|D,+e(vj)
(ch|D,−e(vj), respectively) denote the elements of ch|D(vj) which contain (do not con-
tain, respectively) e. We sometimes abbreviate ch|D,+(vj ,vj+1)(vj) and ch|D,−(vj ,vj+1)(vj) by

chsel

|D(vj) and chunsel

|D (vj), respectively.

The next proposition is a consequence of Observation 3.1.

Proposition 6.4. Let i ≤ j such that vi is an active vertex, let d denote the outgoing
diagonal of vi and let C, C ′ ∈ ch(vi−1) where (vi−1, vi) ∈ C and (vi−1, vi) /∈ C ′. Moreover,
let D′ = C ∪ {(vi, vi+1)}, D′′ = C ∪ {d} and E = C ′ ∪ {(vi, vi+1), d}. Then (i) ch|C(vj) =
ch|D′(vj) ∪ ch|D′′(vj), and (ii) ch|C′(vj) = ch|E(vj).

Proof: Suppose first that we process vi in Pham after having selected the edges in C ′.
Then we are forced to select both (vi, vi+1) and d, which implies (ii). Suppose now that
we process vi in Pham after having selected the edges in C. Then we have two options:
We can select either (vi, vi+1) or d. This shows (i).

Proposition 6.4 (for j = i) directly implies the following.

Corollary 6.5. Let C ∈ ch(vi−1). Then |chsel

|C(vi)|, |chunsel

|C (vi)| ≤ 1.

By Observation 3.3 we can obtain |ch(vf(r+1)−1)| by summing up |ch|C(vf(r+1)−1)| over
each choice C ∈ ch(vl(r)−1). The next proposition bounds the contribution of each choice
C ∈ ch(vl(r)−1) to this sum.

Proposition 6.6. Let 1 ≤ r ≤ k and let C, C ′ ∈ ch(vl(r)−1) where (vl(r)−1, vl(r)) ∈ C and
(vl(r)−1, vl(r)) /∈ C ′. Then (i) C ′ has at most one extension in ch(vf(r+1)−1), and (ii) C
has at most two extensions in ch(vf(r+1)−1), at most one of which contains (vl(r), vl(r)+1)
and at most one of which does not contain (vl(r), vl(r)+1).

Proof: By Proposition 6.4 (for i = j = l(r)) and Corollary 6.5 (recall that by definition
chsel

|C(vi) = ch|C,+(vi,vi+1)(vi) and chunsel

|C (vi) = ch|C,−(vi,vi+1)(vi)) we get

|ch|C′(vl(r))| ≤ 1, (21)

|ch|C(vl(r))| ≤ 2, (22)

|ch|C,+(vl(r),vl(r)+1)(vl(r))|, |ch|C,−(vl(r),vl(r)+1)(vl(r))| ≤ 1. (23)

Observation 6.2 (for j = l(r)) yields that (21) - (23) remain true when “(vl(r))” is replaced
with “(vf(r+1)−1)”, which concludes the proof.

As we will point out later, Proposition 6.6 implies (6).

the electronic journal of combinatorics 18 (2011), #P132 17

vf(r) vj vf

(a) Case 1: f(r) = l(r). Then i = f(r).

vl(r) vj vfvi

(b) Case 2: f(r) < l(r). In this illustration we have i < l(r). However, it
is also possible that i = l(r).

Figure 6: According to our assumption every incoming diagonal of a vertex in
{vj+1, . . . , vf−1} has its source in {v1, . . . , vi−1}. The above figures illustrate the situ-
ation for the case where f(r) = l(r) and for the case where f(r) < l(r). (In both figures
we have j > l(r) but it is also possible that j = l(r).)

Bounding the number of choices containing a certain edge Let 1 ≤ r ≤ k such
that vf(r+1) is pleasant. We now bound |chsel(vf(r+1)−1)|. This will help us to prove (7),
(9) and (c). Let f := f(r + 1), and let f(r) ≤ i ≤ l(r) ≤ j ≤ f − 1 such that every
incoming diagonal of a vertex in {vj+1, . . . , vf−1} has its source in {v1, . . . , vi−1}. The
situation is depicted in Figure 6. We fix two choices C ∈ ch(vi−1) and D ∈ chsel

|C(vf−1).

Observation 6.7. By definition of l(r) and f , the vertices vj+1, . . . , vf−1 are all passive.

We remark that choosing i, j := l(r) satisfies the condition that every incoming diagonal
of a vertex in {vj+1, . . . , vf−1} has its source in {v1, . . . , vi−1}. (Indeed, by assumption
vf is pleasant and thus every incoming diagonal of a vertex in {vl(r)+1, . . . , vf−1} has its
source in {v1, . . . , vl(r)−1}.) Our goal is to show that many properties of D are uniquely
determined by C.

Observation 6.8. For every incoming diagonal d of a vertex in {vj+1, . . . , vf−1} it holds
that d ∈ D if and only if d ∈ C.

We let s := f − j and

m := max
x∈{1...s}

(x : for l = 1 . . . x − 1 the incoming diagonal of vj+l belongs to C) (24)

If m < s then the incoming diagonal of vj+m does not belong to C and therefore by
Observation 3.1 and Observation 6.8 the edge (vj+m−1, vj+m) is in D. Otherwise, vj+m =

the electronic journal of combinatorics 18 (2011), #P132 18

vj vj+m

vj vj+m

Figure 7: An illustration of (26) for the case where m is odd (on the top) and the case
where m is even (on the bottom). The edges of D are drawn thick, the edges not belonging
to D are drawn dashed. A solid edge may or may not belong to D. A diagonal is drawn
undirected if it might be oriented either way.

vf and the incoming diagonals of vj+1, . . . , vf−1 all belong to C. Moreover, by assumption,
(vf−1, vf) = (vj+m−1, vj+m) belongs to D. So in either case we have

(vj+m−1, vj+m) ∈ D. (25)

We now determine whether (vj , vj+1) belongs to D. By Observation 6.8 and (24) we have
that the incoming diagonals of vj+1, . . . , vj+m−1 all belong to D. Observation 6.3 (for
istart = j and iend = j + m) and (25) yield that

(vj , vj+1) ∈ D ⇔ m ≡ 1 (mod 2). (26)

Figure 7 illustrates (26). Note that m can be considered as a function of C. Considering
the function g(C) := 1 if m ≡ 1 (mod 2), and g(C) := 0 otherwise, we obtain the
following.

Proposition 6.9. Let 1 ≤ r ≤ k such that vf(r+1) is pleasant and let f(r) ≤ i ≤ l(r) ≤
j ≤ f(r +1)−1 such that every incoming diagonal of a vertex in {vj+1, . . . , vf(r+1)−1} has
its source in {v1, . . . , vi−1}. Moreover, let C ∈ ch(vi−1). There is a value g(C) ∈ {0, 1}
such that every extension D ∈ chsel

|C(vf(r+1)−1) has the property that

(vj , vj+1) ∈ D ⇔ g(C) = 1.

In particular,
|chsel

|C(vf(r+1)−1)| ≤ max
⊕∈{+,−}

(|ch|C,⊕(vj ,vj+1)(vf(r+1)−1)|).

Suppose that vf(r+1) is pleasant. Applying Proposition 6.9 for i = j = l(r) then gives that

|chsel

|C(vf(r+1)−1)| ≤ max⊕∈{+,−}(|ch|C,⊕(vl(r),vl(r)+1)(vf(r+1)−1)|). Together with Proposition
6.6 this implies the next corollary.

Corollary 6.10. Let 1 ≤ r ≤ k such that vf(r+1) is pleasant and let C ∈ ch(vl(r)−1). Then

|chsel

|C(vf(r+1)−1)| ≤ 1.

As we will point out later, Corollary 6.10 implies (7).

the electronic journal of combinatorics 18 (2011), #P132 19

Bounding the number of choices for vertices in a pattern We now derive some
auxiliary propositions which will help us to show (8) and (9). The next proposition
bounds the number of choices for sequences of active vertices, which in particular occur
in patterns.

Proposition 6.11. Let i ≥ 0 and let x be such that vx+1, . . . , vx+i are all active. For

every choice C ∈ ch(vx) we have |ch|C(vx+i)| ≤
{

Fi+2, if (vx, vx+1) ∈ C
Fi+1, if (vx, vx+1) /∈ C

Proof: We apply induction. The claim is clearly true for i = 0. Now let i ≥ 1 and let
d denote the outgoing diagonal of vx+1. We first consider the case where (vx, vx+1) /∈ C.
Let D = C ∪ {(vx+1, vx+2), d}. By Proposition 6.4 and induction we get |ch|C(vx+i)| ≤
|ch|D(vx+i)| ≤ Fi+1, as claimed.

We now consider the case where (vx, vx+1) ∈ C. Let D′ = C ∪ {(vx+1, vx+2)} and let
D′′ = C ∪ {d}. By Proposition 6.4 we have

|ch|C(vx+i)| ≤ |ch|D′(vx+i)| + |ch|D′′(vx+i)|.

By induction we obtain |ch|D′(vx+i)| ≤ Fi+1 and |ch|D′′(vx+i)| ≤ Fi. Hence |ch|C(vx+i)| ≤
Fi+1 + Fi = Fi+2.

We will also need the following slight modification of Proposition 6.11. For every
choice C ∈ ch(vx) and every i ≥ 1 we let S(C, i) denote the set of choices D ∈ chC(vx+i)
where for some j ∈ {1, . . . , i} the edge (vx+j, vx+j+1) does not belong to D.

Proposition 6.12. Let i ≥ 1 and let x be such that vx+1, . . . , vx+i are all active. For

every C ∈ ch(vx) we have |S(C, i)| ≤
{

Fi+2 − 1, if (vx, vx+1) ∈ C
Fi+1 − 1, if (vx, vx+1) /∈ C

Proof: We apply induction. The claim is clearly true for i = 1. So let i ≥ 2 and let d
denote the outgoing diagonal of vx+1. We first consider the case where (vx, vx+1) /∈ C. Let
D = C ∪ {(vx+1, vx+2), d}. S(C, i) consists of all choices E ∈ ch|D(vx+i) where for some
j ∈ {1, . . . , i − 1} the edge (vx+1+j , vx+2+j) does not belong to E. Hence by induction,
|S(C, i)| ≤ F(i−1)+2 − 1 = Fi+1 − 1. We now consider the case where (vx+1, vx+2) ∈ C.
Let D′ = C ∪ {(vx+1, vx+2)} and let D′′ = C ∪ {d}. Note that no element in D′′ contains
(vx+1, vx+2), thus every element in ch|D′′(vx+i) belongs to S(C, i). By induction and by
Proposition 6.11 we obtain that |S(C, i)| ≤ |ch|D′′(vx+i) + F(i−1)+2 − 1 ≤ Fi + Fi+1 − 1 =
Fi+2 − 1, as claimed.

We now bound the number of choices for vertices forming a pattern. Recall that here
we use “pattern” as an abbreviation for “outward pattern”. By Definition 2.5 and by
construction of the Wi we obtain the following.

Observation 6.13. Let 1 ≤ r ≤ k where wr ≥ 2 and let m = wr. Then Wr =
{vf(r), . . . , vf(r)+m−1} and the sequence (vf(r), . . . , vf(r)+m) forms a pattern. In particu-
lar, vf(r), . . . , vf(r)+m−1 are all active and (vf(r), vf(r)+m) is the outgoing diagonal of vf(r).

Figure 8 illustrates Observation 6.13.

the electronic journal of combinatorics 18 (2011), #P132 20

vf (r) vf (r)+m

Figure 8: A pattern.

Proposition 6.14. Let 1 ≤ r ≤ k where wr ≥ 2 and let m = wr. Moreover, let
C, C ′ ∈ ch(vf(r)−1) where (vf(r)−1, vf(r)) ∈ C and (vf(r)−1, vf(r)) /∈ C ′. We have

(a) |ch|C(vf(r+1)−1)| ≤ 2Fm,

(b) |ch|C′(vf(r+1)−1)| ≤ Fm+1 − 1,

(c) if vf(r+1) is pleasant then |chsel

|C(vf(r+1)−1)| ≤ Fm+1,

(d) if vf(r+1) is pleasant then |chsel

|C′(vf(r+1)−1)| ≤ Fm.

Proof: Let f := f(r) and f ′ := f(r + 1). We first show (c) and (d). To this end we
assume that vf(r+1) is pleasant. By Proposition 6.11 (for x = f − 1 and i = m − 1) we
have |ch|C(vf+m−2)| ≤ Fm+1. Let D ∈ ch|C(vf+m−2). Note that f +m− 2 = l(r)− 1, thus

Corollary 6.10 gives that |chsel

|D(vf ′−1)| ≤ 1. By Observation 3.3 we thus get |chsel

|C(vf ′−1)| ≤
∑

D∈ch|C(vf+m−2) |chsel

|D(vf ′−1)| ≤ |ch|C(vf+m−2)| ≤ Fm+1, which implies (c). Similarly, we

get |chsel

|C′(vf ′−1)| ≤ |ch|C′(vf+m−2)| ≤ Fm, which implies (d).
We now show (b). Let D ∈ ch|C′(vf ′−1). By Observation 3.1 the edge (vf , vf+m)

belongs to D and therefore (also by Observation 3.1), at least one edge of the path
vf , vf+1, . . . , vf+m is not contained in D. Together with Observation 6.2 this implies that
|ch|C′(vf ′−1)| is bounded by the number of choices D ∈ ch|C′(vf+m−1) where for some
1 ≤ j ≤ m the edge (vf−1+j, vf−1+j+1) does not belong to D. By Proposition 6.12 (for
x = f − 1 and i = m) this is at most Fm+1 − 1. This shows (b).

Finally, we prove (a). Let D′ = C ∪ {(vf , vf+1)} and D′′ = C ∪ {(vf , vf+m)}. Figure
9 shows an illustration of D′ and D′′. Observation 6.2 and Proposition 6.4 give that

|ch|C(vf ′−1)| ≤ |ch|C(vf+m−1)| ≤ |ch|D′(vf+m−1)| + |ch|D′′(vf+m−1)|. (27)

By Proposition 6.11 we have
|ch|D′′(vf+m−1)| ≤ Fm, (28)

By Observation 3.1 and the fact that (vf , vf + m) does not belong to D′ we obtain that
every choice of ch|D′(vf+m−1) contains (vf+m−1, vf+m). Together with Observation 3.3,

Corollary 6.5 and Proposition 6.11 this gives that |ch|D′(vf+m−1)| ≤ |chsel

|D′(vf+m−1)| ≤
∑

E∈chD′(vf+m−2) |chsel

|E(vf+m−1)| ≤ |chD′(vf+m−2)| ≤ Fm. Together with (27) and (28) this

implies (a).
In the sequel we will point out that Proposition 6.14.(a) and 6.14.(b) directly imply

(8) and that Proposition 6.14.(c) and 6.14.(d) directly imply a weaker version of (9) where

the electronic journal of combinatorics 18 (2011), #P132 21

vf vf+m vf vf+m

Figure 9: An illustration of D′ (on the left) and D′′ (on the right).

the coefficient (Fwr + Fwr−2) is replaced with Fwr+1. We will also sketch how Proposition
6.6, Corollary 6.10 and Proposition 6.14 together with a slightly modified version of Key
Lemma 2 allow us to prove a weaker version of Theorem 1.1 where “1.64” is replaced with
“1.628”.

In the next subsection we improve Proposition 6.14.(c) for every wr 6= 3, and Propo-
sition 6.14.(d) for wr = 3.

6.2 Refining Proposition 6.14

We will use the following adaptation of Proposition 6.11.

Proposition 6.15. Let i ≥ 1 and let x be such that vx+1, . . . , vx+i are all active, and let

C ∈ ch(vx). Then |chsel

|C(vx+i)| ≤
{

Fi+1, if (vx, vx+1) ∈ C
Fi, if (vx, vx+1) /∈ C

and |chunsel

|C (vx+i)| ≤
{

Fi, if (vx, vx+1) ∈ C
Fi−1, if (vx, vx+1) /∈ C

Proof: We apply induction. Corollary 6.5 implies that |chs
|C(vx+1)| ≤ 1 for s ∈ {sel, unsel},

and Observation 3.1 gives that |chunsel

|C (vx+1)| = 0 if (vx, vx+1) /∈ C. So the claim holds for
i = 1. Let i ≥ 2 and let d denote the outgoing diagonal of vx+1. We first consider the case
where (vx, vx+1) /∈ C. Let D = C ∪ {(vx+1, vx+2), d}. By Proposition 6.4 and induction
we get that |chsel

|C(vx+i)| ≤ |chsel

|D(vx+i)| ≤ Fi, and |chunsel

|C (vx+i)| ≤ |chunsel

|D (vx+i)| ≤ Fi−1, as
claimed.

We now consider the case where (vx, vx+1) ∈ C. Let s ∈ {sel, unsel}, let D′ = C ∪
{(vx+1, vx+2)} and let D′′ = C ∪ {d}. By Proposition 6.4 we have that

|chs

|C(vx+i)| ≤ |chs

|D′(vx+i)| + |chs

|D′′(vx+i)|.

By induction we thus obtain that |chsel

|C(vx+i)| ≤ Fi + Fi−1 = Fi+1, and |chunsel

|C (vx+i)| ≤
Fi−1 + Fi−2 = Fi, as claimed.

Recall that an active vertex vi with i ≥ 2 is called pleasant if the outgoing diagonal of
the previous active vertex vj does not point to a vertex in {vj+2, . . . , vi−1}. Similarly, we
call a pattern (vf(r), . . . , vf(r)+m) pleasant if none of the outgoing diagonals of the vertices
in {vf(r)+1, . . . , vf(r)+m−1} point to a vertex in {vf(r)+m+1, . . . , vf(r+1)−1}. A pattern which
is not pleasant is called unpleasant.

the electronic journal of combinatorics 18 (2011), #P132 22

vf vf+m

Figure 10: A choice of chunsel

|C (vf+m).

Pleasant patterns We derive a refinement of Proposition 6.14.(c) and 6.14.(d) for
pleasant patterns.

Let 1 ≤ r ≤ k, let wr ≥ 2 and let m = wr. We consider the pattern (vf(r), . . . , vf(r)+m).
The next proposition bounds the number of choices in ch(vf(r)+m) containing/not con-
taining (vf(r)+m, vf(r)+m+1).

Proposition 6.16. Let 1 ≤ r ≤ k where wr ≥ 2, let m = wr and let C, C ′ ∈ ch(vf(r)−1)
where (vf(r)−1, vf(r)) ∈ C and (vf(r)−1, vf(r)) /∈ C ′. We have

(i) |chsel

|C(vf(r)+m)| ≤ Fm + Fm−2,

(ii) |chunsel

|C (vf(r)+m)| ≤ Fm−1,

(iii) if m = 3 then |chsel

|C′(vf(r)+3)|, |chunsel

|C′ (vf(r)+3)| ≤ 1.

Proof: Let f := f(r), let D′ = C ∪ {(vf , vf+1)} and let D′′ = C ∪ {(vf , vf+m)} (for an
illustration of D′ and D′′ see Figure 9). We first show (i). Proposition 6.4 gives that

|chsel

|C(vf+m)| ≤ |chsel

|D′(vf+m)| + |chsel

|D′′(vf+m)|. (29)

By Observation 3.1 every choice of chsel

|D′(vf+m) contains (vf+m−1, vf+m). Together with
Observation 6.1 (for j = f + m − 1 and l = f + m) and Proposition 6.15 this gives that

|chsel

|D′(vf+m)| ≤ |ch|D′,+(vf+m−1,vf+m)(vf+m)| ≤ |chsel

|D′(vf+m−1)| ≤ Fm. (30)

By Observation 3.1 every choice of chsel

|D′′(vf+m) does not contain (vf+m−1, vf+m). Similarly
as above we obtain that

|chsel

|D′′(vf+m)| ≤ |ch|D′′,−(vf+m−1,vf+m)(vf+m)| ≤ |chunsel

|D′′ (vf+m−1)| ≤ Fm−2.

Together with (29) and (30) this implies (i).
Let E ∈ chunsel

|C (vf+m). By Observation 3.1 we have (vf , vf+m), (vf+m−1, vf+m) ∈ E,
and therefore, (vf , vf+1) /∈ E. Figure 10 shows an illustration. Hence,

|chunsel

|C (vf+m)| ≤ |chunsel

|D′′ (vf+m)| ≤ |ch|D′′,+(vf+m−1,vf+m)(vf+m)| ≤ |chsel

|D′′(vf+m−1)| ≤ Fm−1,

which proves (ii). Finally, we show (iii). By listing all elements of ch|C′(vf+3) (see Figure

11) it can be checked that |chsel

|C′(vf+3)|, |chunsel

|C′ (vf+3)| ≤ 1. Here we used the fact that
due to Observation 3.1 no choice in ch(vf(r)+3) contains a cycle of length smaller than n.

the electronic journal of combinatorics 18 (2011), #P132 23

Let 1 ≤ r ≤ k such that wr ≥ 2 and (vf(r), . . . , vf(r)+wr) is pleasant, let m = wr, let
f = f(r) and let f ′ = f(r + 1). We fix two choices C, C ′ ∈ ch(vf−1) where (vf−1, vf) ∈ C
and (vf−1, vf) /∈ C ′. Since (vf , . . . , vf+m) is pleasant every incoming diagonal of a vertex
in {vf+m+1, . . . , vf ′−1} has its source in {v1, . . . , vf−1}. (In particular, vf ′ is pleasant.) So
Proposition 6.9 (for i = f and j = f + m), Observation 6.2 and Proposition 6.16 imply
that

|chsel

|C(vf ′−1)| ≤ max
⊕∈{+,−}

(|ch|C,⊕(vf+m,vf+m+1)(vf ′−1)|)

≤ max
⊕∈{+,−}

(|ch|C,⊕(vf+m,vf+m+1)(vf+m)|) ≤ Fm + Fm−2. (31)

Moreover, if m = 3 we similarly get that

|chsel

|C′(vf ′−1)| ≤ max
⊕∈{+,−}

(|ch|C′,⊕(vf+3,vf+4)(vf+3)|) ≤ 1. (32)

(31) and (32) imply the following.

Lemma 6.17. Let 1 ≤ r ≤ k such that wr ≥ 2 and (vf(r), . . . , vf(r)+wr) is pleasant, and let
m = wr. Moreover, let C, C ′ ∈ ch(vf(r)−1) where (vf(r)−1, vf(r)) ∈ C and (vf(r)−1, vf(r)) /∈
C ′. Then

|chsel

|C(vf(r+1)−1)| ≤ Fm + Fm−2.

If wr = 3 then additionally, |chsel

|C′(vf(r+1)−1)| ≤ 1.

Unpleasant patterns We will need the following observation.

Observation 6.18. By induction, for every i, j ≥ 2 we have Fi · Fj ≤ 2Fi+j−3.

We now strengthen Proposition 6.14.(c) for unpleasant patterns. Recall that a pat-
tern (vf(r), . . . , vf(r)+m) is called unpleasant if some outgoing diagonal of a vertex in
{vf(r)+1, . . . , vf(r)+m−1} points to a vertex in {vf(r)+m+1, . . . , vf(r+1)−1}. We fix an r
with 1 ≤ r ≤ k such that wr ≥ 2, the vertex vf(r+1) is pleasant, and the pattern
(vf(r), . . . , vf(r)+wr) is unpleasant. Let f := f(r), let f ′ := f(r + 1) and let m := wr.
Moreover, let a denote the largest index such that the outgoing diagonal of vf+a points
to a vertex vf+b ∈ {vf+m+1, . . . , vf ′−1}. Figure 12 shows an illustration. We have a ≥ 1.
Since vf ′ is pleasant we get that

1 ≤ a ≤ m − 2. (33)

We first bound the number of choices D ∈ chsel(vf ′−1) which are extensions of a given
choice C.

vf vf+3 vf vf+3

Figure 11: The two elements of ch|C′(vf+3).

the electronic journal of combinatorics 18 (2011), #P132 24

vf vf+1

vf+a

vf+m

vf+b

vf ′

Figure 12: An unpleasant pattern.

Observation 6.19. Let C ∈ ch(vf+a−1) and let ⊕ ∈ {+,−}. Observation 3.1 gives that

|ch|C,⊕(vf+a,vf+b)(vf+a)| ≤ 1.

Proposition 6.20. Let C ∈ ch(vf+a). Then |chsel

|C(vf ′−1)| ≤ Fm−a.

Proof: Note that l(r) = f + m − 1. By Observation 3.3, Corollary 6.10 and Proposition
6.11 we get that

|chsel

|C(vf ′−1)| ≤
∑

D∈ch|C(vf+m−2)

|chsel

|D(vf ′−1)| ≤ |ch|C(vf+m−2)| ≤ Fm−a,

as claimed.
We fix a choice C ∈ ch(vf+a−1) where (vf , vf+m) /∈ C. Our goal is to show that

Proposition 6.20 also holds for this C. Let D ∈ chsel

|C(vf ′−1). Similarly to the proof of
Proposition 6.9, we aim to show that many properties of D are uniquely determined by
C.

Observation 6.21. Let d be an incoming diagonal of a vertex in {vf+m, . . . , vf+b−1} ∪
{vf+b+1, . . . , vf ′−1}. By our choice of a the diagonal d has its source in {v1, . . . , vf+a−1}.
In particular, it holds that d ∈ D if and only if d ∈ C.

Let
j := max

i<b
(i : the incoming diagonal of vf+i does not belong to C). (34)

Note that by assumption the diagonal (vf , vf+m) does not belong to C, thus j ≥ m. By
Observation 6.21 and (34) we have that (i) the incoming diagonal of vf+j does not belong
to D, and (ii) for every j + 1 ≤ i ≤ b− 1 the incoming diagonal of vf+i belongs to D. By
Observation 3.1 we obtain that (vf+j, vf+j+1) ∈ D. Together with Observation 6.3 (for
istart = f + j and iend = f + b) we get that

(vf+b−1, vf+b) ∈ D ⇔ b − j ≡ 1 (mod 2). (35)

By Proposition 6.9 (for i = f + a and j = f + b) there is a value g(C) ∈ {0, 1} (where g
is a function of C only) such that

(vf+b, vf+b+1) ∈ D ⇔ g(C) = 1. (36)

the electronic journal of combinatorics 18 (2011), #P132 25

By Observation 3.1 we have that

(vf+a, vf+b) ∈ D ⇔ (vf+b−1, vf+b) /∈ D or (vf+b, vf+b+1) /∈ D. (37)

Let g′(C) =

{

1, if g(C) = 0 or b − j ≡ 0 (mod 2)
0, otherwise

Note that g′ is a function of C only. So by (35) - (37) every D ∈ chsel

|C(vf ′−1) has the
property that

(vf+a, vf+b) ∈ D ⇔ g′(C) = 1.

Hence,
|chsel

|C(vf ′−1)| ≤ max
⊕∈{+,−}

(|chsel

|C,⊕(vf+a,vf+b)
(vf ′−1)|). (38)

Let ⊕ ∈ {+,−}. According to Observation 6.19 there is at most one extension D ∈
ch|C,⊕(vf+a,vf+b)(vf+a). Together with Proposition 6.20 this implies that

|chsel

|C,⊕(vf+a,vf+b)
(vf ′−1)| ≤ |chsel

|D(vf ′−1)| ≤ Fm−a.

By (38) this shows the next proposition.

Proposition 6.22. Let C ∈ ch(vf+a−1) where (vf , vf+m) /∈ C. Then |chsel

|C(vf ′−1)| ≤ Fm−a.

Proposition 6.22 allows us to derive a lemma similar to Lemma 6.17. Let C ∈ ch(vf−1)
where (vf−1, vf) ∈ C. Proposition 6.4 gives that

|chsel

|C(vf ′−1)| ≤ |chsel

|D′(vf ′−1)| + |chsel

|D′′(vf ′−1)|, (39)

where D′ = C ∪ {(vf , vf+1)} and D′′ = C ∪ {(vf , vf+m)}. By Observation 3.3, Corollary
6.10 (using that l(r) = f + m − 1) and Proposition 6.11 we get that

|chsel

|D′′(vf ′−1)| ≤
∑

E∈ch|D′′(vf+m−2)

|chsel

|E(vf ′−1)| ≤ |ch|D′′(vf+m−2)| ≤ Fm−1. (40)

By Observation 3.3, Proposition 6.22 and Proposition 6.11 we obtain that

|chsel

|D′(vf ′−1)| ≤
∑

E∈ch|D′(vf+a−1)

|chsel

|E(vf ′−1)|

≤
∑

E∈ch|D′(vf+a−1)

Fm−a

≤ |ch|D′(vf+a−1)| · Fm−a ≤ Fa+1 · Fm−a. (41)

(39) - (41) together with (33) and Observation 6.18 give that

|chsel

|C(vf ′−1)| ≤ Fm−1 + Fa+1 · Fm−a ≤ Fm−1 + 2Fm−2 = Fm + Fm−2. (42)

We observe that, if m = 3 then by (33) we have that a = 1, and therefore |chsel

|C(vf ′−1)| ≤ 2.
Thus (42) directly implies the following.

the electronic journal of combinatorics 18 (2011), #P132 26

Lemma 6.23. Let 1 ≤ r ≤ k such that wr ≥ 2, the pattern (vf(r), . . . , vf(r)+wr) is un-
pleasant, and the vertex vf(r+1) is pleasant. Moreover, let m = wr and let C ∈ ch(vf(r)−1)
where (vf(r)−1, vf(r)) ∈ C. Then

|chsel

|C(vf(r+1)−1)| ≤ Fm + Fm−2.

If wr = 3 then additionally, |chsel

|C(vf(r+1)−1)| ≤ 2.

Putting Lemma 6.17 and Lemma 6.23 together The next corollary is the union
of Lemma 6.17 and Lemma 6.23.

Corollary 6.24. Let 1 ≤ r ≤ k such that wr ≥ 2 and vf(r+1) is pleasant. Then for every
C ∈ ch(vf(r)−1) where (vf(r)−1, vf(r)) ∈ C,

|chsel

|C(vf(r+1)−1)| ≤ Fwr + Fwr−2. (43)

If wr = 3 then, additionally, either

(i) |chsel

|C′(vf(r+1)−1)| ≤ 1, for every C ′ ∈ ch(vf(r)−1) where (vf(r)−1, vf(r)) /∈ C ′, or

(ii) |chsel

|C(vf(r+1)−1)| ≤ 2, for every C ∈ ch(vf(r)−1) where (vf(r)−1, vf(r)) ∈ C.

6.3 Derivation of Key Lemma 1

Observation 6.25. If wr = 1 then f(r) = l(r).

We fix an r with 1 ≤ r ≤ k. By Observation 3.3 (for i = f(r)−1 and j = f(r+1)−1) we
can obtain |ch(vf(r+1)−1)| by summing up |ch|C(vf(r+1)−1)| over each choice C ∈ ch(vf(r)−1).

Suppose first that wr = 1. By Proposition 6.6 and Observation 6.25, every choice
C ∈ ch(vf(r)−1) where (vf(r)−1, vf(r)) ∈ C contributes at most two to |ch(vf(r+1)−1)|,
and every choice C ′ ∈ ch(vf(r)−1) where (vf(r)−1, vf(r)) /∈ C ′ contributes at most one to
|ch(vf(r+1)−1)|. Due to the definition of Ar and Br this directly implies (6). If vf(r+1) is
pleasant then by Corollary 6.10 every choice C ∈ ch(vf(r)−1) contributes at most one to

|chsel(vf(r+1)−1)|, which proves (7).
Suppose now that wr ≥ 2. By a similar argument as before, Proposition 6.14.(a) and

6.14.(b) directly imply (8). Accordingly, Proposition 6.14.(c) and 6.14.(d) imply that

Ar ≤ Fwr+1 · Ar−1 + Fwr · Br−1, (44)

if vf(r+1) is pleasant. We remark that by proceeding along similar lines as in the proof of
Key Lemma 2 we can show that Key Lemma 2 remains true if we replace (i) “(6) - (9)
and (c)” with “(6) - (8) and (44)”, and (ii) “1.628” with “1.64”. This already implies a
weaker version of Theorem 1.1 where “1.628” is replaced with “1.64”.

By Corollary 6.24 we can improve (44): (43) and Proposition 6.14.(d) imply (9), and
together with the second part of Corollary 6.24 they also give (c). This concludes the
proof of Key Lemma 1.

Acknowledgment: We would like to thank Tibor Szabó and Emo Welzl for suggest-
ing such a rich and beautiful topic and also for the numerous helpful discussions.

the electronic journal of combinatorics 18 (2011), #P132 27

References

[1] A. Björklund, T. Husfeldt, P. Kasaki and M. Koivisto. The Travelling Salesman Prob-
lem in Bounded Degree Graphs. Proc. 35th International Colloquium on Automata,
Languages, and Programming (ICALP), Part I. Lecture Notes in Computer Science
5125, (2008), 198–209.

[2] A. Björklund. Determinant sums for undirected Hamiltonicity. Proc. 51st Annual
IEEE Symposium on Foundations of Computer Science (FOCS), (2010), 173–182.

[3] D. Eppstein. The Traveling Salesman Problem for Cubic Graphs. J. Graph Algorithms
and Applications 11(1), (2007) , 61–68.

[4] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, 1979.

[5] H. Gebauer. Finding and Enumerating Hamilton Cycles in 4-Regular Graphs.
Theoretical Computer Science, to appear.

[6] M. Held and R.M. Karp. A dynamic programming approach to sequencing problems.
SIAM Journal on Applied Mathematics 10, (1962), 196–210.

[7] K. Iwama and T. Nakashima. An Improved Exact Algorithm for Cubic Graph
TSP. Proc. 13th Annual International Computing and Combinatorics Conference
(COCOON), 4598 (2007), 108–117.

[8] M.Sharir, E.Welzl. On the number of crossing-free matchings, (cycles, and partitions).
Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), (2006),
860–869.

[9] G.J. Woeginger. Exact Algorithms for NP-Hard Problems: A Survey. Combinatorial
optimization – Eureka! you shrink! Lecture Notes in Computer Science 2570, (2003),
185–207.

the electronic journal of combinatorics 18 (2011), #P132 28

