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Abstract

We show that the Eulerian-Catalan numbers enumerate Dyck permutations. We

provide two proofs for this fact, the first using the geometry of alcoved polytopes

and the second a direct combinatorial proof via an Eulerian-Catalan analogue of

the Chung-Feller theorem.
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1 Introduction

Let Am,n denote the Eulerian numbers, which count the number of permutations on n
letters with m descents. The Eulerian-Catalan numbers are defined by

ECn =
1

n + 1
An,2n+1.

We choose to attach the name Catalan to these numbers since An,2n+1 is the central
Eulerian number, and for their connection to the Catalan numbers, which will become
apparent shortly. The Eulerian-Catalan numbers appear in the Online Encyclopedia of
Integer Sequences [2], however, no combinatorial interpretation appears there and we
could not find one in the literature.

The Eulerian-Catalan number is clearly always an integer since the Eulerian numbers
satisfy the following relations

Am,n = (n − m)Am−1,n−1 + (m + 1)Am,n−1 and Am,n = An−m−1,n for all m, n

which imply that ECn = An−1,2n + An,2n = 2An,2n. Given a permutation w of [n], we
associate a 0/1 sequence of length n − 1, ad(w), where ad(w)i = 0 if wi < wi+1 and
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ad(w)i = 1 if wi > wi+1. We call ad(w) the ascent/descent vector of w. A 0/1 sequence
is called a ballot sequence if every initial string has at least as many zeroes as ones.

Alternately, the permutation w defines a lattice path L(w) starting from (0, 0) and
with step (1, 0) if i is an ascent, and with step (0, 1) for a descent. Writing the entries of
w along the vertices of the path produces a standard young tableau of a border strip. We
call a permutation w ∈ S2n+1 a Dyck permutation if and only if L(w) is a lattice path from
(0, 0) to (n, n), with all points on the path satisfying y ≤ x. By the usual correspondence
between ballot sequences and Dyck paths (see, [12, Ex. 6.19]), a permutation w is a Dyck
permutation if and only if ad(w) is a ballot sequence.

Let L be a lattice path from (0, 0) to (n, n) using steps of (0, 1) and (1, 0). The
exceedance of L, denoted exc(L) is defined to be the number of i ∈ {0, . . . , n} such that
there is a point (i, i′) in L with i < i′. Hence, the Dyck paths are the lattice paths with
exceedance 0. The main results of this paper is the following:

Theorem 1.1. Fix j = 0, . . . , n. The number of permutations w ∈ S2n+1 with n descents
such that exc(L(w)) = j does not depend on j. As a consequence the number of Dyck
permutations w ∈ S2n+1 is the Eulerian-Catalan number ECn.

We provide a direct combinatorial proof of Theorem 1.1 in Section 4. We also provide
a geometric proof of the fact that the number of Dyck permutations w ∈ S2n+1 is the
Eulerian-Catalan number ECn. We define a polytope P2,n and we show that its normalized
volume is the Eulerian-Catalan number. This is proved in Section 2. The polytope P2,n

turns out to be an alcoved polytope [9], and hence its volume can also be interpreted as
counting permutations with certain restrictions on its descent positions, which is explained
in Section 3. Combining these two arguments yields the result that the number of Dyck
permutations w ∈ S2n+1 is the Eulerian-Catalan number ECn. We prove these results
in a Fuss-Catalan generality which gives a combinatorial interpretation for the numbers

1
n+1

An,kn+k−1 as the number of (k − 1)-Dyck permutations.

2 Subdividing the Hypersimplex

The hypersimplex ∆(k, n) is the polytope

∆(k, n) =

{
(x1, . . . , xn) ∈ [0, 1]n :

n∑

i=1

xi = k

}
.

It is well-known that the normalized volume of the hypersimplex is the Eulerian number
Ak−1,n−1. Stanley [11] provides a combinatorial proof of this fact by triangulating the
hypersimplex.

Fix k, n ∈ N, and consider the hypersimplex ∆(n+1, k(n+1)). We define the polytope
Pk,n with the following inequalities:

Pk,n =

{
(x1, . . . , xk(n+1)) ∈ ∆(n + 1, k(n + 1)) :

kt∑

s=1

xs ≤ t, t = 1, . . . , n

}
.
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Remark 2.1. A 0/1 sequence is called a k-ballot sequence if every initial string has at
least k-times as many 0’s as 1’s. Note that a 1-ballot sequence is an ordinary ballot
sequence. The polytope Pk,n is equal to the convex hull of the (k − 1)-ballot sequences
of length k(n + 2). This is shown in work of the first author [3], where these polytopes
are studied in the larger context of lattice path matroid polytopes. Lattice path matroids
were introduced in [4] and the Catalan matroid [1] is a special case. The polytope P2,n is
the Catalan matroid polytope. Corollary 2.3 below implies that the normalized volume
of the Catalan matroid polytope is the Eulerian-Catalan number. We do not need these
details here, and refer the reader to [3].

For each i ∈ {0, . . . , n} define the polytope Pk,n,i ⊆ ∆(n+1, k(n+1)) by the inequalities

Pk,n,i =

{
(x1, . . . , xk(n+1)) ∈ ∆(n + 1, k(n + 1)) :

kt∑

s=1

xki+s ≤ t, t = 1, . . . , n

}

where the indices are considered modulo k(n + 1). For example, with k = 2 and n = 2,
we get three polytopes:

P2,2,0 = {(x1, . . . , x6) ∈ ∆(3, 6) : x1 + x2 ≤ 1, x1 + x2 + x3 + x4 ≤ 2}

P2,2,1 = {(x1, . . . , x6) ∈ ∆(3, 6) : x3 + x4 ≤ 1, x3 + x4 + x5 + x6 ≤ 2}

P2,2,2 = {(x1, . . . , x6) ∈ ∆(3, 6) : x5 + x6 ≤ 1, x5 + x6 + x1 + x2 ≤ 2}.

Note that Pk,n,0 = Pk,n.

Theorem 2.2. Fix k, n ∈ N. The interiors of the polytopes Pk,n,i and Pk,n,j are disjoint
if i 6= j, and ∆(n + 1, k(n + 1)) = ∪n

i=0Pk,n,i.

Proof. Since the Pk,n,i are all affinely isomorphic via a transformation that permutes
coordinates, it suffices to show that an x ∈ int Pk,n,0 does not belong to any other Pk,n,i.
Since x ∈ int Pk,n,0 it satisfies the inequality

x1 + · · · + xki < i.

Since we are in the hypersimplex, we always have

x1 + · · ·+ xk(n+1) = n + 1.

Combining these, we deduce that

xki+1 + · · · + xk(n+1) > n + 1 − i

which implies x /∈ Pk,n,i.

To prove that ∆(n+1, k(n+1)) = ∪n+1
i=1 Pk,n,i, we must show that any point x ∈ ∆(n+

1, k(n + 1)) belongs to one of the Pk,n,i. To do this, we consider the linear transformation

φ : R
k(n+1) → R

n+1
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such that yi = −1 +
∑k(i+1)

s=ki+1 xs where the coordinates on R
n+1 are y0, . . . , yn. The image

of the hypersimplex ∆(k(n + 1), n + 1) is the polytope

Q(k, n) = {y ∈ [−1, k − 1]n+1 : y0 + · · ·+ yn = 0}

and the image of Pk,n,i is the polytope

Rk,n,i = {y ∈ Q(k, n) : yi + · · ·+ yi+t ≤ 0, t = 0, n − 1}.

Note that a point x ∈ ∆(n+1, k(n+1)) belongs to Pk,n,i if and only if its image in Q(k, n)
belongs to Rk,n,i. Furthermore, the argument in the preceding paragraph implies that the
R(n, k, i) have disjoint interiors. Hence, it suffices to show that Q(k, n) = ∪n

i=0Rk,n,i.
Since the inequalities −1 ≤ yi ≤ k−1 are common to all the polytopes, it suffices to show
that the plane

H(n) = {y ∈ R
n+1 : y0 + · · · + yn = 0}

can be decomposed is the union of the cones

C(n, i) = {y ∈ H(n) : yi + · · · + yi+t ≤ 0, t = 0, n − 1}.

For i = 0, . . . , n, let vi = −ei−1 +ei. The cones C(n, i) are simplicial, and it is straightfor-
ward to see that the generators of C(n, i) are {v0, . . . , vn} \ {vi}. The vectors v0, . . . , vn

also span H(n), and v0 + · · ·+ vn = 0. This implies that the union of the cones spanned
by the sub-collections of n vectors is all of H(n), which is what we needed to show.

Corollary 2.3. The normalized volume of Pk,n,i is 1
n+1

An,kn+k−1.

Proof. Since ∆(n + 1, k(n + 1)) = ∪n
i=0Pk,n,i and their relative interiors are disjoint, we

have that

vol(∆(n + 1, k(n + 1))) =

n∑

i=0

vol Pk,n,i.

As the cyclic shift of coordinates which sends Pk,n,0 to Pk,n,i is volume preserving, and
vol (∆(n + 1, k(n + 1))) = An,kn+k−1, we deduce the desired formula.

3 Alcoved Polytopes

Fix integers k, n ∈ N. For 0 ≤ i < j ≤ n, let bij , cij be integers, with bij ≤ cij . The
alcoved polytope defined by this data is:

P (k, n,b, c) :=

{
(x1, . . . , xn) ∈ R

n :

n∑

i=1

xi = k, bij ≤ xi+1 + · · · + xj ≤ cij , 0 ≤ i < j ≤ n

}
.

Alcoved polytopes were studied in detail by Lam and Postnikov [9]. Alcoved polytopes
have natural triangulations into unimodular simplices which are themselves alcoved poly-
topes and which are indexed by permutations; these simplices are called alcoves. In the
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special case, where P (k, n,b, c) ⊆ ∆(k, n), Lam and Postnikov give an explicit description
of the simplices involved in the alcove triangulation, and hence a combinatorial formula
for the volume of these alcoved polytopes.

Let W (k, n,b, c) ⊂ Sn−1 be the set of permutations w = w1w2 · · ·wn−1 ∈ Sn−1 satis-
fying the following conditions:

1. w has k − 1 descents.

2. The sequence wi · · ·wj has at least bij descents. Furthermore, if wi · · ·wj has exactly
bij descents, then wi < wj.

3. The sequence wi · · ·wj has at most cij descents. Furthermore, if wi · · ·wj has exactly
cij descents, then we must have that wi > wj.

In the above conditions we assume that w0 = 0.

Theorem 3.1. [9] The normalized volume of P (k, n,b, c) ⊆ ∆(k, n) is equal to
|W (k, n,b, c)|.

We apply Theorem 3.1 to give a combinatorial formula for the volume of the polytope
Pk,n. As discussed previously, a lattice path from (0, 0) to (nk, n) using (0, 1) and (1, 0)
steps is called a k-Dyck path if every point on the path satisfies y ≤ 1

k
x. When L(w)

is a k-Dyck path, w is called a k-Dyck permutation. A 0/1 sequence is called a k-ballot
sequence if each initial string has at least k times as many 0’s as 1’s. Note that w is a
k-Dyck permutation precisely where ad(w) is a k-ballot sequence.

Proposition 3.2. The normalized volume of Pk,n is equal to the number of permutations
w ∈ Skn+k−1 such that L(w) is a (k − 1)-Dyck path. Equivalently, the volume equals the
number of permutations w ∈ Skn+k−1 such that ad(w) is a (k − 1)-ballot sequence.

Proof. The polytope Pk,n ⊂ ∆(n + 1, k(n + 1)) is an alcoved polytope since its defining
inequalities are 0 ≤ xi ≤ 1, x1 + · · ·+ xk(n+1) = n + 1 and

kt∑

s=1

xs ≤ t, t = 1, . . . , n.

Applying Theorem 3.1, we see that the volume of Pk,n is the number of permutations
w = w1 · · ·wkn+k−1 ∈ Skn+k−1 satisfying the following conditions:

1. w has n descents.

2. w1 · · ·wik has at most i − 1 descents, for 1 ≤ i ≤ n.

These conditions are satisfied if and only if ad(w) is a (k − 1)-ballot sequence.
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Combining Corollary 2.3 and Proposition 3.2 we deduce:

Theorem 3.3. The number of permutations w ∈ Skn+k−1 such that L(w) is a (k − 1)-
Dyck path is 1

n+1
An,kn+k−1. In particular, the number of Dyck permutations in S2n+1 is

the Eulerian-Catalan number ECn.

4 Exceedances of Lattice Paths and Eulerian-Catalan

Numbers

In this section we prove Theorem 1.1 which gives us a combinatorial interpretation of
Eulerian-Catalan number in terms of certain permutation statistics. First we provide a
combinatorial proof of Theorem 1.1 by finding a uniform partition for permutations on
2n+1 letters and n descents. We give a direct combinatorial proof by classic cycle lemma
methods and it is related to a classic proof that the Catalan numbers enumerate Dyck
paths [5]. Uniform partitions for many combinatorial structures can be derived by classic
cycle lemma methods. There are some new progress on the cycle lemma in [6], [7] and
[8].

Later, we give a geometric proof of Theorem 1.1 for the case j = 1 (and hence also for
j = n − 1). In Sections 2 and 3, we saw a geometric proof for the cases j = 0 (and hence
also for j = n). It is an interesting problem to provide geometric proofs for other cases.

Proof of Theorem 1.1. Consider a lattice path P with (0, 1) and (1, 0) steps from (0, 0)
to (n, n). Define c(P ) = (c0, . . . , cn), where ci is the number of horizontal steps of P at
height y = i. The cyclic permutations Cj = (cj, . . . , cj−1) of c(P ) are all distinct, and
for each there is a unique path Pj from (0, 0) to (n, n) so that c(Pj) = Cj . The number
of exceedances of the paths P0, . . . , Pn are the numbers 0, 1, . . . , n in some order. These
results are known as the Chung-Feller Theorem [5].

Consider a permutation W = w1 · · ·w2n+1 with n descents. We have one of the
following cases:

1. The cyclic permutation (w1 · · ·w2n+1) has n cyclic descents.

2. The cyclic permutation (w1 · · ·w2n+1) has n + 1 cyclic descents.

The cyclic descents of a (cyclic) permutation also include the possibility of a descent at
the last position w2n+1, which occurs when w1 < w2n+1.

In the case (w1 · · ·w2n+1) has n cyclic descents, we consider distinct indexes 1 = i0 <
· · · < in ≤ 2n + 1 so that wik−1wik is not a cyclic descent in the cyclic permutation
(w1 · · ·w2n+1). Now, consider the n+1 permutations obtain by cyclic shifting the permu-
tation W , starting at wi0, . . . , win. We denote these permutations by W0, . . . , Wn. The
permutations W0, . . . , Wn all have n descents, whereas all other cyclic shiftings of W have
n − 1 descents. As in the Chung-Feller theorem, we define c(L(W0)) = (c0, . . . , cn) where

the electronic journal of combinatorics 18 (2011), #P187 6



ci is the number of horizontal steps at height i for a lattice path L(W0). The cyclic shift-
ings of c(L(W0)), Cj = (cj , . . . , cj−1) are all distinct, and for each there is a unique path
Pj from (0, 0) to (n, n) so that c(Pj) = Cj. It is easy to see that Pj = L(Wj). By the
Chung-Feller theorem, the lattice path associated to these permutations have different
number of exceedance 0, . . . , n. This shows that the n + 1 cyclic shiftings of permutation
W which have n descents, have 0, . . . , n number of exceedances in some order.

Now, consider the case where the cyclic permutation (w1 · · ·w2n+1) has n + 1 cyclic

descents. For any permutation W = w1 · · ·w2n+1, we define: Ŵ = (ŵ1 · · · , ŵ2n+1) =

(2n+2−w1) · · · (2n+2−w2n+1). If W has k exceedances, Ŵ has n−k exceedances, and

if W has k cyclic descents, Ŵ has 2n + 1 − k cyclic descents. We consider i0, . . . , in so
that wik−1wik is a cyclic descent in W and therefore Ŵ does not have a cyclic descent at
ŵik−1ŵik . We consider the n+1 permutations obtained by cyclic shifting the permutation
W , starting with wi0 , . . . , win. We denote them by W0, . . . , Wn. As above, these are the
only permutations obtained by cyclic shifting W that have n descents, all other shiftings
having n+1 descents. As we see in the first case, we know that the lattice path associated
to L(Ŵj) have different number of exceedance for j = 0, . . . , n. Therefore, Pj = L(Wj)
for j = 0, . . . , n have all different numbers of exceedances from 0, . . . , n in some order.

Combining the above two results, we know that among the 2n + 1 cyclic shifts of
a permutation w with n descents, exactly n + 1 of them have n descents, and their
associated lattice paths have different numbers of exceedances 0, . . . , n. Therefore, the
number of permutations w ∈ S2n+1 with n descent and exc(L(w)) = j are the same for
j = 0, . . . , n. As the total number of permutations w ∈ S2n+1 with n descents is An,2n+1,
we see that the number of permutations w ∈ S2n+1 with n descent and exc(L(w)) = j is
the Eulerian-Catalan number.

Note that the proof of Theorem 1.1 also gives a direct combinatorial proof for the
fact that the number of Dyck permutations in S2n+1 is An−1,2n + An,2n. Indeed, the Dyck
permutations are in bijective correspondence with the set of cyclic permutation with either
n or n + 1 cyclic descents. Cycling such a permutation until 2n + 1 is at the end and
deleting 2n+1 yields a bijection with permutations in S2n with either n−1 or n descents.

To conclude this section, we provide a geometric proof of Theorem 1.1 in the case of
j = 1, in the spirit of the proofs from Sections 2 and 3.

Proof of Theorem 1.1 with j = 1. Consider the polytope P2,n, which is given by inequal-
ities:

P2,n =

{
(x1, . . . , x2(n+1)) ∈ ∆(n + 1, 2(n + 1)) :

2t∑

s=1

xs ≤ t, t = 1, . . . , n

}
.

We call the inequality
∑2t

s=1 xs ≤ t the t-th inequality. Let T ⊆ [n] and consider the
polytope defined by flipping the t-th inequalities for t ∈ T :

P2,n(T ) =

{
(x1, . . . , x2(n+1)) ∈ ∆(n + 1, 2(n + 1)) :

2t∑

s=1

xs ≥ t, t ∈ T,
2t∑

s=1

xs ≤ t, t ∈ [n] \ T

}
.
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Applying Theorem 3.1, we see that the volume of P2,n(T ) is the number of permutations
w ∈ S2n+1 such that L(w) has an exceedance in position t−1 if and only if t ∈ T (that is,
there is a point (t − 1, s) in L(w) with s > t − 1). Thus, to prove Theorem 1.1 it suffices
to show that

ECn =
∑

T⊆[n]:|T |=j

vol(P2,n(T )). (4.1)

We prove Eq.(4.1) in the case j = 1.
To do this, we consider the linear transformation

φ : R
2(n+1) → R

n+1

such that yi = −1 +
∑2(i+1)

s=2i+1 xs where the coordinates on R
n+1 are y0, . . . , yn. The image

of the hypersimplex ∆(n + 1, 2(n + 1)) is the following polytope

Q(2, n) = {y ∈ [−1, 1]n+1 : y0 + · · · + yn = 0}

and the image of P2,n(T ) is the polytope

R2,n(T ) = {y ∈ Q(2, n) : y0 + · · ·+ yt−1 ≥ 0, t ∈ T, y0 + · · ·+ yt−1 ≤ 0, t ∈ [n] \ T}.

Note that a point x ∈ ∆(n + 1, 2(n + 1)) belongs to P2,n(T ) if and only if its image in
Q(2, n) belongs to R2,n(T ). Furthermore, all the P2,n(T ) and Q2,n(T ) are disjoint. If
we can find a collection of volume preserving linear transformations τ1, . . . , τn such that
τ1(R2,n({1})), . . . , τn(R2,n({n})) have disjoint interiors and such that

R2,n(∅) = ∪i∈[n]τi(R2,n({i})),

we will prove the theorem. This follows because it is straightforward to lift the linear
transformations τi to R

2(n+1) in a way that will yield a similar result for the P2,n. All our
linear transformations will be coordinate permutations. Thus, we can ignore the common
inequalities, −1 ≤ yi ≤ 1, and consider the same questions in the plane

H(n) = {y ∈ R
n+1 : y0 + · · · + yn = 0}

for the cones

Cn(T ) = {y ∈ H(n) : y0 + · · · yt−1 ≥ 0, t ∈ T, y0 + · · · yt−1 ≤ 0, t ∈ [n] \ T}.

Each of the cones Cn(T ) is simplicial, generated by the set of rays

et−1 − et : t ∈ T,−et−1 + et : t ∈ [n] \ T,

where ei denotes a standard unit vector.
For t ∈ [n], consider the linear transformation τt which sends yi 7→ yn−t+1+i, where

indices are considered modulo n + 1. This volume preserving linear transformation sends
the generators of Cn({t}) to the vectors

−e0 + en and − et−1 + et : t ∈ [n] \ T.

All of these rays belong to Cn(∅), hence τt(Cn({t})) ⊆ Cn(∅). Furthermore, each of
the cones τt(Cn({t})) is generated by a facet of Cn(∅) together with the same interior
ray −e0 + en. Hence, the set of cones {τt(Cn({t})), t = 1, . . . , n} form the facets of a
polyhedral subdivision of Cn(∅) which completes the proof.
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5 Further Directions

Our results on Eulerian-Catalan numbers suggest a number of interesting problems.

1. Both the Catalan numbers and the Eulerian numbers have numerous combinatorial
interpretations. Are there other interpretations of the Eulerian-Catalan numbers
as enumerating objects that are counted by the Eulerian numbers where a certain
statistic is a Catalan object?

2. Both the Catalan numbers and Eulerian numbers have q (and q, t) analogues. Do
these extend to the Eulerian-Catalan numbers?

3. Catalan numbers and Eulerian numbers have natural generalizations beyond the
symmetric group (i.e. to other types). Can these be extended to Eulerian-Catalan
numbers?

4. Generalizing the geometric proof of Theorem 1.1 to arbitrary j suggests the existence
of interesting polyhedral decompositions of the cone of positive roots of a Weyl
group.
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