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Abstract

A global defensive alliance in a graph G = (V,E) is a dominating set S satisfying
the condition that for every vertex v ∈ S, |N [v] ∩ S| ≥ |N(v) ∩ (V − S)|. In this
note, a new upper bound on the global defensive alliance number of a tree is given
in terms of its order and the number of support vertices. Moreover, we characterize
trees attaining this upper bound.
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1 Introduction

Graph theory terminology not presented here can be found in [2]. Let G = (V, E) be
a graph with |V | = n. The degree, neighborhood and closed neighborhood of a vertex
v in the graph G are denoted by d(v), N(v) and N [v] = N(v) ∪ {v}, respectively. The
minimum degree and maximum degree of the graph G are denoted by δ(G) and ∆(G),
respectively. The graph induced by S ⊆ V is denoted by G[S]. An endvertex is a vertex
which is only adjacent to one vertex. An endvertex in a tree T is also called a leaf, while
a support vertex of T is a vertex adjacent to a leaf. Let L(T ) denote the set of leaves of
T . A double star is a tree that contains exactly two vertices that are not endvertices. If
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one of these vertices is adjacent to r leaves and the other to s leaves, then we denote this
double star by S(r, s).

A set S is called a dominating set if every vertex in V \ S has a neighbor in S. The
domination number of G, denoted by γ(G), is the minimum cardinality of a dominating
set of G. A minimum dominating set of a graph G is called a γ(G)-set.

A set S is called a total dominating set if every vertex in V has a neighbor in S. The
total domination number of G, denoted by γt(G), is the minimum cardinality of a total
dominating set of G.

In [1] Hedetniemi, Hedetniemi and Kristiansen introduced several types of alliances,
including defensive alliance. A non-empty set of vertices S ⊆ V is called a defensive

alliance if for every v ∈ S, |N [v] ∩ S| ≥ |N(v) ∩ (V \ S)|.
A defensive alliance S is called global if it effects every vertex in V \ S, that is, every

vertex in V \ S is adjacent to at least one member of the defensive alliance S. In this
case, S is a dominating set. The global defensive alliance number γa(G) is the minimum
cardinality of a defensive alliance of G that is also a dominating set of G. A minimum
global defensive alliance of a graph G is called a γa(G)-set.

Haynes, Hedetniemi and Henning [2] studied global defensive alliance in graphs. They
gave the following results.

Lemma 1.1 (Haynes et. al [2]). For the star K1,r, γa(K1,r) = 1 + ⌊ r
2
⌋.

Lemma 1.2 (Haynes et. al [2]). For the double star S(r, s), γa(S(r, s)) = 2+⌊ r−1

2
⌋+⌊s−1

2
⌋.

Let τ be the family of trees T , where T = P5 or T = K1,4 or T is the tree obtained
from tK1,4 (the disjoint union of t copies of K1,4) by adding t − 1 edges between leaves
of these copies of K1,4 in such a way that the center of each K1,4 is adjacent to exactly
three leaves in T . Haynes et. al established a sharp upper bound on the global defensive
alliance number for trees of order greater than 3.

Lemma 1.3 (Haynes et. al [2]). If T is a tree of order n ≥ 4, then γa(T ) ≤ 3n
5
, with

equality if and only if T ∈ τ .

Chellai and Haynes [3] gave an upper bound on total domination number of a tree in
terms of its order and the number of support vertices.

Lemma 1.4 (Chellai and Haynes [3]). If T is a tree of order n ≥ 3 and with s support

vertices, then γt(T ) ≤ n+s
2

.

Haynes, Hedetniemi and Henning [2] showed that the global defensive alliance and
total domination numbers are the same for graphs with minimum degree at least two and
maximum degree at most three.

Lemma 1.5 (Haynes et. al [2]). For any graph G with δ(G) ≥ 2, γt(G) ≤ γa(G).
Furthermore, if ∆(G) ≤ 3, then γt(G) = γa(G).

In this note, a new upper bound on the global defensive alliance number of a tree is
given. We show that for a tree of order n and with s support vertices, γa(G) ≤ n+s

2
, and

we characterize trees attaining this upper bound.
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2 Main results

In order to establish a sharp upper bound on the global defensive alliance number of
a tree and to characterize trees achieving this bound, we introduce more notation. For a
vertex v in a rooted tree T , let C(v) and D(v) denote the sets of children and descendants,
respectively, of v, and let D[v] = D(v) ∪ {v}.

We introduce a family ξ of trees T , where T is a star of odd order or T is the tree
obtained from K1,2t1 , K1,2t2 , . . . , K1,2ts and tP4 (the disjoint union of t copies of P4) by
adding s+t−1 edges between leaves of these stars and paths in such a way that the center
of each star K1,2ti is adjacent to at least 1 + ti leaves in T and each leaf of every copy of
P4 is incident to at least one new edge, where t ≥ 0, s ≥ 2 and ti ≥ 2 for i = 1, 2, . . . , s.
Note that each support vertex of each tree in ξ must be adjacent with at least 3 leaves.

Lemma 2.1. Let T be a tree of order n and with s support vertices. If T ∈ ξ, then

γa(T ) = n+s
2

.

Proof: Suppose T is a star of odd order. In this case s = 1. So by Lemma 1.1, we have
γa(T ) = n+s

2
. Hence we assume that T is not a star. Let P 1

4 , P 2
4 , . . . , P t

4 denote the t
disjoint copies of P4 when constructing T . Let ui, wi be the two support vertices of the
path P i

4. It is obvious that n = s + 2
∑

1≤i≤s

ti + 4t. Let vi be the center of the star K1,2ti

for i = 1, 2, . . . , s. Let S be a γa(T )-set. Since vi is adjacent to at least 1 + ti leaves
in T , it follows that |S ∩ V (K1,2ti)| ≥ 1 + ti for i = 1, 2, . . . , s. In order to dominate
uj, wj, |S ∩ V (P j

4 )| ≥ 2. Hence, γa(T ) = |S| =
∑

1≤i≤s

|S ∩ V (K1,2ti)| +
∑

1≤j≤t

|S ∩ V (P j
4 )| ≥

s +
∑

1≤i≤s

ti + 2t = n+s
2

. Let Li denote a set of ti leaves of K1,2ti in T for i = 1, 2, . . . , s.

Let S ′ = {vi | 1 ≤ i ≤ s} ∪ {uj, wj | 1 ≤ j ≤ t}
⋃

1≤j≤s

Lj . Then S ′ is a global defensive

alliance of T . So, γa(T ) ≤ |S ′| ≤ n+s
2

. Hence, γa(T ) = n+s
2

. �

For each tree T ∈ ξ, by its construction, we have the following two simple lemmas.

Lemma 2.2. Let T ∈ ξ. For any v ∈ V (T ) \ L(T ), there exists a γa(T )-set S of T such

that v ∈ S and |N [v] ∩ S| > |N(v) ∩ (V (T ) \ S)|.

Lemma 2.3. Let T ∈ ξ. For any v ∈ V (T ) \ {v1, v2, . . . , vs}, there exists a γa(T )-set S
of T such that v /∈ S, where v1, v2, . . . , vs are defined in the proof of Lemma 2.1.

Theorem 2.4. Let T be a tree of order n ≥ 3 and with s support vertices. Then γa(T ) ≤
n+s
2

, with equality if and only if T ∈ ξ.

Proof: We proceed by induction on n ≥ 3. If n = 3, then T = P3, and so γa(T ) = 2 = n+s
2

and T ∈ ξ. Suppose, then, that for all trees T ′ of order n′ and with s′ support vertices,
where 3 ≤ n′ < n, γa(T

′) ≤ n′+s′

2
and equality holds if and only if T ′ ∈ ξ. Let T be a

tree of order n. If T is a star, then, by Lemma 1.1, γa(K1,n−1) = 1 + ⌊n−1

2
⌋ ≤ n+s

2
with

equality if and only if n is odd. Hence T ∈ ξ. If T is a double star, then it follows from
Lemma 1.2 that γa(T ) < n+s

2
. Hence we may assume that diam(T ) ≥ 4.
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Let S(T ) be the set of support vertices of T . Suppose that there exists v ∈ S(T ) such
that d(v) = 2. Let N(v) ∩ L(T ) = {v′} and N(v) \ {v′} = {u}. Choose T0 = T − {v, v′}.
Let T0 have order n0 and s0 support vertices. Then n = n0 + 2. Since diam(T ) ≥ 4, it
follows that n0 ≥ 3. Applying the induction hypothesis to T0, γa(T0) ≤ n0+s0

2
. Let S0

be a γa(T0)-set. If u /∈ S0, let S ′
0 = S0 ∪ {v′}, while if u ∈ S0, let S ′

0 = S0 ∪ {v}. Then,
S ′

0 is a global defensive alliance of T . So γa(T ) ≤ |S0| + 1 ≤ n0+s0

2
+ 1 = n+s0

2
. Since

s0 ≤ s, it follows that γa(T ) ≤ n+s
2

. Furthermore, suppose γa(T ) = n+s
2

. Then s0 = s
and γa(T0) = n0+s0

2
. By the induction hypothesis, T0 ∈ ξ. Since s0 = s, it follows that

dT (u) = 2 and x /∈ S(T ), where x ∈ N(u)\{v}. Hence, x is a support of T0 and is adjacent
to only one leaf in T0, which is a contradiction. So, γa(T ) < n+s

2
. In the following, we

may assume that dT (v) ≥ 3 for any v ∈ S(T ).
Choose v having the smallest degree among all support vertices of T of eccentricity

diam(T ) − 1. Let r be a vertex at distance diam(T ) − 1 from v. View T as the rooted
tree at r. Let u denote the parent of v, and x the parent of u. Let |C(v)| = l. Then l ≥ 2.

Case 1: Suppose that dT (u) ≥ 3. Let T1 = T − D[v]. Assume that T1 is of order n1

and has s1 support vertices. Then n = n1 + l +1 and n1 ≥ 3. By the induction
hypothesis we have γa(T1) ≤

n1+s1

2
. Among all γa(T1)-sets, let S1 be chosen to

contain the vertex u, if possible.

If u ∈ S1, then by adding v and ⌊ l−1

2
⌋ children of v to S1 produces a global

defensive alliance of T . So γa(T ) ≤ |S1| + 1 + ⌊ l−1

2
⌋ ≤ n−1−l+s1

2
+ l+1

2
= n+s1

2
.

Since s1 < s, it follows that γa(T ) < n+s
2

. Hence we may assume that u /∈ S1.

If u has a child v′ different from v that is a support vertex, then |C(v′)| ≥ 2.
Since u /∈ S1, either C(v′) ⊂ S1 or v′ ∈ S1. For both cases, we can choose
another global defensive alliance of T containing u and v′, contrary to our
choice of S1. Hence we assume that every child of u different from v is a leaf.

If u is adjacent to more than one leaf, then we can choose a γa(T )-set containing
u, contrary to our choice of S1. So we assume dT (u) = 3 and the child v′

of u different from v is a leaf. Thus, v′ ∈ S1. Delete v′ from S1, add u,
v and ⌊ l−1

2
⌋ children of v to S1 to get a global defensive alliance of T . So

γa(T ) ≤ |S1| + 1 + ⌊ l−1

2
⌋ ≤ n−1−l+s1

2
+ l+1

2
= n+s1

2
. Since s1 < s, it follows that

γa(T ) < n+s
2

.

Case 2: Suppose that dT (u) = 2. Let T2 = T −D[u]. Assume that T2 has order n2 and
s2 support vertices. Then n = n2+l+2. Since diam(T ) ≥ 4, it follows from our
choice of v that n2 ≥ 3. By the induction hypothesis we have γa(T2) ≤

n2+s2

2
.

Let S2 be a γa(T2)-set. Let w be the parent of x.

Case 2.1: Suppose that dT (x) ≥ 3 or dT (x) = 2 and w ∈ S(T ). Then
s = s2 + 1. Add u, v and ⌊ l−1

2
⌋ children of v to S2 to obtain a global defensive

alliance of T . So γa(T ) ≤ |S2| + 2 + ⌊ l−1

2
⌋ ≤ n−2−l+s2

2
+ l+3

2
= n+s2+1

2
= n+s

2
.

Furthermore, suppose γa(T ) = n+s
2

. Then l is odd and γa(T2) = n2+s2

2
. By

the induction hypothesis, T2 ∈ ξ. Suppose that T2 = K1,2t, for some t ≥ 1.
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Suppose x is the center of K1,2t. The set consisting of {u, v, x}, t − 1 children
of x and l−1

2
children of v forms a global defensive alliance of T . So γa(T ) ≤

3+(t−1)+ l−1

2
= 2t+l+3

2
= n

2
< n+s

2
, which is a contradiction. Hence, x is a leaf

of star K1,2t. Since the degree of any support vertex of T is at least three, it
follows that t ≥ 2. Then T is a tree obtained from K1,2t and K1,l+1 by adding
an edge between one leaf of each star. Then T ∈ ξ.

So we may assume that T2 is not a star. Choose S2 to be a γa(T2)-set that
contains all centers of stars, all leaves of stars that are incident to added edges
when constructing T2 and support vertices of all copies of P4. Since the center
of each star is adjacent to at least 1 + ti leaves in T2, S2 contains at least one
leaf of each star K1,2ti .

Suppose x is the center of some K1,2ti for some i. Let y ∈ N(x) ∩ S2 ∩ L(T2).
Then add u, v and l−1

2
children of v to S2 \ {y} to get a global defensive

alliance of T . We have γa(T ) ≤ |S2| + 1 + l−1

2
= n2+s2

2
+ l+1

2
< n+s

2
, which is a

contradiction.

Suppose that x is a support vertex of P i
4 = liuiwimi, say x = ui for some

i. Choose S∗ to be a γa(T2)-set that contains all centers of stars and all end
vertices of added edges when constructing T2.

Let T ′ be the subgraph of T2 induced by the vertices of all copies of P4 when
constructing T2. Let T ′′ be the component of T ′ − liui that contains vertex li.
For each subgraph P k

4 of T ′′, label P k
4 with lkukwjmk such that dT2

(mk, li) <
dT2

(lk, li). Let S∗∗ be obtained from S∗ \ {li} by replacing lk with wk for each
subgraph P k

4 of T ′′. Then add u, v and l−1

2
children of v to S∗∗ to get a

global defensive alliance of T . So γa(T ) ≤ |S∗∗| + 2 + l−1

2
= |S∗| + 1 + l−1

2
=

n2+s2

2
+ l+1

2
< n+s

2
, which is a contradiction.

Suppose that x is a leaf of a star when constructing T2. Let vi be the center of
the star K1,2ti in T2 that contains x for some i. Suppose |NT (vi)∩L(T )| < 1+ti.
Let S∗ be a γa(T2)-set containing x, all centers of stars and all end vertices of
added edges when constructing T2. Let S be obtained from (S∗ \ V (K1,2ti)) ∪
(NT (vi) ∩ L(T )) by adding u, v and l−1

2
children of v. Then S is a global

defensive alliance of T with cardinality less than n+s
2

. It is a contradiction. So
|NT (vi) ∩ L(T )| ≥ 1 + ti and hence T ∈ ξ.

Suppose x is a leaf of P i
4 for some i. Then clearly T ∈ ξ.

Case 2.2: Suppose dT (x) = 2 and w /∈ S(T ). Let T3 = T − D[x]. Assume
that T3 has order n3 and s3 support vertices. Then n = n3 + l + 3 and n3 ≥ 3.
Applying the induction hypothesis to T3, γa(T3) ≤

n3+s3

2
. Let S3 be a γa(T3)-

set.

Subcase 1: Suppose that dT (w) ≥ 3. Then s3 = s − 1.

i) Suppose w /∈ S3, or w ∈ S3 and |NT3
[w]∩S3| > |NT3

(w)∩(V (T3)−S3)|. By
adding u and v and ⌊ l−1

2
⌋ children of v to S3 produces a global defensive
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alliance of T . So γa(T ) ≤ |S3|+ 2 + ⌊ l−1

2
⌋ ≤ n−3−l+s3

2
+ l+3

2
= n+s3

2
< n+s

2
.

ii) Now we assume that w ∈ S3 and |NT3
[w]∩ S3| = |NT3

(w)∩ (V (T3)− S3)|
for all γa(T3)-set S3. Suppose there exists v′ ∈ S(T3) ∩ D[w] such that
dT (w, v′) = 3. Let wx′u′v′ denote the w − v′ path in T . By a similar
way as above, we may assume that dT (x′) = dT (u′) = 2. Let |C(v′)| = l′.
Since |NT3

[w] ∩ S3| = |NT3
(w) ∩ (V (T3) − S3)|, it follows that dT (w) ≥ 4.

Let T31 = T − D[x] − D[x′]. Let T31 have order n31 and s31 support
vertices. Then n = n31 + l + l′ + 6 and s31 = s − 2. Since n31 ≥ 3,
by applying the induction hypothesis to T31, γa(T31) ≤ n31+s31

2
. Let S31

be a γa(T31)-set. Then by adding {u, v, u′, v′, x}, ⌊ l−1

2
⌋ children of v and

⌊ l′−1

2
⌋ children of v′ to S31 produces a global defensive alliance of T . So

γa(T ) ≤ |S31| + 5 + ⌊ l−1

2
⌋ + ⌊ l′−1

2
⌋ ≤ n−6−l−l′+s31

2
+ l+l′+8

2
= n+s

2
. For the

sake of contradiction, suppose we have equality throughout this inequality
chain. In particular, γa(T ) = n+s

2
, l and l′ are odd, and γa(T31) = n31+s31

2
.

So, T31 ∈ ξ. Since w /∈ S(T ), w /∈ {v1, v2, . . . , vs}. By Lemma 2.3, we
can choose a γa(T31)-set S∗ such that w /∈ S∗. By adding {u, v, u′, v′},
l−1

2
children of v and l′−1

2
children of v′ to S∗ produces a global defensive

alliance of T . Hence γa(T ) ≤ |S∗| + 4 + l−1

2
+ l′−1

2
< n+s

2
, which is a

contradiction. So in this case γa(T ) < n+s
2

.

We may assume that dT (w, v′) ≤ 2 for any v′ ∈ S(T3) ∩ D[w]. Suppose
v′ 6∈ S3. Then N(v′) ∩ L(T3) ⊆ S3. Choose a vertex u′ ∈ N(v′) ∩ L(T3).
Then (S3 \{u

′})∪{v′} is a global defensive alliance of T3. So, we obtain a
global defensive alliance of T3, still say S3, such that S(T3) ∩ D[w] ⊆ S3.
Let p be the parent of w. Suppose there is a vertex q ∈ N(w) \ {p} and
q 6∈ S3. Then q 6∈ S(T3). Let q′ ∈ N(q) ∩ S(T3). Then q′ ∈ S3. Since q′ is
adjacent to at least two leaves, there exists a vertex k ∈ S3∩L(T3)∩C(q′).
Then (S3 \ {k}) ∪ {q′} is a global defensive alliance of T . So, we can get
another global defensive alliance of T3, say S ′

3, such that N(w)\{p} ⊆ S ′
3.

Then w ∈ S ′
3 and |NT3

[w] ∩ S ′
3| > |NT3

(w) ∩ (V (T3) − S ′
3)|, contradicting

our choice of w.

Subcase 2: Suppose that dT (w) = 2. Let T4 = T − D[w]. Let T4 of order
n4 and s4 support vertices. Then n = n4 + l + 4. By the choice of v we have
n4 ≥ 3. Applying the induction hypothesis to T4, we have γa(T4) ≤

n4+s4

2
. Let

S4 be a γa(T4)-set. Let p be the parent of w. Suppose that dT (p) ≥ 3. Then
s4 = s − 1. If p ∈ S4, then adding {w, u, v} and ⌊ l−1

2
⌋ children of v to S4

produces a global defensive alliance of T . If p /∈ S4, then adding {x, u, v} and
⌊ l−1

2
⌋ children of v to S4 produces a global defensive alliance of T . So γa(T ) ≤

|S4| + 3 + ⌊ l−1

2
⌋ ≤ n−4−l+s4

2
+ l+5

2
= n+s

2
. Furthermore, suppose γa(T ) = n+s

2
.

Then l is odd and γa(T4) = n4+s4

2
. So, T4 ∈ ξ. By Lemma 2.2, we can choose

a γa(T4)-set S∗ such that p ∈ S∗ with |NT4
[p] ∩ S∗| > |NT4

(p) ∩ (V (T4) − S∗)|.
Then adding {u, v} and l−1

2
children of v to S∗ produces a global defensive

alliance of T . So γa(T ) ≤ |S∗| + 2 + l−1

2
≤ n+s−2

2
< n+s

2
, which is impossible.
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Hence, γa(T ) < n+s
2

.

Now we assume that dT (p) = 2. Let q be the parent of p. Let T5 be obtained
from T by deleting vertices of {p, w, x, u} and adding edge qv. Let T5 have
order n5 and support vertices number s5. It follows that n5 ≥ 3. Applying
the inductive hypothesis to T5, γa(T5) ≤ n5+s5

2
. Let S5 be a γa(T5)-set. Then

n = n5 + 4 and s = s5. Then S5 ∪ {p, u}, S5 ∪ {p, w} or S5 ∪ {w, x} is a
global defensive alliance of T . Hence, γa(T ) ≤ |S5| + 2 ≤ n−4+s5

2
+ 2 = n+s

2
.

Furthermore, suppose γa(T ) = n+s
2

. Then l is odd, γa(T5) = n5+s5

2
and T5 ∈ ξ.

Hence T ∈ ξ. �
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