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Abstract

Let cm,n be the number of weighted partitions of the positive integer n with
exactly m parts, 1 ≤ m ≤ n. For a given sequence bk, k ≥ 1, of part type counts
(weights), the bivariate generating function of the numbers cm,n is given by the infi-
nite product

∏∞
k=1(1−uzk)−bk . Let D(s) =

∑∞
k=1 bkk

−s, s = σ+iy, be the Dirichlet
generating series of the weights bk. In this present paper we consider the random
variable ξn whose distribution is given by P (ξn = m) = cm,n/(

∑n
m=1 cm,n), 1 ≤

m ≤ n. We find an appropriate normalization for ξn and show that its limiting
distribution, as n → ∞, depends on properties of the series D(s). In particular, we
identify five different limiting distributions depending on different locations of the
complex half-plane in which D(s) converges.

1 Introduction and Statement of the Results

A weighted partition of the positive integer n is a multiset of size n whose decomposition
into a union of disjoint components (parts) satisfies the following condition: for a given
sequence of non-negative numbers {bk}k≥1, a part of size k appears in exactly one of bk
possible types. For more details and examples of multisets, we refer the reader e.g. to
[3; Sect. 2.1 and 2.2]. Let cm,n be the number of weighted partitions of n, which contain
exactly m parts (1 ≤ m ≤ n). It is known that, for a given parametric sequence {bk}k≥1,
the bivariate generating function f(u, z) of the numbers cm,n is of Euler’s type, namely,

f(u, z) = 1 +
∑

n≥1

∑

1≤m≤n

cm,nu
mzn =

∞
∏

k=1

(1 − uzk)−bk , | u |≤ 1, | z |< 1 (1.1)
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(see [25; Sect. 3.14]). Let cn =
∑n

m=1 cm,n be the total number of weighted partitions of
n. We introduce the uniform probability measure P on the set of weighted partitions of
n assuming that the probability 1/cn is assigned to each n-partition. Furthermore, let ξn
denote the number of parts in a random partition of n. With respect to the probability
measure P , ξn becomes a random variable, defined on the set of all weighted partitions of
n. Its distribution is given by

P (ξn = m) =
cm,n

cn
, 1 ≤ m ≤ n. (1.2)

If we let

ϕn(u) =

n
∑

m=1

P (ξn = m)um, | u |≤ 1,

to denote the probability generating function of ξn, then (1.1) can be written as

f(u, z) = 1 +
∞
∑

n=1

cnϕn(u)zn =
∞
∏

k=1

(1 − uzk)−bk . (1.3)

Setting u = 1, we obtain the generating function of the numbers cn:

f(1, z) = 1 +
∞
∑

n=1

cnz
n =

∞
∏

k=1

(1 − zk)−bk . (1.4)

Many authors have investigated the asymptotic behavior of the Taylor coefficients of
f(1, z) in several particular cases. A fairly general scheme of assumptions on the para-
metric sequence {bk}k≥1 was proposed by Meinardus [16], who determined the asymptotic
of the numbers cn as n→ ∞. His approach is based on considering two generating series:

D(s) =
∞
∑

k=1

bkk
−s, s = σ + iy, (1.5)

and

G(z) =
∞
∑

k=1

bkz
k, | z |≤ 1. (1.6)

Below we give Meinardus’ scheme of conditions. Throughout the paper by ℜ(z) and ℑ(z)
we denote the real and imaginary part of the complex number z, respectively.

(M1) The Dirichlet series (1.5) converges in the half-plane σ > r > 0 and there is
a constant C0 ∈ (0, 1), such that the function D(s) has an analytic continuation to the
half-plane {s : σ ≥ −C0} on which it is analytic except for the simple pole at s = r with
residue A > 0.

(M2) There exists a constant C1 > 0 such that

D(s) = O(| y |C1), | y |→ ∞,
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uniformly for σ ≥ −C0.
(M3) There are constants C2 > 0 and ν > 0, such that the function g(x) = G(e−x), x =

δ + 2πiα, α real and δ > 0 (see (1.6)) satisfies

ℜ(g(x)) − g(δ) ≤ −C2δ
−ν , | arg(x) |> π/4, 0 6=| α |≤ 1/2,

for enough small values of δ.
The first condition specifies the domain H in which D(s) has an analytic continuation.

The second is related to the asymptotic behavior of D(s) whenever |ℑ(s)| → ∞, under
a fixed σ ≥ −C0. Functions, which are bounded by O(|ℑ(s)|c), 0 < c < ∞, in certain
domain, as |ℑ(s)| → ∞, are called functions of finite order. It is known that the sum of the
Dirichlet series in (1.5) satisfies the finite order property in its half-plane of convergence
(see e.g. [21; Sect. 9.4]). Meinardus’ second condition requires that the same holds for
the analytic continuation of D(s) in the domain H. Finally, Meinardus’ third condition
implies a bound on ℜ(G(e−x)) (see (1.6)) for certain specific complex values of x. In some
cases its verification is technically complicated. Recently, Granovsky et al. [7] weakened
it and obtained Meinardus’ theorem for the asymptotic of the numbers cn under a more
general condition, which we state below.

(MGSE) For enough small δ > 0 and any µ > 0,

∞
∑

k=1

bke
−kδ sin2 (πkα) ≥

(

1 +
r

2
+ µ
) 2

log 5
| log δ |,

where
√
δ ≤ α ≤ 1/2.

Throughout the paper we assume that conditions (M1), (M2) and (MGSE) (or (M3))
are satisfied. Our aim is to show that the number of parts ξn in a random weighted
partition, appropriately normalized, converges in distribution as n → ∞. We obtain
five different limiting distributions depending on values of the parameter r (see condition
(M1)). Furthermore, recalling the exact distribution (1.2) of ξn, we point out that our
results may be also interpreted in terms of the asymptotic of the combinatorial numbers
cm,n. The range of values of m is specified by the corresponding scale factor and change
of the origin in the weak convergence of ξn to a non-degenerate probability distribution.
Our study is also motivated by several old and recent results in this direction, obtained for
particular sequences of weights {bk}k≥1 satisfying Meinardus’ conditions with a specific
value of the parameter r (see condition (M1)). Below we give a brief review, which includes
important results on the limiting behavior of the random variable ξn.

Consider first the simplest case of the uniform parametric sequence bk = 1, k ≥ 1.
For the Dirichlet series (1.5), we have D(s) = ζ(s). (Throughout the paper ζ(s) =
∑∞

k=1 k
−s, s = σ + iy, will denote the Riemann zeta function.) It follows that condition

(M1) holds with r = 1 (see e.g. [24; Sect. 13.13]). In this case we encounter the so-
called linear integer partitions (for more details, various properties and combinatorial
interpretations, see [2] and [25; Sect. 3.14-3.16]). Erdős and Lehner [6] were apparently
the first who have studied integer partitions using a probabilistic approach. As a matter
of fact, they found an appropriate normalization for ξn in this case and showed that
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πξn/(6n)1/2 − log ((6n)1/2/π) converges weakly, as n → ∞, to a random variable having
the doubly exponential (extreme value) probability distribution. A local version of their
theorem was derived later by Auluck et al. [4].

The next classical result in this area was obtained by Haselgrove and Temperley [9].
They found the asymptotic behavior of the numbers cm,n in a particular range of values
of m under certain set of conditions on the pairs (k, bk), k ≥ 1, and established conver-
gence to a non-Gaussian limiting distribution for ξn. One of their conditions implies that
Meinardus’ parameter r is < 2. Haselgrove and Temperley’s results were extended in some
respects by Richmond [19] under the restriction r < 2. Lee [14] introduced a proper scale
factor for ξn and obtained a limiting distribution under Meinardus’ scheme of conditions
whenever r < 1.

Furthermore, Haselgrove and Temperley [9, p. 237] claimed that Gaussian law would
appear as a limiting distribution for the number of parts in a random weighted partition
of n if r ≥ 2, however, a formal proof was not given in their paper. This claim was
confirmed in [12], where the particular case bk = k, k ≥ 1, was considered. Under this
setting, D(s) = ζ(s − 1) and therefore r = 2. This case has important combinatorial
interpretation. It turns out that the generating function f(1, z) (see (1.4)) enumerates
the plane partitions of n and ξn equals the sum of the diagonal parts (the trace) of the two-
dimensional array that represents n as a double sum of non-negative integers. (For more
details on various properties of plane partitions and their applications to combinatorics
and analysis of algorithms, we refer the reader to [2, Chap. 11], [18; Chap. 11] and [20;
Chap. 7].)

The problem on the asymptotic of the number of components of the other two types
of decomposable structures - assemblies and selections - was studied in detail by Hwang
[11].

Weighted partitions are also associated with the generalized Bose-Einstein model of
ideal gas, where the parameters bk are interpreted as counts of the different types of par-
ticles at energy level k, k = 1, 2, ...; see [22]. One important particular case is whenever
bk = ρkr−1, ρ > 0, k ≥ 1. Granovsky et al. [7] showed that this sequence of parame-
ters satisfies Meinardus’ conditions (M1)-(M3). Vershik and Yakubovich [23] studied the
asymptotic behavior of a general family of probability measures on the set of linear integer
partitions of n. Their model includes the above parametric sequence. These probability
measures are appropriately defined using the infinite product (1.4). The main goal of
their paper is the study of the limiting distribution of the maximum particle energy of a
system whose total energy grows. It was shown that the doubly exponential distribution
appears as a limiting one for this model. As a particular case, Erdős and Lehner’s result
[6] was also obtained.

Before stating our main results, for the sake of brevity, we introduce the following
notation:

Ln(r) =

(

n

AΓ(r + 1)ζ(r + 1)

) 1
r+1

, n ≥ 1, (1.7)

where the constants r and A are those defined by condition (M1).

the electronic journal of combinatorics 18 (2011), #P206 4



Theorem 1 Suppose that the parameters bk, k ≥ 1, satisfy conditions (M1), (M2) and
(MGSE) (or (M3)). Then, the limiting distributions of the random variable ξn, as n→ ∞,
in the whole range of values of r are given in parts (i) - (v) below as follows.

(i) If r < 1, then ξn/Ln(r) converges in distribution to a random variable ξ with
moment generating function

E(etξ) = g1(t) = eD(1)t

∞
∏

k=1

(

1 − t

k

)−bk

e−bkt/k, t ∈ (−1, 1), (1.8)

where D(1) denotes the value of the Dirichlet series (1.5) at s = 1.
(ii) If r = 1, then ξn/Ln(1)−A logLn(1) converges in distribution to a random variable

ξ with moment generating function

E(etξ) = g2(t) = eCt
∞
∏

k=1

(

1 − t

k

)−bk

e−bkt/k, t ∈ (−1, 1), (1.9)

where the constant C is determined by condition (M1) as follows:

C = D(s+ 1) − A

s
|s=0 . (1.10)

(iii) If 1 < r < 2, then ξn/Ln(r) − AΓ(r)ζ(r)Lr−1
n (r) converges in distribution to a

random variable ξ with moment generating function g1(t) given by (1.8).
(iv) If r = 2, then

lim
n→∞

P

(

ξn − µn

σn
≤ x

)

=
1√
2π

∫ x

−∞

e−y2/2dy, −∞ < x <∞, (1.11)

where µn and σn are given by

µn = Aζ(2)L2
n(2), σn = Ln(2)

(

A logn

3

)1/2

. (1.12)

(v) If r > 2, then

lim
n→∞

P

(

ξn − µ′
n

σ′
n

≤ x

)

=
1√
2π

∫ x

−∞

e−y2/2dy, −∞ < x <∞, (1.13)

where

µ′
n = AΓ(r)ζ(r)Lr

n(r),

σ′
n =

(

AΓ(r)

(

ζ(r − 1) − (r − 1)2ζ2(r)

r(r + 1)ζ(r + 1)

)

Lr
n(r)

)1/2

. (1.14)
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Remark 1. Parts (iv) and (v) of our theorem prove Haselgrove and Temperley’s claim
[9; p. 237] about the asymptotic normality of ξn whenever r ≥ 2.

Remark 2. If r < 2, the limiting distribution of ξn/Ln(r) is non-Gaussian. It coincides
with the limiting distributions obtained in [9,19,14].

Remark 3. Let A = {ak, k ≥ 1}, 0 < a1 ≤ a2 ≤ ..., denote a sequence of positive
integers satisfying

∞
∑

k=1

1

a2
k

<∞. (1.15)

Consider the class of entire functions K(t) of the complex variable t, defined by

K(t) = e−bt
∞
∏

k=1

(

1 − t

ak

)

et/ak , (1.16)

where b is given real constant. The functions K(t) (without any restriction on the reals
ak, k ≥ 1) have been studied long ago by Laguerre, who has shown that representation
(1.16) uniquely describes the class of functions, which are uniform limits of polynomials
with only real roots. A comprehensive description of this theory is given in the book of
Hirschman and Widder [10]. To obtain an alternative expression for K(t) and describe
its relationship with parts (i)-(iii) of the theorem, we notice that the positive integers ak

of the above sequence A may repeat their values. So, for any positive integer k, we let bk
to denote the number of those aj ’s which are = k. Then, we can rewrite (1.16) as follows:

K(t) = e−bt
∞
∏

k=1

(

1 − t

k

)bk

ebkt/k. (1.17)

Furthermore, ifD(s) denotes the Dirichlet generating series (1.5) of the sequence bk, k ≥ 1,
then (1.15) implies that

∞
∑

k=1

1

a2
k

=

∞
∑

k=1

bk
k2

= D(2) <∞.

Therefore, the parameter r from condition (M1) is < 2. Consider now the function 1/K(t).
It is meromorphic and has poles at t = ak, k ≥ 1. Hirschman and Widder [10; Chap. III,
Sect. 6] showed that if K(t) satisfies (1.15) and is different from e−btS(t), where S(t) is a
polynomial, then the inverse

F (x) =
1

2πi

∫ i∞

−i∞

ext

K(t)
dt, −∞ < x <∞, (1.18)

is a probability density function, which is infinitely many times differentiable and has
mean −b and variance

∑∞
k=1 1/a2

k = D(2). Recalling (1.8), (1.9) and (1.17), we see that
the moment generating functions gj(t), j = 1, 2, are functions of the type:

1

K(t)
= ebt

∞
∏

k=1

(

1 − t

k

)−bk

e−bkt/k,
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i.e. their inverses (the probability density functions of the random variable ξ) can be
computed using formula (1.18). Moreover, b = D(1) in cases (i) and (iii) (see eq. (1.8))
and b = C in case (ii) (see eq.(1.9)). It seems that Haselgrove and Temperley were the
first who applied functions of the type 1/K(t) to problems related to integer partitions.

Remark 4. The remark above and other combinatorial problems (see e.g. the “money
changing problem” discussed in detail in [25; Sect. 3.15]) imply that one has to assume
that bk, k ≥ 1, are non-negative integers. On the other hand, it turns out that this
requirement is not necessary for the analytical approach used in this paper. That is why,
further on we shall consider bk, k ≥ 1, as a sequence of real non-negative numbers.

The method of our proof is based on a probabilistic representation for the Taylor coef-
ficients in (1.3) and (1.4). It is due to Khintchine [13] who applied it in a thermodynamics
context. We also use complex integration and rely our results on the asymptotic represen-
tation of the numbers cn, presented in [7]. We choose the free parameter (denoted further
by δ) that locates the center of Khintchine’s auxiliary probability distribution in the same
way as in [7]. The subsequent passage to the limit, as n→ ∞, is based on a recent mod-
ification of Curtiss moment generating function continuity theorem [5], established by
Mukherjea et al. [17]. This modification shows that the convergence in distribution holds
if the corresponding sequence of moment generating functions converges pointwise in an
open interval not necessarily containing the origin.

We organize our paper as follows. Section 2 includes Khinthine’s probabilistic formula
and some auxiliary results, necessary for its further asymptotic analysis. Some proofs are
omitted since they are given in [7]. The proof of Theorem 1 is completed in Section 3,
where complex analysis is applied to obtain the limiting distributions in each of the cases
(i)-(v). Section 4 contains three important combinatorial examples. We show how our
theorem applies to linear and plane partitions of n and to the generalized Bose-Einstein
model of ideal gas [22,23].

2 Preliminary Results

First, we introduce the sequence of truncated generating functions fn:

fn(u, z) =
n
∏

k=1

(1 − uzk)−bk =
∑

1≤k≤l≤n

ck,lu
kzl, |u| ≤ 1, |z| < 1, n ≥ 1, (2.1)

corresponding to the right-hand sides of (1.1) and (1.3). Setting z = e−δ+2πiα, α ∈ R,
where δ > 0 is a free parameter and applying Cauchy coefficient formula, we obtain

cnϕn(u) = eδn

∫ 1

0

f(u, e−δ+2πiα)e−2πiαndα (2.2)

= eδn

∫ 1

0

(

n
∏

k=1

(1 − ue−δk+2πiαk)−bk

)

e−2πiαndα

= eδn

∫ 1

0

fn(u, e−δ+2πiα)e−2πiαndα.
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The last two equalities follow from the orthogonality property of the functions e−2πiαn, n ≥
1. On the other hand, for u ∈ (0, 1], we have the binomial expansion

(1 − uzk)−bk =

∞
∑

j=0

(

bk + j − 1

j

)

ujzkj.

Based on it, we introduce the sequence of independent and integer valued random variables
Xk = Xk(u, δ), k ≥ 1, depending on bk, u and δ, in the following way:

P (Xk = jk) =

(

bk + j − 1

j

)

uje−δkj(1 − ue−δk)bk , j ≥ 0, 0 < u ≤ 1. (2.3)

Hence

E(e2πiαXk(u,δ)) =

(

1 − ue−δk

1 − ue−δk+2πiαk

)bk

, k ≥ 1.

Furthermore, let

Zn = Zn(u, δ) =
n
∑

k=1

Xk(u, δ), n ≥ 1. (2.4)

By the independence assumption on Xk and (2.1),

ψn(α, u) := E(e2πiαZn(u,δ))

=
n
∏

k=1

(

1 − ue−δk

1 − ue−δk+2πiαk

)bk

=
fn(u, e−δ+2πiα)

fn(u, e−δ)
, n ≥ 1. (2.5)

Therefore, using the inversion formula for characteristic functions [15; Sect.3.2] and (2.2),
we obtain

cnϕn(u) = enδfn(u, e−δ)P (Zn(u, δ) = n), n ≥ 1.

Setting here u = 1, we arrive at the representation for the numbers cn, n ≥ 1, given in [7;
formula (31)]:

cn = enδfn(1, e−δ)P (Zn(1, δ) = n).

Hence, for any value of the parameter δ > 0,

ϕn(u) =
fn(u, e−δ)

fn(1, e−δ)

P (Zn(u, δ) = n)

P (Zn(1, δ) = n)
, n ≥ 1. (2.6)

Next, we propose the choice of the parameter δ. We take δ = δn to be the solution of the
equation

E(Zn(1, δ)) = −(log fn(1, e−δ))′ =
n
∑

k=1

kbke
−kδn

1 − e−kδn

= n, n ≥ 1 (2.7)

(recall (2.3) - (2.5)). In thermodynamics this quantity has the meaning of the entropy
of the system. This important fact that clarifies the choice of the free parameter was

the electronic journal of combinatorics 18 (2011), #P206 8



observed by Khintchine [13; Chap. VI]; see also [7] and the references therein for further
developments of the method.

The asymptotic form of the unique solution of (2.7) was determined by Granovsky et
al. [7; formula (43)]. We have

δ = δn = L−1
n (r) +

D(0)

r + 1
n−1 +O(n−1−β), (2.8)

where Ln(r) is the quantity given by (1.7) and

β =

{

C0

r+1
if C0 ≥ r,

r
r+1

if C0 < r.

Further, we set u = e−wδ and F(w, δ) = f(e−wδ, e−δ), w ≥ 0. In view of (1.1), we have

F(w, δ) =

∞
∏

k=1

(1 − e−δ(k+w))−bk . (2.9)

F(w, δ) admits an integral representation, similar to that established in [16,7] for F(0, δ).
Namely, for any δ > 0 and w ≥ 0, we have

logF(w, δ) =
1

2πi

∫ 1+r+i∞

1+r−i∞

δ−sΓ(s)D(s, w)ζ(s+ 1)ds, (2.10)

where D(s, w) is the shifted Dirichlet series

D(s, w) =

∞
∑

k=1

bk(k + w)−s, s = σ + iy, (2.11)

and D(s, 0) = D(s) (see (1.5)). In the next lemma we establish a series expansion of
D(s, w) in powers of w and show that it is valid for all | w |< 1. It allows the computation
of the integral in (2.10) via residue theorem. In what follows we denote by {r} the
fractional part of r.

Lemma 1 Suppose that the sequence bk, k ≥ 1, is such that the associated Dirichlet series
D(s) satisfies conditions (M1) and (M2). Then,

(i) for fixed s with σ ≥ −C0, the shifted Dirichlet series (2.11) has the following Taylor
series expansion in w:

D(s, w) = D(s) +
∞
∑

l=1

(−w)l

l!

Γ(s+ l)

Γ(s)
D(s+ l), s = σ + iy; (2.12)

(ii) the function D(s, w) is meromorphic in s for σ ≥ −C0, C0 ∈ (0, 1), and has only
simple poles at s = r, r − 1, ..., d(r), where

d(r) =







1 if r is an integer,
{r} if {r} > 0 and {r} − 1 ≤ −C0,
{r} − 1 if {r} > 0 and {r} − 1 > −C0;

(2.13)

(iii) the series in the right-hand side of (2.12) converges absolutely for |w| < 1 if
σ ≥ −C0 and s 6= r, r − 1, ..., d(r).
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Proof. (i) For σ > r, differentiating the series (2.11) with respect to w, we obtain

∂l

∂wl
D(s, w) |w=0 = (−s)(−s− 1)...(−s− l + 1)D(s+ l, 0)

= (−1)ls(s+ 1)...(s+ l − 1)D(s+ l, 0), l = 1, 2, ...,

which yields the Taylor series expansion in (2.12). The analytical continuation of D(s+
l, 0) = D(s + l), stated in condition (M1), implies that (2.12) holds for σ ≥ −C0 and
proves part (ii) of the lemma. Finally, the absolute convergence, stated in part (iii),
follows immediately from the ratio test, Stirling’s formula for the gamma function [24;
Sect.12.33] and the fact that | D(s + l) |→ b1 as l → ∞, for any fixed s satisfying the
conditions of (iii).

Remark. Consider again the parametric sequence bk = 1, k ≥ 1, which leads to the
enumeration of the linear integer partitions of n (see (1.4)). It is clear that (2.11) implies
that

D(s, w) =

∞
∑

k=0

(k + 1 + w)−s = ζ(s, 1 + w), (2.14)

where ζ(s, x) denotes the Hurwitz zeta function [24; Sect. 13.11]. From the Taylor series
expansion (2.12) it follows that

D(0, w) = ζ(0, 1 + w) = ζ(0) + (−w)sζ(s+ 1) |s=0= −1

2
− w,

since in this case D(s) = ζ(s) and ζ(0) = −1/2 [24; Sect. 13.14]. By (2.14) we have
ζ(s, w) = ζ(s, 1 + w) + w−s, and thus we obtain the known formula for the Hurwitz zeta
function

ζ(0, w) = −1

2
− w + 1 =

1

2
− w

(see [24; Sect. 13.21]). In a similar way, one can also recover the formulas for ζ(−k, w), k =
1, 2, ..., given in [24; Sect. 13.14].

Our further analysis of the asymptotic behavior of the generating function ϕn(e−wδn)
stems from eq. (2.6). To study the asymptotic behavior of the second factor in its right-
hand side we need to introduce the following notations for the semi-invariants of the
random variable Zn(u, δ):

Mn(u) = E(Zn(u, δ)) =
1

2πi

∂

∂α
logψn(α, u) |α=0

= − ∂

∂δ
log fn(u, e−δ) =

n
∑

k=1

ukbke
−δk

1 − ue−δk
, (2.15)

B2
n(u) = V ar(Zn(u, δ)) =

1

(2πi)2

∂2

∂α2
logψn(α, u) |α=0

=
∂2

∂δ2
log fn(u, e−δ) =

n
∑

k=1

uk2bk
e−δk

(1 − ue−δk)2
, (2.16)
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Tn(u) =
1

(2πi)3

∂3

∂α3
logψn(α, u) |α=0

= − ∂3

∂δ3
log fn(u, e−δ) =

n
∑

k=1

uk3bk
e−δk(1 + ue−δk)

(1 − ue−δnk)3
. (2.17)

(For the definition of the semi-invariants, see [15; Sect. 2.4].) The following lemma shows
how F(w, δ) (see (2.9) and (2.10)) and its logarithmic derivatives with respect to δ will
be used in our further computations.

Lemma 2 Suppose that the sequence bk ≥ 0, k ≥ 1, is such that the associated Dirichlet
series D(s), defined by (1.5), satisfies the conditions of Lemma 1. If δn is the solution of
(2.7) given by (2.8), then

log fn(e−wδn , e−δn) = logF(w, δn) + Ωn,1(δn, w), (2.18)

Mn(e−wδn) = − ∂

∂δn
logF(w, δn) + Ωn,2(δn, w), (2.19)

B2
n(e−wδn) =

∂2

∂δ2
n

logF(w, δn) + Ωn,3(δn, w), (2.20)

Tn(e−wδn) = − ∂3

∂δ3
n

logF(w, δn) + Ωn,4(δn, w), (2.21)

where Ωn,j(δn, w) = o(δ−j
n nr+j−1e−nδn) = o(1), j = 1, 2, 3, 4, as n → ∞ uniformly for

0 ≤ w < 1.

Proof. From (2.1) and (2.9) it follows that

log fn(e−wδn , e−δn) = logF(w, δn) + Ωn,1(δn, w), (2.22)

where
Ωn,1(δn, w) =

∑

k≥n+1

bk log (1 − e−(k+w)δn).

To estimate the error term in (2.22), we use the inequality | log (1 − x)| ≤ x
1−x

for 0 ≤ x <
1 and the fact that x

1−x
is an increasing function. Thus, for any w ∈ [0, 1) and sufficiently

large n, we observe that

|Ωn,1(δn, w)| ≤
∑

k≥n+1

bk
e−(k+w)δn

1 − e−(k+w)δn

≤
∑

k≥n+1

bk
e−kδn

1 − e−kδn

= O

(

∑

k≥n+1

bke
−kδn

)

, (2.23)

since (2.8) and (1.7) imply that nδn → ∞ as n→ ∞. Further on, we base our argument
upon a bound on the rate of growth of the parameters bk, as k → ∞. Granovsky et al.
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[7; p. 309] (see also the references therein) showed that conditions (M1), (M2) and a
Tauberian theorem due to Wiener-Ikehara imply that bk = o(kr) as k → ∞. Hence we
have

∑

k≥n+1

bke
−kδn = o

(

∑

k≥n+1

kre−kδn

)

= o

(
∫ ∞

n+1

xre−xδndx

)

= o

(

δ−r−1
n

∫ ∞

nδn

yre−ydy

)

= o(δ−1
n nre−nδn), n→ ∞,

where the last estimate follows immediately from L’Hopital’s rule. Furthermore (2.8) and
(1.7) yield δ−1

n nre−nδn = o(1). Combining this with (2.22) and (2.23), we obtain (2.18)
and the o-estimate for the function Ωn,1(δn, w). The proofs of (2.19)-(2.21) are similar.

With the aid of (2.19)-(2.21) and complex integration one can find the asymptotic
behavior of the semi-invariants (2.15)-(2.17) if u = e−wδn and n → ∞. The argument is
based on a computation of the residuals of the integrand in (2.10), demonstrated in Section
3. Therefore, in the proof we shall refer sometimes to formulas established subsequently
in Section 3.

Lemma 3 Suppose that the sequence bk, k ≥ 1, satisfies the conditions of Lemma 1.
Then, as n→ ∞,

Mn(e−wδn) =















n+O(δ
−max {r,1}
n ) if r < 2,

n− Aζ(2)wδ−2
n +O(δ−1

n ) if r = 2,
n− AΓ(r)(r − 1)ζ(r)wδ−r

n

+O(w2δ−r+1
n ) +O(δ−1

n ) if r > 2,

(2.24)

B2
n(e−wδn) ∼ K2δ

−r−2
n , (2.25)

Tn(e−wδn) ∼ K3δ
−r−3
n , (2.26)

uniformly for 0 ≤ w < 1, where the constants Kj are given by Kj = AΓ(r+j)ζ(r+1), j =
2, 3.

Proof. From (2.10), (3.2) and (3.3) it follows that

logF(w, δn) = Hn(w) +
1

2πi

∫ 1+r+i∞

1+r−i∞

δ−s
n Γ(s)D(s)ζ(s+ 1)ds. (2.27)

Hn(w) can be evaluated using (3.11), (3.12) and (3.14). The asymptotic of the last
complex integral as δn → 0 is given in [7] (see formula (39)). Substituting expression
(3.12) for Hn(w) in the right-hand side of (2.27), we obtain

logF(w, δn) = AΓ(r)
∑

1≤j≤d(r)

δ−(r−j)
n ζ(r − j + 1)(−w)j/j! + D̃′

s(0, w)

−D̃(0, w) log δn + AΓ(r)ζ(r + 1)δ−r
n +D′(0) −D(0) log δn +O(δC0

n )

= AΓ(r)
∑

1≤j≤d(r)

δ−(r−j)
n ζ(r − j + 1)(−w)j/j! +D′

s(0, w)

−D(0, w) log δn + AΓ(r)ζ(r + 1)δ−r
n +O(δC0

n ).
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As in [7; p. 321], we differentiate logF(w, δn) with respect to δn and observe that

− ∂

∂δn
logF(w, δn) = AΓ(r)

∑

1≤j≤d(r)

(r − j)δ−r−1+j
n ζ(r − j + 1)(−w)j/j!

+AΓ(r + 1)ζ(r + 1)δ−r−1
n +D(0, w)δ−1

n +O(δC0−1
n ). (2.28)

The asymptotic behavior of the leading term in the right-hand side of this relation can
be obtained using (2.8) and (1.7). So we deduce that

AΓ(r + 1)ζ(r + 1)δ−r−1
n

= n

(

1 +
D(0)

(r + 1)AΓ(r)ζ((r + 1)
n− r

r+1 +O(n− r

r+1
−β)

)−(r+1)

= n

(

1 − D(0)

AΓ(r)ζ(r + 1)
n− r

r+1 +O(n− r

r+1
−β)

)

= n− D(0)

AΓ(r)ζ(r + 1)
n

1
r+1 +O(n

1
r+1

−β) = n +O(δ−1
n ).

Replacing this into (2.28) and using (2.19), we obtain (2.24). The asymptotic equivalences
(2.25) and (2.26) follow in the same but easier way from (2.20) and (2.21), respectively.
It is readily seen that the leading terms of the derivatives ∂j logF(w, δn)/∂δ

j
n, j = 2, 3 are

equal to Kjδ
−r−j
n , j = 2, 3, which completes the proof of the lemma.

Now we are ready to establish local limit theorems for the random variable Zn(u, δn)
whenever u approaches 1 in appropriate ways. The proofs stem from (2.5). We shall use an
expansion of the semi-invariant (cumulant) generating function logψn(α, u) of the random
variable Zn(u, δn) (see [15; Sect. 2.4]). This generating function is uniquely determined
for any u ∈ (0, 1] in a neighborhood of α = 0 taking the branch of the logarithmic function
for which logψn(0, u) = 0. (Such a neighborhood always exists since ψn(0, u) = 1 and
ψn(α, u) is continuous in α and u ∈ (0, 1]).

Lemma 4 Suppose that the sequence bk, k ≥ 1, satisfies conditions (M1), (M2) and
(MGSE)(or (M3)). If δn is the solution of (2.7) given by (2.8), Zn(u, δ), n ≥ 1, are
the random variables defined by (2.3) and (2.4) and B2

n(1) is defined by (2.16), then, for
u = un = e−wδn,

P (Zn(un, δn) = n) ∼ 1
√

2πB2
n(1)

as n → ∞, whenever the parameter r from condition (M1) and the sequence un, n ≥ 1,
satisfy one of the following three conditions:

(i) 0 < r <∞ and un = 1;
(ii) 0 < r < 2 and un = e−wδn, where 0 < w < 1;
(iii) r = 2 and un = e−wnδn, where 0 < wn = O(1/

√
logn).

Finally,
(iv) if r > 2 and un = e−wnδn, where

0 < wn = wn(t) = −tδ
r

2
−1

n /(AΓ(r)ζ(r− 1))1/2, (2.29)
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and t is a fixed negative real, then, as n→ ∞,

P (Zn(un, δn) = n) ∼ e−λ2
rt2/2

√

2πB2
n(1)

, λr =
(r − 1)ζ(r)

√

r(r + 1)ζ(r − 1)ζ(r + 1)
. (2.30)

Proof. Part (i) of this lemma is just the local limit theorem for Zn(1, δn) proved in [7;
Sect. 6]. In order to prove the local limit theorem in the remaining three cases, we follow a
standard argument, starting with an application of the inversion formula for characteristic
functions [15; Sect. 3.2]. Next, as in [7; Sect. 6], we break up the corresponding integral
into a sum of two integrals in the following way:

P (Zn(un, δn) = n) =

∫ 1/2

−1/2

ψn(α, un)e
−2πinαdα = I1(un) + I2(un), (2.31)

where

I1(un) =

∫ α0

−α0

ψn(α, un)e
−2πinαdα, (2.32)

I2(un) =

∫ −α0

−1/2

ψn(α, un)e
−2πinαdα+

∫ 1/2

α0

ψn(α, un)e
−2πinαdα,

and

α0 = α0(n) = δ
r+2
2

n log1/3 n. (2.33)

I1(un) is estimated using (2.15)-(2.17) and the expansion of the generating function of the
semi-invariants of Zn(un, δn):

ψn(α, un)e
−2πinα = exp (logψn(α, un) − 2πinα)

= exp(α

(

∂

∂α
logψn(α, un)

)

|α=0 +
α2

2

(

∂2

∂α2
logψn(α, un)

)

|α=0

+O

(

α3

(

| ∂3

∂α3
logψn(α, un) |

)

|α=0

)

− 2πinα)

= exp(2πiα(Mn(un) − n) − 2π2α2B2
n(un)

+O(α3Tn(un))), | α |≤ α0. (2.34)

Granovsky et al. [7; Lemma 2] showed that

B2
n(1) ∼ K2δ

−r−2
n , Tn(1) ∼ K3δ

−r−3
n , (2.35)

where the values of the constants Kj , j = 2, 3, are given in the statement of Lemma 3.
We notice that the first asymptotic equivalence in (2.35) and (2.25) imply that

B2
n(un)

B2
n(1)

→ 1, n→ ∞. (2.36)

Then, by (2.25), (2.26) and (2.33),

α0Bn(un) ∼ K
1/2
2 log1/3 n→ ∞, lim

n→∞
α3

0Tn(un) = 0. (2.37)
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Furthermore, (2.33), the first two equalities of (2.24) and conditions (ii) and (iii) for un

imply the following estimates:

α(Mn(un) − n) =











O(δ
r/2
n log1/3 n) if r ≤ 1,

O(δ
1−r/2
n log1/3 n) if 1 < r < 2,

O(log−1/6 n) if r = 2

uniformly for | α |≤ α0. Therefore, the first and third term in the last exponent of (2.34)
tend to 0 as n → ∞ and hence the leading term in it equals −2π2α2Bn(un). Thus,
inserting this exponent into the integrand of (2.32), we get

I1(un) =

∫ α0

−α0

exp (−2π2α2Bn(un) + o(1))dα

=
1

Bn(un)

∫ α0Bn(un)

−α0Bn(un)

exp (−2π2z2 + o(1))dz

∼ 1

2πBn(1)

∫ ∞

−∞

e−z2/2dz =
1

√

2πB2
n(1)

, n→ ∞. (2.38)

The asymptotic equivalence above follows from (2.36) and the first part of (2.37). An
estimate for I2(un) can be obtained as in [7; Sect. 6]. The argument is essentially based
on condition (MGSE). In this way one can establish that I2(un) = o(I1(un)), n → ∞.
Combining this with (2.31), (2.32) and (2.38), we complete the proof of parts (ii) and (iii)
of the lemma.

To prove part (iv) we need to find the asymptotic of the first term of the exponent of
(2.34). Using the last part of (2.24), under the assumption on un, we find that

Mn(un) − n =
AΓ(r)(r − 1)ζ(r)δ

−1−r/2
n

(AΓ(r)ζ(r− 1))1/2
+O(δ−1

n ).

Substituting again α = z/Bn(un) in (2.32), by (2.25), (2.37) and the inversion formula
for characteristic functions [15; Sect. 3.2], we obtain

I1(un) =
1

Bn(un)

×
∫ α0Bn(un)

−α0Bn(un)

exp

(

2πizt
(r − 1)ζ(r)

√

r(r + 1)ζ(r − 1)ζ(r + 1)
− 2π2z2 + o(1)

)

dz

∼ 1

Bn(1)

∫ ∞

−∞

exp (2πiztλr − 2π2z2)dz

=
1

2πBn(1)

∫ ∞

−∞

exp

(

iytλr −
y2

2

)

dy =
e−λ2

rt2/2

√

2πB2
n(1)

, n→ ∞,

with λr given in (2.30). As in the previous cases, it turns out that I2(un) is negligible,
which completes the proof of the last part of the lemma.
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Lemma 4 implies that the second factor in the right-hand side of (2.6) tends to 1 as
n→ ∞ if w and r satisfy conditions (i)-(iii). Hence in these three cases

ϕn(un) ∼
fn(un, e

−δn)

fn(1, e−δn)
, n→ ∞. (2.39)

If condition (iv) of Lemma 3 holds, then an extra exponential factor appears in (2.6) and
we have

ϕn(un) ∼ e−λ2
rt2/2fn(un, e

−δn)

fn(1, e−δn)
, n→ ∞, (2.40)

where λr is defined by (2.30).
In the next section we show that the ratio in the right-hand side of (2.39) approaches

a finite limit depending on the values of the parameter r.

3 Proof of the Main Result

We start with a brief summary on what we have observed in Section 2.
First, with the aid of Khintchine’s probabilistic representation, we obtained expression

(2.6) for the generating function of the random variable ξn. We specified the choice δ = δn
of the parameter δ from (2.6) by eqs. (2.7) and (2.8). Then, we set u = e−wδn ≤ 1
(0 ≤ w < 1), introduced the function F(w, δn) and found its integral representation
(2.10). The last one involves the Dirichlet series D(s, w) defined by (2.11). Lemma 1
establishes a series expansion in powers of w of the function D(s, w) that converges for
| w |< 1 (in particular, for any w ∈ [0, 1)). It allows a computation of the residuals of
the integrand in (2.10). Lemma 2 explains the role of F(w, δn) in (2.6) and shows how
the first ratio in its right-hand side can be computed. It is also used in the computation
of the semi-invariants Mn(un), B

2
n(un) and Tn(un). This was demonstrated in the next

Lemma 3. Finally, in Lemma 4 we proved a local limit theorem for the random variable
Zn(un, δn). Its proof is essentially based on the results of Lemma 3. Lemma 4 allows one
to study the asymptotic behavior of the second ratio in the right-hand side of (2.6).

We conclude this discussion with some comments on (2.39) and (2.40). First, we notice
that if w and r satisfy conditions (i)-(iii) of Lemma 4, then (2.39) becomes

ϕn(e−wδn) ∼ fn(e−wδn, e−δn)

fn(1, e−δn)
= exp (logF(w, δn) − logF(0, δn) + o(1))

= exp (Hn(w) + o(1)), n→ ∞, (3.1)

where

Hn(w) =
1

2πi

∫ 1+r+i∞

1+r−i∞

δ−s
n Γ(s)ζ(s+ 1)D̃(s, w)ds (3.2)

and
D̃(s, w) = D(s, w) −D(s). (3.3)
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Notice that the conditions of Lemma 4(i)-(iii) imply that either w ∈ [0, 1) is fixed or
0 < w = wn = O(1/

√
log n). Finally, if the conditions of Lemma 3(iv) are satisfied, then

ϕn

(

exp

(

−tδr/2
n

(AΓ(r)ζ(r− 1))1/2

))

(3.4)

∼ exp

(

−λ2
rt

2/2 +Hn

(

−tδr/2−1
n

(AΓ(r)ζ(r− 1))1/2

))

,

−1 < t < 0, r > 2, n→ ∞,

with λr as in (2.30). We recall that the proofs of (3.1) and (3.4) are based on (2.10)-(2.12),
(2.18) and Lemma 4 (i)-(iv).

3.1 Computation of Residuals and Evaluation of Hn(w)

To compute Hn(w) we perform the integration over the contour Qτ of the domain:

{s = σ + iy : −C0 ≤ σ ≤ r + 1, | y |= τ > 0}. (3.5)

Let

Jn(w) =
1

2πi

∫

Qτ

δ−s
n Γ(s)ζ(s+ 1)D̃(s, w)ds (3.6)

be the contour integral corresponding to Hn(w). To perform the computation, we recall
first the following asymptotic properties for the zeta and gamma functions:

ζ(σ + 1 ± iτ) = O(τC2), τ → ∞, C2 > 0, (3.7)

Γ(σ ± iτ) = O(τσ−1/2e−πτ/2), τ → ∞. (3.8)

Eqs. (3.7) and (3.8) hold uniformly in σ from a finite interval (see [24; Sect. 13.5] for
the first one, [1, formula (6.1.45)] and [21; Sect. 4.4.2] for the second one). To estimate
the integral on the left vertical side of Qτ , we notice that, for sufficiently large τ > 0 and
C0 + 1/2 − C1 ≥ 1, expansion (2.12), condition (M2) and (3.8) imply that

| Γ(s)D̃(s, w) | = |
∞
∑

l=1

(−w)l

l!
Γ(s+ l)D(s+ l) |

≤
∑

1≤l≤C0+1/2−C1

| Γ(s+ l)D(s+ l) | w
l

l!

+
∑

l>C0+1/2−C1

| Γ(s+ l)D(s+ l) | w
l

l!

= O(e−πτ/2) +O



τ−{C0+1/2−C1}e−πτ/2





∑

l>C0+1/2−C1

(wτ)l

l!









= O

(

τ−{C0+1/2−C1}e−πτ/2
∞
∑

l=1

(wτ)l

l!

)

= O(τ−pe−τ(π/2−w)),
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where p = {C0 + 1/2 − C1}. It is clear that if C0 + 1/2 − C1 < 1, the last estimate holds
with p = 0. Combining this observation with (3.7), we obtain

∣

∣

∣

∣

1

2πi

∫ −C0+iτ

−C0−iτ

δ−s
n Γ(s)ζ(s+ 1)D̃(s, w)ds

∣

∣

∣

∣

= O

(

δC0
n

∫ ∞

−∞

| y |C2−p e−|y|(π/2−w)dy

)

= O(δC0
n ). (3.9)

The last integral converges at 0 and ±∞ since C2 > 0, 0 ≤ p < 1 and w < 1 < π/2.
Using the uniform convergence of Γ(s)D̃(s, w) whenever −C0 ≤ σ ≤ 1 + r, condition

(M2), (3.7) and (3.8), in a similar way we conclude that both integrals over the horizontal
segments of the contour Qτ tend to 0 as τ → ∞.

Hence, by (3.2), (3.3), (3.5), (3.6) and (3.9),

Hn(w) = Jn(w) +O(δC0
n ), 0 ≤ w < 1. (3.10)

Our proof continues with the application of the residue theorem to the contour integral
Jn(w). From Lemma 1(ii) and (3.3) it follows that the function D̃ has simple poles at
s = r− 1, ..., d(r) whose residuals can be computed using (2.12). Hence, the integrand in
(3.6) has also simple poles at the same points. It is easy to check that the residue at the

point s = r − j, 1 ≤ j ≤ r − d(r), equals AΓ(r)δ
−(r−j)
n ζ(r − j + 1)(−w)j/j!. Denoting by

Vn(r, w) the sum of these residuals, we have

Vn(r, w) = AΓ(r)
∑

1≤j≤r−d(r)

δ−(r−j)
n ζ(r − j + 1)(−w)j/j!. (3.11)

Next, from the Laurent expansions of the Riemann zeta function ζ(s + 1) = 1
s

+ γ + ...
and the gamma function Γ(s) = 1

s
− γ + ..., where γ denotes Euler’s constant, and the

Taylor expansions of the two remaining factors in (3.6), one concludes that the integrand
has also a pole of second order at s = 0 with residue D̃′

s(0, w) − D̃(0, w) log δn. Hence
(3.10) implies that

Hn(w) = Vn(r, w) + D̃′
s(0, w)− D̃(0, w) log δn +O(δC0

n ), 0 ≤ w < 1. (3.12)

The values D̃(0, w) and D̃′
s(0, w) depend on r and w. Their computation stems from the

series expansion (2.12) in Lemma 1. It shows that

D̃(s, w) =
∞
∑

l=1

(−w)l

l!
s(s+ 1)...(s+ l − 1)D(s+ l). (3.13)

If r is not an integer, then the series in the right-hand side of (3.13) represents a function
that is analytic at s = 0 and obviously D̃(0, w) = 0. If r is an integer, then condition
(M1) implies that s = 0 is a simple pole of D(s+ r) with residue A. Writing the Laurent
expansion of D(s+ r), we get that

D̃(0, w) =
(−w)r

r!
s(s+ 1)...(s+ r − 1)

(

A

s
+ C + ...

)

|s=0

=
(−w)r

r!
(s+ 1)...(s+ r − 1)(A+ Cs+ ...) |s=0=

A(−w)r

r
.
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We summarize these two observations as follows:

D̃(0, w) =

{

0 if r is not an integer,
A(−w)r

r
if r is an integer.

(3.14)

To find the value D̃′
s(0, w) if r is not an integer, we have to differentiate the right-hand

side of (3.13) term by term and set there s = 0. If r equals an integer, we can proceed
in the same way with all terms in (3.13) for which l 6= r. If r = 1, then, by the Laurent
expansion D(s + 1) = A

s
+ C + ... (see (1.10)), the first term of the right-hand side of

(3.13) becomes

(−w)s

(

A

s
+ C + ...

)

= (−w)(A+ Cs+ ...),

whose derivative at s = 0 equals C(−w). Using the same argument one can easily
check that, for r = an integer > 1, the derivative of the rth term at s = 0 is equal to
(−w)r

r
(Ahr−1 + C), where hr−1 denotes the (r − 1)th harmonic number: hr−1 = 1 + 1

2
+

...+ 1
r−1

. Defining also h0 = 0, we obtain the following formula:

D̃′
s(0, w) =







∑∞
l=1

(−w)l

l
D(l) if r is not an integer,

∑∞
l=1,l 6=r

(−w)l

l
D(l) + (−w)r

r
(Ahr−1 + C) if r is an integer.

(3.15)

We summarize these computations with a formula for ϕn(e
−wδn) on which we base our

further asymptotic analysis. We obtain it combining (3.1), (3.12), (3.14) and (3.15). We
have

θn(r, w)ϕn(e
−wδn) = exp (D̃′

s(0, w) +O(δC0
n )), 0 ≤ w < 1, (3.16)

where

θn(r, w) =

{

e−Vn(r,w) if r is not an integer,

e−Vn(r,w)δ
A(−w)r

r
n if r is an integer.

(3.17)

Expressions for Vn(r, w) and D̃′
s(0, w) are given in (3.11) and (3.15), respectively. More-

over, if w = wn(t), with wn(t) given by (2.29), by virtue of (3.4) we get

θn(r, wn(t))ϕn(e−wn(t)δn) = exp (−λ2
rt

2/2 + D̃′
s(0, wn(t)) +O(δC0

n )). (3.18)

3.2 The Asymptotic Behavior of ϕn(e
−wδn)

Case (i): 0 < r < 1. From (2.13) it follows that the sum of residues Vn(r, w) in (3.11)
is either 0 (if r − 1 ≤ −C0) or it contains exactly one summand of order O(δ1−r

n ) (if
r − 1 > −C0). Hence, by (3.15)-(3.17),

(1 +O(δ1−r
n ))ϕn(e−wδn) ∼ exp

(

∞
∑

l=1

(−w)l

l
D(l) +O(δC0

n )

)

.
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On the other hand, expanding D(l) as a Dirichlet series (1.5) and changing the order of
summation, we obtain

exp

(

∞
∑

l=1

(−w)l

l
D(l)

)

= e−D(1)w exp

(

∑

l≥2

(−w)l

l

∑

k≥1

bk
kl

)

= e−D(1)w exp (−
∑

k≥1

bk(log (1 + w/k) − w/k))

= eD(1)(−w)
∞
∏

k=1

(

1 − (−w)

k

)−bk

e−bk(−w)/k. (3.19)

In the above computation we have separated the first factor with D(1) from the others in
order to get as a limit a function that can be interpreted in terms of the class of functions
studied in detail by Hirschman and Widder [10; Chap. III] (see (1.16) and (1.18) and
Remark 3 in our Introduction). These observations show that

lim
n→∞

ϕn(e
−wδn) = eD(1)(−w)

∞
∏

k=1

(

1 − (−w)

k

)−bk

e−bk(−w)/k, 0 ≤ w < 1. (3.20)

Case (ii): r = 1. We have Vn(r, w) = 0 by (2.13). Then (3.15)-(3.17) imply that

lim
n→∞

δA(−w)
n ϕn(e−wδn) = exp

(

C(−w) +
∞
∑

l=2

(−w)l

l
D(l)

)

= eC(−w)
∞
∏

k=1

(

1 − (−w)

k

)−bk

e−bk(−w)/k, 0 ≤ w < 1. (3.21)

Case (iii): 1 < r < 2. It is easily checked, using (2.13), that the right-hand side of
(3.11) contains at most two terms. If {r} − 1 > −C0, then the corresponding term is of
order O(δ2−r

n ). So, in this case we have

Vn(r, w) = AΓ(r)ζ(r)δ−(r−1)
n (−w) +O(δ2−r

n ).

Using again (3.15)-(3.17), we obtain the limit from case (i):

lim
n→∞

exp (−AΓ(r)ζ(r)δ−(r−1)
n (−w))ϕn(e−wδn)

= eD(1)(−w)

∞
∏

k=1

(

1 − (−w)

k

)−bk

e−bk(−w)/k, 0 ≤ w < 1. (3.22)

We conclude these three cases with the observation, that the limits which we have
obtained there, are always from the class of functions 1/K(t) discussed in Remark 3 of
the Introduction. (For more details, see [10; Chap. III].)

In the next two cases we are interested in w’s which depend on n and approach 0 as
n→ ∞ (see conditions (iii) and (iv) of Lemma 4).
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Case (iv): r = 2. From (3.11) we get Vn(2, wn(t)) = Aδ−1
n ζ(2)(−wn(t)), which by

(3.17) in turn yields

θn(2, wn(t)) = δAw2
n(t)/2

n exp (−Aδ−1
n ζ(2)(−wn(t))).

Hence, combining (3.15) and (3.16), we conclude that

exp (−Aδ−1
n ζ(2)(−wn(t)))ϕn(e−wn(t)δn) (3.23)

= exp

(

w2
n(t)

2
(A+ C − A log δn) +

∑

l≥1,l 6=2

(−wn(t))l

l
D(l) +O(δC0

n )

)

.

Case (v): r > 2. This case is studied in a similar way as previously. Using (3.11),
(3.15)-(3.18), we obtain

exp (−AΓ(r)ζ(r)δ−(r−1)
n (−wn(t)))ϕn(e−wn(t)δn) (3.24)

= exp

(

AΓ(r)ζ(r− 1)δ−(r−2)
n

w2
n(t)

2
+
∑

l≥1

(−wn(t))l

l
D(l) +Rn(r, wn(t))

)

× exp (−λ2
rt

2/2),

where

Rn(r, w) = AΓ(r)
∑

2<j≤r−d(r)

δ−(r−j)
n ζ(r − j + 1)(−wn(t))j/j!

+

{

(−w)r

r
(Ahr−1 + C − A log δn) +O(δC0

n ) if r is an integer,

O(δC0
n ) if r is not an integer.

(3.25)

We assume that the sum in the right-hand side of (3.25) is = 0 if r − d(r) ≤ 2.

3.3 End of the Proof: The Application of a Continuity Theorem

Consider first the values of the parameter r given in parts (i)-(iii) of our theorem and recall
the limits established in (3.20)-(3.22) of the previous subsection. It is immediately seen
that if we change the variable w by t = −w in (3.20)-(3.22), then their right-hand sides
become the functions g1 and g2 representing formally the moment generating function
E(etξ),−1 < t ≤ 0, in (1.8) and (1.9) of parts (i)-(iii) of our theorem, respectively.
Moreover, the substitution u = etδn in the probability generating functions ϕn(u) (see
also (1.2)) implies that the left-hand sides of (3.20)-(3.22) are the moment generating

functions of the sequences η
(1)
n = ξnδn (case (i)), η

(2)
n = ξnδn + A log δn (case (ii)) and

η
(3)
n = ξnδn − AΓ(r)ζ(r)δ

−(r−1)
n , n ≥ 1 (case (iii)), respectively. Eqs. (3.20)-(3.22) hold

uniformly for w ∈ [0, 1). Hence they are valid for any t ∈ (−b,−a) ⊂ (−1, 0) and
the corresponding sequences of moment generating functions converge to the moment
generating functions g1 or g2 of the random variable ξ defined in parts (i)-(iii) of the
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theorem. Therefore, we can apply the continuity theorem [17; Thm. 2] and establish
that the sequences of the distribution functions of the above random variables converge
to the distribution functions of the random variable ξ defined in parts (i)-(iii) of the
theorem. (In fact, Thm. 2 in [17] requires that 0 < a < t < b, so that it implies the weak

convergence of −η(j)
n , j = 1, 2, 3, to the random variable −ξ, which is obviously equivalent

to our statement.) Let Gj(x) denote the distribution functions whose moment generating
functions are gj(t), j = 1, 2, respectively. The continuity theorem [17; Thm.2] implies that
at each continuity point x of the functions Gj(x) we have

Gn,1(x) = P (η(1)
n ≤ x) → G1(x) (case (i)), (3.26)

Gn,2(x) = P (η(2)
n ≤ x) → G2(x) (case (ii)), (3.27)

Gn,3(x) = P (η(3)
n ≤ x) → G1(x) (case (iii)). (3.28)

To complete the proof of parts (i)-(iii) of the theorem it remains to show that the conver-
gence in (3.26)-(3.28) holds if the normalizing factor δn is replaced by 1/Ln(r) (see (1.7)).
To show this we first set

Yn,1 = ξn/Ln(r) (case (i))

Yn,2 = ξn/Ln(1) −A logLn(1) (case (ii)),

Yn,3 = ξn/Ln(r) − AΓ(r)ζ(r)Lr−1
n (r) (case (iii)).

Using (2.8) and (1.7), after standard algebraic manipulations, for each fixed n ≥ 1, we
obtain

Yn,j = qn,jη
(j)
n + ∆n,j , j = 1, 2, 3,

where
qn,1 = 1/δnLn(r), ∆n,1 = 0,

qn,2 =
1

δnLn(1)
, ∆n,2 = −A log δn

δnLn(1)
− A logLn(1),

qn,3 =
1

δnLn(r)
, ∆n,3 =

AΓ(r)ζ(r)δ
−(r−1)
n

δnLn(r)
−AΓ(r)ζ(r)Lr−1

n (r).

These relations imply that qn,j = 1 + O(n− r

r+1 ), j = 1, 2, 3, and ∆n,1 = 0,∆n,2 =

O(n−1/2 log n),∆n,3 = O(n− 1
r+1 ), as n → ∞. Generally speaking, we observe the rela-

tionship
Yn = qnηn + ∆n, (3.29)

where qn, n ≥ 1, and ∆n, n ≥ 1, are sequences of reals such that limn→∞ qn = 1 and
limn→∞ ∆n = 0, while the sequence ηn, n ≥ 1, of random variables converges weakly to the
random variable ξ as n→ ∞ (we drop the second subscripts for the sake of convenience).
We have to show that the sequence Yn, n ≥ 1, defined by (3.29), converges weakly to ξ as
well. We shall apply a standard probabilistic argument. We first set qn = 1 + ǫn, n ≥ 1,
limn→∞ ǫn = 0 and assume that x is a point of continuity of the distribution function
G(x) = P (ξ ≤ x). (Note that Hirschman and Widder [10; Chap. III, Sect. 6] have proved
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that the distribution functions corresponding to the limiting moment generating functions
g1 and g2 in cases (i)-(iii) are everywhere continuous.) Then, from (3.29) it follows that

Fn(x) := P (Yn ≤ x) = P

(

ηn ≤ x− ∆n

1 + ǫn

)

= P

(

ηn ≤ x− xǫn + ∆n

1 + ǫn

)

= Gn

(

x− xǫn + ∆n

1 + ǫn

)

, n ≥ 1.

Taking now an arbitrary ǫ > 0 and n enough large so that −ǫ < (xǫn + ∆n)/(1 + ǫn) < ǫ,
for fixed x, we obtain

Gn(x− ǫ) ≤ Fn(x) ≤ Gn(x+ ǫ).

Letting n→ ∞ in the above inequalities, we find that

G(x− ǫ) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ G(x+ ǫ)

for all ǫ > 0. Since G is continuous at x then

G(x− ǫ) → G(x) and G(x+ ǫ) → G(x)

as ǫ→ 0+ and the result is proved. With this the proof of cases (i)-(iii) is completed.
We proceed to the proofs of the remaining two parts of our theorem. In each case

wn will be suitably chosen in order to get the required weak convergence to the Gaussian
distribution. Our argument stems from (3.23)-(3.25). To prove part (iv) we set in (3.23)

wn(t) = − t
√

A(− log δn)
, t ∈ (a, b) ⊂ (−1, 0). (3.30)

Then its left-hand side becomes

exp

(

− Aδ−1
n ζ(2)t√

−A log δn

)

ϕn

(

exp

(

tδn√
−A log δn

))

= E

(

exp

(

t
ξnδn − Aδ−1

n ζ(2)√
−A log δn

))

= E

(

exp

(

t
ξn −Aδ−2

n ζ(2)

δ−1
n

√
−A log δn

))

.

On the other hand, a passage to the limit, as n→ ∞, in the right-hand side of (3.23) and
the substitution (3.30) imply that

lim
n→∞

E

(

exp

(

t
ξn − Aδ−2

n ζ(2)

δ−1
n

√
−A log δn

))

= et2/2.

Applying in the same manner as in the previous cases the continuity theorem for moment
generating functions [17; Thm. 2], we conclude that the sequence of the distribution
functions of the random variables ηn = (ξn −Aδ−2

n ζ(2))/δ−1
n

√
−A log δn converges weakly

to the distribution function of the standard Gaussian distribution. Now, from (2.8) and
(1.7) it follows that

δ−1
n = Ln(2)(1 +O(n−2/3))
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and therefore,

− log δn =

(

− log

(

(

n

2Aζ(3)

)−1/3
))

(1 +O(n−2/3)) =
logn

3
+O(1).

The proof of part (iv) is now completed in the same way as in parts (i)-(iii), setting
Yn = (ξn − µn)/σn (µn and σn are given by (1.12)) and using again (3.29) with qn =
1 + O(1/

√
logn),∆n = O(n−1/3/

√
log n). Hence we obtain the convergence given by

(1.11).
Finally, in part (v) we set

wn(t) = − t

(AΓ(r)ζ(r− 1)δ
−(r−2)
n )1/2

= − tδ
r/2−1
n

(AΓ(r)ζ(r − 1))1/2
,

t ∈ (−b,−a) ⊂ (−1, 0),

and establish in a similar way, using (3.4), (3.24) and (3.25), that

lim
n→∞

exp

(

− AΓ(r)ζ(r)δ
−(r−1)
n t

(AΓ(r)ζ(r − 1)δ
−(r−2)
n )1/2

)

×ϕn

(

exp

(

tδn

(AΓ(r)ζ(r− 1)δ
−(r−2)
n )1/2

))

= lim
n→∞

E

(

exp

(

t
ξnδn − AΓ(r)ζ(r)δ

−(r−1)
n

(AΓ(r)ζ(r − 1)δ
−(r−2)
n )1/2

))

= lim
n→∞

E

(

exp

(

t
ξn −AΓ(r)ζ(r)δ−r

n

(AΓ(r)ζ(r − 1)δ−r
n )1/2

))

= e(1−λ2
r)t2/2, (3.31)

where λr is defined by (2.30). The last exponent is the moment generating function of
a Gaussian distribution with zero mean and variance 1 − λ2

r. Hence, by the continuity
theorem [17; Thm. 2] we obtain in the same way that the random variable

η′n =
ξn −AΓ(r)ζ(r)δ−r

n

(AΓ(r)ζ(r − 1)δ−r
n )1/2

converges weakly to the same Gaussian distribution, or equivalently, by (3.31),

ηn =
η′n

√

1 − λ2
r

=
ξn − AΓ(r)ζ(r)δ−r

n
(

AΓ(r)
(

ζ(r − 1) − (r−1)2ζ2(r)
r(r+1)ζ(r+1)

)

δ−r
n

)1/2

converges weakly to the standard Gaussian distribution. If we set Yn = (ξn − µ′
n)/σ′

n,
where µ′

n and σ′
n are given by (1.14), then it is not difficult to show that (3.29) holds with

qn = 1 +O(n− r

r+1 ) and ∆n = O(n− r

r+1 ), which in turn implies the convergence in (1.13).
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4 Examples

4.1. Integer partitions. Brief historical remarks on the number of parts in linear integer
partitions were given in the Introduction. We recall (see e.g. [2; Chap. 1]) that such
partitions are defined as the m-tuple ω = (ω1, ω2, ..., ωm) such that n = ω1 +ω2 + ...+ωm,
where the positive integers ωj satisfy ω1 ≥ ω2 ≥ ... ≥ ωm. The total number of such
partitions (in our notation cn) is determined asymptotically, as n → ∞, by the partition
formula of Hardy and Ramanaujan [8]. In [2; Chap. 6] this formula is also derived
as a consequence of Meinardus’ theorem [16]. The generating function of the sequence
cm,n, 1 ≤ m ≤ n, n ≥ 1, satisfies (1.1) with bk = 1, k ≥ 1 (see [25; Sect. 3.14] or [2; Chap.
2]). Therefore, D(s) = ζ(s), D(s, w) = ζ(s, 1+w) (see (2.14)) and, by known properties of
the Hurwitz zeta function [24; Sect. 13.13], we have to set A = r = 1, C = γ in (1.9), where
γ denotes Euler’s constant. Moreover, by (3.3) we have D̃(s, w) = ζ(s, 1+w)−ζ(s). Hence,
from the known formulas d

ds
ζ(s, 1+w) = log Γ(1 + w)−log

√
2π and ζ ′(0) = − log

√
2π [24;

Sect.13.21] it follows that D̃′
s(0, w) = log Γ(1 + w). On the other hand, from (2.13), (3.11)

and (3.17) it follows that Vn(1, w) = 0 and θn(1, w) = δ−Aw
n . Therefore, (3.16) implies that

limn→∞ δAt
n ϕn(etδn) = limn→∞E(exp (t(ξnδn + A log δn) = Γ(1 − t), t ∈ (a, b) ⊂ (−1, 0).

Hence, the argument given in Subsection 3.3 shows that the limiting moment generating
function of the random variable ξn/Ln(1) − A logLn(1) = πξn/(6n)1/2 − log ((6n)1/2/π)
is Γ(1 − t). The latter one represents the moment generating function of the doubly
exponential distribution function e−e−x

,−∞ < x <∞. This gives the result of Erdős and
Lehner [6].

4.2. Plane partitions. A plane partition ω of the positive integer n is a representation
n =

∑

k,l≥1 ωk,l, in which the array (ωk,l)k,l≥1 of non-negative entries is such that ωk,l ≥
ωk+1,l and ωk,l ≥ ωk,l+1. The asymptotic of the total number cn of plane partitions of n, as
n → ∞, was determined by Wright [26]. In the case of plane partitions bk = k, k ≥ 1 [2;
Chap. 11], and thus D(s) = ζ(s− 1), D(s, w) = ζ(s− 1, 1 +w)−wζ(s, 1 +w), r = 2 and
A = 1. Thus, applying the result of Theorem 1 (iv), (2.8) and (1.7), we get the following
limiting distribution of the trace ξn of a random plane partition of n:

lim
n→∞

P

(

ξn − ζ(2)(n/2ζ(3))2/3

(n/2ζ(3))1/3
(

1
3
logn

)1/2
≤ x

)

=
1√
2π

∫ x

−∞

e−y2/2dy,−∞ < x <∞.

This result is obtained in [12] using a different method.
4.3. Generalized Bose-Einstein model of ideal gas. In the Introduction we pointed out

that weighted integer partitions are associated with the d-dimensional model of quantum
ideal gas, where n is interpreted there as the total energy of the system of particles. The
weights bk, k ≥ 1, are viewed as counts of the distinct positions of the particles in the
phase space, where a particle in a given position has (rescaled) energy k (for more details,
see [22,23] and the references therein).

Except for the case bk = ρkr−1, k ≥ 1, ρ, r > 0, where D(s) = ρζ(s − r + 1), Ver-
shik and Yakubovich [23] studied a more realistic model in which the weights bj satisfy
∑k

j=1 bj = cdk
d/2 + Ed(k) with cd = πd/2/Γ(d/2 + 1), where d denotes the space dimen-

sion. The error terms Ed(k) are estimated for large k’s by Ed(k) = O(kαd), d = 1, 2, ...,
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where the constants αd < d/2 are explicitly given in [23]. We believe that more accu-
rate estimates for Ed(k) would imply expressions for the generating series D(s) in terms
of linear combinations of values of the Riemann zeta function which will depend on the
dimension d. A precise evaluation of the parameters r = r(d) and A = A(d) will then
allow a subsequent application of Theorem 1. In this way, one can obtain similar limiting
distributions whenever the total energy of the system approaches ∞.
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