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Abstract

Let n, r and ℓ be distinct positive integers with r < ℓ ≤ n/2, and let X1 and X2

be two disjoint sets with the same size n. Define

F =

{

A ∈

(

X
r + ℓ

)

: |A ∩ X1| = r or ℓ

}

,

where X = X1 ∪ X2. In this paper, we prove that if S is an intersecting family

in F , then |S| ≤

(

n − 1

r − 1

)(

n
ℓ

)

+

(

n − 1

ℓ − 1

)(

n
r

)

, and equality holds if and only if

S = {A ∈ F : a ∈ A} for some a ∈ X.

Keywords: intersecting family; graded posets; Erdős-Ko-Rado theorem

1 Introduction

For a positive integer n, let [n] denote the set {1, 2, . . . , n}, and for a positive integer

k ≤ n, let [k, n] denote the set {k, k + 1, . . . , n}. Given a set X, by

(

X
k

)

we denote

the set of all k-subsets of X, and by X × Y we denote the direct product (or Cartesian
product) of sets X and Y , which consists of all pairs (x, y) where x ∈ X and y ∈ Y .

A family A of sets is said to be intersecting if A∩B 6= ∅ for every pair A, B ∈ A. One
of the classical results in extremal set theory is the Erdős-Ko-Rado theorem [4]: If A is
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an intersecting family in

(

[n]
k

)

, then

|A| ≤

(

n − 1
k − 1

)

for n ≥ 2k, and if n > 2k, equality holds if and only if A = {A ∈

(

[n]
k

)

: i ∈ A} for some

i ∈ X.
This paper is motivated by the consideration of this theorem from the poset viewpoint.

Let P be a finite ranked poset. Thus, P is a poset equipped with a rank function ρ from P
into the set of nonnegative integers such that ρ(x) = 0 for some minimal element x ∈ P ,
and ρ(z) = ρ(y) + 1 if z covers y in P . The maximum rank of elements of P is denoted
by ρ(P ). For 0 ≤ k ≤ ρ(P ), let Pk denote the set of elements with rank k. For x, y ∈ P ,
we say x and y intersect if they have a common lower bound of rank greater than zero.
For P ′ ⊆ P , let α(P ′) denote the maximum size of intersecting families in P ′. And, for
z ∈ P with ρ(z) > 0, set P ′[z] = {x ∈ P ′ : x ≥ z}. We call P ′[z] a star (with center z)
if P ′[z] 6= ∅. Clearly, a star is an intersecting family in P . Hence |Pk[z]| ≤ α(Pk). If the
equality holds for some z ∈ P1, we then say that P has the EKR property for rank k.

In extremal combinatorics, a well-studied poset is the boolean lattice Bn, consisting
of all subsets of [n] ordered by inclusion. It is clear that Bn is a ranked poset of rank n.

Following the above notation, we write its kth rank set as Bn,k instead of

(

[n]
k

)

. Then,

the Erdős-Ko-Rado theorem says that Bn has the EKR property for each rank k ≤ n/2.
It is well known that Bn is isomorphic to a direct product of n chains of length one, from
which we may find the structures of maximum intersecting families in Bn,k for k < n/2.
A general definition of direct products of posets is given as follows.

Let P and Q be ranked posets with rank functions ρP and ρQ, respectively. The direct
product of P and Q is a poset defined on P × Q such that (x, y) ≤ (x′, y′) if and only if
x ≤ x′ in P and y ≤ y′ in Q. As usual, this poset is still denoted P ×Q. It is easy to see
that P × Q is ranked with the rank function ρ((x, y)) = ρP (x) + ρQ(y), and

(P × Q)k =
⋃

i+j=k

(Pi × Qj).

By definition we have that

α((P × Q)k) ≥ max

{

∑

i+j=k

(|Pi[p0]| × |Qj|),
∑

i+j=k

(|Pi| × |Qj [q0]|)

}

(1)

for any p0 ∈ P1 and q0 ∈ Q1, and equality implies that P × Q has the EKR property for
rank k.

Now let us check the boolean lattice. It is well known that Bn
∼= Bm × Bℓ for any

positive integers m and ℓ with m + ℓ = n. For any i0 ∈ [n],

∑

i+j=k

(|Bm,i[i0]| × |Bℓ,j|) =
∑

i+j=k

(

m − 1
i − 1

) (

ℓ
j

)

=

(

n − 1
k − 1

)

.
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The Erdős-Ko-Rado theorem implies that 1 holds for the direct product Bm×Bℓ provided
m + ℓ = n ≥ 2k. This is immediately raise the problem of whether or not the equality
holds for other direct products. A related problem is posed by Tardif [13] in the language
of graph theory.

Let P be a ranked poset of rank n. We say P is rank transitive if there is a group
acting transitively on each Pi and preserving the order relation of P . For every subset
P ′ of P , we define a graph G[P ′], whose vertex set is P ′ and xy is an edge if and only
if x and y do not intersecting. Clearly, an intersecting family in P ′ corresponds to an
independent set in G[P ′]; α(Pi) = α(G[Pi]), the independence number of G[Pi], and, if P
is rank-transitive, then G[Pi] is vertex-transitive for each i = 0, 1, . . . , n.

Given graphs G and H , the direct product of them is the graph G × H
with vertex set V (G × H) = V (G) × V (H) and edge set E(G × H) =
{{{u, v}, {u′, v′}} : {u, u′} ∈ E(G) and {v, v′} ∈ E(H)}. Clearly, α(G × H) ≥
max{α(G)|V (H)|, α(H)|V (G)|}. In general, the equality does not hold (see [10]). Tardif’s
problem is whether or not the equality

α(G × H) = max{α(G)|V (H)|, α(H)|V (G)|}

holds for all vertex-transitive graphs G and H . This problem received much attention
[2, 5, 6, 8, 9, 11, 12, 15]. Recently, the second author completely solved this problem [16].
In the language of posets, this result states that if P and Q are ranked and rank-transitive
posets, then

α(Pi × Qj) = max{α(Pi)|Qj|, |Pi|α(Qj)} (2)

hold for all 0 ≤ i ≤ ρ(P ), 0 ≤ j ≤ ρ(Q). Further, we would like to ask, for what kind of
ranked posets P and Q,

α((Pi×Qk−i)∪(Pj×Qk−j)) = max{α(Pi)|Qk−i|+α(Pj)|Qk−j|, |Pi|α(Qk−i)+ |Pj|α(Qk−j)}

hold for all 0 ≤ i < j ≤ k. In this paper, we study this problem for boolean lattices.
Let n, r and ℓ be distinct positive integers with r < ℓ ≤ n/2, and let X1 and X2 be

two disjoint sets with the same size n. Define

F =

{

A ∈

(

X
r + ℓ

)

: |A ∩ X1| = r or ℓ

}

,

where X = X1 ∪ X2. Since X1 and X2 are disjoint, we may identify F with a union of
two direct products of sets:

(

X1

r

)

×

(

X2

ℓ

)

∪

(

X1

ℓ

)

×

(

X2

r

)

,

which is clearly isomorphic to (Bn,r × Bn,ℓ) ∪ (Bn,ℓ × Bn,r). If one of r and ℓ is greater
than n/2, the problem is trivial, and if r = ℓ, the problem is a special case of Tardif’s.
So in the following we always assume that r < ℓ ≤ n/2. The main result in this paper is
the following theorem.
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Theorem 1.1 If S is an intersecting family in F , then

|S| ≤

(

n − 1
r − 1

) (

n
ℓ

)

+

(

n − 1
ℓ − 1

) (

n
r

)

,

and equality holds if and only if S = F [a] = {A ∈ F : a ∈ A} for some a ∈ X.

Our proof is based on Katona’s cycle method [7]. In the next section we expatiate on
the way of proving the theorem and present some preliminary results. We then prove the
theorem fully in Section 3.

2 Preliminary Results

Let H be the graph with vertex set V (H) = F and edge set E(H) = {{A, B} :
A ∩ B = ∅ and A, B ∈ F}. Clearly, H is vertex-transitive, and each intersecting sub-
family of F corresponds to an independent set of H . So, to prove Theorem 1.1, it suffices
to determine the independence number α(H) and the structure of maximum-sized inde-
pendent sets in H .

In the context of vertex-transitive graphs, the following result named “no-
homomorphism lemma” is useful to get bounds on the size of independent sets.

Lemma 2.1 (Albertson and Collins [1]) Let G and G′ be two graphs such that G is

vertex-transitive and there exists a homomorphism φ : G′ 7→ G. Then
α(G)
|V (G)|

≤ α(G′)
|V (G′)|

,

and the equality holds if and only if for any independent set I of cardinality α(G) in G,

φ−1(I) is an independent set of cardinality α(G′) in G′.

This lemma has many applications in extremal combinatorics and graph theory (see
[6, 8, 9, 10, 11, 12, 14, 15, 16]). For B ⊂ V (G), let G[B] denote the sub-graph of G
induced by B. Then, in Lemma 2.1, by taking G′ as an induced subgraph G[B] and φ
as the embedding mapping, we obtain the following lemma. For B ⊂ V (G), let G[B]
denote the induced subgraph of G by B. Then, in Lemma 2.1, by taking G′ as an induced
subgraph G[B] and φ as the embedding mapping, we obtain the following lemma (cf. [3]).

Lemma 2.2 (Cameron and Ku) α(G)
|V (G)|

≤ α(G[B])
|B|

holds for all B ⊆ V (G). Equality

implies that |I ∩ B| = α(G[B]) for every maximum independent set I of G.

Clearly, F [a] is an independent set of H for each a ∈ X, hence α(H) ≥

(

n − 1
r − 1

) (

n
ℓ

)

+
(

n − 1
ℓ − 1

)(

n
r

)

. To prove equality, by Lemma 2.2, we only need to find an induced subgraph

H ′ of H with α(H′)
|H′|

= r+ℓ
2n

so that

α(H) ≤
α(H ′)

|H ′|
|H| =

r + ℓ

n

(

n
r

) (

n
ℓ

)

=

(

n − 1
r − 1

) (

n
ℓ

)

+

(

n − 1
ℓ − 1

) (

n
r

)

.
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We now give some notations. Suppose that X1 = [n] and X2 = [n+1, 2n]. Arrange the
elements of [n] on a cycle and let Ri and Li denote the ith r-interval and ℓ-interval in the
cycle, respectively. That is, for 1 ≤ i ≤ n, Ri and Li consist of the least positive residues
of [i, i+ r−1] and [i, i+ ℓ−1] modulo n, respectively. Similarly, let R′

i = {n+x : x ∈ Ri}
and L′

i = {n + y : y ∈ Li}. Set R = {R1, R2, . . . , Rn} and L = {L1, L2, . . . , Ln},
R′ = {R′

1, R
′
2, . . . , R

′
n} and L′ = {L′

1, L
′
2, . . . , L

′
n}.

Set H = (R×L′)∪ (L×R′). Then |H| = 2n2 and we may regard H as a subfamily of
F . With the graph H in mind, we consider the induced subgraph H [H], which contains
H0[R]×H0[L

′] and H0[L]×H0[R
′] as subgraphs, where H0[R], H0[L], H0[R

′] and H0[L
′]

are defined in a natural way. Clearly, H0[R] is isomorphic to the well-known circular
graph Circ(r, n). Here, the graph Circ(r, n) has the vertex set [n], and i and j are not
adjacent if and only if |i − j| < r or |n + i − j| < r. Hence, α(R) = n if n < 2r, and
α(R) = r if n ≥ 2r. And, when n > 2r, by the well-known result of Katona [7], H0[R] is
connected and the maximum-sized independent sets of H0[R] are stars.

We shall prove that α(H [H]) = (r + ℓ)n, implying α(H[H])
|H[H]|

= r+ℓ
2n

, i.e, the induced

subgraph H [H] is a desired subgraph H ′. To do this, we first present a lemma.
For C,D ⊆ R ∪R′ ∪ L ∪ L′, set ND(C) = {A ∈ D : A ∩ B = ∅ for some B ∈ C} and

N̄D(C) = D \ ND(C) = {A ∈ D : A ∩ B 6= ∅ for all B ∈ C}.

Lemma 2.3 Let C,D ∈ {R,L}. For each A ⊆ C, we have that N̄D(A) = ∅ if |A| ≥
α(C) + α(D); and |N̄D(A)| + |A| ≤ α(C) + α(D) if |A| < α(C) + α(D). If |N̄D(A)| +
|A| = α(C)+α(D), then A = {Ri, Ri+1, . . . , Ri+|A|−1} or {Li, Li+1, . . . , Li+|A|−1} for some

i ∈ [n], according to C = R or L.

Proof. Suppose C = R and D = L. Then α(C) = r and α(D) = ℓ. For Li ∈ L, it is
clear that A ⊆ N̄R({Li}) if and only if Li ∈ N̄L(A). By definition it is easy to count
that |N̄R({Li})| = r + ℓ − 1 for every Li ∈ L. Therefore, if |A| ≥ r + ℓ, then A cannot
be a subset of N̄R({Li}), i.e., no Li’s belong to N̄L(A). This proves that N̄L(A) = ∅
if |A| ≥ r + ℓ. Suppose that |A| = s ≤ r + ℓ − 1 and N̄L(A) 6= ∅. By symmetry we
may assume that Lr ∈ N̄L(A). Then A ⊆ N̄R({Lr}) = {R1, R2, . . . , Rr+ℓ−1}. So we
may assume that A = {Ri1 , Ri2 , . . . , Ris} with 1 ≤ i1 < i2 < · · · < is ≤ r + ℓ − 1. Set
Aj = {Ri1 , Ri2 , . . . , Rij} for 1 ≤ j ≤ s. Then N̄L(A1) ⊇ N̄L(A2) ⊇ · · · ⊇ N̄L(As) =
N̄L(A). Note that N̄L({Ri}) = {Li+1−ℓ, Li+2−ℓ, . . . , Li+r−1} for each Ri ∈ R. It is clear
that Lij+1−ℓ 6∈ N̄L(Aj+1). On the other hand, because −ℓ < it − (ij+1 − r) = r − ij+1 +
it < r for t = 1, 2, . . . , j, we have that Lij+1−r ∈ N̄L({Rit}) for 1 ≤ t ≤ j. Therefore
r + ℓ − 1 = |N̄L(A1)| > |N̄L(A2)| > · · · > |N̄L(As−1)| > |N̄L(A)|, which implies that
|N̄L(A)| + |A| ≤ r + ℓ. Furthermore, since n > r + ℓ, if ij+1 > ij + 1, it is easy to
show that Lij+1−ℓ 6∈ N̄L(Aj+1) but Lij+1−ℓ ∈ N̄L(Aj), that is, |N̄L(Aj)| > |N̄L(Aj+1)|+1.
Therefore, |N̄L(A)| + |A| = r + ℓ holds if and only if A = {Ri, Ri+1, . . . , Ri+|A|−1} for
some i ∈ [n].

The other cases can be settled in a similar way, so we omit the detail. 2
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3 Proof of Theorem 1.1

Let F and H be defined as above and let S and S ′ be maximum-sized intersecting families
in F and H, respectively. The proof of the theorem is completed in two steps: (i)
|S ′| = n(r + ℓ), and (ii) S is a star.

We first prove (i). For i ∈ [n], let us consider the star H[i] = {A ∈ H : i ∈ A}. Then,
the maximality of |S ′| implies that |S ′| ≥ |H[i]| = n(r + ℓ). We now proceed to prove
that S ′ = H[i] for some i ∈ [n], which would complete the first step of the proof.

Given A ∈ R ∪ L, define

S ′
A = {C ∈ R′ ∪ L′ : (A, C) ∈ S ′}

and

PA =

{

L′, if A ∈ R;
R′, if A ∈ L.

Clearly, S ′
A ⊆ PA for A ∈ R ∪ L. Set

R1 = {A ∈ R : |S ′
A| > ℓ}, L1 = {B ∈ L : |S ′

B| > r},

R2 = {A ∈ R : 0 < |S ′
A| ≤ ℓ}, L2 = {B ∈ L : 0 < |S ′

B| ≤ r}

and set S ′|X1
= R1∪R2 ∪L1∪L2. That is, S ′|X1

is the projection of S ′ on

(

X1

r

)

∪

(

X1

ℓ

)

.

From this observation it follows that

|S ′| =
∑

A∈S′|X1

|S ′
A|.

For any A, B ∈ S ′|X1
, if A ∩ B = ∅, then C ∩ D 6= ∅ holds for all C ∈ S ′

A and
D ∈ S ′

B because S ′ is an intersecting family. Then S ′
B ⊆ N̄PB

(S ′
A), which implies that

|S ′
A| + |N̄PB

(S ′
A)| ≥ |S ′

A| + |S ′
B|. By Lemma 2.3, however, we have |S ′

A| + |N̄PB
(S ′

A)| ≤
α(PA) + α(PB). Therefore, we have the following claim.

Claim: For any A, B ∈ S ′|X1
, if A ∩ B = ∅, then |S ′

A| + |S ′
B| ≤ α(PA) + α(PB).

By the claim we immediately obtain that A∩B 6= ∅ for any A, B ∈ R1∪L1. Therefore,
R1 ∪ L1 is an intersecting family in R∪L.

Set D1 = {A ∈ R1 ∪ L1 : ND2
({A}) = ∅}, D′

1 = {A ∈ R1 ∪ L1 : ND2
({A}) 6= ∅},

where D2 = R2 ∪ L2. By definition we have immediately that {D1,D
′
1,D2} is a partition

of S ′|X1
, D1 ∪ D′

1 = R1 ∪ L1, and D1 and D′
1 ∪ D2 are cross-intersecting, i.e., A ∩ B 6= ∅

for all A ∈ D1 and B ∈ D′
1 ∪ D2.

If D2 = ∅, then S ′ ⊆ (R1×L′)∪(L1×R′). So |S ′| ≤ n(|R1|+|L1|) ≤ n(α(R)+α(L)) =
n(r + ℓ), and the equality holds if and only if both R1 and L1 are stars of order r and ℓ,
respectively. Therefore, the maximality of S ′ implies that S ′ = H[i] for some i ∈ X1. So
in the following we suppose D2 6= ∅, and prove that D1 ∪ D′

1 = ∅.
We first prove that D′

1 = ∅. Suppose contrary that D′
1 6= ∅. Then |ND2

({A})| ≥ 1 for
every A ∈ D′

1. Assume that t ≥ 1 and |ND2
(D)| ≥ |D| holds for all D ⊆ D′

1 whenever
|D| ≤ t. We now prove that, if t < |D′

1|, then every (t + 1)-subset of D′
1 also has
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this property. Otherwise, there is a (t + 1)-subset of D′
1, say D′ = D ∪ {A′}, satisfying

|ND2
(D′)| = t = |ND2

(D)|. Set

S ′
1 = [S ′ −∪A∈ND2

(D)({A} × S ′
A)]

⋃

[∪A∈D′({A} × PA)].

It is not difficult to see that S ′
1 is also an intersecting family in H because D1 ∪ D′

1 is
an intersecting family so that NS′|X1

(D′) = ND2
(D′). Set D = {A1, A2, . . . , At}. By

Hall’s marriage Theorem, we may rearrange the elements of ND2
(D) so that ND2

(D) =
{B1, B2, . . . , Bt} with Ai ∩ Bi = ∅ for i = 1, 2, . . . , t. Note that |S ′

A′ | < n. Then, by the
claim, we can deduce that

|S ′
1| − |S ′| = (n − |S ′

A′|) +
∑

1≤i≤t

(n − |S ′
Ai
| − |S ′

Bi
|) > 0,

contradicting the maximality of |S ′|. We therefore obtain that |ND2
(D′

1)| ≥ |D′
1|. Set

D′
1 = {A1, A2, . . . , As} and assume B1, B2, . . . , Bs ∈ ND2

(D′
1) such that Ai ∩ Bi = ∅,

i = 1, 2, . . . , s. If |ND2
(D′

1)| > s, set

S ′
2 = [∪A∈D1

({A} × PA)] ∪ [∪A∈D′

1
∪D2

({A} × PA[a])],

where a ∈ X2. Then S ′
2 is an intersecting family because both ∪A∈D1

({A} × PA) and
∪A∈D′

1
∪D2

({A}×PA[a]) are intersecting families, and D1 and D′
1∪D2 are cross-intersecting.

And,

|S ′
2| − |S ′| =

∑

A∈D1

(n − |S ′
A|) +

∑

A∈D′

1
∪D2

(α(PA) − |S ′
A|)

=
∑

A∈D1

(n − |S ′
A|) +

∑

1≤i≤s

(α(PAi
) + α(PBi

) − |S ′
Ai
| − |S ′

Bi
|)

+
∑

B∈D′

2

(α(PB) − |S ′
B|),

where D′
2 = D2 − {B1, B2 . . . , Bs}. Clearly, n ≥ |S ′

A| for any A ∈ D1, and by the claim,
α(PAi

) + α(PBi
) ≥ |S ′

Ai
| + |S ′

Bi
| for i = 1, 2, . . . , s. By definition, α(PB) ≥ |S ′

B| for
all B ∈ D′

2, and, because |ND2
(D′

1)| > |D′
1|, there exists a B′ ∈ D′

2 and Aj ∈ D′
1 with

B′ ∩ Aj = ∅. Then, the claim implies α(PB′) + α(PAj
) ≥ |S ′

B′ | + |S ′
Aj
|. By definition,

however, |S ′
Aj
| > α(PAj

) for Aj ∈ D1. Hence α(PB′) > |S ′
B′ |. We thus proved that

|S ′
2| > |S ′|, contradicting the maximality of |S ′|. Therefore, |D′

1| = |ND2
(D′

1)|.
In order to show D′

1 = ∅, we construct another family as follows:

S ′
3 = [S ′ −∪1≤i≤s({Bi} × S ′

Bi
)] ∪ [∪1≤i≤s({Ai} × PA)]. (3)

Clearly, S ′
3 is an intersecting family in H. Using the similar argument to that for S ′

2 we
have that

|S ′
3| − |S ′| =

∑

1≤i≤s

(n − |S ′
Ai
| − |S ′

Bi
|) ≥

∑

1≤i≤s

(n − α(PAi
) − α(PBi

))

≥ s(n − 2ℓ) ≥ 0.
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From this we see that |S ′
3| = |S ′| if and only if |S ′

Ai
| = |S ′

Bi
| = α(PAi

) = α(PBi
) =

ℓ = n
2
. Suppose it is the case. Then D′

1 ∪ ND2
(D′

1) ⊂ R, and then L1 ⊂ D1. Set
R′

2 = R2 − ND2
(D′

1). If L1 6= ∅, then by definition of R′
2 and R1 ∪ L1 is intersecting,

R1 ∪R′
2 ⊆ N̄R(L1), and then by Lemma 2.3,

|R1| + |R′
2| + |L1| ≤ r + ℓ. (4)

Clearly, if L1 = ∅ and R′
2 = ∅, then |R1| + |R′

2| + |L1| ≤ r < r + ℓ, because R1 is an
intersecting family in R. If L1 = ∅ but R′

2 6= ∅, then since R′
2 ⊆ N̄R(R1), Lemma 2.3

implies |R1|+ |R′
2| ≤ 2r < r + ℓ. Therefore, (4) holds in any cases. Similarly, we can also

obtain that the inequality
|R1| + |L1| + |L2| ≤ r + ℓ (5)

always holds.
Suppose L2 = ∅. Then S ′

3 ⊆ (R×L′) ∪ (L1 ×R′). Recall that |S ′
3| ≥ |S ′| ≥ n(r + ℓ).

If we assume that L1 = ∅, then we get |S ′
3| ≤ |R1|n + |R2|ℓ ≤ |R1|n + (n − |R1|)ℓ =

nℓ + |R1|(n − ℓ) ≤ nℓ + r(n − ℓ) ≤ n(r + ℓ), a contradiction. So L1 6= ∅. Since we
earlier obtained L1 ⊆ D1, we have R2 ⊆ N̄R(L1), and together with the fact that R1 ∪L1

is intersecting, this implies that R1 ∪ R2 ⊆ N̄R(L1). Then, Lemma 2.3 implies that
|R1| + |R2| + |L1| ≤ r + ℓ. By the definition of R2 and the above properties of S ′

3, it
follows that |R2| = 0. But then, since D2 = R2 ∪ L2, we get D2 = ∅, a contradiction.
Therefore, L2 6= ∅. Recall that ℓ = n

2
> r. From (3) it follows that

|S ′
3| ≤ n(|R1| + |L1|) + ℓ|R′

2| + r|L2|

= n(|R1| + |R′
2| + |L1|) − ℓ|R′

2| + r|L2|

= n(|R1| + |L1| + |L2|) + ℓ|R′
2| + (r − n)|L2|,

from which, together with (4) and (5), it follows that |S ′
3| < n(r + ℓ), yielding a contra-

diction. Therefore, D′
1 = ∅.

If D1 6= ∅, then |S ′| ≤ n|D1|+ ℓ|R2|+ r|L2| = n(|R1|+ |L1|)+ ℓ|R2|+ r|L2|. Similarly
to (4) and (5), we can also obtain that the two inequalities

|R1| + |R2| + |L1| ≤ r + ℓ. (6)

and
|R1| + |L1| + |L2| ≤ r + ℓ. (7)

always hold. If |R2| ≥ |L2|, then by (6) and the above property of S ′, we have

|S ′| ≤ n(|R1| + |L1|) + ℓ|R2| + r|L2|

= n(|R1| + |R2| + |L1|) + (ℓ − n)|R2| + r|L2|

≤ n(|R1| + |R2| + |L1|) + (ℓ + r − n)|R2|

< n(r + ℓ),

the strict inequality holds because n > r + ℓ and |R2| + |L2| = |D2| > 0. Otherwise,
|R2| < |L2|, by (7) and the above property of S ′, we similarly obtain |S ′| < n(r + ℓ).
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Thus, in both cases, we get |S ′| < n(r + ℓ), contradicting |S ′| ≥ n(r + ℓ). Therefore,
D1 = ∅. In this case,

|S ′| =
∑

A∈R2

|S ′
A| +

∑

B∈L2

|S ′
B| ≤ |R2|ℓ + |L2|r ≤ n(ℓ + r).

Equality implies that R2 = R, L2 = L, and |S ′
A| = ℓ and |S ′

B| = r for all A ∈ R and
B ∈ L. From the structure it is seen that for any A1, A2 ∈ R, S ′

A1
= S ′

A2
whenever

A1 ∩ A2 = ∅. Then, that R2 = R implies that S ′
A1

= S ′
A2

for any A1 ∩ A2 = ∅, so the
identical S ′

A is a star, that is, S ′
A = L′[i] for some i ∈ X2. Hence the connectivity of H [R]

implies SA = L′[i] for all A ∈ R. Similarly, S ′
B = R′[i] for any B ∈ L. That is, S ′ = H[i]

for some i ∈ X2. This completes the proof of the first step.
We now prove (ii). For every cyclic permutation σ of [n] and A ⊂ [n], we say σ

contains A if A is an interval. Define Rσ = {A ∈ Bn,r : σ contains A} and Lσ = {A ∈
Bn,ℓ : σ contains A}. Similarly, we may define R′

σ and L′
σ. Let Γ1 and Γ2 be the set

of all cyclic permutations of [n] and [n + 1, 2n], respectively. It is well know that Γ1 is
a conjugate class in the symmetric group Sn, i.e., Γ1 = {στ : τ ∈ Sn} for each selected
σ ∈ Γ1. Here, στ = τστ−1.

For σ ∈ Γ1 and η ∈ Γ2, let Hσ,η = (Rσ×L′
η)∪(Lσ×R′

η). Clearly, F =
⋃

σ∈Γ1, η∈Γ2
Hσ,η.

Write σ0 = (1, 2, . . . , n) and η0 = (n+1, n+2, . . . , 2n). Then H = Hσ0,η0
. For each σ ∈ Γ1

and η ∈ Γ2, by Lemma 2.2 and step (i), S ∩ Hσ,η = Hσ,η[x] for some x ∈ [2n], which is
denoted by xσ,η. That is,

S ∩Hσ,η = (Rσ × L′
η[xσ,η]) ∪ (Lσ ×R′

η[xσ,η]) if xσ,η ∈ [n + 1, n], or

S ∩Hσ,η = (Rσ[xσ,η] × L′
η) ∪ (Lσ[xσ,η] ×R′

η) if xσ,η ∈ [n].

Without loss of generality, we may assume xσ0,η0
= n + 1. To complete the proof we need

only prove that xσ,η = n + 1 for all σ ∈ Γ1 and η ∈ Γ2.
Define a relation ∼ on Γ1: σ ∼ τ if τ = σ(i,σ(i)) for some i ∈ [n]. Here, (i, j) denotes

the transposition in Sn, which interchanges i and j, and fixes other elements of [n]. This
relation is clearly symmetric. We now prove that xτ,η = xσ,η if τ ∼ σ. By symmetry
we may assume η = η0, σ = σ0 and τ = σ(i,i+1). Suppose xτ,η0

= x 6= n + 1. Then,
from r < ℓ ≤ n

2
we see that Lτ × R′[x] and L × R′[n + 1] are not cross-intersecting if

x ∈ [n + 1, 2n]; and Rτ [x] × L′ and R × L′[n + 1] are not cross-intersecting if x ∈ [n].
So S ∩ Hτ,η and S ∩ Hσ,η are not cross-intersecting, contradicting that S is intersecting.
Similarly, xσ,η = xσ,γ if η ∼ γ.

For σ ∈ Γ1, it is easy to see that there exists a subset {σ1, σ2, . . . , σk} of Γ1 such that
σ0 ∼ σ1, σ1 ∼ σ2, . . . , σk ∼ σ. Similarly, for η ∈ Γ2, there exists a subset {η1, η2, . . . , ηt}
of Γ2 such that η0 ∼ η1, η1 ∼ η2, . . . , ηt ∼ η. So we have n + 1 = xσ0,η0

= · · · = xσk ,η0
=

xσ,η0
= · · · = xσ,η, as required. 2
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