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Abstract

Let G1, G2, . . . , Gt be graphs. The multicolor Ramsey number R(G1, G2, . . . , Gt)
is the smallest positive integer n such that if the edges of a complete graph Kn are
partitioned into t disjoint color classes giving t graphs H1,H2, . . . ,Ht, then at least
one Hi has a subgraph isomorphic to Gi. In this paper, we provide the exact value of
R(Pn1

, Pn2
, . . . , Pnt

, Ck) for certain values of ni and k. In addition, the exact values
of R(P5, C4, Pk), R(P4, C4, Pk), R(P5, P5, Pk) and R(P5, P6, Pk) are given. Finally,
we give a lower bound for R(P2n1

, P2n2
, . . . , P2nt

) and we conjecture that this lower
bound is the exact value of this number. Moreover, some evidence is given for this
conjecture.

1 Introduction

In this paper, we are only concerned with undirected simple finite graphs and we
follow [1] for terminology and notations not defined here. The complement graph of a
graph G is denoted by G. As usual, the complete graph of order p is denoted by Kp and
a complete bipartite graph with partite set (X, Y ) such that |X| = m and |Y | = n is
denoted by Km,n. Throughout this paper, we denote a cycle and a path on m vertices by
Cm and Pm, respectively. Also for a 3-edge coloring (say green, blue and red) of a graph
G, we denote by Gg (resp. Gb and Gr) the subgraph induced by the edges of color green
(resp. blue and red).

1This research was in part supported by a grant from IPM (No. 89050037)
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Let G1, G2, . . . , Gt be graphs. The multicolor Ramsey number R(G1, G2, . . . , Gt), is the
smallest positive integer n such that if the edges of a complete graph Kn are partitioned
into t disjoint color classes giving t graphs H1, H2, . . . , Ht, then at least one Hi has a
subgraph isomorphic to Gi. The existence of such a positive integer is guaranteed by
Ramsey’s classical result [12]. Since their time, particulary since the 1970’s, Ramsey
theory has grown into one of the most active areas of research within combinatorics,
overlapping variously with graph theory, number theory, geometry and logic.

For t ≥ 3, there is a few results about multicolor Ramsey number R(G1, G2, . . . , Gt).
A survey including some results on Ramsey number of graphs, can be found in [11]. The
multicolor Ramsey numbers R(Pn1

, Pn2
, . . . , Pnt

) and R(Pn1
, Pn2

, . . . , Cnt
) are not known

for t ≥ 3. In the case t = 2, a well-known theorem of Gerencsér and Gyárfás [9] states

that R(Pn, Pm) = n +
⌊

m
2

⌋

− 1, where n ≥ m ≥ 2. Faudree and Schelp in [7] determined

R(Pn1
, P2n2+δ, . . . , P2nt

) where δ ∈ {0, 1} and n1 is sufficiently large. In addition, they
determined R(Pn1

, Pn2
, Pn3

) for the case n1 ≥ 6(n2 + n3)
2 and they conjectured that

R(Pn, Pn, Pn) =











2n − 1 if n is odd,

2n − 2 if n is even.

This conjecture was established by Gyárfás et al. [10] for sufficiently large n. In asymp-
totic form, this was proved by Figaj and Luczak in [8] as a corollary of more general
results about the asymptotic results of the Ramsey number for three long even cycles.

Recently, determination of some exact values of Ramsey numbers of type R(Pi, Pj, Ck)
such as R(P4, P4, Ck), R(P4, P6, Ck) and R(P3, P5, Ck) have been investigated. For more
details related to three-color Ramsey numbers for paths versus a cycle, see [3, 4, 5, 13].
In this paper, we provide the exact value of the Ramsey numbers R(Pn1

, Pn2
, . . . , Pnt

, Ck)
for certain values of ni and k and then we determine the exact values of some three-color
Ramsey numbers of type R(Pi, Pj, Ck) as corollaries of our result. Moreover, we determine
the exact value of the multicolor Ramsey number R(Pn1

, Pn2
, . . . , Pnt

, Ck), if at most one
ni is odd and k is sufficiently large. Consequently, we obtain an improvement of the
result of Faudree and Schelp [7] on multicolor Ramsey number R(Pn1

, P2n2+δ, . . . , P2nt
).

In addition, we determine the exact values of some three-color Ramsey numbers such
as R(P5, C4, Pk), R(P4, C4, Pk), R(P5, P5, Pk) and R(P5, P6, Pk). Finally, we give a lower
bound for R(P2n1

, P2n2
, . . . , P2nt

) and we conjecture that, with giving some evidences, this
lower bound is the exact value of this number.

2 Multicolor Ramsey number R(Pn1
, Pn2

, . . . , Pnt
, Ck)

In this section, we determine the exact value of R(Pn1
, Pn2

, . . . , Pnt
, Ck) when at most

one of ni is odd and k is sufficiently large. Also, the exact values of some known three-color
Ramsey numbers of type R(Pi, Pj, Ck) are given as some corollaries. For this purpose, we
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need some definitions and notations. A graph G is called H-free if it does not contain
H as a subgraph. The notation ex(p, H) is defined the maximum number of edges in

a H-free graph on p vertices. It is well known that [6] ex(p, Pn) ≤ (n−2)
2

p, for every n.
Moreover, ex(p, Ck) is known for some values of p and k. The following theorem can be
found in the appendix IV of [1].

Theorem 2.1 ([1]) Assume that k ≥ 1
2
(p + 3). Then

ex(p, Ck) =

(

p − k + 2

2

)

+

(

k − 1

2

)

.

Now, we are ready to establish the main result of this section.

Theorem 2.2 Let k ≥ n1 ≥ n2 ≥ · · · ≥ nt ≥ 3 and l ≥ 1 be a positive integer that can
be written as l =

∑t
i=1 xi for some xi such that 2xi + 1 < ni. Then in the following cases,

we have R(Pn1
, Pn2

, . . . , Pnt
, Ck) = k + l.

(i) If k ≥ 2l2 + 5l + 5 and
∑t

i=1 ni = 2l + 2t + 1,

(ii) If k ≥ l2 + 2l + 3 and
∑t

i=1 ni = 2l + 2t.

Proof. Let R denote the multicolor Ramsey number R(Pn1
, Pn2

, . . . , Pnt
, Ck). By Theo-

rem 2.1, we obtain that ex(k + l, Ck) = 1
2
(k2 + l2 − 3k + 3l + 4) where k ≥ l + 3. Clearly

R ≤ k + l if the following inequality holds.

t
∑

i=1

ex(k + l, Pni
) + ex(k + l, Ck) <

(

k + l

2

)

.

In the other words, R ≤ k + l if

k + l

2

(

t
∑

i=1

ni − 2t
)

+
1

2
(k2 + l2 − 3k + 3l + 4) <

(

k + l

2

)

,

or simply

t
∑

i=1

ni < (2t + 2l + 2) −
2l2 + 6l + 4

k + l
. (1)

In each case of the theorem, inequality (1) holds and so R ≤ k+l. Now consider the graph
Kk−1 ∪Kl and partition the vertices of Kl into t classes V1, V2, . . . , Vt such that |Vi| = xi,
1 ≤ i ≤ t. Color the edges of Kk−1 and Kl by color αt+1 and also color the edges having
an end vertex in Vi, 1 ≤ i ≤ t, and one in Kk−1 by color αi. Since for i = 1, 2, . . . , t,
the inequality 2|Vi| + 1 < ni holds, this coloring of Kk+l−1 contains no Pni

in color αi,
1 ≤ i ≤ t, and no Ck in color αt+1. This means that R ≥ k + l, which completes the
proof. �

In the following theorem, we determine the exact value of R(P2n1
, P2n2

, . . . , P2nt
, Ck)

for sufficiently large k.
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Theorem 2.3 Assume that δ ∈ {0, 1} and Σ denotes
∑t

i=1 (ni − 1). Then

R(P2n1+δ, P2n2
, . . . , P2nt

, Ck) = k + Σ,

where k ≥ Σ2 + 2Σ + 3 if δ = 0 and k ≥ 2Σ2 + 5Σ + 5, otherwise.

Proof. The assertion holds from Theorem 2.2 where xi = ni − 1 for 1 ≤ i ≤ t. �

As an application of Theorem 2.3, we have the following corollary which determine
some known three-color Ramsey numbers of small paths versus a cycle.

Corollary 2.4 Let k be a positive integer. Then

(i) ([3]) R(P4, P4, Ck) = k + 2 for k ≥ 11,

(ii) ([4]) R(P3, P4, Ck) = k + 1 for k ≥ 12,

(iii) ([13]) R(P4, P5, Ck) = k + 2 for k ≥ 23,

(iv) ([13]) R(P4, P6, Ck) = k + 3 for k ≥ 18.

We end this section by giving the following consequent of Theorem 2.3.

Corollary 2.5 Let k be a positive integer. Then

(i) R(P3, P6, Ck) = k + 2 for k ≥ 23,

(ii) R(P6, P6, Ck) = R(P4, P8, Ck) = k + 4 for k ≥ 27,

(iii) R(P6, P7, Ck) = k + 4 for k ≥ 57.

3 Some three-color Ramsey numbers

In this section, we provide the exact values of some three-color Ramsey numbers such
as R(P5, C4, Pm), R(P4, C4, Pm), R(P5, P5, Pm) and R(P5, P6, Pm). First, we recall a result
of Faudree and Schelp.

Theorem 3.1 ([7]) If G is a graph with |V (G)| = nt+r where 0 ≤ r < n and G contains

no path on n + 1 vertices, then |E(G)| ≤ t
(

n
2

)

+
(

r
2

)

with equality if and only if either

G ∼= tKn ∪ Kr or if n is odd, t > 0 and r = (n ± 1)/2

G ∼= lKn ∪
(

K(n−1)/2 + K((n+1)/2+(t−l−1)n+r)

)

,

for some 0 ≤ l < t.

By Theorem 3.1, it is easy to obtain the following corollary.
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Corollary 3.2 For all integer n ≥ 3,

ex(n, P4) =







n if n = 0 (mod 3),

n − 1 if n = 1, 2 (mod 3).

ex(n, P5) =



















3n/2 if n = 0 (mod 4),

3n/2 − 2 if n = 2 (mod 4),

(3n − 3)/2 if n = 1, 3 mod 4.

ex(n, P6) =



















2n if n = 0 (mod 5),

2n − 2 if n = 1, 4 (mod 5),

2n − 3 if n = 2, 3 mod 5.

In order to prove the main results of this section, we need some lemmas.

Lemma 3.3 ([13]) Let G be a complete bipartite graph K3,4 with two partite sets X and
Y where |X| = 3 and |Y | = 4. If each edge of G is colored green or blue, then G contains
either a green P5 or a blue C4.

Lemma 3.4 ([13]) Let G be a graph obtained by removing two edges from K6. If each
edge of G is colored green or blue, then G contains either a green P5 or a blue C4.

Using Lemma 3.3, we have the following lemma.

Lemma 3.5 Let G be a complete bipartite graph K3,5 with two partite sets X and Y
where |X| = 3 and |Y | = 5. If each edge of G is colored green or blue, then G contains a
monochromatic graph P5.

Proof. Let X = {x1, x2, x3} and Y = {y1, y2, y3, y4, y5}. By Lemma 3.3, G must contain
a green P5 or a blue C4. If a green P5 occur, we are done. So let G contains a blue C4 on
vertices x1, y1, x2, y2, in this order. If one of the edges xiyj, i ∈ {1, 2} and j ∈ {3, 4, 5},
is blue we obtain a blue P5. Otherwise, we may assume that these edges are all in green
color. Clearly this gives a green P5 = y5x2y4x1y3, which completes the proof. �

Now, we use previous results to prove the following lemma, which help us to calculate
the three-color Ramsey number R(P5, C4, Pm).

Lemma 3.6 Let m ≥ 5 and the edges of Km+2 be colored with colors green, blue and red
such that Gr contains a copy of Pm−1 as a subgraph. Then Km+2 contains either a green
P5, a blue C4 or a red Pm.

the electronic journal of combinatorics 18 (2011), #P24 5



Fig. 1: P5-free graphs on 6 vertices and 6 edges

Proof. Assume that V (Km+2) = {v1, v2, . . . , vm+2} and P = v1v2 . . . vm−1 is the desired
copy of Pm−1 in Gr. We suppose that Gr contains no copy of Pm, then we prove that Km+2

contains either a green P5 or a blue C4. First assume that v1vm−1 ∈ E(Gr). If one of the
vertices vm, vm+1 or vm+2 is adjacent to P in Gr then we obtain a red Pm, a contradiction.
So each edge between {vm, vm+1, vm+2} and P is colored green or blue. Since m ≥ 5, we
obtain the complete bipartite graph K3,4 on two partite set X = {vm, vm+1, vm+2} and
Y = {v1, v2, vm−2, vm−1} with all edges are colored green or blue. Using Lemma 3.3, we
obtain a green P5 or a blue C4. Hence we may assume that v1vm−1 /∈ E(Gr). Also all
edges between {v1, vm−1} and {vm, vm+1, vm+2} are colored by green or blue, otherwise we
have a red Pm. Let H be a subgraph of Gr induced by the edges of color red on vertices
{vm, vm+1, vm+2}. We have the following cases.

Case 1. |E(H)| = 0.

Since |E(H)| = 0, all edges between vertices T = {v1, vm−1, vm, vm+1, vm+2} are colored
by green or blue. We find a vertex v ∈ P such that T ∪{v} are the vertices of a complete
graph on six vertices with at most two red edges and then we use Lemma 3.4, which
guaranties the existence of a green P5 or a blue C4. If there is a vertex v ∈ P −{v1, vm−1}
such that for each i ∈ {m, m + 1, m + 2}, vvi /∈ E(Gr), then this vertex is the desired
vertex. Also note that two consecutive vertices of P are not adjacent in Gr to a vertex in
{vm, vm+1, vm+2}, otherwise we have a red copy of Pm, a contradiction. So, without loss
of generality, let v2vm, v3vm+1 ∈ E(Gr). If v3v1 ∈ E(Gr), then Pm = vmv2v1v3v4 . . . vm−1

is a red Pm and so v3v1 /∈ E(Gr). By the same argument, v2vm−1 /∈ Gr. Now let v = v3

if v3vm+2 /∈ E(Gr) and v = v2 otherwise. In any case, T ∪ {v} form a complete graph on
six vertices with at most two red edges.

Case 2. |E(H)| = 1.

Let E(H) = {vmvm+1}. Since Pm * Gr, v2 (also vm−2) is not adjacent to vm or vm+1

in Gr. If v2vm−1, v1v3 ∈ E(Gr), then Gr contains Cm−1 = v2v1v3 . . . vm−1v2 and so each
edge between X = {vm, vm+1, vm+2} and Y = {v1, v2, vm−2, vm−1} is colored green or
blue, since Pm * Gr. Using Lemma 3.3, we obtain either a green P5 or a blue C4.
Therefore if v2vm−1 ∈ E(Gr), then v1v3 /∈ E(Gr). Now, assume that v2vm+2 /∈ E(Gr).
If v2vm−1 /∈ E(Gr), then {v1, v2, vm−1, vm, vm+1, vm+2} are the vertices of a complete
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graph on six vertices with at most two red edges. Also if v2vm−1 ∈ E(Gr), then for
each i ∈ {m, m + 1, m + 2}, v3vi /∈ E(Gr), otherwise we have a red Pm. In this case
{v1, v3, vm−1, vm, vm+1, vm+2} are the vertices of a complete graph on six vertices with at
most two red edges. Using Lemma 3.4, we obtain a green P5 or blue C4, as desired. So we
may assume that v2vm+2 is an edge of Gr. If m = 5, then {v1, v3, vm−1, vm, vm+1, vm+2}
are the vertices of a complete graph on six vertices such that each edge is colored green
or blue except at most two edges. Now let m ≥ 6. By the same argument, we may
assume that vm−2vm+2 ∈ E(Gr). If for some i ∈ {m, m + 1, m + 2}, v3vi ∈ E(Gr), then
we obtain Pm = v1v2vm+2vm−2 . . . v3vi in Gr. Also if v1v3 ∈ E(Gr), then we obtain a copy
of Pm = vm+2v2v1v3 . . . vm−1 in Gr, a contradiction. Hence {v1, v3, vm−1, vm, vm+1, vm+2}
are the vertices of a complete graph on six vertices such that each edge is colored green
or blue except at most two edges. Lemma 3.4, guaranties the existence of a green P5 or
a blue C4.

Case 3. |E(H)| ≥ 2.

Let X = {vm, vm+1, vm+2} and Y = {v1, v2, vm−2, vm−1}. All edges having one end in X
and one in Y , are colored by green or blue, otherwise we obtain a red Pm. So we obtain
the complete bipartite graph K3,4 on two partite set X and Y with all edges are colored
green or blue. Again using Lemma 3.3, we obtain a green P5 or a blue C4, which completes
the proof of theorem. �

Corollary 3.7 R(P5, C4, P5) = 7.

Proof. By a result in [13], R(P5, C4, P4) = 7 and clearly R(P5, C4, P5) ≥ R(P5, C4, P4).
So it is sufficient to prove that R(P5, C4, P5) ≤ 7. Assume the edges of K7 are arbitrary
colored by green, blue and red. Since R(P5, C4, P4) = 7, we may assume that Gr contains
a copy of P4 as a subgraph. By Lemma 3.6, K7 must contains either a green P5, a blue
C4 or a red P5, which completes the proof. �

Using Lemma 3.6 and Corollary 3.7, we have the following theorem.

Theorem 3.8 For all integers m ≥ 5, R(P5, C4, Pm) = m + 2.

Proof. Color all edges crossing a vertex of Km by green and other edges by red. Adjoin
a new vertex to all vertices of colored graph Km and color all new edges by blue. This
yields a 3-colored graph Km+1 with no a green P5, a blue C4 and a red Pm and so
R(P5, C4, Pm) > m+1. Now assume that the edges of Km+2 are colored with colors green,
blue and red. We prove that Km+2 contains either a green P5, a blue C4 or a red Pm.
We prove the claim by induction on m. By Corollary 3.7, this claim is true when m = 5.
Assume that R(P4, C4, Pm−1) = m+1 for m ≥ 6. By the induction assumption, we obtain
that Km+2 contains a red Pm−1. Using Lemma 3.6, we obtain that Km+2 contains a green
P5, a blue C4 or a red Pm, which completes the proof. �
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Corollary 3.9 For all integers m ≥ 5, R(P4, C4, Pm) = m + 2.

Proof. Using Theorem 3.8, we have R(P4, C4, Pm) ≤ m + 2. On the other hand, the
3-colored graph Km+1 in the proof of Theorem 3.8, implies that R(P4, C4, Pm) > m + 1.

�

Before establishing the other results of this section, we give the following lemmas which
help us to calculate the Ramsey number R(P5, P5, Pm).

Lemma 3.10 Let G be a graph obtained by removing two edges from K6. If each edge of
G is colored green or blue, then G contains a monochromatic graph P5.

Proof. By Corollary 3.2, ex(6, P5) = 7. Since |E(G)| = 13, so without loss of generality,
we may assume that |E(Gb)| = 6 and |E(Gg)| = 7. Since |E(Gb)| = 6, Gb is isomorphic to
one of the graphs shown in Fig. 1. So Gg is isomorphic to a graph obtained by removing
any two edges of Gb. One can easily check that Gb is isomorphic to K5 − e, K3,3 or
K2,4 with one additional edge and any graph obtained by removing two edges from these
graphs, still contains a P5, which completes the proof. �

Lemma 3.11 Let G be a graph obtained by removing an edge from the complete bipartite
graph K4,5 with partite sets X and Y . If each edge of G is colored green or blue, then G
contains either a green P5 or a blue P6.

Proof. Let X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4, y5}. Also without loss of gener-
ality, let e = x4y5 be the edge of K4,5 such that G = K4,5 − e. By Lemma 3.5, G − x4

(particulary G) contains a monochromatic P5. If G contains a green P5, we are done.
So we may assume that G contains a blue P5 such as P . Suppose t and z are the end
vertices of P . First let t, z ∈ X and Y ∩ V (P ) = {y1, y2}. If one of the edges tyi or zyi,
i ∈ {3, 4, 5}, is blue we have a blue P6. Otherwise the path y

3
ty

5
zy

4
is a green P5. So let

t, z ∈ Y and X ∩ V (P ) = {x1, x2}.

Let Y ∩ V (P ) = {y1, y2, y3} such that t = y1 and z = y3. If one of the edges y1xi or
y3xi, i ∈ {3, 4}, is blue we have a blue P6. So we may assume that these edges are colored
green. Now if one of the edges x3yi, i ∈ {2, 4, 5}, is green we have a green P5. Otherwise
the path y5x3y2x1y3x2 is a blue P6. If y5 ∈ Y ∩ V (P ), by the same argument, one can
easily find either a green P5 or a blue P6 in G, which completes the proof. �

In the following theorem, the values of R(P5, P5, P5) and R(P5, P5, P6) are given.

Theorem 3.12 Let n ∈ {5, 6}. Then R(P5, P5, Pn) = 9.
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Proof. First we prove that R(P5, P5, Pn) ≥ 9. To see this, let v1, v2, . . . , v8 be the vertices
of K8 in the clockwise order. Let G1 be the union of two K4 on vertices {v1, v2, v3, v4}
and {v5, v6, v7, v8}, G2 be the union of two C4 on vertices {v1, v5, v2, v6} and {v3, v7, v4, v8}
and G3 be the union of two C4 on {v1, v7, v2, v8} and {v3, v6, v4, v5} in this order. Color
the edges of Gi by color i. This gives a 3-edge coloring of K8 which contains no P5 in
color 1, no P5 in color 2 and no Pn in color 3. So R(P5, P5, Pn) ≥ 9. Now we prove that
R(P5, P5, Pn) ≤ 9. Let c : E(K9) −→ {1, 2, 3} be an arbitrary 3-edge coloring of K9. Also
assume that Gi denotes the spanning subgraph of K9 induced by the edges of color i.

Case 1. n = 5.

Using Corollary 3.2, we have ex(9, P5) = 12. Since E(K9) = 36, we may assume that
|E(G1)| = |E(G2)| = |E(G3)| = 12. By Theorem 3.1, G1 ∼= 2K4 ∪ K1. This implies that
K4,5 ⊆ G1. Now using Lemma 3.5, we obtain a monochromatic P5.

Case 2. n = 6.

Again by Corollary 3.2, ex(9, P5) = 12 and ex(9, P6) = 16. If |E(G1)| = 12, by the same
argument as in case 1, we obtain that K4,5 ⊆ G1. Using Lemma 3.11, we obtain either
a P5 in color 2 or a P6 in color 3. Also if |E(G2)| = 12, by a similar argument, one can
obtain the desired result. If |E(G3)| = 16, then Theorem 3.1 implies that G3 ∼= K5 ∪K4.
Again K4,5 ⊆ G3, and hence G3 contains a copy of P5 in color 1 or 2, by Lemma 3.5.
Without loss of generality, we may assume that |E(G1)| = 11. Since |E(G1)| = 11, G1

is not connected, otherwise we obtain a copy of P5 in color 1. Since |E(G1)| = 11, so
there exists a component of G1 such as H such that |H| = 4 and hence K4,5 ⊆ G1. Using
Lemma 3.11, we obtain a copy of P5 in color 2 or a copy of P6 in color 3, which completes
the proof. �

In order to determine the exact value of the Ramsey number R(P5, P5, P7), we need
the following lemma which can be obtained by an argument similar to the proof of Lemma
3.6 and using Lemma 3.5 and Lemma 3.10.

Lemma 3.13 Let m ≥ 7 and the edges of Km+2 are colored by colors green, blue and red
such that Gr contains a copy of Pm−1 as a subgraph. Then Km+2 contains either a green
P5, a blue P5 or a red Pm.

As an easy consequent of Lemma 3.13, we have the following corollary.

Corollary 3.14 R(P5, P5, P7) = 9.

Proof. By Theorem 3.12, R(P5, P5, P6) = 9 and clearly R(P5, P5, P7) ≥ R(P5, P5, P6), so
it is sufficient to prove that R(P5, P5, P7) ≤ 9. Assume that the edges of K9 are arbitrary
colored green, blue and red. Since R(P5, P5, P6) = 9, we may assume that Gr contains a
copy of P6 as a subgraph. By Lemma 3.13, K9 must contains either a monochromatic P5

in color green or blue or a red P6, which completes the proof. �

Now, we are ready to calculate the exact value of R(P5, P5, Pm) for m ≥ 7.

the electronic journal of combinatorics 18 (2011), #P24 9



Theorem 3.15 For all integers m ≥ 7, R(P5, P5, Pm) = m + 2.

Proof. Consider the graph Km−1 ∪ K2 and color the complete graphs Km−1 and K2 by
color red. Consider a vertex of K2, say v, and color the edges which are incident with v
and having another end in Km−1 by blue and finally, color the remaining edges by green.
This coloring contains neither a green P5, a blue P5, nor a red Pm, which means that
R(P5, P5, Pm) ≥ m + 2. Now assume that the graph Km+2 is 3-edge colored by colors
green, blue and red. We prove that Km+2 contains either a green P5, a blue P5 or a red
Pm. We use induction on m. By Corollary 3.14, the claim is true when m = 7. Let
us assume that R(P5, P5, Pm−1) ≤ m + 1 for m ≥ 8. By the induction assumption, we
obtain that Km+2 contains a red copy of Pm−1. Using Lemma 3.13, we obtain that Km+2

contains a green P5, a blue P5 or a red Pm, which completes the proof. �

We need the following lemma to determine the exact value of R(P5, P6, Pm).

Lemma 3.16 Let G be a graph obtained by removing three edges from K7. If each edge
of G is colored green or blue, then G contains either a green P5 or a blue P6.

Proof. By Corollary 3.2, ex(7, P5) = 9 and ex(7, P6) = 11. Since |E(G)| = 18, we may
assume that |E(Gg)| ∈ {7, 8, 9}. If |E(Gg)| = 9, then by Theorem 3.1, Gg ∼= K4 ∪ K3

which implies that K3,4 ⊆ Gg. But removing any three edges from K3,4, retains a copy
of P6. If |E(Gg)| = 7, then |E(Gb)| = 11, since |E(G)| = 18. Now by Theorem 3.1,
Gb ∼= K5 ∪K2 or Gb ∼= K2 + K5 which implies that K2,5 ⊆ Gb or K5 ⊆ Gb. But removing
any three edges from K2,5 or K5, retains a copy of P5. So we may assume that |E(Gg)| = 8.
We have the following cases.

Case 1. Gg is connected.

Clearly Gg contains no C4, otherwise the connectivity of Gg implies a copy of P5. So Gg

contains a triangle C. The induced subgraph of Gg on V (K7) − V (C) is an independent
set, since otherwise we have a copy of P5 in Gg. Since |E(Gg)| = 8, two vertices of C
must contain a common neighbor outside C, which gives a copy of C4 and hence a copy
of P5 in G.

Case 2. Gg is disconnected.

Since ex(6, P5) = 7, ex(5, P5) = 6 by Corollary 3.2, and |E(Gg)| = 8, so Gg can not have
two components H1 and H2 such that |V (H1)| ≤ 2. Hence one can easily find K3,4 ⊆ Gg

and clearly removing any three edges from K3,4, retains a copy of P6, which completes
the proof. �

Using Lemma 3.11 and Lemma 3.16, we have the following lemma.
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Lemma 3.17 Let m ≥ 6 and Km+3 is 3-edge colored with colors green, blue and red such
that Gr contains a copy of Pm−1 as a subgraph. Then Km+3 contains either a green P5, a
blue P6 or a red Pm.

Proof. Assume that v1, v2, . . . , vm+3 are vertices of Km+3 and P = v1v2 . . . vm−1 is the
desired copy of Pm−1 in Gr. Also let Pm * Gr. We prove that Km+3 contains either a green
P5 or a blue P6. First assume that v1vm−1 ∈ E(Gr). If one of the vertices vm, vm+1, vm+2

or vm+3 is adjacent to P by a red edge, then we obtain a red Pm. So we may assume that
each edge between {vm, vm+1, vm+2, vm+3} and P is colored by green or blue. Since m ≥ 6,
we obtain a bipartite graph K4,5 with two partite sets X = {vm, vm+1, vm+2, vm+3} and
Y = {v1, v2, v3, vm−2, vm−1} such that all edges colored green or blue and so by Lemma
3.11, we obtain a green P5 or a blue P6. Hence we may assume that v1vm−1 /∈ E(Gr).
Since Pm * Gr, all edges having ends in both {v1, vm−1} and {vm, vm+1, vm+2, vm+3} are
colored by green or blue. Now let H be the subgraph induced by edges of color red
between vertices {vm, vm+1, vm+2, vm+3}. We have the following cases.

Case 1. |E(H)| = 0.

Since |E(H)| = 0, then all edges among vertices T = {v1, vm−1, vm, vm+1, vm+2, vm+3} are
colored by green or blue. We find a vertex v such that T ∪ {v} are the vertices of a
complete graph on seven vertices and each edge is colored green and blue except at most
three edges. If there exists a vertex v ∈ P − {v1, vm−1} such that vvi ∈ E(Gr) for at
most one i ∈ {m, m + 1, m + 2, m + 3}, then this vertex is the desired vertex. Note that
since Pm * Gr, then two consecutive vertices of P are not adjacent in Gr to a vertex in
{vm, vm+1, vm+2, vm+3}. So let v2vi ∈ E(Gr) for i ∈ {m, m + 1} and v3vi ∈ E(Gr) for
i ∈ {m + 2, m + 3}. Now, if v3v1 ∈ E(Gr), then Pm = vmv2v1v3 . . . vm−1 is a red Pm, a
contradiction. So v3v1 /∈ E(Gr) and hence the induced subgraph on {v1, v3, vm−1} has at
most one edge in Gr. Therefore T ∪ {v3} are the vertices of a complete graph on seven
vertices with at most three red edges. Using Lemma 3.16, we have either a green P5 or a
blue P6.

Case 2. |E(H)| = 1.

Let vmvm+1 ∈ E(Gr) be the edge of H and T = {v1, vm−1, vm, vm+1, vm+2, vm+3}. We find
a vertex v such that T ∪ {v} are the vertices of a complete graph on seven vertices and
each edge is colored green and blue except at most three edges. If there exists a vertex
v ∈ P −{v1, vm−1} such that vvi /∈ E(Gr), for each i ∈ {m, m+1, m+2, m+3}, then this
vertex is the desired vertex. So we assume that for some i ∈ {m, m + 1, m + 2, m + 3},
vvi ∈ E(Gr). In Gr the vertex v2 (also vm−2) is not adjacent to any of vm or vm+1,
otherwise we obtain a red Pm. So without loss of generality, let v2vm+2 ∈ E(Gr). If
vm−2vm+2 ∈ E(Gr), then v3vi /∈ Gr for each i ∈ {m, m + 1, m + 2, m + 3}, otherwise we
obtain a red Pm = v1v2vm+2vm−2 . . . v3vi. So vm+3 is the only vertex outside P such that
vm−2vm+3 ∈ E(Gr). Finally, let v = vm−3 if v1vm−2 ∈ E(Gr) and v = vm−2 otherwise. In
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any case, v is the vertex such that T ∪ {v} are the vertices of a complete graph on seven
vertices at most three red edges. Using Lemma 3.16, we obtain a green P5 or a blue P6.

Case 3. |E(H)| = 2.

First let H = 2K2, where E(H) = {vmvm+1, vm+2vm+3}. Since Pm * Gr, for each i ∈
{m, m + 1, m + 2, m + 3} we have v2vi, vm−2vi /∈ E(Gr). If v3vi /∈ E(Gr) for each i ∈
{m, m + 1, m + 2, m + 3}, then we obtain the complete bipartite K4,5 with partite set
X = {vm, vm+1, vm+2, vm+3} and Y = {v1, v2, v3, vm−2, vm−1} with all edges colored green
or blue. Using Lemma 3.11, we obtain either a green P5 or a blue P6. So without loss
of generality, we may assume that v3vm ∈ E(Gr). Also v2vm−1 /∈ E(Gr), otherwise we
obtain a red copy of Pm. Now, {v1, v2, vm−1, vm, vm+1, vm+2, vm+3} are the vertices of a
complete graph on seven vertices with at most three red edges. Using Lemma 3.16, we
obtain either a green P5 or a blue P6.

Now let H = P3 = vmvm+1vm+2. By the same argument, one can easily obtain either
a complete graph on seven vertices with at most three red edges or a complete bipartite
graph K4,5 with all edges colored green or blue. Using Lemmas 3.11 and 3.16, we obtain
either a green P5 or a blue P6.

Case 4. |E(H)| ≥ 3.

If either H ∼= P4 or |E(H)| ≥ 4, then all edges between {v1, v2, v3, vm−2, vm−1} and
{vm, vm+1, vm+2, vm+3} are colored by green or blue, otherwise we obtain a red copy of
Pm. Since m ≥ 6, we obtain the complete bipartite graph K4,5 with partite set X =
{vm, vm+1, vm+2, vm+3} and Y = {v1, v2, v3, vm−2, vm−1} with all edges colored green or
blue. Using Lemma 3.11, we obtain either a green P5 or a blue P6. So it is sufficient
to consider the cases that H is either a star with center vm or the graph K3 ∪ K1 with
isolated vertex vm.

In the first case, all edges having end vertices in both {vm, vm+1, vm+2, vm+3} and
{v1, v2, vm−2, vm−1} are colored green or blue, otherwise we obtain a red copy of Pm. If
v3vi /∈ E(Gr), i ∈ {m, m + 1, m + 2, m + 3}, then we obtain the complete bipartite graph
K4,5 with partite set X = {vm, vm+1, vm+2, vm+3} and Y = {v1, v2, v3, vm−2, vm−1} with
all edges colored green or blue. Using Lemma 3.11, we obtain either a green P5 or a blue
P6. So we may assume that v3vm ∈ E(Gr). Now v1vm−2 /∈ E(Gr), otherwise the path
Pm = v2v1vm−1 . . . v3vmvm+1 is a copy of Pm in Gr, a contradiction. Also v2vm−1 /∈ E(Gr).
Hence {v1, v2, vm−1, vm−2, vm+1, vm+2, vm+3} are the vertices of a complete graph on seven
vertices with at most three red edges. Again using Lemma 3.16, we obtain either a green
P5 or a blue P6.

Now let H = K3 ∪ K1 with isolated vertex vm. It is clear that there is no any
red edge having ends in both {v1, v2, v3, vm−2, vm−1} and {vm+1, vm+2, vm+3}. If either
v2vm, vm−2vm /∈ Gr or v2vm ∈ Gr and vm−2vm /∈ Gr then X = {vm, vm+1, vm+2, vm+3} and
Y = {v1, v2, v3, vm−2, vm−1} form a complete bipartite graph K4,5 with at most one red
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edge. Using Lemma 3.11, we obtain either a green P5 or a blue P6. So let both edges
v2vm and vm−2vm be red. In this case, v3v1 /∈ Gr otherwise vmv2v1v3 . . . vm−1 is a copy
of Pm in Gr. Also v3vm−1 /∈ Gr, otherwise Pm = v1v2vmvm−2vm−1v3 . . . vm−3 is a copy of
Pm in Gr. So {v1, v3, vm−1, vm, vm+1, vm+2, vm+3} form a K7 with at most three red edges.
Using Lemma 3.16, we obtain either a green P5 or a blue P6. �

Corollary 3.18 R(P5, P6, P6) = 9.

Proof. By Theorem 3.12, R(P5, P6, P5) = 9 and clearly R(P5, P6, P6) ≥ R(P5, P6, P5). So
it is sufficient to prove R(P5, P6, P6) ≤ 9. Assume that the graph K9 is 3-edge colored by
colors green, blue and red. We prove that K9 contains either a green P5, a blue P6 or a
red P6. Since R(P5, P6, P5) = 9, so we may assume that Gr contains a copy of P5. Using
Lemma 3.17, we obtain that K9 contains either a green P5, a blue P6 or a red P6, which
completes the proof. �

Finally we end this section by the following theorem.

Theorem 3.19 For all integers m ≥ 6, R(P5, P6, Pm) = m + 3.

Proof. Consider the graph Km−1 ∪ K3 and color the complete graphs Km−1 and K3 by
color red. Consider two vertices of K3, say u, v, and color the edges which are incident
with u and v and having another end in Km−1 by blue and finally, color the remaining
edges by green. This coloring contains neither a green P5, a blue P6, nor a red Pm, so
R(P5, P6, Pm) ≥ m + 3. The upper bound follows by induction on m. By Corollary 3.18,
theorem is true when m = 6. Let us assume that R(P5, P6, Pm−1) ≤ m + 2 for m ≥ 7. By
the induction assumption, we obtain that Km+3 contains a red Pm−1. Using Lemma 3.17,
we obtain that Km+3 contains either a green P5, a blue P6 or a red Pm, which completes
the proof. �

Corollary 3.20 For all integers m ≥ 6, R(P4, P6, Pm) = m + 3.

4 Multicolor Ramsey number of paths

In this section, we give an improvement of a result of Faudree and Schelp [7] on
multicolor Ramsey number R(Pn1

, P2n2+δ, . . . , P2nt
). In addition,, we use a simple lemma

to give a lower bound for the multicolor Ramsey number R(Pn1
, Pn2

, . . . , Pnt
) and we

conjecture that this lower bound is the exact value of this Ramsey number if all ni’s are
even integers greater than three. Moreover, we give some evidences for this conjecture.
Before that we need a definition. By a stripe mK2 we mean that a graph on 2m vertices
and m independent edges. In [2], the exact value of the multicolor Ramsey number of
stripes is given as follows.
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Theorem 4.1 ([2]) Let n1 ≥ n2 ≥ · · · ≥ nt and Σ denote Σt
i=1(ni − 1). Then

R(n1K2, n2K2, . . . , ntK2) = n1 + Σ + 1.

In the following lemma, we give a lower bound for the multicolor Ramsey number
R(Pn1

, Pn2
, . . . , Pnt

).

Lemma 4.2 Assume that G1, G2, . . . , Gt are arbitrary graphs and for i = 1, 2, . . . , t,
Hi ⊆ Gi. Also let n1 ≥ n2 ≥ · · · ≥ nt ≥ 3 and Σ denote Σt

i=1(⌊
ni

2
⌋ − 1). Then

(i) R(H1, H2, . . . , Ht) ≤ R(G1, G2, . . . , Gt),

(ii) ⌊n1

2
⌋ + Σ + 1 ≤ R(Pn1

, Pn2
, . . . , Pnt

),

(iii) If n1 > Σt
i=2(⌊

ni

2
⌋ − 1), then n1 + Σt

i=2(⌊
ni

2
⌋ − 1) ≤ R(Pn1

, Pn2
, . . . , Pnt

),

(iv) If 2n1 > Σt
i=2(ni − 1), then n1 + Σt

i=1(ni − 1) + 1 ≤ R(P2n1
, P2n2

, . . . , P2nt
).

Proof. Part (i) is clear. Part (ii) is a direct consequent of part (i) and Theorem 4.1. To
see (iii), let m = Σt

i=2(⌊
ni

2
⌋ − 1) and consider the graph Kn1−1 ∪ Km. Partition Km into

subsets V2, V3, . . . , Vt of size ⌊n2

2
⌋−1, ⌊n3

2
⌋−1, . . . , ⌊nt

2
⌋−1, respectively. For i = 2, 3, . . . , t,

color the edges of Kn1−1 ∪Km having one end in Vi and another end in Kn1−1 by the i-th
color and the remaining edges by color 1. Clearly this coloring of Kn1+m−1 contains no
Pi in color i, which means that part (iii) holds. Part (iv) is a direct consequent of part
(iii). �

The following theorem, gives an improvement of a result in [7], which follows from
Theorem 2.3 and Lemma 4.2.

Theorem 4.3 Assume that δ ∈ {0, 1} and Σ denotes Σt
i=1(ni − 1). Then

R(P2n1+δ, P2n2
, . . . , P2nt

, Pk) = k + Σ,

where k ≥ Σ2 + 2Σ + 3 if δ = 0 and k ≥ 2Σ2 + 5Σ + 5 otherwise.

In the following theorem, we give the exact value of some multicolor Ramsey number
of paths with even number of vertices.

Theorem 4.4 Let n1 ≥ n2 ≥ · · · ≥ nt ≥ 2 and m be positive integers. Also let Σ denote
Σt

i=1(ni − 1). Then

(i) R(P2n1
, P2n2

, . . . , P2nt
) = n1 + Σ + 1 for 2n1 ≥ (Σ − n1 + 2)2 + 2,
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(ii) R(P4, P4, P2m) = 2m + 2 for m ≥ 2,

(iii) R(P4, P6, P2m) = 2m + 3 for m ≥ 3,

(iv) R(P6, P6, P2m) = R(P4, P8, P2m) = 2m + 4 for m ≥ 14.

Proof. (i) This part is a consequent of Theorem 4.3.

(ii) First we prove that R(P4, P4, P4) = 6. By part (iv) of Lemma 4.2, R(P4, P4, P4) ≥ 6.
For the upper bound, let the edges of K6 be colored by green, blue and red colors and also
let Gg be the graph induced by the green edges. Since ex(6, P4) = 6, so we may assume
that |E(Gg)| ≤ 6. This implies that Gg contains either K3,3 or K5 as a subgraph. If Gg

contains a copy of K5, we can find a copy of P4 in blue or red, since R(P4, P4) = 5. If Gg

contains a copy of K3,3, then it is easy to check that any two coloring of K3,3 with colors
blue and red contains a monochromatic copy of P4. This means that R(P4, P4, P4) ≤ 6.
For m ≥ 3, the result follows from Corollary 3.9 and Lemma 4.2.

(iii) This part is a direct consequent of Corollary 3.20.

(iv) This part is an easy consequent of Corollary 2.5 and Lemma 4.2.
�

As mentioned before, it is proved that [7], R(Pn1
, Pn2

, Pn3
) = n1 + ⌊n2

2
⌋ + ⌊n3

2
⌋ − 2

if n1 ≥ 6(n2 + n3)
2 and both n2, n3 are not odd numbers. This result can be obtained

by Theorem 4.3. Theorem 4.3 shows that the lower bound in part (iii) of Lemma 4.2
is the exact value of the multicolor ramsey number R(Pn1

, Pn2
, . . . , Pnt

) if at most one
of n2, n3, . . . , nt is odd and n1 is sufficiently large. For the case t = 4, it seems that
R(Pn1

, Pn2
, Pn3

, Pn4
) ∈ {r, r + 1, r + 2}, where n1 ≥ n2 ≥ n3 ≥ n4 ≥ 3 and r = n1 +

⌊n2

2
⌋+ ⌊n3

2
⌋+ ⌊n4

2
⌋− 3. Anyway we end this paper by proposing the following conjecture,

which gives the exact value of the multicolor Ramsey number of paths with even number
of vertices.

Conjecture 1 For positive integers n1 ≥ n2 ≥ · · · ≥ nt ≥ 2, we have

R(P2n1
, P2n2

, . . . , P2nt
) = n1 +

t
∑

i=1

(ni − 1) + 1.

Theorem 4.4, gives some evidences for this conjecture. We think the following conjec-
ture is also true, which is a generalization of the previous conjecture.

Conjecture 2 Let n1 ≥ n2 ≥ · · · ≥ nt ≥ 4 be positive integers such that at most one of
n2, n3, . . . , nt is odd. Then

R(Pn1
, Pn2

, . . . , Pnt
) = n1 +

t
∑

i=2

(⌊
ni

2
⌋ − 1).
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[6] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci.
Hungar. 10 (1959), 33–56.

[7] R. J. Faudree, R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin.
Theory, Ser. B 19 (1975), 150–160.

[8] A. Figaj, T. Luczak, The Ramsey number for a triple of long even cycles, J. Combin.
Theory, Ser. B, 97 (2007), 584–596.
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