On multicolor Ramsey number of paths versus cycles

Gholam Reza Omidi ${ }^{1}$
Department of Mathematical Sciences
Isfahan University of Technology
Isfahan, 84156-83111, Iran
and
School of Mathematics
Institute for Research in Fundamental Sciences
Tehran, 19395-5746, Iran
romidi@cc.iut.ac.ir

Submitted: Sep 5, 2010; Accepted: Jan 10, 2011; Published: Jan 26, 2011
Mathematics Subject Classifications: 05C15, 05C55.

Abstract

Let $G_{1}, G_{2}, \ldots, G_{t}$ be graphs. The multicolor Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is the smallest positive integer n such that if the edges of a complete graph K_{n} are partitioned into t disjoint color classes giving t graphs $H_{1}, H_{2}, \ldots, H_{t}$, then at least one H_{i} has a subgraph isomorphic to G_{i}. In this paper, we provide the exact value of $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}, C_{k}\right)$ for certain values of n_{i} and k. In addition, the exact values of $R\left(P_{5}, C_{4}, P_{k}\right), R\left(P_{4}, C_{4}, P_{k}\right), R\left(P_{5}, P_{5}, P_{k}\right)$ and $R\left(P_{5}, P_{6}, P_{k}\right)$ are given. Finally, we give a lower bound for $R\left(P_{2 n_{1}}, P_{2 n_{2}}, \ldots, P_{2 n_{t}}\right)$ and we conjecture that this lower bound is the exact value of this number. Moreover, some evidence is given for this conjecture.

1 Introduction

In this paper, we are only concerned with undirected simple finite graphs and we follow [1] for terminology and notations not defined here. The complement graph of a graph G is denoted by \bar{G}. As usual, the complete graph of order p is denoted by K_{p} and a complete bipartite graph with partite set (X, Y) such that $|X|=m$ and $|Y|=n$ is denoted by $K_{m, n}$. Throughout this paper, we denote a cycle and a path on m vertices by C_{m} and P_{m}, respectively. Also for a 3-edge coloring (say green, blue and red) of a graph G, we denote by G^{g} (resp. G^{b} and G^{r}) the subgraph induced by the edges of color green (resp. blue and red).

[^0]Let $G_{1}, G_{2}, \ldots, G_{t}$ be graphs. The multicolor Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{t}\right)$, is the smallest positive integer n such that if the edges of a complete graph K_{n} are partitioned into t disjoint color classes giving t graphs $H_{1}, H_{2}, \ldots, H_{t}$, then at least one H_{i} has a subgraph isomorphic to G_{i}. The existence of such a positive integer is guaranteed by Ramsey's classical result [12]. Since their time, particulary since the 1970's, Ramsey theory has grown into one of the most active areas of research within combinatorics, overlapping variously with graph theory, number theory, geometry and logic.

For $t \geq 3$, there is a few results about multicolor Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{t}\right)$. A survey including some results on Ramsey number of graphs, can be found in [11]. The multicolor Ramsey numbers $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}\right)$ and $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, C_{n_{t}}\right)$ are not known for $t \geq 3$. In the case $t=2$, a well-known theorem of Gerencsér and Gyárfás [9] states that $R\left(P_{n}, P_{m}\right)=n+\left\lfloor\frac{m}{2}\right\rfloor-1$, where $n \geq m \geq 2$. Faudree and Schelp in [7] determined $R\left(P_{n_{1}}, P_{2 n_{2}+\delta}, \ldots, P_{2 n_{t}}\right)$ where $\delta \in\{0,1\}$ and n_{1} is sufficiently large. In addition, they determined $R\left(P_{n_{1}}, P_{n_{2}}, P_{n_{3}}\right)$ for the case $n_{1} \geq 6\left(n_{2}+n_{3}\right)^{2}$ and they conjectured that

$$
R\left(P_{n}, P_{n}, P_{n}\right)= \begin{cases}2 n-1 & \text { if } n \text { is odd } \\ 2 n-2 & \text { if } n \text { is even }\end{cases}
$$

This conjecture was established by Gyárfás et al. [10] for sufficiently large n. In asymptotic form, this was proved by Figaj and Luczak in [8] as a corollary of more general results about the asymptotic results of the Ramsey number for three long even cycles.

Recently, determination of some exact values of Ramsey numbers of type $R\left(P_{i}, P_{j}, C_{k}\right)$ such as $R\left(P_{4}, P_{4}, C_{k}\right), R\left(P_{4}, P_{6}, C_{k}\right)$ and $R\left(P_{3}, P_{5}, C_{k}\right)$ have been investigated. For more details related to three-color Ramsey numbers for paths versus a cycle, see [3, 4, 5, 13]. In this paper, we provide the exact value of the Ramsey numbers $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}, C_{k}\right)$ for certain values of n_{i} and k and then we determine the exact values of some three-color Ramsey numbers of type $R\left(P_{i}, P_{j}, C_{k}\right)$ as corollaries of our result. Moreover, we determine the exact value of the multicolor Ramsey number $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}, C_{k}\right)$, if at most one n_{i} is odd and k is sufficiently large. Consequently, we obtain an improvement of the result of Faudree and Schelp [7] on multicolor Ramsey number $R\left(P_{n_{1}}, P_{2 n_{2}+\delta}, \ldots, P_{2 n_{t}}\right)$. In addition, we determine the exact values of some three-color Ramsey numbers such as $R\left(P_{5}, C_{4}, P_{k}\right), R\left(P_{4}, C_{4}, P_{k}\right), R\left(P_{5}, P_{5}, P_{k}\right)$ and $R\left(P_{5}, P_{6}, P_{k}\right)$. Finally, we give a lower bound for $R\left(P_{2 n_{1}}, P_{2 n_{2}}, \ldots, P_{2 n_{t}}\right)$ and we conjecture that, with giving some evidences, this lower bound is the exact value of this number.

2 Multicolor Ramsey number $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}, C_{k}\right)$

In this section, we determine the exact value of $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}, C_{k}\right)$ when at most one of n_{i} is odd and k is sufficiently large. Also, the exact values of some known three-color Ramsey numbers of type $R\left(P_{i}, P_{j}, C_{k}\right)$ are given as some corollaries. For this purpose, we
need some definitions and notations. A graph G is called H-free if it does not contain H as a subgraph. The notation $e x(p, H)$ is defined the maximum number of edges in a H-free graph on p vertices. It is well known that [6] ex $\left(p, P_{n}\right) \leq \frac{(n-2)}{2} p$, for every n. Moreover, $e x\left(p, C_{k}\right)$ is known for some values of p and k. The following theorem can be found in the appendix IV of [1].
Theorem 2.1 ([1]) Assume that $k \geq \frac{1}{2}(p+3)$. Then

$$
e x\left(p, C_{k}\right)=\binom{p-k+2}{2}+\binom{k-1}{2}
$$

Now, we are ready to establish the main result of this section.
Theorem 2.2 Let $k \geq n_{1} \geq n_{2} \geq \cdots \geq n_{t} \geq 3$ and $l \geq 1$ be a positive integer that can be written as $l=\sum_{i=1}^{t} x_{i}$ for some x_{i} such that $2 x_{i}+1<n_{i}$. Then in the following cases, we have $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}, C_{k}\right)=k+l$.
(i) If $k \geq 2 l^{2}+5 l+5$ and $\sum_{i=1}^{t} n_{i}=2 l+2 t+1$,
(ii) If $k \geq l^{2}+2 l+3$ and $\sum_{i=1}^{t} n_{i}=2 l+2 t$.

Proof. Let R denote the multicolor Ramsey number $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}, C_{k}\right)$. By Theorem 2.1, we obtain that $e x\left(k+l, C_{k}\right)=\frac{1}{2}\left(k^{2}+l^{2}-3 k+3 l+4\right)$ where $k \geq l+3$. Clearly $R \leq k+l$ if the following inequality holds.

$$
\sum_{i=1}^{t} e x\left(k+l, P_{n_{i}}\right)+e x\left(k+l, C_{k}\right)<\binom{k+l}{2}
$$

In the other words, $R \leq k+l$ if

$$
\frac{k+l}{2}\left(\sum_{i=1}^{t} n_{i}-2 t\right)+\frac{1}{2}\left(k^{2}+l^{2}-3 k+3 l+4\right)<\binom{k+l}{2}
$$

or simply

$$
\begin{equation*}
\sum_{i=1}^{t} n_{i}<(2 t+2 l+2)-\frac{2 l^{2}+6 l+4}{k+l} \tag{1}
\end{equation*}
$$

In each case of the theorem, inequality (1) holds and so $R \leq k+l$. Now consider the graph $K_{k-1} \cup K_{l}$ and partition the vertices of K_{l} into t classes $V_{1}, V_{2}, \ldots, V_{t}$ such that $\left|V_{i}\right|=x_{i}$, $1 \leq i \leq t$. Color the edges of K_{k-1} and K_{l} by color α_{t+1} and also color the edges having an end vertex in $V_{i}, 1 \leq i \leq t$, and one in K_{k-1} by color α_{i}. Since for $i=1,2, \ldots, t$, the inequality $2\left|V_{i}\right|+1<n_{i}$ holds, this coloring of K_{k+l-1} contains no $P_{n_{i}}$ in color α_{i}, $1 \leq i \leq t$, and no C_{k} in color α_{t+1}. This means that $R \geq k+l$, which completes the proof.

In the following theorem, we determine the exact value of $R\left(P_{2 n_{1}}, P_{2 n_{2}}, \ldots, P_{2 n_{t}}, C_{k}\right)$ for sufficiently large k.

Theorem 2.3 Assume that $\delta \in\{0,1\}$ and Σ denotes $\sum_{i=1}^{t}\left(n_{i}-1\right)$. Then

$$
R\left(P_{2 n_{1}+\delta}, P_{2 n_{2}}, \ldots, P_{2 n_{t}}, C_{k}\right)=k+\Sigma
$$

where $k \geq \Sigma^{2}+2 \Sigma+3$ if $\delta=0$ and $k \geq 2 \Sigma^{2}+5 \Sigma+5$, otherwise.

Proof. The assertion holds from Theorem 2.2 where $x_{i}=n_{i}-1$ for $1 \leq i \leq t$.
As an application of Theorem 2.3, we have the following corollary which determine some known three-color Ramsey numbers of small paths versus a cycle.

Corollary 2.4 Let k be a positive integer. Then
(i) ([3]) $R\left(P_{4}, P_{4}, C_{k}\right)=k+2$ for $k \geq 11$,
(ii) ([4]) $R\left(P_{3}, P_{4}, C_{k}\right)=k+1$ for $k \geq 12$,
(iii) ([13]) $R\left(P_{4}, P_{5}, C_{k}\right)=k+2$ for $k \geq 23$,
(iv) ([13]) $R\left(P_{4}, P_{6}, C_{k}\right)=k+3$ for $k \geq 18$.

We end this section by giving the following consequent of Theorem 2.3.

Corollary 2.5 Let k be a positive integer. Then
(i) $R\left(P_{3}, P_{6}, C_{k}\right)=k+2$ for $k \geq 23$,
(ii) $R\left(P_{6}, P_{6}, C_{k}\right)=R\left(P_{4}, P_{8}, C_{k}\right)=k+4$ for $k \geq 27$,
(iii) $R\left(P_{6}, P_{7}, C_{k}\right)=k+4$ for $k \geq 57$.

3 Some three-color Ramsey numbers

In this section, we provide the exact values of some three-color Ramsey numbers such as $R\left(P_{5}, C_{4}, P_{m}\right), R\left(P_{4}, C_{4}, P_{m}\right), R\left(P_{5}, P_{5}, P_{m}\right)$ and $R\left(P_{5}, P_{6}, P_{m}\right)$. First, we recall a result of Faudree and Schelp.

Theorem 3.1 ([7]) If G is a graph with $|V(G)|=n t+r$ where $0 \leq r<n$ and G contains no path on $n+1$ vertices, then $|E(G)| \leq t\binom{n}{2}+\binom{r}{2}$ with equality if and only if either $G \cong t K_{n} \cup K_{r}$ or if n is odd, $t>0$ and $r=(n \pm 1) / 2$

$$
G \cong l K_{n} \cup\left(K_{(n-1) / 2}+\bar{K}_{((n+1) / 2+(t-l-1) n+r)}\right),
$$

for some $0 \leq l<t$.

By Theorem 3.1, it is easy to obtain the following corollary.

Corollary 3.2 For all integer $n \geq 3$,

$$
\begin{aligned}
& e x\left(n, P_{4}\right)= \begin{cases}n & \text { if } n=0(\bmod 3), \\
n-1 & \text { if } n=1,2(\bmod 3) .\end{cases} \\
& e x\left(n, P_{5}\right)= \begin{cases}3 n / 2 & \text { if } n=0(\bmod 4), \\
3 n / 2-2 & \text { if } n=2(\bmod 4), \\
(3 n-3) / 2 & \text { if } n=1,3 \bmod 4 .\end{cases} \\
& e x\left(n, P_{6}\right)= \begin{cases}2 n & \text { if } n=0(\bmod 5), \\
2 n-2 & \text { if } n=1,4(\bmod 5), \\
2 n-3 & \text { if } n=2,3 \bmod 5 .\end{cases}
\end{aligned}
$$

In order to prove the main results of this section, we need some lemmas.

Lemma 3.3 ([13]) Let G be a complete bipartite graph $K_{3,4}$ with two partite sets X and Y where $|X|=3$ and $|Y|=4$. If each edge of G is colored green or blue, then G contains either a green P_{5} or a blue C_{4}.

Lemma 3.4 ([13]) Let G be a graph obtained by removing two edges from K_{6}. If each edge of G is colored green or blue, then G contains either a green P_{5} or a blue C_{4}.

Using Lemma 3.3, we have the following lemma.
Lemma 3.5 Let G be a complete bipartite graph $K_{3,5}$ with two partite sets X and Y where $|X|=3$ and $|Y|=5$. If each edge of G is colored green or blue, then G contains a monochromatic graph P_{5}.

Proof. Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$. By Lemma 3.3, G must contain a green P_{5} or a blue C_{4}. If a green P_{5} occur, we are done. So let G contains a blue C_{4} on vertices $x_{1}, y_{1}, x_{2}, y_{2}$, in this order. If one of the edges $x_{i} y_{j}, i \in\{1,2\}$ and $j \in\{3,4,5\}$, is blue we obtain a blue P_{5}. Otherwise, we may assume that these edges are all in green color. Clearly this gives a green $P_{5}=y_{5} x_{2} y_{4} x_{1} y_{3}$, which completes the proof.

Now, we use previous results to prove the following lemma, which help us to calculate the three-color Ramsey number $R\left(P_{5}, C_{4}, P_{m}\right)$.

Lemma 3.6 Let $m \geq 5$ and the edges of K_{m+2} be colored with colors green, blue and red such that G^{r} contains a copy of P_{m-1} as a subgraph. Then K_{m+2} contains either a green P_{5}, a blue C_{4} or a red P_{m}.

Fig. 1: P_{5}-free graphs on 6 vertices and 6 edges
Proof. Assume that $V\left(K_{m+2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m+2}\right\}$ and $P=v_{1} v_{2} \ldots v_{m-1}$ is the desired copy of P_{m-1} in G^{r}. We suppose that G^{r} contains no copy of P_{m}, then we prove that K_{m+2} contains either a green P_{5} or a blue C_{4}. First assume that $v_{1} v_{m-1} \in E\left(G^{r}\right)$. If one of the vertices v_{m}, v_{m+1} or v_{m+2} is adjacent to P in G^{r} then we obtain a red P_{m}, a contradiction. So each edge between $\left\{v_{m}, v_{m+1}, v_{m+2}\right\}$ and P is colored green or blue. Since $m \geq 5$, we obtain the complete bipartite graph $K_{3,4}$ on two partite set $X=\left\{v_{m}, v_{m+1}, v_{m+2}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{m-2}, v_{m-1}\right\}$ with all edges are colored green or blue. Using Lemma 3.3, we obtain a green P_{5} or a blue C_{4}. Hence we may assume that $v_{1} v_{m-1} \notin E\left(G^{r}\right)$. Also all edges between $\left\{v_{1}, v_{m-1}\right\}$ and $\left\{v_{m}, v_{m+1}, v_{m+2}\right\}$ are colored by green or blue, otherwise we have a red P_{m}. Let H be a subgraph of G^{r} induced by the edges of color red on vertices $\left\{v_{m}, v_{m+1}, v_{m+2}\right\}$. We have the following cases.

Case 1. $|E(H)|=0$.
Since $|E(H)|=0$, all edges between vertices $T=\left\{v_{1}, v_{m-1}, v_{m}, v_{m+1}, v_{m+2}\right\}$ are colored by green or blue. We find a vertex $v \in P$ such that $T \cup\{v\}$ are the vertices of a complete graph on six vertices with at most two red edges and then we use Lemma 3.4, which guaranties the existence of a green P_{5} or a blue C_{4}. If there is a vertex $v \in P-\left\{v_{1}, v_{m-1}\right\}$ such that for each $i \in\{m, m+1, m+2\}, v v_{i} \notin E\left(G^{r}\right)$, then this vertex is the desired vertex. Also note that two consecutive vertices of P are not adjacent in G^{r} to a vertex in $\left\{v_{m}, v_{m+1}, v_{m+2}\right\}$, otherwise we have a red copy of P_{m}, a contradiction. So, without loss of generality, let $v_{2} v_{m}, v_{3} v_{m+1} \in E\left(G^{r}\right)$. If $v_{3} v_{1} \in E\left(G^{r}\right)$, then $P_{m}=v_{m} v_{2} v_{1} v_{3} v_{4} \ldots v_{m-1}$ is a red P_{m} and so $v_{3} v_{1} \notin E\left(G^{r}\right)$. By the same argument, $v_{2} v_{m-1} \notin G^{r}$. Now let $v=v_{3}$ if $v_{3} v_{m+2} \notin E\left(G^{r}\right)$ and $v=v_{2}$ otherwise. In any case, $T \cup\{v\}$ form a complete graph on six vertices with at most two red edges.

Case 2. $|E(H)|=1$.
Let $E(H)=\left\{v_{m} v_{m+1}\right\}$. Since $P_{m} \nsubseteq G^{r}, v_{2}$ (also v_{m-2}) is not adjacent to v_{m} or v_{m+1} in G^{r}. If $v_{2} v_{m-1}, v_{1} v_{3} \in E\left(G^{r}\right)$, then G^{r} contains $C_{m-1}=v_{2} v_{1} v_{3} \ldots v_{m-1} v_{2}$ and so each edge between $X=\left\{v_{m}, v_{m+1}, v_{m+2}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{m-2}, v_{m-1}\right\}$ is colored green or blue, since $P_{m} \nsubseteq G^{r}$. Using Lemma 3.3, we obtain either a green P_{5} or a blue C_{4}. Therefore if $v_{2} v_{m-1} \in E\left(G^{r}\right)$, then $v_{1} v_{3} \notin E\left(G^{r}\right)$. Now, assume that $v_{2} v_{m+2} \notin E\left(G^{r}\right)$. If $v_{2} v_{m-1} \notin E\left(G^{r}\right)$, then $\left\{v_{1}, v_{2}, v_{m-1}, v_{m}, v_{m+1}, v_{m+2}\right\}$ are the vertices of a complete
graph on six vertices with at most two red edges. Also if $v_{2} v_{m-1} \in E\left(G^{r}\right)$, then for each $i \in\{m, m+1, m+2\}, v_{3} v_{i} \notin E\left(G^{r}\right)$, otherwise we have a red P_{m}. In this case $\left\{v_{1}, v_{3}, v_{m-1}, v_{m}, v_{m+1}, v_{m+2}\right\}$ are the vertices of a complete graph on six vertices with at most two red edges. Using Lemma 3.4, we obtain a green P_{5} or blue C_{4}, as desired. So we may assume that $v_{2} v_{m+2}$ is an edge of G^{r}. If $m=5$, then $\left\{v_{1}, v_{3}, v_{m-1}, v_{m}, v_{m+1}, v_{m+2}\right\}$ are the vertices of a complete graph on six vertices such that each edge is colored green or blue except at most two edges. Now let $m \geq 6$. By the same argument, we may assume that $v_{m-2} v_{m+2} \in E\left(G^{r}\right)$. If for some $i \in\{m, m+1, m+2\}, v_{3} v_{i} \in E\left(G^{r}\right)$, then we obtain $P_{m}=v_{1} v_{2} v_{m+2} v_{m-2} \ldots v_{3} v_{i}$ in G^{r}. Also if $v_{1} v_{3} \in E\left(G^{r}\right)$, then we obtain a copy of $P_{m}=v_{m+2} v_{2} v_{1} v_{3} \ldots v_{m-1}$ in G^{r}, a contradiction. Hence $\left\{v_{1}, v_{3}, v_{m-1}, v_{m}, v_{m+1}, v_{m+2}\right\}$ are the vertices of a complete graph on six vertices such that each edge is colored green or blue except at most two edges. Lemma 3.4, guaranties the existence of a green P_{5} or a blue C_{4}.

Case 3. $|E(H)| \geq 2$.
Let $X=\left\{v_{m}, v_{m+1}, v_{m+2}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{m-2}, v_{m-1}\right\}$. All edges having one end in X and one in Y, are colored by green or blue, otherwise we obtain a red P_{m}. So we obtain the complete bipartite graph $K_{3,4}$ on two partite set X and Y with all edges are colored green or blue. Again using Lemma 3.3, we obtain a green P_{5} or a blue C_{4}, which completes the proof of theorem.

Corollary 3.7 $R\left(P_{5}, C_{4}, P_{5}\right)=7$.
Proof. By a result in [13], $R\left(P_{5}, C_{4}, P_{4}\right)=7$ and clearly $R\left(P_{5}, C_{4}, P_{5}\right) \geq R\left(P_{5}, C_{4}, P_{4}\right)$. So it is sufficient to prove that $R\left(P_{5}, C_{4}, P_{5}\right) \leq 7$. Assume the edges of K_{7} are arbitrary colored by green, blue and red. Since $R\left(P_{5}, C_{4}, P_{4}\right)=7$, we may assume that G^{r} contains a copy of P_{4} as a subgraph. By Lemma 3.6, K_{7} must contains either a green P_{5}, a blue C_{4} or a red P_{5}, which completes the proof.

Using Lemma 3.6 and Corollary 3.7, we have the following theorem.
Theorem 3.8 For all integers $m \geq 5, R\left(P_{5}, C_{4}, P_{m}\right)=m+2$.
Proof. Color all edges crossing a vertex of K_{m} by green and other edges by red. Adjoin a new vertex to all vertices of colored graph K_{m} and color all new edges by blue. This yields a 3 -colored graph K_{m+1} with no a green P_{5}, a blue C_{4} and a red P_{m} and so $R\left(P_{5}, C_{4}, P_{m}\right)>m+1$. Now assume that the edges of K_{m+2} are colored with colors green, blue and red. We prove that K_{m+2} contains either a green P_{5}, a blue C_{4} or a red P_{m}. We prove the claim by induction on m. By Corollary 3.7, this claim is true when $m=5$. Assume that $R\left(P_{4}, C_{4}, P_{m-1}\right)=m+1$ for $m \geq 6$. By the induction assumption, we obtain that K_{m+2} contains a red P_{m-1}. Using Lemma 3.6, we obtain that K_{m+2} contains a green P_{5}, a blue C_{4} or a red P_{m}, which completes the proof.

Corollary 3.9 For all integers $m \geq 5, R\left(P_{4}, C_{4}, P_{m}\right)=m+2$.

Proof. Using Theorem 3.8, we have $R\left(P_{4}, C_{4}, P_{m}\right) \leq m+2$. On the other hand, the 3 -colored graph K_{m+1} in the proof of Theorem 3.8, implies that $R\left(P_{4}, C_{4}, P_{m}\right)>m+1$.

Before establishing the other results of this section, we give the following lemmas which help us to calculate the Ramsey number $R\left(P_{5}, P_{5}, P_{m}\right)$.

Lemma 3.10 Let G be a graph obtained by removing two edges from K_{6}. If each edge of G is colored green or blue, then G contains a monochromatic graph P_{5}.

Proof. By Corollary 3.2, ex $\left(6, P_{5}\right)=7$. Since $|E(G)|=13$, so without loss of generality, we may assume that $\left|E\left(G^{b}\right)\right|=6$ and $\left|E\left(G^{g}\right)\right|=7$. Since $\left|E\left(G^{b}\right)\right|=6, G^{b}$ is isomorphic to one of the graphs shown in Fig. 1. So G^{g} is isomorphic to a graph obtained by removing any two edges of $\overline{G^{b}}$. One can easily check that $\overline{G^{b}}$ is isomorphic to $K_{5}-e, K_{3,3}$ or $K_{2,4}$ with one additional edge and any graph obtained by removing two edges from these graphs, still contains a P_{5}, which completes the proof.

Lemma 3.11 Let G be a graph obtained by removing an edge from the complete bipartite graph $K_{4,5}$ with partite sets X and Y. If each edge of G is colored green or blue, then G contains either a green P_{5} or a blue P_{6}.

Proof. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$. Also without loss of generality, let $e=x_{4} y_{5}$ be the edge of $K_{4,5}$ such that $G=K_{4,5}-e$. By Lemma 3.5, $G-x_{4}$ (particulary G) contains a monochromatic P_{5}. If G contains a green P_{5}, we are done. So we may assume that G contains a blue P_{5} such as P. Suppose t and z are the end vertices of P. First let $t, z \in X$ and $Y \cap V(P)=\left\{y_{1}, y_{2}\right\}$. If one of the edges $t y_{i}$ or $z y_{i}$, $i \in\{3,4,5\}$, is blue we have a blue P_{6}. Otherwise the path $y_{3} t y_{5} z y_{4}$ is a green P_{5}. So let $t, z \in Y$ and $X \cap V(P)=\left\{x_{1}, x_{2}\right\}$.

Let $Y \cap V(P)=\left\{y_{1}, y_{2}, y_{3}\right\}$ such that $t=y_{1}$ and $z=y_{3}$. If one of the edges $y_{1} x_{i}$ or $y_{3} x_{i}, i \in\{3,4\}$, is blue we have a blue P_{6}. So we may assume that these edges are colored green. Now if one of the edges $x_{3} y_{i}, i \in\{2,4,5\}$, is green we have a green P_{5}. Otherwise the path $y_{5} x_{3} y_{2} x_{1} y_{3} x_{2}$ is a blue P_{6}. If $y_{5} \in Y \cap V(P)$, by the same argument, one can easily find either a green P_{5} or a blue P_{6} in G, which completes the proof.

In the following theorem, the values of $R\left(P_{5}, P_{5}, P_{5}\right)$ and $R\left(P_{5}, P_{5}, P_{6}\right)$ are given.

Theorem 3.12 Let $n \in\{5,6\}$. Then $R\left(P_{5}, P_{5}, P_{n}\right)=9$.

Proof. First we prove that $R\left(P_{5}, P_{5}, P_{n}\right) \geq 9$. To see this, let $v_{1}, v_{2}, \ldots, v_{8}$ be the vertices of K_{8} in the clockwise order. Let G^{1} be the union of two K_{4} on vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}, G^{2}$ be the union of two C_{4} on vertices $\left\{v_{1}, v_{5}, v_{2}, v_{6}\right\}$ and $\left\{v_{3}, v_{7}, v_{4}, v_{8}\right\}$ and G^{3} be the union of two C_{4} on $\left\{v_{1}, v_{7}, v_{2}, v_{8}\right\}$ and $\left\{v_{3}, v_{6}, v_{4}, v_{5}\right\}$ in this order. Color the edges of G^{i} by color i. This gives a 3-edge coloring of K_{8} which contains no P_{5} in color 1, no P_{5} in color 2 and no P_{n} in color 3. So $R\left(P_{5}, P_{5}, P_{n}\right) \geq 9$. Now we prove that $R\left(P_{5}, P_{5}, P_{n}\right) \leq 9$. Let $c: E\left(K_{9}\right) \longrightarrow\{1,2,3\}$ be an arbitrary 3-edge coloring of K_{9}. Also assume that G^{i} denotes the spanning subgraph of K_{9} induced by the edges of color i.

Case 1. $n=5$.
Using Corollary 3.2, we have $\operatorname{ex}\left(9, P_{5}\right)=12$. Since $E\left(K_{9}\right)=36$, we may assume that $\left|E\left(G^{1}\right)\right|=\left|E\left(G^{2}\right)\right|=\left|E\left(G^{3}\right)\right|=12$. By Theorem 3.1, $G^{1} \cong 2 K_{4} \cup K_{1}$. This implies that $K_{4,5} \subseteq \overline{G^{1}}$. Now using Lemma 3.5, we obtain a monochromatic P_{5}.

Case 2. $n=6$.
Again by Corollary 3.2 , $e x\left(9, P_{5}\right)=12$ and $e x\left(9, P_{6}\right)=16$. If $\left|E\left(G^{1}\right)\right|=12$, by the same argument as in case 1, we obtain that $K_{4,5} \subseteq \overline{G^{1}}$. Using Lemma 3.11, we obtain either a P_{5} in color 2 or a P_{6} in color 3. Also if $\left|E\left(G^{2}\right)\right|=12$, by a similar argument, one can obtain the desired result. If $\left|E\left(G^{3}\right)\right|=16$, then Theorem 3.1 implies that $G^{3} \cong K_{5} \cup K_{4}$. Again $K_{4,5} \subseteq \overline{G^{3}}$, and hence $\overline{G^{3}}$ contains a copy of P_{5} in color 1 or 2 , by Lemma 3.5. Without loss of generality, we may assume that $\left|E\left(G^{1}\right)\right|=11$. Since $\left|E\left(G^{1}\right)\right|=11, G^{1}$ is not connected, otherwise we obtain a copy of P_{5} in color 1 . Since $\left|E\left(G^{1}\right)\right|=11$, so there exists a component of G^{1} such as H such that $|H|=4$ and hence $K_{4,5} \subseteq \overline{G^{1}}$. Using Lemma 3.11, we obtain a copy of P_{5} in color 2 or a copy of P_{6} in color 3, which completes the proof.

In order to determine the exact value of the Ramsey number $R\left(P_{5}, P_{5}, P_{7}\right)$, we need the following lemma which can be obtained by an argument similar to the proof of Lemma 3.6 and using Lemma 3.5 and Lemma 3.10.

Lemma 3.13 Let $m \geq 7$ and the edges of K_{m+2} are colored by colors green, blue and red such that G^{r} contains a copy of P_{m-1} as a subgraph. Then K_{m+2} contains either a green P_{5}, a blue P_{5} or a red P_{m}.

As an easy consequent of Lemma 3.13, we have the following corollary.
Corollary $3.14 R\left(P_{5}, P_{5}, P_{7}\right)=9$.
Proof. By Theorem 3.12, $R\left(P_{5}, P_{5}, P_{6}\right)=9$ and clearly $R\left(P_{5}, P_{5}, P_{7}\right) \geq R\left(P_{5}, P_{5}, P_{6}\right)$, so it is sufficient to prove that $R\left(P_{5}, P_{5}, P_{7}\right) \leq 9$. Assume that the edges of K_{9} are arbitrary colored green, blue and red. Since $R\left(P_{5}, P_{5}, P_{6}\right)=9$, we may assume that G^{r} contains a copy of P_{6} as a subgraph. By Lemma 3.13, K_{9} must contains either a monochromatic P_{5} in color green or blue or a red P_{6}, which completes the proof.

Now, we are ready to calculate the exact value of $R\left(P_{5}, P_{5}, P_{m}\right)$ for $m \geq 7$.

Theorem 3.15 For all integers $m \geq 7, R\left(P_{5}, P_{5}, P_{m}\right)=m+2$.
Proof. Consider the graph $K_{m-1} \cup K_{2}$ and color the complete graphs K_{m-1} and K_{2} by color red. Consider a vertex of K_{2}, say v, and color the edges which are incident with v and having another end in K_{m-1} by blue and finally, color the remaining edges by green. This coloring contains neither a green P_{5}, a blue P_{5}, nor a red P_{m}, which means that $R\left(P_{5}, P_{5}, P_{m}\right) \geq m+2$. Now assume that the graph K_{m+2} is 3 -edge colored by colors green, blue and red. We prove that K_{m+2} contains either a green P_{5}, a blue P_{5} or a red P_{m}. We use induction on m. By Corollary 3.14, the claim is true when $m=7$. Let us assume that $R\left(P_{5}, P_{5}, P_{m-1}\right) \leq m+1$ for $m \geq 8$. By the induction assumption, we obtain that K_{m+2} contains a red copy of P_{m-1}. Using Lemma 3.13, we obtain that K_{m+2} contains a green P_{5}, a blue P_{5} or a red P_{m}, which completes the proof.

We need the following lemma to determine the exact value of $R\left(P_{5}, P_{6}, P_{m}\right)$.
Lemma 3.16 Let G be a graph obtained by removing three edges from K_{7}. If each edge of G is colored green or blue, then G contains either a green P_{5} or a blue P_{6}.

Proof. By Corollary 3.2, ex $\left(7, P_{5}\right)=9$ and $\operatorname{ex}\left(7, P_{6}\right)=11$. Since $|E(G)|=18$, we may assume that $\left|E\left(G^{g}\right)\right| \in\{7,8,9\}$. If $\left|E\left(G^{g}\right)\right|=9$, then by Theorem 3.1, $G^{g} \cong K_{4} \cup K_{3}$ which implies that $K_{3,4} \subseteq \overline{G^{g}}$. But removing any three edges from $K_{3,4}$, retains a copy of P_{6}. If $\left|E\left(G^{g}\right)\right|=7$, then $\left|E\left(G^{b}\right)\right|=11$, since $|E(G)|=18$. Now by Theorem 3.1, $G^{b} \cong K_{5} \cup K_{2}$ or $G^{b} \cong K_{2}+\bar{K}_{5}$ which implies that $K_{2,5} \subseteq \overline{G^{b}}$ or $K_{5} \subseteq \overline{G^{b}}$. But removing any three edges from $K_{2,5}$ or K_{5}, retains a copy of P_{5}. So we may assume that $\left|E\left(G^{g}\right)\right|=8$. We have the following cases.

Case 1. G^{g} is connected.
Clearly G^{g} contains no C_{4}, otherwise the connectivity of G^{g} implies a copy of P_{5}. So G^{g} contains a triangle C. The induced subgraph of G^{g} on $V\left(K_{7}\right)-V(C)$ is an independent set, since otherwise we have a copy of P_{5} in G^{g}. Since $\left|E\left(G^{g}\right)\right|=8$, two vertices of C must contain a common neighbor outside C, which gives a copy of C_{4} and hence a copy of P_{5} in G.

Case 2. G^{g} is disconnected.
Since $e x\left(6, P_{5}\right)=7, e x\left(5, P_{5}\right)=6$ by Corollary 3.2, and $\left|E\left(G^{g}\right)\right|=8$, so G^{g} can not have two components H_{1} and H_{2} such that $\left|V\left(H_{1}\right)\right| \leq 2$. Hence one can easily find $K_{3,4} \subseteq \overline{G^{g}}$ and clearly removing any three edges from $K_{3,4}$, retains a copy of P_{6}, which completes the proof.

Using Lemma 3.11 and Lemma 3.16, we have the following lemma.

Lemma 3.17 Let $m \geq 6$ and K_{m+3} is 3-edge colored with colors green, blue and red such that G^{r} contains a copy of P_{m-1} as a subgraph. Then K_{m+3} contains either a green $P_{5}, ~ a$ blue P_{6} or a red P_{m}.

Proof. Assume that $v_{1}, v_{2}, \ldots, v_{m+3}$ are vertices of K_{m+3} and $P=v_{1} v_{2} \ldots v_{m-1}$ is the desired copy of P_{m-1} in G^{r}. Also let $P_{m} \nsubseteq G^{r}$. We prove that K_{m+3} contains either a green P_{5} or a blue P_{6}. First assume that $v_{1} v_{m-1} \in E\left(G^{r}\right)$. If one of the vertices v_{m}, v_{m+1}, v_{m+2} or v_{m+3} is adjacent to P by a red edge, then we obtain a red P_{m}. So we may assume that each edge between $\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ and P is colored by green or blue. Since $m \geq 6$, we obtain a bipartite graph $K_{4,5}$ with two partite sets $X=\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{m-2}, v_{m-1}\right\}$ such that all edges colored green or blue and so by Lemma 3.11, we obtain a green P_{5} or a blue P_{6}. Hence we may assume that $v_{1} v_{m-1} \notin E\left(G^{r}\right)$. Since $P_{m} \nsubseteq G^{r}$, all edges having ends in both $\left\{v_{1}, v_{m-1}\right\}$ and $\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ are colored by green or blue. Now let H be the subgraph induced by edges of color red between vertices $\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$. We have the following cases.

Case 1. $|E(H)|=0$.
Since $|E(H)|=0$, then all edges among vertices $T=\left\{v_{1}, v_{m-1}, v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ are colored by green or blue. We find a vertex v such that $T \cup\{v\}$ are the vertices of a complete graph on seven vertices and each edge is colored green and blue except at most three edges. If there exists a vertex $v \in P-\left\{v_{1}, v_{m-1}\right\}$ such that $v v_{i} \in E\left(G^{r}\right)$ for at most one $i \in\{m, m+1, m+2, m+3\}$, then this vertex is the desired vertex. Note that since $P_{m} \nsubseteq G^{r}$, then two consecutive vertices of P are not adjacent in G^{r} to a vertex in $\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$. So let $v_{2} v_{i} \in E\left(G^{r}\right)$ for $i \in\{m, m+1\}$ and $v_{3} v_{i} \in E\left(G^{r}\right)$ for $i \in\{m+2, m+3\}$. Now, if $v_{3} v_{1} \in E\left(G^{r}\right)$, then $P_{m}=v_{m} v_{2} v_{1} v_{3} \ldots v_{m-1}$ is a red P_{m}, a contradiction. So $v_{3} v_{1} \notin E\left(G^{r}\right)$ and hence the induced subgraph on $\left\{v_{1}, v_{3}, v_{m-1}\right\}$ has at most one edge in G^{r}. Therefore $T \cup\left\{v_{3}\right\}$ are the vertices of a complete graph on seven vertices with at most three red edges. Using Lemma 3.16, we have either a green P_{5} or a blue P_{6}.

Case 2. $|E(H)|=1$.
Let $v_{m} v_{m+1} \in E\left(G^{r}\right)$ be the edge of H and $T=\left\{v_{1}, v_{m-1}, v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$. We find a vertex v such that $T \cup\{v\}$ are the vertices of a complete graph on seven vertices and each edge is colored green and blue except at most three edges. If there exists a vertex $v \in P-\left\{v_{1}, v_{m-1}\right\}$ such that $v v_{i} \notin E\left(G^{r}\right)$, for each $i \in\{m, m+1, m+2, m+3\}$, then this vertex is the desired vertex. So we assume that for some $i \in\{m, m+1, m+2, m+3\}$, $v v_{i} \in E\left(G^{r}\right)$. In G^{r} the vertex v_{2} (also v_{m-2}) is not adjacent to any of v_{m} or v_{m+1}, otherwise we obtain a red P_{m}. So without loss of generality, let $v_{2} v_{m+2} \in E\left(G^{r}\right)$. If $v_{m-2} v_{m+2} \in E\left(G^{r}\right)$, then $v_{3} v_{i} \notin G^{r}$ for each $i \in\{m, m+1, m+2, m+3\}$, otherwise we obtain a red $P_{m}=v_{1} v_{2} v_{m+2} v_{m-2} \ldots v_{3} v_{i}$. So v_{m+3} is the only vertex outside P such that $v_{m-2} v_{m+3} \in E\left(G^{r}\right)$. Finally, let $v=v_{m-3}$ if $v_{1} v_{m-2} \in E\left(G^{r}\right)$ and $v=v_{m-2}$ otherwise. In
any case, v is the vertex such that $T \cup\{v\}$ are the vertices of a complete graph on seven vertices at most three red edges. Using Lemma 3.16, we obtain a green P_{5} or a blue P_{6}.

Case 3. $|E(H)|=2$.
First let $H=2 K_{2}$, where $E(H)=\left\{v_{m} v_{m+1}, v_{m+2} v_{m+3}\right\}$. Since $P_{m} \nsubseteq G^{r}$, for each $i \in$ $\{m, m+1, m+2, m+3\}$ we have $v_{2} v_{i}, v_{m-2} v_{i} \notin E\left(G^{r}\right)$. If $v_{3} v_{i} \notin E\left(G^{r}\right)$ for each $i \in$ $\{m, m+1, m+2, m+3\}$, then we obtain the complete bipartite $K_{4,5}$ with partite set $X=\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{m-2}, v_{m-1}\right\}$ with all edges colored green or blue. Using Lemma 3.11, we obtain either a green P_{5} or a blue P_{6}. So without loss of generality, we may assume that $v_{3} v_{m} \in E\left(G^{r}\right)$. Also $v_{2} v_{m-1} \notin E\left(G^{r}\right)$, otherwise we obtain a red copy of P_{m}. Now, $\left\{v_{1}, v_{2}, v_{m-1}, v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ are the vertices of a complete graph on seven vertices with at most three red edges. Using Lemma 3.16, we obtain either a green P_{5} or a blue P_{6}.

Now let $H=P_{3}=v_{m} v_{m+1} v_{m+2}$. By the same argument, one can easily obtain either a complete graph on seven vertices with at most three red edges or a complete bipartite graph $K_{4,5}$ with all edges colored green or blue. Using Lemmas 3.11 and 3.16, we obtain either a green P_{5} or a blue P_{6}.

Case 4. $|E(H)| \geq 3$.
If either $H \cong P_{4}$ or $|E(H)| \geq 4$, then all edges between $\left\{v_{1}, v_{2}, v_{3}, v_{m-2}, v_{m-1}\right\}$ and $\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ are colored by green or blue, otherwise we obtain a red copy of P_{m}. Since $m \geq 6$, we obtain the complete bipartite graph $K_{4,5}$ with partite set $X=$ $\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{m-2}, v_{m-1}\right\}$ with all edges colored green or blue. Using Lemma 3.11, we obtain either a green P_{5} or a blue P_{6}. So it is sufficient to consider the cases that H is either a star with center v_{m} or the graph $K_{3} \cup K_{1}$ with isolated vertex v_{m}.

In the first case, all edges having end vertices in both $\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ and $\left\{v_{1}, v_{2}, v_{m-2}, v_{m-1}\right\}$ are colored green or blue, otherwise we obtain a red copy of P_{m}. If $v_{3} v_{i} \notin E\left(G^{r}\right), i \in\{m, m+1, m+2, m+3\}$, then we obtain the complete bipartite graph $K_{4,5}$ with partite set $X=\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{m-2}, v_{m-1}\right\}$ with all edges colored green or blue. Using Lemma 3.11, we obtain either a green P_{5} or a blue P_{6}. So we may assume that $v_{3} v_{m} \in E\left(G^{r}\right)$. Now $v_{1} v_{m-2} \notin E\left(G^{r}\right)$, otherwise the path $P_{m}=v_{2} v_{1} v_{m-1} \ldots v_{3} v_{m} v_{m+1}$ is a copy of P_{m} in G^{r}, a contradiction. Also $v_{2} v_{m-1} \notin E\left(G^{r}\right)$. Hence $\left\{v_{1}, v_{2}, v_{m-1}, v_{m-2}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ are the vertices of a complete graph on seven vertices with at most three red edges. Again using Lemma 3.16, we obtain either a green P_{5} or a blue P_{6}.

Now let $H=K_{3} \cup K_{1}$ with isolated vertex v_{m}. It is clear that there is no any red edge having ends in both $\left\{v_{1}, v_{2}, v_{3}, v_{m-2}, v_{m-1}\right\}$ and $\left\{v_{m+1}, v_{m+2}, v_{m+3}\right\}$. If either $v_{2} v_{m}, v_{m-2} v_{m} \notin G^{r}$ or $v_{2} v_{m} \in G^{r}$ and $v_{m-2} v_{m} \notin G^{r}$ then $X=\left\{v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{m-2}, v_{m-1}\right\}$ form a complete bipartite graph $K_{4,5}$ with at most one red
edge. Using Lemma 3.11, we obtain either a green P_{5} or a blue P_{6}. So let both edges $v_{2} v_{m}$ and $v_{m-2} v_{m}$ be red. In this case, $v_{3} v_{1} \notin G^{r}$ otherwise $v_{m} v_{2} v_{1} v_{3} \ldots v_{m-1}$ is a copy of P_{m} in G^{r}. Also $v_{3} v_{m-1} \notin G^{r}$, otherwise $P_{m}=v_{1} v_{2} v_{m} v_{m-2} v_{m-1} v_{3} \ldots v_{m-3}$ is a copy of P_{m} in G^{r}. So $\left\{v_{1}, v_{3}, v_{m-1}, v_{m}, v_{m+1}, v_{m+2}, v_{m+3}\right\}$ form a K_{7} with at most three red edges. Using Lemma 3.16, we obtain either a green P_{5} or a blue P_{6}.

Corollary $3.18 R\left(P_{5}, P_{6}, P_{6}\right)=9$.

Proof. By Theorem 3.12, $R\left(P_{5}, P_{6}, P_{5}\right)=9$ and clearly $R\left(P_{5}, P_{6}, P_{6}\right) \geq R\left(P_{5}, P_{6}, P_{5}\right)$. So it is sufficient to prove $R\left(P_{5}, P_{6}, P_{6}\right) \leq 9$. Assume that the graph K_{9} is 3 -edge colored by colors green, blue and red. We prove that K_{9} contains either a green P_{5}, a blue P_{6} or a red P_{6}. Since $R\left(P_{5}, P_{6}, P_{5}\right)=9$, so we may assume that G^{r} contains a copy of P_{5}. Using Lemma 3.17, we obtain that K_{9} contains either a green P_{5}, a blue P_{6} or a red P_{6}, which completes the proof.

Finally we end this section by the following theorem.

Theorem 3.19 For all integers $m \geq 6, R\left(P_{5}, P_{6}, P_{m}\right)=m+3$.

Proof. Consider the graph $K_{m-1} \cup K_{3}$ and color the complete graphs K_{m-1} and K_{3} by color red. Consider two vertices of K_{3}, say u, v, and color the edges which are incident with u and v and having another end in K_{m-1} by blue and finally, color the remaining edges by green. This coloring contains neither a green P_{5}, a blue P_{6}, nor a red P_{m}, so $R\left(P_{5}, P_{6}, P_{m}\right) \geq m+3$. The upper bound follows by induction on m. By Corollary 3.18, theorem is true when $m=6$. Let us assume that $R\left(P_{5}, P_{6}, P_{m-1}\right) \leq m+2$ for $m \geq 7$. By the induction assumption, we obtain that K_{m+3} contains a red P_{m-1}. Using Lemma 3.17, we obtain that K_{m+3} contains either a green P_{5}, a blue P_{6} or a red P_{m}, which completes the proof.

Corollary 3.20 For all integers $m \geq 6, R\left(P_{4}, P_{6}, P_{m}\right)=m+3$.

4 Multicolor Ramsey number of paths

In this section, we give an improvement of a result of Faudree and Schelp [7] on multicolor Ramsey number $R\left(P_{n_{1}}, P_{2 n_{2}+\delta}, \ldots, P_{2 n_{t}}\right)$. In addition,, we use a simple lemma to give a lower bound for the multicolor Ramsey number $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}\right)$ and we conjecture that this lower bound is the exact value of this Ramsey number if all n_{i} 's are even integers greater than three. Moreover, we give some evidences for this conjecture. Before that we need a definition. By a stripe $m K_{2}$ we mean that a graph on $2 m$ vertices and m independent edges. In [2], the exact value of the multicolor Ramsey number of stripes is given as follows.

Theorem 4.1 ([2]) Let $n_{1} \geq n_{2} \geq \cdots \geq n_{t}$ and Σ denote $\sum_{i=1}^{t}\left(n_{i}-1\right)$. Then

$$
R\left(n_{1} K_{2}, n_{2} K_{2}, \ldots, n_{t} K_{2}\right)=n_{1}+\Sigma+1
$$

In the following lemma, we give a lower bound for the multicolor Ramsey number $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}\right)$.

Lemma 4.2 Assume that $G_{1}, G_{2}, \ldots, G_{t}$ are arbitrary graphs and for $i=1,2, \ldots, t$, $H_{i} \subseteq G_{i}$. Also let $n_{1} \geq n_{2} \geq \cdots \geq n_{t} \geq 3$ and Σ denote $\Sigma_{i=1}^{t}\left(\left\lfloor\frac{n_{i}}{2}\right\rfloor-1\right)$. Then
(i) $R\left(H_{1}, H_{2}, \ldots, H_{t}\right) \leq R\left(G_{1}, G_{2}, \ldots, G_{t}\right)$,
(ii) $\left\lfloor\frac{n_{1}}{2}\right\rfloor+\Sigma+1 \leq R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}\right)$,
(iii) If $n_{1}>\sum_{i=2}^{t}\left(\left\lfloor\frac{n_{i}}{2}\right\rfloor-1\right)$, then $n_{1}+\sum_{i=2}^{t}\left(\left\lfloor\frac{n_{i}}{2}\right\rfloor-1\right) \leq R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}\right)$,
(iv) If $2 n_{1}>\Sigma_{i=2}^{t}\left(n_{i}-1\right)$, then $n_{1}+\sum_{i=1}^{t}\left(n_{i}-1\right)+1 \leq R\left(P_{2 n_{1}}, P_{2 n_{2}}, \ldots, P_{2 n_{t}}\right)$.

Proof. Part (i) is clear. Part (ii) is a direct consequent of part (i) and Theorem 4.1. To see (iii), let $m=\sum_{i=2}^{t}\left(\left\lfloor\frac{n_{i}}{2}\right\rfloor-1\right)$ and consider the graph $K_{n_{1}-1} \cup K_{m}$. Partition K_{m} into subsets $V_{2}, V_{3}, \ldots, V_{t}$ of size $\left\lfloor\frac{n_{2}}{2}\right\rfloor-1,\left\lfloor\frac{n_{3}}{2}\right\rfloor-1, \ldots,\left\lfloor\frac{n_{t}}{2}\right\rfloor-1$, respectively. For $i=2,3, \ldots, t$, color the edges of $K_{n_{1}-1} \cup K_{m}$ having one end in V_{i} and another end in $K_{n_{1}-1}$ by the i-th color and the remaining edges by color 1. Clearly this coloring of $K_{n_{1}+m-1}$ contains no P_{i} in color i, which means that part (iii) holds. Part (iv) is a direct consequent of part (iii).

The following theorem, gives an improvement of a result in [7], which follows from Theorem 2.3 and Lemma 4.2.

Theorem 4.3 Assume that $\delta \in\{0,1\}$ and Σ denotes $\Sigma_{i=1}^{t}\left(n_{i}-1\right)$. Then

$$
R\left(P_{2 n_{1}+\delta}, P_{2 n_{2}}, \ldots, P_{2 n_{t}}, P_{k}\right)=k+\Sigma
$$

where $k \geq \Sigma^{2}+2 \Sigma+3$ if $\delta=0$ and $k \geq 2 \Sigma^{2}+5 \Sigma+5$ otherwise.

In the following theorem, we give the exact value of some multicolor Ramsey number of paths with even number of vertices.

Theorem 4.4 Let $n_{1} \geq n_{2} \geq \cdots \geq n_{t} \geq 2$ and m be positive integers. Also let Σ denote $\sum_{i=1}^{t}\left(n_{i}-1\right)$. Then
(i) $R\left(P_{2 n_{1}}, P_{2 n_{2}}, \ldots, P_{2 n_{t}}\right)=n_{1}+\Sigma+1$ for $2 n_{1} \geq\left(\Sigma-n_{1}+2\right)^{2}+2$,
(ii) $R\left(P_{4}, P_{4}, P_{2 m}\right)=2 m+2$ for $m \geq 2$,
(iii) $R\left(P_{4}, P_{6}, P_{2 m}\right)=2 m+3$ for $m \geq 3$,
(iv) $R\left(P_{6}, P_{6}, P_{2 m}\right)=R\left(P_{4}, P_{8}, P_{2 m}\right)=2 m+4$ for $m \geq 14$.

Proof. (i) This part is a consequent of Theorem 4.3.
(ii) First we prove that $R\left(P_{4}, P_{4}, P_{4}\right)=6$. By part (iv) of Lemma 4.2, $R\left(P_{4}, P_{4}, P_{4}\right) \geq 6$. For the upper bound, let the edges of K_{6} be colored by green, blue and red colors and also let G^{g} be the graph induced by the green edges. Since $e x\left(6, P_{4}\right)=6$, so we may assume that $\left|E\left(G^{g}\right)\right| \leq 6$. This implies that $\overline{G^{g}}$ contains either $K_{3,3}$ or K_{5} as a subgraph. If $\overline{G^{g}}$ contains a copy of K_{5}, we can find a copy of P_{4} in blue or red, since $R\left(P_{4}, P_{4}\right)=5$. If $\overline{G^{g}}$ contains a copy of $K_{3,3}$, then it is easy to check that any two coloring of $K_{3,3}$ with colors blue and red contains a monochromatic copy of P_{4}. This means that $R\left(P_{4}, P_{4}, P_{4}\right) \leq 6$. For $m \geq 3$, the result follows from Corollary 3.9 and Lemma 4.2.
(iii) This part is a direct consequent of Corollary 3.20.
(iv) This part is an easy consequent of Corollary 2.5 and Lemma 4.2.

As mentioned before, it is proved that $[7], R\left(P_{n_{1}}, P_{n_{2}}, P_{n_{3}}\right)=n_{1}+\left\lfloor\frac{n_{2}}{2}\right\rfloor+\left\lfloor\frac{n_{3}}{2}\right\rfloor-2$ if $n_{1} \geq 6\left(n_{2}+n_{3}\right)^{2}$ and both n_{2}, n_{3} are not odd numbers. This result can be obtained by Theorem 4.3. Theorem 4.3 shows that the lower bound in part (iii) of Lemma 4.2 is the exact value of the multicolor ramsey number $R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}\right)$ if at most one of $n_{2}, n_{3}, \ldots, n_{t}$ is odd and n_{1} is sufficiently large. For the case $t=4$, it seems that $R\left(P_{n_{1}}, P_{n_{2}}, P_{n_{3}}, P_{n_{4}}\right) \in\{r, r+1, r+2\}$, where $n_{1} \geq n_{2} \geq n_{3} \geq n_{4} \geq 3$ and $r=n_{1}+$ $\left\lfloor\frac{n_{2}}{2}\right\rfloor+\left\lfloor\frac{n_{3}}{2}\right\rfloor+\left\lfloor\frac{n_{4}}{2}\right\rfloor-3$. Anyway we end this paper by proposing the following conjecture, which gives the exact value of the multicolor Ramsey number of paths with even number of vertices.

Conjecture 1 For positive integers $n_{1} \geq n_{2} \geq \cdots \geq n_{t} \geq 2$, we have

$$
R\left(P_{2 n_{1}}, P_{2 n_{2}}, \ldots, P_{2 n_{t}}\right)=n_{1}+\sum_{i=1}^{t}\left(n_{i}-1\right)+1
$$

Theorem 4.4, gives some evidences for this conjecture. We think the following conjecture is also true, which is a generalization of the previous conjecture.

Conjecture 2 Let $n_{1} \geq n_{2} \geq \cdots \geq n_{t} \geq 4$ be positive integers such that at most one of $n_{2}, n_{3}, \ldots, n_{t}$ is odd. Then

$$
R\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}\right)=n_{1}+\sum_{i=2}^{t}\left(\left\lfloor\frac{n_{i}}{2}\right\rfloor-1\right) .
$$

References

[1] J. A. Bondy, U. S. R. Murty, Graph theory with applications, American Elsevier, New York, 1976.
[2] E. J. Cockayne, P. J. Lorimer, The Ramsey number for stripes, J. Austral. Math. Soc. 19 (Series A) (1975), 252-256.
[3] T. Dzido, M. Kubale, K. Piwakowski, On some Ramsey and Turán-type numbers for paths and cycles, Electron. J. Combin., \#R55 13 (2006).
[4] T. Dzido, Multicolor Ramsey numbers for paths and cycles, Discuss. Math. Graph Theory 25 (2005) 57-65.
[5] T. Dzido, R. Fidytek, On some three color Ramsey numbers for paths and cycles, Discrete Math. 309 (2009), 4955-4958
[6] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 33-56.
[7] R. J. Faudree, R. H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory, Ser. B 19 (1975), 150-160.
[8] A. Figaj, T. Luczak, The Ramsey number for a triple of long even cycles, J. Combin. Theory, Ser. B, 97 (2007), 584-596.
[9] L. Gerencsér, A. Gyárfás, On Ramsey-Type problems, Annales Universitatis Scientiarum Budapestinensis, Eötvös Sect. Math. 10 (1967), 167-170.
[10] A. Gyárfás, M. Ruszinkó, G. Sárközy, E. Szemerédi, Three-color Ramsey numbers for paths, Combinatorica 27 (1) (2007), 35-69.
[11] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. 1 (1994), Dynamic Surveys, DS1. 12 (August 4, 2009).
[12] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 2nd Ser. 30 (1930), 264-286.
[13] Z. Shao, X. Xu, X. Shi, L. Pan, Some three-color Ramsey numbers, $R\left(P_{4}, P_{5}, C_{k}\right)$ and $R\left(P_{4}, P_{6}, C_{k}\right)$, Europ. J. Combin. 30 (2009), 396-403.

[^0]: ${ }^{1}$ This research was in part supported by a grant from IPM (No. 89050037)

