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Abstract

Let G be a graph. A Hamilton path in G is a path containing every vertex of
G. The graph G is traceable if it contains a Hamilton path, while G is k-traceable
if every induced subgraph of G of order k is traceable. In this paper, we study
hamiltonicity of k-traceable graphs. For k ≥ 2 an integer, we define H(k) to be
the largest integer such that there exists a k-traceable graph of order H(k) that is
nonhamiltonian. For k ≤ 10, we determine the exact value of H(k). For k ≥ 11, we
show that k + 2 ≤ H(k) ≤ 1

2(3k − 5).
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1 Introduction

For notation and graph theory terminology we in general follow [14]. Specifically, let
G = (V, E) be a graph with vertex set V of order n = |V | and edge set E of size m = |E|,
and let v be a vertex in V . The open neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E}.
For a set S of vertices, the open neighborhood of S is defined by N(S) = ∪v∈SN(v). If
A and B are subsets of V (G), then we sometimes denote N(A) ∩ B by NB(A), and if H
and J are subgraphs of G, then we write NJ(H) for NV (J)(V (H)). For a set S ⊆ V , the
subgraph induced by S is denoted by G[S] while the graph G − S is the graph obtained
from G by deleting the vertices in S and all edges incident with S. If S = {v}, we simply
denote G−S by G− v rather than G−{v}. We denote the degree of v in G by dG(v), or
simply by d(v) if the graph G is clear from context. If dG(v) = n − 1, then v is called a
universal vertex of G. The minimum degree among the vertices of G is denoted by δ(G).
A cycle on n vertices is denoted by Cn, while a path on n vertices is denoted by Pn. We
denote the number of components in a graph G by comp(G).

Let G be a graph. A Hamilton path in G is a path containing every vertex of G. The
graph G is traceable if it contains a Hamilton path. If G has a Hamilton path that starts
at x and ends at y, then G is traceable from x to y. If G is traceable from each of its
vertices, then G is homogeneously traceable.

A Hamilton cycle in G is a cycle containing every vertex of G. The graph G is hamilto-

nian if it contains a Hamilton cycle. The graph G is maximal nonhamiltonian, abbreviated
MNH, if G is nonhamiltonian, but G + e is hamiltonian for every edge e ∈ E(G), where
G denotes the complement of G. The graph G is hypohamiltonian if G is nonhamiltonian
but G − v is hamiltonian for every vertex v in G.

A noncomplete graph G is t-tough if t ≤ |S|/comp(G − S) for every vertex cut S ⊂
V (G), where t is a nonnegative real number. The maximum real number t for which G is
t-tough is called the toughness of G and is denoted by t(G). Hence, if G is not complete,
then t(G) = min{|S|/comp(G − S), where the minimum is taken over all vertex cuts in
G. By convention, the complete graphs have infinite toughness. An excellent survey of
toughness in graphs has been written by Bauer, Broersma, and Schmeichel [2].

A graph is k-traceable if each of its induced subgraphs of order k is traceable. Obviously,
every graph is 1-traceable, while a graph is 2-traceable if and only if it is complete. Thus
every 2-traceable graph of order greater than 2 is hamiltonian. We extend this result to:
every k-traceable graph of order greater than k is hamiltonian, for each k ∈ {2, 3, 4, 5, 6, 7}.
This cannot be extended further, since the Petersen graph is a nonhamiltonian 8-traceable
graph of order 10.

We define H(k) to be the largest integer such that there exists a nonhamiltonian k-
traceable graph of order H(k). It is easily seen that the minimum degree of a k-traceable
graph of order n is least n − k + 1 and hence it follows from Dirac’s well-known degree
condition for hamiltonicity that for k ≥ 3 every k-traceable graph of order at least 2k− 2
is hamiltonian. On the other hand, for each k ≥ 1 the path Pk is a nonhamiltonian k-
traceable graph of order k. These observations show that H(k) is defined for every k ≥ 2,
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and k ≤ H(k) ≤ 2k − 3. We determine the exact value of H(k) for all k ≤ 10, while for
k ≥ 11 we increase the lower bound for H(k) to k+2 by constructing suitable graphs and
we decrease the upper bound to (3k − 5)/2 by combining known results on hamiltonicity
with new results on k-traceable graphs.

2 Known Results

In this section, we list some known hamiltonicity results that we shall need in subsequent
sections. We begin with the well-known theorem of Dirac [6].

Theorem 2.1 Let G be a graph of order n ≥ 3. If δ(G) ≥ n/2, then G is hamiltonian.

Jung [10] gave the following improvement of Dirac’s Theorem for graphs that are 1-
tough.

Lemma 2.2 Let G be a 1-tough graph of order n ≥ 11. If δ(G) ≥ 1
2
(n − 4), then G is

hamiltonian.

The following result is a simple exercise in most graph theory textbooks.

Observation 2.3 Let G be a graph and let S be a nonempty proper subset of V (G).
(a) If G is hamiltonian, then comp(G − S) ≤ |S|.
(b) If G is traceable, then comp(G − S) ≤ |S| + 1.

Results due to Thomassen [13] and Doyen and van Diest [7] show that for all n ≥ 18,
there exists a hypohamiltonian graph with n vertices. Aldred, McKay and Wormald [1]
presented an exhaustive list of hypohamiltonian graphs on fewer than 18 vertices. Their
list contains seven graphs, one each of orders 10, 13 and 15, and four of order 16. Hence
we have the following existence result for hypohamiltonian graphs.

Theorem 2.4 There are no hypohamiltonian graphs of order n for n < 10 and for n ∈
{11, 12, 14, 17}. For all other values of n, there exists a hypohamiltonian graph of order n.

Chartrand, Gould and Kapoor [4] proved the following result.

Theorem 2.5 There exists a nonhamiltonian homogeneously traceable graph of order n
if and only if n = 2 or n ≥ 9.

In 1972, Chvátal and Erdős [5] proved the following relationship between the indepen-
dence number and the connectivity of a nonhamiltonian graph.

Theorem 2.6 If G is a nonhamiltonian graph, then α(G) ≥ κ(G) + 1.

In 1979, Bigalke and Jung [3] showed that the following stronger result holds for 1-tough
graphs with connectivity at least 3.

Theorem 2.7 If G is a 1-tough nonhamiltonian graph with κ(G) ≥ 3, then either G is

the Petersen graph, or α(G) ≥ κ(G) + 2.
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3 Properties of k-traceable Graphs

The following results show the relationships between the minimum degree, δ(G), the
independence number, α(G), the connectivity, κ(G), the toughness, t(G), and the order,
n(G), of a k-traceable graph G.

Theorem 3.1 Let G be a k-traceable graph of order n. Then, G has the following prop-

erties.

(a) κ(G) ≥ n − k + 1.

(b) δ(G) ≥ n − k + 1.

(c) If k ≥ 3 and n ≥ 2k − 2, then G is hamiltonian.

(d) α(G) ≤ ⌈k
2
⌉ (and hence k ≥ 2α(G) − 1).

(e) If n > k > 2, then t(G) ≥ 2n
k+1

− 1.

(f) If n > k > 2, then G is 1-tough.

Proof. (a) Suppose κ(G) ≤ n − k. Let S be a vertex cut of G with at most n − k
vertices. Then the graph G− S is disconnected and has order at least k. Hence, G has a
disconnected induced subgraph of order k and is therefore not k-traceable, a contradiction.

(b) This is immediate from part (a) and the fact that δ(G) ≥ κ(G).

(c) Suppose k ≥ 3 and n ≥ 2k − 2 (and so, n ≥ 4). Then, n − k + 1 ≥ n/2, and so, by
part (b), δ(G) ≥ n/2. Hence, by Theorem 2.1, G is hamiltonian.

(d) Suppose α(G) ≥ ⌈k
2
⌉+1. Let X be an independent set of ⌈k

2
⌉+1 vertices of G. Now

let H be an induced subgraph of G of order k such that X ⊆ V (H). Let S = V (H) \ X.
Then, comp(H − S) = |X| = ⌈k

2
⌉+ 1 ≥ ⌊k

2
⌋+ 1 = |S|+ 2, and so, by Observation 2.3, H

is nontraceable. Hence, G is not k-traceable, a contradiction.

(e) We may assume G is not a complete graph. Let S be a vertex cut of G. Then
|S| ≤ n− 2 and, by part (a), |S| ≥ n − k + 1. Let r be defined by |S| = n− k + r, where
1 ≤ r ≤ k − 2.

Let S ′ be an r-element subset of S, and let G′ = G − (S \ S ′). Then, G′ is an induced
subgraph of G of order k. Since G is k-traceable, the graph G′ is traceable. Hence, by
Observation 2.3(b), we have that comp(G − S) = comp(G′ − S ′) ≤ |S ′| + 1 = r + 1. But
|V (G) − S| = k − r, so

comp(G − S) ≤ min{r + 1, k − r}.

If r ≤ (k − 1)/2, then min{r + 1, k − r} = r + 1, so in this case

|S|

comp(G − S)
≥

n − k + r

r + 1
= 1 −

n − k − 1

r + 1
≥

2n

k + 1
− 1.

If r > (k − 1)/2, then min{r + 1, k − r} = k − r, so in this case
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|S|

comp(G − S)
≥

n − k + r

k − r
=

n

k − r
− 1 >

2n

k + 1
− 1.

Hence

min

{

|S|

comp(G − S)
: S a vertex cut of G

}

≥
2n

k + 1
− 1.

(f) This is an immediate consequence of part (e).

4 Hamiltonicity of k-traceable graphs

From Theorem 3.1(c) and the fact that the path Pk is nonhamiltonian we obtain the
following immediate lower and upper bounds for H(k).

Observation 4.1 H(2) = 2, while k ≤ H(k) ≤ 2k − 3 for k ≥ 3.

A hypohamiltonian graph of order n is, clearly, (n − 1)-traceable as well as (n − 2)-
traceable. Thus, H(k) ≥ k + 2 for every k for which there exists a hypohamiltonian
graph of order k + 2. Thus as an immediate consequence of Theorem 2.4, we have that
H(k) ≥ k + 2 for k ∈ {8, 11, 14} and for k ≥ 16. We show that, by “blowing up” a vertex
of the Petersen graph, we can obtain, for each k ≥ 10, a nonhamiltonian k-traceable graph
of order k + 2.

Lemma 4.2 H(k) ≥ k + 2 for k = 8 and for k ≥ 10.

Proof. Let P be the Petersen graph. Since P is hypohamiltonian, it is 8-traceable and
9-traceable. Hence H(8) ≥ 10. Now let k ≥ 10 and put n = k + 2. Let v ∈ V (P ) and
denote the neighbours of v in P by v1, v2 and v3. Let K be a complete graph of order
k − 7 and choose three distinct vertices, w1, w2, and w3 in K. Let P (n) be the graph of
order n obtained from the disjoint union of P − v and K by adding the three edges v1w1,
v2w2 and v3w3. We show that P (n) is a nonhamiltonian k-traceable graph.

Suppose that P (n) has a Hamilton cycle C. Then, C visits K exactly once, since K
has only three vertices of attachment. We may therefore assume that C intersects K in a
w1 −w2 path Q. But then, replacing the subpath v1Qv2 in C by the path v1vv2, produces
a Hamilton cycle of P . This contradiction proves that P (n) is nonhamiltonian.

We show next that P (n) is k-traceable. It suffices to show that P (n) − {u, w} is
traceable for every two distinct vertices u and w of P (n). Let u and w be an arbitrary
pair of distinct vertices of P (n).

Suppose that u /∈ V (K). Then, since P is hypohamiltonian, v lies on a Hamilton cycle,
Cv, of P − {u}. Renaming vertices, if necessary, we may assume that v1vv2 is a subpath
of Cv. Replacing this subpath in Cv by the path v1Qv2, where Q is a Hamilton path in
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K that starts at w1 and ends at w2, produces a Hamilton cycle in P (n)−{u}. Removing
the vertex w from this cycle, produces a Hamilton path in P (n) − {u, w}. Similarly, if
w /∈ V (K), then P (n) − {u, w} is traceable.

Hence we may assume that u ∈ V (K) and w ∈ V (K). Renaming vertices, if necessary,
we may assume that w1 /∈ {u, w}. Since P − v is hamiltonian, there is a Hamilton path
Pv in P − v that ends at v1. Let Pw be a Hamilton path in K − {u, w} that starts at w1.
Then, Pvv1w1Pw is a Hamilton path in P (n)−{u, w}. Hence, P (n)−{u, w} is traceable.

We remark that the nonhamiltonian (n−2)-traceable graph P (n) of order n constructed
in the proof of Lemma 4.2 is only defined for n ≥ 12.

Next we consider the existence of k-traceable graphs of order k + 1. Skupien [12] calls
a graph of order n 1-traceable if it is (n − 1)-traceable in our terminology. The following
result is implied by Propositions 7.1 and 7.2 of [12]. We provide a proof for completeness.

Lemma 4.3 For a maximal nonhamiltonian graph G of order n ≥ 3 the following three

statements are equivalent.

(1) G has no universal vertex.

(2) G is homogeneously traceable.

(3) G is (n − 1)-traceable.

Proof. (1) =⇒ (2): Suppose G has no universal vertex. Let u ∈ V (G). Then there is a
vertex v ∈ V (G) such that uv /∈ E(G). Since G is MNH, this implies that G + uv has
a Hamilton cycle containing the edge uv. Hence, G has a Hamilton path starting at u.
Thus, G is homogeneously traceable.

(2) =⇒ (3): Suppose G is homogeneously traceable. Let H be an induced subgraph of
G of order n − 1. Let x be the vertex in V (G) \ V (H). Then there is a Hamilton path
P of G starting at x. But then P − x is a Hamilton path of H , and so H is traceable.
Thus, G is (n − 1)-traceable.

(3) =⇒ (1): Suppose G is (n−1)-traceable. Let x ∈ V (G). Then, G−x has a Hamilton
path P . Since G is nonhamiltonian, x is nonadjacent in G to at least one of the two ends
of P . Hence, x is not a universal vertex of G. Thus, G has no universal vertex.

As a consequence of Theorem 2.5 and Lemma 4.3, we have the following result.

Corollary 4.4 H(k) 6= k + 1 for 2 ≤ k ≤ 7.

Proof. Suppose G is a nonhamiltonian k-traceable graph of order k + 1. Then G is a
subgraph of a MNH k-traceable graph of order k + 1, so it follows from Theorem 2.5 and
Lemma 4.3 that k = 1 or k ≥ 8.

The Chvátal-Erdős Theorem enables us to decrease the upper bound for H(k) estab-
lished in Observation 4.1.

Corollary 4.5 H(k) ≤ 3k−3
2

for k ≥ 3.
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Proof. Let G be a nonhamiltonian k-traceable graph of order n ≥ 3. By Theorem
2.6, α(G) ≥ κ(G) + 1. However, by parts (a) and (d) of Theorem 3.1, we have that
(k + 1)/2 ≥ α(G) and κ(G) ≥ n − k + 1. Hence, (k + 1)/2 ≥ n − k + 2, and so
n ≤ (3k − 3)/2.

We now use the Bigalke-Jung Theorem, together with our results on the toughness,
connectivity and independence number of k-traceable graphs, to further improve the upper
bound when k = 7 or k ≥ 9.

Lemma 4.6 H(k) ≤ 3k−5
2

for k = 7 and for k ≥ 9.

Proof. Suppose G is a maximal nonhamiltonian k-traceable graph of order n ≥ k, where
k = 7 or k ≥ 9. If n− k = 1, then, since k ≥ 7, we have that n = k + 1 ≤ (3k− 5)/2, and
the desired result holds. Hence we may assume that n−k ≥ 2. Thus, by Theorem 3.1(a),
κ(G) ≥ n − k + 1 ≥ 3. By Theorem 3.1(f), G is 1-tough, and so by Theorem 2.7, either
G is the Petersen graph or α(G) ≥ κ(G) + 2. But the Petersen graph has order 10 and
is not 7-traceable and we are assuming that k 6= 8. Hence, G is not the Petersen graph.
Thus, α(G) ≥ κ(G) + 2. Thus, by Theorem 3.1(a), α(G) ≥ n − k + 3. By Theorem 3.1,
(k + 1)/2 ≥ α(G). Hence, (k + 1)/2 ≥ n − k + 3, and so n ≤ (3k − 3)/2.

As a consequence of Observation 4.1, Lemma 4.2, Corollary 4.4, Corollary 4.5, and
Lemma 4.6, we have the following summary of our results established thus far.

Corollary 4.7 .

(a) H(k) = k if 2 ≤ k ≤ 7.
(b) H(8) = 10 and 10 ≤ H(9) ≤ 11.
(c) k + 2 ≤ H(k) ≤ 3k−5

2
if k ≥ 10.

Proof. (a) It follows from Observation 4.1 and Corollary 4.5 that H(k) = k for k ∈
{2, 3, 4} and that 5 ≤ H(5) ≤ 6 and 6 ≤ H(6) ≤ 7. Observation 4.1 and Lemma 4.6
imply that 7 ≤ H(7) ≤ 8. But, by Corollary 4.4, H(k) 6= k + 1 for k ∈ {5, 6, 7}. Hence,
H(k) = k for k ≤ 7.

(b) The Petersen graph shows that H(8) ≥ 10 and H(9) ≥ 10. Corollary 4.5 implies
that H(8) ≤ 10 and Lemma 4.6 implies that H(9) ≤ 11.

(c) For k ≥ 10 the lower bound follows from Lemma 4.2 and the upper bound from
Lemma 4.6.

Corollary 4.7 shows that H(9) is either 10 or 11, H(10) = 12 and H(11) = 13 or 14.
Thus H(k) ≤ k + 2 for k ≤ 10. We do not know whether there exists a k such that
H(k) = k +1 or such that H(k) > k +2. It therefore seems important to determine H(9)
and H(11). The following lemma will prove useful, a proof of which is elementary and is
omitted.

Lemma 4.8 If S is an independent set of a path P , consisting of internal vertices of P ,

then |NP (S)| ≥ |S| + 1.
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Corollary 4.9 Suppose k is odd and G is a k-traceable graph containing an independent

set I with (k + 1)/2 vertices. If S ⊆ V (G) \ I such that 1 ≤ |S| ≤ (k − 1)/2, then

|NI(S)| ≥ |S| + 1.

Proof. Let H be any induced subgraph of G such that n(H) = k and I ∪ S ⊆ V (H).
Then H has a path P of order k that has both end-vertices in I and alternates between
I and V (H) \ I. The result now follows from Lemma 4.8.

The following observation will prove useful.

Observation 4.10 Suppose a graph G contains two disjoint paths P := v1 . . . vk and

Q := x1 . . . xr, with k ≥ 2 and r ≥ 1 such that V (G) = V (P )∪ V (Q) and suppose x1 and

xr are adjacent to vi and vj, respectively, where 1 ≤ i < j ≤ k. Then G is hamiltonian if

it contains any of the following pairs of edges.

(a) v1vi+1 and vkvj−1.

(b) v1vj−1 and vkvi+1.

(c) v1vj−1 and vkvi−1.

(d) v1vj+1 and vkvi+1.

We are now in a position to determine the value of H(9).

Theorem 4.11 H(9) = 10.

Proof. By Corollary 4.7, 10 ≤ H(9) ≤ 11. We show that H(9) = 10. Assume, to the
contrary, that there exists a nonhamiltonian 9-traceable graph G of order 11 (here k = 9
and n = 11). By Theorem 3.1(a), κ(G) ≥ 3. By Theorem 3.1(f), G is 1-tough, and so,
by Theorem 2.7, α(G) ≥ κ(G) + 2 ≥ 5. By Theorem 3.1, α(G) ≤ 5. By Theorem 3.1(b),
δ(G) ≥ 3. By Lemma 2.2, δ(G) ≤ 3. Hence, κ(G) = δ(G) = 3 and α(G) = 5.

Let I be an independent set in G with |I| = 5. Then V (G) \ I has six vertices and
hence is not an independent set. Let x1, x2 be two adjacent vertices in V (G) \ I. Let
P : v1v2 . . . v9 be a Hamilton path of V (G) \ {x1, x2}. Then, I = {v1, v3, v5, v7, v9} and, by
Corollary 4.9, |NI(xi)| ≥ 2 for i = 1, 2 and |NI({x1, x2})| ≥ 3. We consider three cases,
depending on N({x1, x2}) ∩ {v1, v9}.

Case 1. N({x1, x2}) ∩ {v1, v9} = ∅.
Then NI({x1, x2}) = {v3, v5, v7}. Since each of x1 and x2 has at least two neighbours
in I, we may assume, without loss of generality, that {x1v3, x1v5, x2v7} ⊂ E(G). We
now consider two vertex-disjoint paths, namely the path P defined earlier, and the path
Q: x1x2. Since δ(G) = 3, v9 is adjacent to at least one of v4 and v6. If v4v9 ∈ E(G),
then, since x1 and x2 are adjacent to v3 and v7, respectively, Observation 4.10(b) and
(d) imply that v1 is nonadjacent to both v6 and v8. If v6v9 ∈ E(G), then, since x1 and
x2 are adjacent to v5 and v7, respectively, Observation 4.10(b) and (d) once again imply
that v1 is nonadjacent to both v6 and v8. Hence, NG(v1) ⊆ {v2, v8}, and so dG(v1) ≤ 2,
contradicting the fact that δ(G) = 3.
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Case 2. |N({x1, x2}) ∩ {v1, v9}| = 1.
We may assume that N({x1, x2}) ∩ {v1, v9} = {v1}. Then v2 has two neighbours vi and
vj such that i < j and {i, j} ⊂ {1, 3, 5, 7}. By Observation 4.10, v9 is nonadjacent to
vj−1. If i 6= 1, then v9 is also nonadjacent to vi−1, and so dG(v9) ≤ 2, a contradiction.
Hence, i = 1. Since |NI({x1, x2})| ≥ 3, we may assume that x1 is adjacent to vt, where
t 6= j and {t, j} ⊂ {3, 5, 7}. Since x1 and x2 are adjacent to vt and v1, respectively,
Observation 4.10(a) implies that v9 is nonadjacent to vt−1. As observed earlier, v9 is
nonadjacent to vj−1. Hence, dG(v9) ≤ 2, a contradiction.

Case 3. {v1, v9} ⊆ N({x1, x2}).
Since G is nonhamiltonian, we may assume that both v1 and v9 are adjacent to x1 and
nonadjacent to x2. Then v2 has two neighbours vi and vj such that i < j and {i, j} ⊂
{3, 5, 7}. Since x1 and x2 are adjacent to v1 and vi, respectively, Observation 4.10(a)
implies that v9 is nonadjacent to vi−1. Further, since x2 is adjacent to vj , it follows
that v9 is nonadjacent to vj−1. Since x1 and x2 are adjacent to v9 and vi, respectively,
Observation 4.10(a) implies that v1 is nonadjacent to vi+1. Since x2 is adjacent to vj , it
also follows that v1 is nonadjacent to vj+1. Let r ∈ {3, 5, 7} \ {i, j}. Since δ(G) = 3,
NG(v9) = {vr−1, v8, x1} and NG(v1) = {v2, vr+1, x1}.

Suppose that {i, j} = {3, 5}. Then r = 7 and {v6v9, v1v8} ⊂ E(G). But then v1v8v7v6v9

x1x2v5v4v3v2v1 is a Hamilton cycle of G, a contradiction. Hence, {i, j} 6= {3, 5}. By
symmetry, {i, j} 6= {5, 7}. Thus, {i, j} = {3, 7}, and so r = 5 and {v4v9, v1v6} ⊂ E(G).

If v5x1 ∈ E(G), then G is hamiltonian by Observation 4.10(c). If v5x2 ∈ E(G), then
G is hamiltonian by Observation 4.10(a). If v5v2 ∈ E(G), then v5v2v3x2x1v1v6v7 v8v9v4v5

would be a Hamilton cycle of G. If v5v8 ∈ E(G), then v8v5v4v3v2v1v6v7x2x1v9v8 would be
a Hamilton cycle of G. Since G is nonhamiltonian, we therefore deduce that v5 is adjacent
only to v4 and v6. Hence, dG(v5) = 2, a contradiction.

Since all three cases produce a contradiction, our assumption that H(9) = 11 is incor-
rect. Hence, H(9) = 10, as claimed.

As remarked earlier, Corollary 4.7 shows that H(11) is either 13 or 14. If there exists a
nonhamiltonian 11-traceable graph G of order 14, then, using our earlier results, κ(G) =
δ(G) = 4 and α(G) = 6. However we have yet to establish whether such a graph exists.

Our results are summarized in the following theorem.

Theorem 4.12 For k ≤ 10, we have that

H(k) =











k if 2 ≤ k ≤ 7
k + 1 if k = 9
k + 2 if k ∈ {8, 10},

while for k ≥ 11,

k + 2 ≤ H(k) ≤
1

2
(3k − 5).
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5 The Circumference of k-Traceable Graphs

If C is a circumference cycle in a graph G and H is a component of G − V (C), then
obviously |NC(H)| ≤ c(H)/2. We now show that this inequality is sharp if G is k-
traceable for some k < n.

Lemma 5.1 Suppose G is a nonhamiltonian graph with circumference c that is k-traceable

for some k < n. If C is a cycle in G of length c and H is a component of G−V (C), then

|NC(H)| < c/2.

Proof. Suppose, to the contrary, that H is a component of G−V (C) such that |NC(H)| ≥
c/2. Then, since NC(H) does not contain two consecutive vertices of C, it follows that
|NC(H)| = c/2 and c is even. Let C be the cycle v1v2 . . . vcv1.

First we show that |V (H)| = 1. Suppose to the contrary that |V (H)| ≥ 2. Then, since
κ(G) ≥ 2, there exist two vertices vi and vi+2 on C such that vix, vi+2y ∈ E(G) and
x 6= y with x, y ∈ V (H). Let P be an x-y path in H . Replacing vivi+1vi+2 on C with
viPvi+2 yields a cycle of order at least c + 1. Hence |V (H)| = 1 and we may assume that
V (H) = {x}.

We show that there are at least two components in G−V (C). Suppose to the contrary
that H is the only component of G − V (C). Since |V (H)| = 1, we have c = n − 1.
Then α ≥ c

2
+ 1, since V (G) − NC(H) is an independent set. But now we obtain the

contradiction k ≥ 2α − 1 ≥ c + 1 = n. Hence there is at least one more component of
G − V (C), say H ′.

We now show that NC(H ′) ⊆ NC(H). Suppose to the contrary, that there are adjacent
vertices vj and w with vj ∈ V (C), w ∈ V (H ′), and vjx /∈ E(G). Since κ(G) ≥ 2 there
exists a vertex u in H ′ which is adjacent to some vertex, vi say, of C, where i 6= j. Now
let P denote a u-w path in H ′. Then P is of order at least one and |i − j| ≥ 2. Now if
vix ∈ E(G), then viPvjvj+1. . .vi−3vi−2xvj−1vj−2. . . vi+1vi is a cycle of order at least c + 1
and if vix /∈ E(G), then viPvjvj+1. . .vi−2vi−1xvj−1vj−2 . . . vi+1vi is a cycle of order at least
c + 2. Hence NC(H ′) ⊆ NC(H).

Next we show that each component H ′ 6= H of G−V (C) has only one vertex. Suppose to
the contrary that |V (H ′)| ≥ 2 and assume that viw, vju ∈ E(G), where vi, vj ∈ V (C) and
u, w ∈ H ′ with u 6= w. Let P denote a u-w path in H ′. Then vivi+1 . . . vj−3vj−2xvi−2vi−3

. . . vj+1vjPvi is a cycle of order at least c + 1. Hence H ′ has only one vertex, and since
H ′ was arbitrary we conclude that V (G) − V (C) is an independent set.

But now α ≥ c
2

+ n − c = n − c
2
. Hence k ≥ 2α − 1 ≥ 2n − c − 1, and by c ≤ n − 1 we

obtain the contradiction k ≥ n.

We now establish an upper bound for the circumference of k-traceable graphs of order
n in terms of the difference between n and k.

Theorem 5.2 Let G be a connected, k-traceable graph of order n > k ≥ 2. Then c(G) ≥
min{n, 3(n − k) + 3}.
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Proof. Suppose G is not hamiltonian. Let c be the circumference of G and let C =
v1v2 . . . vcv1 be a longest cycle in G. Let H1, H2, . . . , Hr be the components of G− V (C).
For component H1 let A be the set of vertices of attachment in C, i.e., A = NC(H1). Let U
be the set of successors of vertices of A on C, and let W be the set of predecessors of vertices
of A on C. We first note that U and W are distinct since otherwise |NC(H1)| = c/2,
contradicting Lemma 5.1. Let R = V (H1) and S =

⋃

i>1 V (Hi).

The following standard argument shows that the set U is independent, and that no
two vertices of U have neighbours in the same component of G[S]. Suppose this is false.
Then there exist two vertices vi, vj ∈ U and a vi-vj path Pi,j whose internal vertices
are neither on C nor in H1. Vertices vi−1 and vj−1 are vertices of attachment of H1, so
they have neighbours x and y, respectively, in H1. Let Px,y be an x-y path in H1. Now
replacing the vi−1-vj segment of C with vi−1Px,yvj−1vj−2vj−3 . . . vi+1Pi,j yields a longer
cycle, contradicting the choice of C. The same statement holds for W . Clearly, there is
no edge between S and R as their vertices are in different components of G−V (C). Since
no two consecutive vertices of C are vertices of attachment of H1, there is also no edge
between U ∪ W and R. Hence we have the following:

(i) U and W are distinct independent sets.
(ii) U ∪ W , R, S are pairwise disjoint.
(iii) There is no edge joining U ∪ W ∪ S to R.
(iv) No two vertices in U (or W ) have neighbours in the same component of G[S].

Consider the induced subgraph F := G[U ∪ W ∪ R ∪ S]. We claim that

comp(F ) ≥ |U ∩ W | + 2. (1)

Let Fi be a component of F . We first show that if Fi contains a vertex in U ∩W , then it
contains no other vertex in U ∪ W . Indeed let u1 ∈ U ∩ W and suppose that Fi contains
a second vertex u2 ∈ U ∪ W , u2 6= u1. Without loss of generality assume that u2 ∈ U .
Then there exists a u1-u2 path in Fi. We may assume that there is no other vertex of
U ∪ W on this path, and by (iii) the path contains no vertex of R. Since u1 and u2 are
non-adjacent, it follows that each of u1 and u2 is adjacent to a vertex in Fi, contradicting
property (iv). Hence Fi contains no vertex in U ∩ W other than u1.

Hence we have exactly |U ∩W | components of F that contain a vertex in U ∩W . Since
U 6= W , the symmetric difference U∆W is nonempty and there is at least one additional
component of F containing vertices of U∆W . Finally, by (iii), there is a further component
containing vertices of R. In total we have at least |U ∩ W | + 2 components of F , which
proves inequality (1).

Now choose a set X of |U ∩W | vertices in V (G)− (U ∪W ∪R ∪ S), for example from
the |U | vertices of attachment of H1. Then

|U ∪ W ∪ R ∪ S ∪ X| = |U ∪ W | + |R| + |S| + |U ∩ W | = |U | + |W | + |R| + |S|.

But U ∪W ∪R∪ S ∪X is not traceable, since removing the |U ∩W | vertices in X yields
a graph with at least |U ∩W |+ 2 components. Moreover, U ∪W ∪R∪ S ∪X contains a
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non-traceable subset of order i for all i ∈ {2, 3, . . . , |U |+ |W |+ |R|+ |S|}. Hence we have
k > |U | + |W | + |R| + |S|, as desired.

Now G is (n − k + 1)-connected, so we have |A| = |U | = |W | ≥ n − k + 1. Also,
|R|+ |S| = n−c(G) since C is a longest cycle in G. Hence k ≥ 2(n−k+1)+n−c(G)+1,
or, equivalently, c(G) ≥ 3(n − k) + 3, as desired.

The Petersen graph is an example of a nonhamiltonian graph realizing the bound on
the circumference given in Theorem 5.2 (since it is 8-traceable).

Acknowledgment

The authors wish to thank UNISA and the NRF of SA for their sponsorship of two
workshops held at Salt Rock (11-15 March 2007 and 7-9 November 2008) where most of
the joint research for this paper was conducted.

References

[1] R. E. L. Aldred, B. D. McKay and N. C. Wormald, Small hypo-Hamiltonian
graphs. J. Combin. Math. Combin. Comput. 23 (1997), 143–152. (or see
http://cs.anu.edu.au/∼bdm/papers/hypo.pdf).

[2] D. Bauer, H. Broersma, and E. Schmeichel, Toughness in Graphs-A Survey. Graphs

Combin. 22 (2006), 1–35.

[3] A. Bigalke and H. A. Jung, Über Hamiltonsche Kreise und Unabhängige Ecken in
Graphen, Monatsh. Math. 88 (1979) 195–210.

[4] G. Chartrand, H. J. Gould and S. F. Kapoor, On homogeneously traceable nonhamil-
tonian graphs. 2nd Internat. Conf. on Combinatorics, Math. Ann. N.Y. Acad. Sci.

319 (1979), 130–135.
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