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Abstract

The integral circulant graph Xn(D) has the vertex set Zn = {0, 1, 2, . . . , n − 1}
and vertices a and b are adjacent, if and only if gcd(a − b, n) ∈ D, where D =
{d1, d2, . . . , dk} is a set of divisors of n. These graphs play an important role in
modeling quantum spin networks supporting the perfect state transfer and also have
applications in chemical graph theory. In this paper, we deal with the automorphism
group of integral circulant graphs and investigate a problem proposed in [W. Klotz,
T. Sander, Some properties of unitary Cayley graphs, Electr. J. Comb. 14 (2007),
#R45]. We determine the size and the structure of the automorphism group of the
unitary Cayley graph Xn(1) and the disconnected graph Xn(d). In addition, based
on the generalized formula for the number of common neighbors and the wreath
product, we completely characterize the automorphism groups Aut(Xn(1, p)) for n

being a square-free number and p a prime dividing n, and Aut(Xn(1, pk)) for n

being a prime power.

1 Introduction

Circulant graphs are Cayley graphs over a cyclic group. The interest of circulant graphs
in graph theory and applications has grown during the last two decades. They appeared
in coding theory, VLSI design, Ramsey theory and other areas. Recently there is vast re-
search on the interconnection schemes based on the circulant topology – circulant graphs
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represent an important class of interconnection networks in parallel and distributed com-
puting (see [17]).

Integral circulant graphs as the circulants with integral spectra, were imposed as po-
tential candidates for modeling quantum spin networks with periodic dynamics [12, 30].
Saxena, Severini and Shraplinski [30] studied some parameters of integral circulant graphs
such as the diameter, bipartiteness and perfect state transfer. The present authors in
[4, 18] calculated the clique and chromatic number of integral circulant graphs with ex-
actly one and two divisors, and also disproved the conjecture that the order of Xn(D) is
divisible by the clique and chromatic number.

Various properties of unitary Cayley graphs as a subclass of integral circulant graphs
were investigated in some recent papers. In the work of Berrizbeitia and Giudici [6] and
in the later paper of Fuchs [11], some lower and upper bounds for the longest induced
cycles were given. Bašić et al. [3, 5] established a characterization of integral circulant
graphs which allow perfect state transfer. In addition, they proved that there is no
perfect state transfer in the class of unitary Cayley graphs except for the hypercubes
K2 and C4. Klotz and Sander [23] determined the diameter, clique number, chromatic
number and eigenvalues of unitary Cayley graphs. The latter group of authors proposed
a generalization of unitary Cayley graphs named gcd-graphs and proved that they have
to be integral. Integral circulant graphs were also characterized by So [32].

Let A be the adjacency matrix of a simple graph G, and λ1, λ2, . . . , λn be the eigen-
values of the graph G. The energy of G is defined as the sum of absolute values of its
eigenvalues [13, 14]

E(G) =

n
∑

i=1

|λi|.

The graph G is said to be hyperenergetic if its energy exceeds the energy of the
complete graph Kn, or equivalently if E(G) > 2n− 2. This concept was introduced first
by Gutman and afterwards has been studied intensively in the literature [2, 7, 15, 16,
31, 33]. Hyperenergetic graphs are important because molecular graphs with maximum
energy pertain to maximality stable π-electron systems. It has been proven that for
every n ≥ 8, there exists a hyperenergetic graph of order n [14]. In [19, 20, 21, 29], the
authors calculated the energy and distance energy of unitary Cayley graphs and their
complements. Furthermore, they establish the necessary and sufficient conditions for Xn

to be hyperenergetic.

In this paper we characterize the automorphism group Aut(Xn) of unitary Cayley
graphs, and make a step towards characterizing the automorphism group of an arbitrary
integral circulant graph. Many authors studied the isomorphisms of circulant and Cayley
graphs [26, 28], automorphism groups of Cayley digraphs [10], integral Cayley graphs over
Abelian groups [24], rational circulant graphs [22], etc. For the survey on the automor-
phism groups of circulant graphs see [27]. Following Kovács [25] and Dobson and Morris
[8, 9], we start with two cases: n = pk being a prime power and n = p1p2 · . . . · pk being
a square-free number. These results are essential for the future research in this field.
Furthermore, we generalize the formula given in [23] for counting the number of common
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neighbors of two arbitrary vertices of Xn.

The paper is organized as follows. In Section 2 we give some preliminary results on
integral circulant graphs. In Section 3 we calculate the automorphism group of unitary
Cayley graphs and answer the open question from [23] about the ratio of the size of the
automorphism group of Xn and the size of the group of affine automorphisms of Xn. In
addition, we determine the size of the automorphism group of the disconnected graph
Xn(d), where d | n. In Section 4, we prove the general formula for the number of common
neighbors in integral circulant graph Xn(d1, d2). Based on this formula, in Section 5 we
characterize the automorphism groups of two classes of integral circulant graphs with
|D| = 2

• Aut(Xpk(1, pl)) with 0 < l < k,

• Aut(Xn(1, p)) with n being a square-free number.

We conclude the paper by posing some open questions for further research.

2 Preliminaries

Let us recall that for a positive integer n and subset S ⊆ {0, 1, 2, . . . , n−1}, the circulant
graph G(n, S) is the graph with n vertices, labeled with integers modulo n, such that each
vertex i is adjacent to |S| other vertices {i + s (mod n) | s ∈ S}. The set S is called a
symbol of G(n, S). As we will consider only undirected graphs, we assume that s ∈ S if
and only if n− s ∈ S, and therefore the vertex i is adjacent to vertices i± s (mod n) for
each s ∈ S.

Recently, So [32] has characterized integral circulant graphs. Let

Gn(d) = {k | gcd(k, n) = d, 1 ≤ k < n}

be the set of all positive integers less than n having the same greatest common divisor d
with n. Let Dn be the set of positive divisors d of n, with d ≤ n

2
.

Theorem 2.1 ([32]) A circulant graph G(n, S) is integral if and only if

S =
⋃

d∈D

Gn(d)

for some set of divisors D ⊆ Dn.

Let Γ be a multiplicative group with identity e. For S ⊂ Γ, e 6∈ S and S−1 =
{s−1 | s ∈ S} = S, the Cayley graph X = Cay(Γ, S) is the undirected graph having
vertex set V (X) = Γ and edge set E(X) = {{a, b} | ab−1 ∈ S}. For a positive integer
n > 1 the unitary Cayley graph Xn = Cay(Zn, Un) is defined by the additive group of the
ring Zn of integers modulo n and the multiplicative group Un = Z∗

n of its units. Unitary
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Cayley graphs are highly symmetric and have some remarkable properties connecting
graph theory, number theory and group theory.

Let D be a set of positive, proper divisors of the integer n > 1. Define the gcd-graph
Xn(D) having vertex set Zn = {0, 1, . . . , n− 1} and edge set

E(Xn(D)) = {{a, b} | a, b ∈ Zn, gcd(a− b, n) ∈ D} .

If D = {d1, d2, . . . , dk}, then we also write Xn(D) = Xn(d1, d2, . . . , dk); in particular
Xn(1) = Xn. Throughout the paper, we let n = pα1

1 p
α2

2 · . . . ·pαk

k , where p1 < p2 < . . . < pk

are distinct primes, and αi ≥ 1. By Theorem 2.1 we obtain that integral circulant
graphs are Cayley graphs of the additive group of Zn with respect to the Cayley set
S =

⋃

d∈D Gn(d) and, thus, they are exactly gcd-graphs. From Corollary 4.2 in [17], the
graph Xn(D) is connected if and only if gcd(d1, d2, . . . , dk) = 1.

In the characterization of the automorphism group, we will use the concept of wreath
product (similar as the lexicographical product in graph theory) [27].

Definition 2.1 Let G and H be permutation groups acting on X and Y , respectively.
We define the wreath product of G and H, denoted G ≀H, to be the permutation group that
acts on X × Y consisting of all permutations of the form (x, y) → (g(x), hx(y)), where
g ∈ G and hx ∈ H.

3 The automorphism group of unitary Cayley graphs

For a graph G, let N(a, b) denote the number of common neighbors of the vertices a and b.
The following theorem is the main tool in describing properties of the automorphisms of
unitary Cayley graphs:

Theorem 3.1 ([23]) The number of common neighbors of distinct vertices a and b in the
unitary Cayley graph Xn is given by N(a, b) = Fn(a− b), where Fn(s) is defined as

Fn(s) = n
∏

p|n, p prime

(

1 −
ε(p)

p

)

, with ε(p) =

{

1 if p | s
2 if p ∤ s

.

Recall that

Aut(Xn) = {f : Xn → Xn | f is a bijection, and (a, b) ∈ E(Xn) iff (f(a), f(b)) ∈ E(Xn)}

We will first determine |Aut(Xn)|, with n being a prime power.

Theorem 3.2 Let n = pk, where p is a prime number and k ≥ 1. Then

|Aut(Xn)| = p!
(

(pk−1)!
)p
.
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Proof: Let C0, C1, . . . , Cp−1 be the classes modulo p,

Ci = {j | 0 ≤ j < pk, j ≡ i (mod p)}, 0 ≤ i ≤ p− 1.

Two vertices a and b from Xn are adjacent if and only if gcd(a− b, n) = gcd(a− b, pk) = 1
or equivalently p ∤ (a − b). This means that all vertices from some class Ci are adjacent
to the vertices from Xn \ Ci, while there are no edges between any two vertices from Ci.

Let f ∈ Aut(Xn) be an automorphism of Xn. Let a and b be two vertices from the
class Ci and f(a) ∈ Cj, where 0 ≤ i, j ≤ p − 1. It follows that p | a − b, which implies
that a and b are not adjacent, and consequently f(a) and f(b) are not adjacent. From
the above consideration, f(a) − f(b) is divisible by p and we conclude that f(b) belongs
to the same class modulo p as f(a), i.e. f(b) ∈ Cj. This implies that the vertices from
the class Ci are mapped to the vertices from the class Cj. Since we choose an arbitrary
index i, we get that the classes are permuted under the automorphism f .

Assume that the class Ci is mapped to the class Cj . Since the vertices from the class
Ci form an independent set and the restriction of the automorphism f on the vertices of
Ci is a bijection from Ci to Cj, we have all |Ci|! = (pk−1)! permutations of the vertices of
the class Ci. Finally, taking into account that classes and vertices permute independently,
by the product rule we get that the number of automorphisms of Xn equals p!

(

(pk−1)!
)p

.
�

Define the sets

C
(j)
i = {0 ≤ a < n | a ≡ i (mod pj)}, 1 ≤ j ≤ k, 0 ≤ i < pj .

In [18] the present authors proved that the chromatic number of Xn is equal to the
smallest prime p1 dividing n and that the color classes ofXn are exactly the classes modulo
p1 and uniquely determined. This means that the maximal independent sets are exactly
C

(1)
0 , C

(1)
1 , . . . , C

(1)
p1−1, and the classes modulo p1 permute under the automorphism f . In

the following, we will prove that for an arbitrary prime number p dividing n the classes
modulo p permute under the automorphism f .

Lemma 3.3 For an automorphism f of Xn and prime number pi dividing n holds:

pi | a− b if and only if pi | f(a) − f(b),

where 0 ≤ a, b ≤ n− 1 and 1 ≤ i ≤ k.

Proof: Since f−1 is an automorphism, we will prove that for a prime number pi dividing
n holds

pi | a− b ⇒ pi | f(a) − f(b),

and the opposite direction of the statement follows directly by mapping a 7→ f−1(a) for
0 ≤ a ≤ n− 1.

Suppose that the statement of the lemma is not true and let 2 ≤ j ≤ k be the greatest
index such that pj | a− b and pj ∤ f(a) − f(b).
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First we will consider the pair (a, b) = (i, i+ pj) such that pj ∤ f(i)− f(i+ pj), where
0 ≤ i ≤ n− 1 − pj . Using Theorem 3.1 it follows

N(i, i+ pj) = Fn(pj) = (p1 − 2) · . . . · (pj−1 − 2)(pj − 1)(pj+1 − 2) · . . . · (pk − 2) ·
n

p1p2 . . . pk
.

Since pj+1, pj+2, . . . , pk does not divide f(i) − f(i+ pj) we have

N(f(i), f(i+pj)) = (p1−ε(p1))·. . .·(pj−1−ε(pj−1))(pj−2)(pj+1−2)·. . .·(pk−2)·
n

p1p2 . . . pk
.

The automorphism f preserves the number of common neighbors of the vertex pairs
(i, i+ pj) and (f(i), f(i+ pj)), or equivalently N(i, i+ pj) = N(f(i), f(i+ pj)). If ε(p1) =
ε(p2) = . . . = ε(pj−1) = 2,

N(f(i), f(i+ pj))

N(i, i+ pj)
=
pj − 2

pj − 1
< 1,

which is a contradiction. Thus there exists an index 1 ≤ s ≤ j − 1, such that ε(ps) = 1.
Similarly, we have

N(f(i), f(i+ pj))

N(i, i+ pj)
≥

(ps − 1)(pj − 2)

(ps − 2)(pj − 1)
> 1,

since ps < pj. This is again a contradiction, and it follows that pj | f(i) − f(i+ pj).

For an arbitrary a, b ∈ Xn such pj | a− b and a < b we have

pj | (f(a)− f(a+ pj)) + (f(a+ pj)− f(a+ 2pj)) + . . .+ (f(b− pj)− f(b)) = f(a)− f(b),

and finally the classes modulo pj also permute under the automorphism f . This completes
the proof. �

Theorem 3.4 Let n = pα1

1 p
α2

2 · . . . · pαk

k be a canonical representation of n, with prime
numbers p1 < p2 < . . . < pk. Then

|Aut(Xn)| = p1! · p2! · . . . · pk! ·

((

n

p1p2 · . . . · pk

)

!

)p1p2·...·pk

Proof: Let f ∈ Aut(Xn) be an automorphism of Xn and m = p1p2 · . . . ·pk be the largest
square-free number dividing n. Two vertices a and b from Xn are adjacent if and only if
gcd(a− b,m) = 1.

Consider the classes D0, D1, . . . , Dm−1, defined as follows

Di = {0 ≤ a < n | a ≡ i (mod m)}.

The size of every class Di is equal to n
m

. For an arbitrary vertices a, b ∈ Di holds m | a−b,
and every class modulo m is an independent set. By Lemma 3.3, we have that f(a)−f(b)
is divisible by m and it follows that the classes D0, D1, . . . , Dm−1 permute under the
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automorphism f . Let a ∈ Di and b ∈ Dj be arbitrary vertices from different classes. The
vertices a and b are adjacent if and only if

gcd(m(k − l) + (i− j), n) = 1

for some 0 ≤ k, l ≤ n
m
− 1. Furthermore, if i − j is relatively prime with n, the vertices

from Di and Dj form a complete bipartite induced subgraph of Xn. Otherwise, there are
no edges between the classes Di and Dj . Since the classes {D0, D1, . . . , Dm−1} permute
under the automorphism f and each class is an independent set, for Di = f(Dj), there
are exactly ( n

m
)! possibilities for the restriction of the automorphism f from the vertices

of Di on the vertices of Dj , i = 0, 1, . . . , m− 1.

Next we will count the number of permutations of classes Di. Let i be an arbitrary
index such that 0 ≤ i ≤ m−1, and let i1, i2, . . . , ik be the residue of imodulo p1, p2, . . . , pk,
respectively. For each 1 ≤ s ≤ k, we have Di ⊆ C

(s)
is implying that

Di ⊆ C
(1)
i1

∩ C
(2)
i2

∩ . . . ∩ C
(k)
ik
.

On the other side for these indices i1, i2, . . . , ik, consider the following system of congru-
ences

x ≡ i1 (mod p1)

x ≡ i2 (mod p2)

. . .

x ≡ ik (mod pk).

According to the Chinese remainder theorem, it follows that there exists a unique solution
i of the above system, such that 0 ≤ i < m = p1p2 · . . . · pk, and

C
(1)
i1

∩ C
(2)
i2

∩ . . . ∩ C
(k)
ik

⊆ Di.

Finally we conclude that Di = C
(1)
i1

∩ C
(2)
i2

∩ . . . ∩ C
(k)
ik

.

According to Lemma 3.3, for every prime ps, 1 ≤ s ≤ k, the automorphism f permutes
the classes C

(s)
0 , C

(s)
1 , . . . , C

(s)
ps−1. Thus, there exist indices j1, j2, . . . , jk where 0 ≤ js < ps,

1 ≤ s ≤ k, such that f(C
(s)
is ) = C

(s)
js

. Since f is a bijection, we have

f(C
(1)
i1

∩ C
(2)
i2

∩ . . . ∩ C
(k)
ik

) = f(C
(1)
i1

) ∩ f(C
(2)
i2

) ∩ . . . ∩ f(C
(k)
ik

),

and f(Di) = C
(1)
j1

∩ C
(2)
j2

∩ . . . ∩ C
(k)
jk

= Dj. If we denote by hs the permutation of the
indices modulo ps, we can construct a mapping f(Di) 7→ Dj if and only if hs(is) = js,
for s = 1, 2, . . . , k. This means that the class f(Di) is determined by the permutations of

classes C
(s)
js

for each 1 ≤ s ≤ k. Since these permutations are independent, the number
of permutations of the classes Di is bounded from above by the product of the number of
permutations of the classes C

(s)
js

, that is p1! · p2! · . . . · pk!.
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Next we will show that the constructed mappings are indeed the automorphisms. For
an arbitrary classes Dl′ and Dl′′ there exist classes Dp(l′) and Dp(l′′) such that f(Dl′) =
Dp(l′) and f(Dl′′) = Dp(l′′), for some permutation p of the indices 0, 1, . . . , m − 1. The
permutation p(l) corresponds to the solution of the following system of congruences, where

hi : Zpi
→ Zpi

represent some permutations of classes C
(i)
j , 1 ≤ i ≤ k and 0 ≤ j ≤ pi − 1,

p(l) ≡
k
∑

i=1

cpi
· hi(li) (mod m) (1)

for any 0 ≤ l ≤ m− 1 and li ≡ l (mod pi), 0 ≤ li ≤ pi − 1, for i = 1, 2, . . . , k. Constants
cpi

are the solutions of the following system of k congruence equations

cpi
≡ 1 (mod pi)

cpi
≡ 0 (mod pj), 1 ≤ j ≤ k, j 6= i.

The form of the solution (1) follows directly from the Chinese remainder theorem, and
we have

gcd(p(l′) − p(l′′), n) = 1 ⇔ gcd

(

k
∑

i=1

cpi
· (hi(l

′
i) − hi(l

′′
i )), n

)

= 1

⇔ pi ∤ hi(l
′
i) − hi(l

′′
i ), i = 1, 2, . . . , k

⇔ pi ∤ l′i − l′′i , i = 1, 2, . . . , k

⇔ gcd

(

k
∑

i=1

cpi
· (l′i − l′′i ), n

)

= 1

⇔ gcd (l′ − l′′, n) = 1.

Therefore, we concluded that there are exactly p1!·p2!·. . .·pk! possibilities for permuting
the classes {D0, D1, . . . , Dm−1}. Since the vertices from the classes can be mapped without
restrictions, by the product rule the size of the automorphism group of Xn is equal to

p1! · p2! · . . . · pk! ·
(( n

m

)

!
)m

.

�

Let Sn be the symmetric group of degree n. Note that for prime number p, Xp is
isomorphic to a complete graph Kp and therefore Aut(Xp) = Sp. Also, the permutations
of classes modulo m, form a group Sp1

× Sp2
× . . .× Spk

.

According to the construction of automorphisms of Xn in Theorem 3.4, we conclude
that for every permutation of classes modulo m, there are m permutations of vertices in
each class. This means that the automorphism group is isomorphic to the wreath product
of the permutation group of classes modulo m and the permutation groups of vertices in
each class. Thus, we obtain

Aut(Xn) = (Sp1
× Sp2

× . . .× Spk
) ≀ Sn/m.
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Theorem 3.5 For an arbitrary divisor d of n, and n′ = n
d

= qβ1

1 · qβ2

2 · . . . · qβl

l holds

|Aut(Xn(d))| = d! ·

(

q1! · q2! · . . . · ql! ·

((

n′

q1q2 · . . . · ql

)

!

)q1q2·...·ql
)d

.

Proof: The graph Xn(d) is composed of d connected components C0, C1, . . . , Cd−1

isomorphic to Xn/d(1) [4]. Suppose that f is an automorphism of Xn(d), and let a and b
be two arbitrary vertices from a component Ci, 0 ≤ i ≤ d−1. Since a and b are connected
by a path P in Ci, it follows that f(a) and f(b) are also connected by the image f(P )
of the path P under the isomorphism f . This means that f(a) and f(b) belong to the
same component Cj , 0 ≤ j ≤ d − 1. Let m′ = q1q2 · . . . · ql be the largest square free
number dividing n′. The classes Ci permute under the automorphism f , and the size of
the automorphism group of each class is given by Theorem 3.4. Finally, the size of the
automorphism group of Xn(d) equals

d! ·

(

q1! · q2! · . . . · ql! ·

((

n′

m′

)

!

)m′
)d

.

�

From the constructions of the automorphisms in Theorems 3.4 and 3.5 we obtain the
following relation

Aut(Xn(d)) = Sd ≀ Aut(Xn
d
).

For a, b ∈ Zn, the authors from [23] defined the affine transformation on the vertices
of the graph Xn

ψa,b : Zn → Zn by ψa,b(x) = ax+ b (mod n) for x ∈ Zn.

It is proven that ψa,b is an automorphism of Xn, if and only if a ∈ Un. Moreover,
A(Xn) = {ψa,b |a ∈ Un, b ∈ Zn} is a subgroup of the automorphism group Aut(Xn). We
call A(Xn) the group of affine automorphisms of Xn and obviously

|A(Xn)| = n · ϕ(n).

Motivated by the first open question in [23], we will prove that |A(Xn)| ≤ |Aut(Xn)|,
with equality if and only if n ∈ {2, 3, 4, 6}. Consider the ratio

|Aut(Xn)|

|A(Xn)|
=

p1! · p2! · . . . · pk!

p1p2 · . . . · pk(p1 − 1)(p2 − 1) · . . . · (pk − 1)

(

(pα1−1
1 pα2−1

2 · . . . · pαk−1
k )!

pα1−1
1 pα2−1

2 · . . . · pαk−1
k

)2

· ((pα1−1
1 pα2−1

2 · . . . · pαk−1
k )!)p1p2·...·pk−2.

The first factor (p1−2)!·(p2−2)!·. . .·(pk−2)! is greater than or equal to 1, with equality
if and only if 2 and 3 are the only prime factors of n. The second factor (pα1−1

1 pα2−1
2 · . . . ·

pαk−1
k −1)! is also greater than or equal to 1, with equality if and only if n is a square-free

number or double square-free number. The third factor ((pα1−1
1 pα2−1

2 ·. . .·pαk−1
k )!)p1p2·...·pk−2

is greater than or equal to 1, with equality if and only if n is a square-free number, or
k = 1 and p1 = 2. It follows that |A(Xn)| < |Aut(Xn)| for n = 5 and n > 6.
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4 The number of common neighbors in Xn(d1, d2)

Let d1 = pβ1

1 p
β2

2 · . . . ·pβk

k and d2 = pγ1

1 p
γ2

2 · . . . ·pγk

k . If pα | n, but pα+1 does not divide n, we
write pα‖n, i.e. α is the greatest exponent such that pα divides n. We will set Fn(s) = 0
if s is not an integer.

Theorem 4.1 Let d2 > d1 ≥ 1 be the divisors of n. The number of common neighbors of
distinct vertices a and b in the connected integral circulant graph Xn(d1, d2) is equal to

Fn/d1

(

b− a

d1

)

+ 2 ·
n

M
·

∏

pi∤(b−a)d1d2

(pi − 2) ·
∏

pi|(b−a), pi∤d1d2

(pi − 1) ·
∏

pi|d1d2, αi 6=βi, αi 6=γi

(pi − 1)

if gcd(b− a, d1) = gcd(b− a, d2) = 1, and

Fn/d1

(

b− a

d1

)

+ Fn/d2

(

b− a

d2

)

otherwise, where n = pα1

1 p
α2

2 · . . . · pαk

k and

M =
k
∏

i=1

p
min(max(βi+1,γi+1),αi)
i .

Proof: Let c be the common neighbor of the vertices a and b from Xn(d1, d2), where
gcd(d1, d2) = 1. We have four cases based on the greatest common divisors gcd(a− c, n)
and gcd(b− c, n).

Case 1. gcd(a− c, n) = d1 and gcd(b− c, n) = d1

It follows that b− a is divisible by d1 and from Theorem 3.1 we have that the number
of solutions of the system

gcd

(

a− c

d1
,
n

d1

)

= 1 and gcd

(

b− c

d1
,
n

d1

)

= 1

is Fn/d1
((b− a)/d1).

Case 2. gcd(a− c, n) = d2 and gcd(b− c, n) = d2

Analogously as in Case 1, we have that the number of common neighbors in this case
is Fn/d1

((b− a)/d2) since d2 | b− a.

Case 3. gcd(a− c, n) = d1 and gcd(b− c, n) = d2

Let p be an arbitrary prime number that divides n. Since the divisors d1 and d2 are
relatively prime, p can divide at most one of d1 and d2.

Assume first that p does not divide neither d1 nor d2. It follows that

c 6≡ a (mod p) and c 6≡ b (mod p)

If a ≡ b (mod p), then c can take p − 1 possible residues modulo p; otherwise, there are
p− 2 possibilities.
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Assume that pβ‖d1. It follows that p ∤ d2, implying that p ∤ b− c and a 6≡ b (mod p).
In this case we have

c ≡ a (mod pβ).

If pβ+1 does not divide n, this equation is sufficient for determine c modulo pβ. Otherwise,
we have to take into account that a− c is not divisible by pβ+1,

c 6≡ a (mod pβ+1).

In both cases, since a 6≡ b (mod p) and c ≡ a (mod p) it follows that c 6≡ b (mod p).
Therefore, we have p − 1 possibilities for c modulo pβ+1 for pβ+1 | n and one possibility
otherwise.

Assume now that pγ‖d2. Analogously, if pγ+1 does not divide n, we have exactly one
possibility for c modulo pγ ; otherwise if pγ+1 divides n, we have p − 1 possibilities for c
modulo pγ+1.

According to the Chinese remainder theorem, we are solving the system of congruences
modulo M . For primes pi with βi = γi = 0 we have pi‖M . Otherwise, either βi > 0 or

γi > 0, and we have p
min(βi+1,α)
i ‖M or p

min(γi+1,α)
i ‖M . If pi does not divide d1 and d2, we

have pi − 2 possibilities for pi ∤ (b− a) and pi − 1 possibilities for pi | (b− a). For αi = βi,
we have only one possibility modulo pβi, while for αi 6= βi there are p − 1 possibilities
modulo pβi+1. Analogously, we have symmetric expression for the divisor d2.

This gives us

S =
∏

pi∤(b−a)d1d2

(pi − 2) ·
∏

pi|(b−a), pi∤d1d2

(pi − 1) ·
∏

pi|d1, αi 6=βi

(pi − 1) ·
∏

pi|d2, αi 6=γi

(pi − 1)

solutions for c modulo M , and it follows that there are n
M

· S solutions with 0 ≤ c < n.

Case 4. gcd(a− c, n) = d2 and gcd(b− c, n) = d1

Analogously as in Case 3, we have

S =
∏

pi∤(b−a)d1d2

(pi − 2) ·
∏

pi|(b−a), pi∤d1d2

(pi − 1) ·
∏

pi|d1d2, αi 6=βi, αi 6=γi

(pi − 1)

solutions for c.
Finally, after adding all contributions we get the formula for the number of common

neighbors for a and b. �

These results can be further generalized for an arbitrary integral circulant graph
Xn(d1, d2, . . . , dk), by considering the pairs of divisors (di, dj), 1 ≤ i < j ≤ k.
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5 The automorphism group of further integral circu-

lant graphs

5.1 n being a prime power

Lemma 5.1 Let n = pk and d = pl, where p is odd prime such that 2 ≤ l < k and
D = {1, d}. For an automorphism f of Xn(1, d) it holds that

ps | a− b if and only if ps | f(a) − f(b),

where 0 ≤ a, b ≤ n− 1 and l ≤ s ≤ l + 1.

Proof: Let 0 ≤ a, b ≤ n − 1 be two vertices of Xn(1, d) such that a = b + ps. Suppose
that ps does not divide f(a) − f(b). Since the automorphism f preserves the number of
common neighbors of pairs (a, b) and (f(a), f(b)), these numbers must be equal. According
to Theorem 4.1 the number of common neighbors of a and b is given by:

N(a, b) = Fpk(ps) + Fpk−l(ps−l) =

{

pk−1(p− 1) + pk−l−1(p− 2), s = l
pk−1(p− 1) + pk−l−1(p− 1), s > l.

Case 1. s = l.
If p | f(a) − f(b), it holds that

N(f(a), f(b)) = Fpk(f(a) − f(b)) = pk−1(p− 1) < N(a, b).

If p ∤ f(a) − f(b), we have

N(f(a), f(b)) = Fpk(f(a) − f(b)) + 2 ·
pk

pl+1
· (p− 1) = pk−1(p− 2) + 2pk−l−1(p− 1),

and N(a, b) − N(f(a), f(b)) = pk−1 − pk−l ≥ 0. Since l > 1, in both cases we have
N(f(a), f(b)) 6= N(a, b), which is a contradiction and finally pl | f(a) − f(b).

Case 2. s = l + 1.
Suppose that pl | f(a) − f(b). Since pl+1 ∤ f(a) − f(b), we have

N(f(a), f(b)) = Fpk(f(a) − f(b)) + Fpk−l

(

f(a) − f(b)

pl

)

= pk−1(p− 1) + pk−l−1(p− 2),

and thus N(f(a), f(b)) < N(a, b).

Suppose that pl ∤ f(a) − f(b).
If p | f(a) − f(b) then N(f(a), f(b)) = Fn(f(a) − f(b)) = pk−1(p − 1) < N(a, b). If

p ∤ f(a) − f(b) then

N(f(a), f(b)) = Fpk(f(a) − f(b)) + 2
pk

pl+1
· (p− 1) = pk−1(p− 2) + 2pk−l−1(p− 1),

and N(a, b) −N(f(a), f(b)) = pk−l−1(pl − p+ 1) > 0.
In both cases holds N(f(a), f(b)) 6= N(a, b), which is a contradiction and finally

pl+1 | f(a) − f(b). �
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Theorem 5.2 Let n = pk and d = pl, where p is odd prime, 1 ≤ l ≤ k−1 and D = {1, d}.
Then

|Aut(Xn(D))| =

{

(p2)! ·
(

pk−2!
)p2

if l = 1;

(pl−1!)p · (p!)pl+1 · (pk−l−1!)pl+1

if l > 1.

Proof: Let f be an automorphism of Xn(1, d). Two vertices a and b from Xn(1, d)
are adjacent iff p ∤ (a − b) or pl‖a− b. We will distinguish three cases depending on the
relation of l and k.

Case 1. l = 1.
Let C0, C1, . . . , Cp2−1 be the partition of {0, 1, . . . , pk − 1} modulo p2. It is easy to

verify that arbitrary two vertices a and b from different classes are adjacent, since p2 does
not divide a − b, and therefore gcd(a − b, pk) ∈ {1, p}. Every class Ci, 0 ≤ i ≤ p2 − 1
forms an independent set, and therefore the classes Ci permute under the automorphism
f . By the product rule, it follows

|Aut(Xpk(1, p))| = (p2)! ·
(

pk−2!
)p2

.

Case 2. 3 ≤ l + 1 = k.
Let {Ci} be a partition of the set of vertices Xn(D) given by

Ci = { 0 ≤ a < pl+1 | a ≡ i (mod pl)}, 0 ≤ i ≤ pl − 1.

According to Lemma 5.1 these classes permute under the automorphism f . For
arbitrary vertices a and b from the same class Ci it holds that pl | (a − b) where
0 ≤ (a − b)/pl ≤ p − 1, which means that pl+1 ∤ a − b and thus Ci is a clique. If
a ∈ Ci, b ∈ Cj and i 6= j then pl ∤ a− b. We conclude that if p | i− j, then there are no
edges connecting two vertices from the classes Ci and Cj ; while for p ∤ i− j the classes Ci

and Cj form a clique.

According to Theorem 3.2, the number of permutations of classes Ci is equal to

|Aut(Xpl)| = p! · (pl−1!)p,

and the number of permutations of vertices of a class Ci is equal to |Ci|!. Since the size
of every class modulo pl is equal to p and by the product rule, we finally obtain

|Aut(Xpl+1(1, pl))| = p!(pl−1!)p · (p!)pl

= (pl−1!)p · (p!)pl+1.

Case 3. 3 ≤ l + 1 < k.
Let {Di} be a partition of the set of vertices Xn(D) given by,

Di = { 0 ≤ a < pk | a ≡ i (mod pl+1)}, 0 ≤ i ≤ pl+1 − 1.

Since the difference of any two vertices from the same class is divisible by pl+1, these
vertices are not adjacent. So, the classes Di form independent sets.
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The vertices a ∈ Di and b ∈ Dj , i 6= j, are adjacent if and only if

gcd(i− j, pk) ∈ {1, pl} ⇔ gcd(i− j, pl+1) ∈ {1, pl}.

Using Lemma 5.1, the classes Di permute under the automorphism f . That is, by
Case 2 the number of permutations of classes Di is equal to the size of the automorphism
group |Aut(Xpl+1(1, pl))|. The number of permutations of vertices in each class is |Di|!.
Thus, by the product rule we obtain

|Aut(Xpk(1, pl))| = |Aut(Xpl+1(1, pl))| · (pk−l−1!)pl+1

= (pl−1!)p · (p!)pl+1 · (pk−l−1!)pl+1

.

�

According to the construction of the automorphisms of Xn(D) in Theorem 5.2, we
conclude that for every permutation of classes Di modulo pl+1, there are pl+1 permuta-
tions of vertices in each of these classes (Case 3). This means that the automorphism
group Aut(Xpk(1, pl)) is isomorphic to the wreath product of the automorphism group
Aut(Xpl+1(1, pl)) of classes modulo pl+1 and the permutation groups of vertices in each of
these classes

Aut(Xpk(1, pl)) = Aut(Xpl+1(1, pl)) ≀ Spk−l−1.

Furthermore, according to Case 2, the automorphism group of classes modulo pl+1 is
isomorphic to the wreath product of the automorphism group Aut(Xpl) of classes Ci and
the permutation groups of vertices in each of these classes

Aut(Xpl+1(1, pl)) = Aut(Xpl) ≀ Sp.

Using Theorem 3.4 we have
Aut(Xpl) = Sp ≀ Spl−1,

and finally
Aut(Xpk(1, pl)) = ((Sp ≀ Spl−1) ≀ Sp) ≀ Spk−l−1 .

Therefore, we completely determine the size and the structure of the automorphism
group of Xn(D), with prime power order n = pk for |D| ∈ {1, 2}. Notice that in these
cases the automorphism group is either the wreath product of two permutation groups or
the wreath product of four permutation groups. This result improves Theorem 6.2 given
in [27].

5.2 n being a square-free number

Lemma 5.3 Let n be a square-free number, p > 1 an arbitrary prime divisor of n, and
2m‖n

p
. For an automorphism f of Xn(1, p) and prime number pi 6= 2 dividing n

p
holds

2mpi | a− b if and only if 2mpi | f(a) − f(b),

where 0 ≤ a, b ≤ n− 1 and 1 ≤ i ≤ k.
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Proof: Notice that since n is a square-free number, we have m ∈ {0, 1}.

Assume first that n
p

is odd.

We will prove that if pi | a−b then pi | f(a)−f(b). Let pi be the maximal prime divisor
of n

p
and set a = b+ pi. Suppose that pi does not divide f(a) − f(b). Since the automor-

phism f preserves the number of common neighbors of pairs (a, b) and (f(a), f(b)), these
numbers must be equal. According to Theorem 4.1 the number of common neighbors of
a and b is given by

N(a, b) = Fn(pi) + 2(pi − 1)
∏

q|n
p

, q 6=pi

(q − 2) = (pi − 1) · p ·
∏

q|n
p

, q 6=pi

(q − 2).

Now, we distinguish two different cases depending on the greatest common divisor of
f(a) − f(b) and p.

Case 1. p | f(a) − f(b).
According to Theorem 4.1 the number of common neighbors of f(a) and f(b) is given

by

N(f(a), f(b)) = Fn(f(a) − f(b)) + Fn
p

(

f(a) − f(b)

p

)

= (pi − 2) · p ·
∏

q|n
p

, q 6=pi

(q − ε(q)).

If gcd(f(a) − f(b), n
p
) > 1, there exists a prime number r dividing both f(a) − f(b)

and n
p
. The ratio of N(f(a), f(b)) and N(a, b) equals

N(f(a), f(b))

N(a, b)
=

(pi − 2)(r − 1)

(pi − 1)(r − 2)
·

∏

q|n
p

, q 6=pi,r
(q − ε(q))

∏

q|n
p

, q 6=pi,r
(q − 2)

·
p

p
> 1. (2)

It is clear that the second factor is greater than or equal to 1. The first factor is
greater than 1, since pi is the maximal prime number dividing n

p
and pi > r. This means

that N(f(a), f(b)) > N(a, b), which is a contradiction.
Assume now that gcd(f(a) − f(b), n

p
) = 1. The ratio of N(f(a), f(b)) and N(a, b) is

given by
N(f(a), f(b))

N(a, b)
=

(pi − 2) · p

(pi − 1) · p
< 1. (3)

Notice that the ratio of N(f(a), f(b)) and N(a, b) is defined in both cases, since n
p

is odd and thus
∏

q|n
p
(q − 2) 6= 0. Therefore, we obtain a contradiction and pi divides

f(a) − f(b).

Case 2. gcd(f(a) − f(b), p) = 1.
According to Theorem 4.1 the number of common neighbors of f(a) and f(b) is

given by

N(f(a), f(b)) = Fn(f(b)−f(a))+2(pi−2)
∏

q|n
p

, q 6=pi

(q−ε(q)) = (pi−2)·p·
∏

q|n
p

, q 6=pi

(q−ε(q)).
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Similarly as in the previous case, we conclude that N(f(a), f(b)) 6= N(a, b), which is
a contradiction and pi divides f(a) − f(b).

For an arbitrary a, b ∈ Xn(1, p) such pi | a− b and a < b we have

pi | (f(a) − f(a+ pi)) + (f(a+ pi) − f(a+ 2pi)) + . . .+ (f(b− pi) − f(b)) = f(a)− f(b).

Theretofore, the classes modulo pi also permute under the automorphism f .

Assume now that n
p

is even.

Let pi be the maximal prime divisor of n
p

and set a = b+ 2pi. Suppose that 2pi does

not divide f(a) − f(b). Since p ∤ 2pi, according to Theorem 4.1 the number of common
neighbors of a and b is given by:

N(a, b) = Fn(2pi) + 2(pi − 1)
∏

q|n
p

, q 6=2,pi

(q − 2) = (pi − 1) · p ·
∏

q|n
p

, q 6=2,pi

(q − 2) > 0.

We distinguish similarly two different cases depending on the greatest common divisor
of f(a) − f(b) and p.

Case 1. p | f(a) − f(b).
According to Theorem 4.1 the number of common neighbors of f(a) and f(b) is

given by

N(f(a), f(b)) = Fn(f(a) − f(b)) + Fn
p

(

f(a) − f(b)

p

)

= (pi − 2) · p ·
∏

q|n
p

, q 6=pi

(q − ε(q))

If f(a) − f(b) is odd, then for q = 2 we have q − ε(q) = 0 and N(f(a), f(b)) = 0 <
N(a, b), which is a contradiction. Otherwise, we again conclude that N(f(a), f(b)) 6=
N(a, b) since we have the same formulas as (2) and (3).

Case 2. gcd(f(a) − f(b), p) = 1.
Similarly, according to Theorem 4.1 the number of common neighbors of f(a) and

f(b) is given by

N(f(a), f(b)) = Fn(f(b)−f(a))+2(pi−2)
∏

q|n
p

, q 6=pi

(q−ε(q)) = (pi−2)·p·
∏

q|n
p

, q 6=pi

(q−ε(q)).

If f(a) − f(b) is odd, then N(f(a), f(b)) = 0, and we have again a contradiction.
Otherwise, we conclude that N(f(a), f(b)) 6= N(a, b), which is contradiction in both
cases and 2pi divides f(a) − f(b).

For an arbitrary a, b ∈ Xn(1, p) such 2pi | a− b and a < b we have

pi | (f(a)−f(a+2pi))+(f(a+2pi)−f(a+4pi))+ . . .+(f(b−2pi)−f(b)) = f(a)−f(b).

Therefore, the classes modulo 2pi also permute under the automorphism f .

We can now apply mathematical induction on the number of prime divisors of n =
p1p2 · . . . · pk, by considering the prime divisors in decreasing order. Using the same

the electronic journal of combinatorics 18 (2011), #P68 16



arguments as above we can prove that for arbitrary pi dividing n, if 2mpi | a − b then
2mpi | f(a) − f(b) (in all formulas for calculating the number of common neighbors of
f(a) and f(b) we have ε(q) = 1 for q > pi).

Since f−1 is an automorphism as well, the opposite direction of the statement follows
directly. This concludes the proof. �

Theorem 5.4 Let n be a square free number and p an arbitrary prime divisor of n. The
size of the automorphism group of Xn(1, p) is equal to

|Aut(Xn(1, p))| =
∏

q|n
p

, q prime

q! · (p!)
n
p .

Proof: Let f ∈ Aut(Xn(1, p)) be an automorphism of Xn(1, p). Define the sets Ci as
follows:

Ci = {0 ≤ a ≤ n− 1 | a ≡ i (mod
n

p
)}

for 0 ≤ i ≤ n
p
− 1. According to Lemma 5.3, the classes Ci permute under the automor-

phism f , since
n

p
| a− b ⇔

n

p
| f(a) − f(b)

holds for all pairs of vertices 0 ≤ a, b ≤ n − 1. For the special case n = 2p, the graph is
bipartite and the classes C0 and C1 permute under the automorphism f . Therefore, for
any class Ci there exist a class Ch(i) such that f(Ci) = Ch(i), for some permutation h of
indices 0, 1, . . . , n

p
− 1. The vertices a ∈ Ci and b ∈ Cj are adjacent if and only if

gcd

(

n

p
(k − l) + (i− j), n

)

∈ {1, p}

for some 0 ≤ k, l ≤ p − 1. It follows that the edge {a, b} exists only if i − j and n
p

are
relatively prime. In the same way, notice that the vertices from the same modulo class
form an independent set, since for the vertices a, b ∈ Ci holds n

p
| gcd(a− b, n) and thus

gcd(a− b, n) /∈ {1, p}. For gcd(i− j, n
p
) = 1, the vertices from the classes Ci and Cj form

a complete bipartite subgraph.
As the structure of the subgraph induced by the vertices from Ci and Cj depends only

on the difference i − j, we obtain that the induced subgraphs consisting of the vertices
from Ci and Cj are isomorphic to each other for all pairs (i, j) with gcd(i− j, n

p
) = 1. The

same conclusion holds for the pairs (i, j) such that gcd(i − j, n
p
) 6= 1, since in this case

there are no edges between Ci and Cj. We can construct a new graph G′ with the vertex
set Zn/p and two vertices i and j are adjacent if and only if the classes Ci and Cj form a
complete bipartite graph, i. e. gcd(i − j, n

p
) = 1. It easily follows that this graph G′ is

isomorphic to Xn/p and that each vertex i corresponds to the class Ci. Finally, according
to Theorem 3.4 the number of permutations of these classes equals

∏

q|n, q 6=p q!, which is

exactly the size of the automorphism group of the unitary Cayley graph Aut(Xn/p).
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Assume that the class Ci is mapped to the class Cj . Since the vertices from the class
Ci form an independent set and the restriction of the automorphism f on the vertices of
Ci is a bijection from Ci to Cj , we have all |Ci|! = p! permutations of the vertices of the
class Ci. Finally, taking into account that classes and vertices permute independently, by
the product rule the size of the automorphism group is

∏

q|n
p

q! · (p!)
n
p .

�

Similarly, the automorphism group of a graph with square-free order and D = {1, p} is
the wreath product of the group of class permutations Ci and the groups of permutations
of vertices in each of these classes

Aut(Xn(1, p)) =
(

∏

q|n
p

Sq

)

≀ Sp.

6 Concluding remarks

In this paper, we determine the automorphism group of unitary Cayley graphs Xn, and
make a step in describing the automorphism group of integral circulant graphs by exam-
ining two special cases – n being a prime power or a square-free number [22, 27]. Our
proofs are based on the fact that for some primes p dividing n, the classes modulo p
permute under the automorphism f . Furthermore, we determine the number of common
neighbors of two arbitrary vertices in Xn(d1, d2). This is a main tool for the proof that
classes permute by some prime modulo and therefore for the characterization of the auto-
morphism group of Xn(d1, d2). The idea of considering the number of common neighbors
turns out to be essential for the general case Xn(D), but it requires many cases.

Examples suggest that for an arbitrary integral circulant graph Xn(D) and some
primes p dividing n, the classes modulo p permute under the automorphism f . For
the future research we propose the full characterization of the automorphism groups of
integral circulant graphs using this approach. We believe that the automorphism groups
are the product or/and wreath product of permutation groups of prime power degree.
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Remark

One of the referees points out that at about the same time Akhtar et al. in [1] inde-
pendently obtained similar result concerning the automorphism of unitary Cayley graph
GR of a finite ring R. We have read paper [1], and found that the main idea of their
algebraic proof is different than our number-theoretical approach. Akhtar et al. consid-
ered another generalization of unitary Cayley graphs and emphasized the dependence of
automorphisms on the underlying algebraic structure of the rings concerned. In our paper
we tried to characterize the automorphism group of all integral circulant graphs based on
the idea that for some divisors d | n the classes modulo d permute under arbitrary auto-
morphism. We illustrate these permutations of classes on some special cases of n, using
the generalized formula for the number of common neighbors. Moreover, our approach
can be used for establishing some upper bounds on the size of the automorphism group of
integral circulant graphs. The idea of partitioning vertices into classes modulo d was used
in earlier papers [4, 18] for characterizing the clique and chromatic number of integral
circulant graphs, and we believe that it can be extended for the full characterization of
integral circulant graphs.
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