On the automorphism group of integral circulant graphs

Milan Bašić
University of Niš, Faculty of Sciences and Mathematics
Višegradska 33, 18000 Niš, Serbia
e-mail: basic_milan@yahoo.com

Aleksandar Ilić ${ }^{\ddagger}$
University of Niš, Faculty of Sciences and Mathematics
Višegradska 33, 18000 Niš, Serbia
e-mail: aleksandari@gmail.com

Submitted: Oct 6, 2009; Accepted: Mar 9, 2011; Published: Mar 31, 2011

Mathematics Subject Classification: 05C60, 05C25

Abstract

The integral circulant graph $X_{n}(D)$ has the vertex set $Z_{n}=\{0,1,2, \ldots, n-1\}$ and vertices a and b are adjacent, if and only if $\operatorname{gcd}(a-b, n) \in D$, where $D=$ $\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ is a set of divisors of n. These graphs play an important role in modeling quantum spin networks supporting the perfect state transfer and also have applications in chemical graph theory. In this paper, we deal with the automorphism group of integral circulant graphs and investigate a problem proposed in [W. Klotz, T. Sander, Some properties of unitary Cayley graphs, Electr. J. Comb. 14 (2007), \#R45]. We determine the size and the structure of the automorphism group of the unitary Cayley graph $X_{n}(1)$ and the disconnected graph $X_{n}(d)$. In addition, based on the generalized formula for the number of common neighbors and the wreath product, we completely characterize the automorphism groups $\operatorname{Aut}\left(X_{n}(1, p)\right)$ for n being a square-free number and p a prime dividing n, and $\operatorname{Aut}\left(X_{n}\left(1, p^{k}\right)\right)$ for n being a prime power.

1 Introduction

Circulant graphs are Cayley graphs over a cyclic group. The interest of circulant graphs in graph theory and applications has grown during the last two decades. They appeared in coding theory, VLSI design, Ramsey theory and other areas. Recently there is vast research on the interconnection schemes based on the circulant topology - circulant graphs
represent an important class of interconnection networks in parallel and distributed computing (see [17]).

Integral circulant graphs as the circulants with integral spectra, were imposed as potential candidates for modeling quantum spin networks with periodic dynamics [12, 30]. Saxena, Severini and Shraplinski [30] studied some parameters of integral circulant graphs such as the diameter, bipartiteness and perfect state transfer. The present authors in $[4,18]$ calculated the clique and chromatic number of integral circulant graphs with exactly one and two divisors, and also disproved the conjecture that the order of $X_{n}(D)$ is divisible by the clique and chromatic number.

Various properties of unitary Cayley graphs as a subclass of integral circulant graphs were investigated in some recent papers. In the work of Berrizbeitia and Giudici [6] and in the later paper of Fuchs [11], some lower and upper bounds for the longest induced cycles were given. Bašić et al. [3, 5] established a characterization of integral circulant graphs which allow perfect state transfer. In addition, they proved that there is no perfect state transfer in the class of unitary Cayley graphs except for the hypercubes K_{2} and C_{4}. Klotz and Sander [23] determined the diameter, clique number, chromatic number and eigenvalues of unitary Cayley graphs. The latter group of authors proposed a generalization of unitary Cayley graphs named gcd-graphs and proved that they have to be integral. Integral circulant graphs were also characterized by So [32].

Let A be the adjacency matrix of a simple graph G, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of the graph G. The energy of G is defined as the sum of absolute values of its eigenvalues [13, 14]

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

The graph G is said to be hyperenergetic if its energy exceeds the energy of the complete graph K_{n}, or equivalently if $E(G)>2 n-2$. This concept was introduced first by Gutman and afterwards has been studied intensively in the literature $[2,7,15,16$, 31, 33]. Hyperenergetic graphs are important because molecular graphs with maximum energy pertain to maximality stable π-electron systems. It has been proven that for every $n \geq 8$, there exists a hyperenergetic graph of order n [14]. In [19, 20, 21, 29], the authors calculated the energy and distance energy of unitary Cayley graphs and their complements. Furthermore, they establish the necessary and sufficient conditions for X_{n} to be hyperenergetic.

In this paper we characterize the automorphism group $\operatorname{Aut}\left(X_{n}\right)$ of unitary Cayley graphs, and make a step towards characterizing the automorphism group of an arbitrary integral circulant graph. Many authors studied the isomorphisms of circulant and Cayley graphs [26, 28], automorphism groups of Cayley digraphs [10], integral Cayley graphs over Abelian groups [24], rational circulant graphs [22], etc. For the survey on the automorphism groups of circulant graphs see [27]. Following Kovács [25] and Dobson and Morris $[8,9]$, we start with two cases: $n=p^{k}$ being a prime power and $n=p_{1} p_{2} \cdot \ldots \cdot p_{k}$ being a square-free number. These results are essential for the future research in this field. Furthermore, we generalize the formula given in [23] for counting the number of common
neighbors of two arbitrary vertices of X_{n}.
The paper is organized as follows. In Section 2 we give some preliminary results on integral circulant graphs. In Section 3 we calculate the automorphism group of unitary Cayley graphs and answer the open question from [23] about the ratio of the size of the automorphism group of X_{n} and the size of the group of affine automorphisms of X_{n}. In addition, we determine the size of the automorphism group of the disconnected graph $X_{n}(d)$, where $d \mid n$. In Section 4, we prove the general formula for the number of common neighbors in integral circulant graph $X_{n}\left(d_{1}, d_{2}\right)$. Based on this formula, in Section 5 we characterize the automorphism groups of two classes of integral circulant graphs with $|D|=2$

- $\operatorname{Aut}\left(X_{p^{k}}\left(1, p^{l}\right)\right)$ with $0<l<k$,
- $\operatorname{Aut}\left(X_{n}(1, p)\right)$ with n being a square-free number.

We conclude the paper by posing some open questions for further research.

2 Preliminaries

Let us recall that for a positive integer n and subset $S \subseteq\{0,1,2, \ldots, n-1\}$, the circulant graph $G(n, S)$ is the graph with n vertices, labeled with integers modulo n, such that each vertex i is adjacent to $|S|$ other vertices $\{i+s(\bmod n) \mid s \in S\}$. The set S is called a symbol of $G(n, S)$. As we will consider only undirected graphs, we assume that $s \in S$ if and only if $n-s \in S$, and therefore the vertex i is adjacent to vertices $i \pm s(\bmod n)$ for each $s \in S$.

Recently, So [32] has characterized integral circulant graphs. Let

$$
G_{n}(d)=\{k \mid \operatorname{gcd}(k, n)=d, 1 \leq k<n\}
$$

be the set of all positive integers less than n having the same greatest common divisor d with n. Let D_{n} be the set of positive divisors d of n, with $d \leq \frac{n}{2}$.

Theorem 2.1 ([32]) A circulant graph $G(n, S)$ is integral if and only if

$$
S=\bigcup_{d \in D} G_{n}(d)
$$

for some set of divisors $D \subseteq D_{n}$.
Let Γ be a multiplicative group with identity e. For $S \subset \Gamma, e \notin S$ and $S^{-1}=$ $\left\{s^{-1} \mid s \in S\right\}=S$, the Cayley graph $X=\operatorname{Cay}(\Gamma, S)$ is the undirected graph having vertex set $V(X)=\Gamma$ and edge set $E(X)=\left\{\{a, b\} \mid a b^{-1} \in S\right\}$. For a positive integer $n>1$ the unitary Cayley graph $X_{n}=\operatorname{Cay}\left(Z_{n}, U_{n}\right)$ is defined by the additive group of the ring Z_{n} of integers modulo n and the multiplicative group $U_{n}=Z_{n}^{*}$ of its units. Unitary

Cayley graphs are highly symmetric and have some remarkable properties connecting graph theory, number theory and group theory.

Let D be a set of positive, proper divisors of the integer $n>1$. Define the gcd-graph $X_{n}(D)$ having vertex set $Z_{n}=\{0,1, \ldots, n-1\}$ and edge set

$$
E\left(X_{n}(D)\right)=\left\{\{a, b\} \mid a, b \in Z_{n}, \operatorname{gcd}(a-b, n) \in D\right\}
$$

If $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$, then we also write $X_{n}(D)=X_{n}\left(d_{1}, d_{2}, \ldots, d_{k}\right)$; in particular $X_{n}(1)=X_{n}$. Throughout the paper, we let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{k}^{\alpha_{k}}$, where $p_{1}<p_{2}<\ldots<p_{k}$ are distinct primes, and $\alpha_{i} \geq 1$. By Theorem 2.1 we obtain that integral circulant graphs are Cayley graphs of the additive group of Z_{n} with respect to the Cayley set $S=\bigcup_{d \in D} G_{n}(d)$ and, thus, they are exactly gcd-graphs. From Corollary 4.2 in [17], the graph $X_{n}(D)$ is connected if and only if $\operatorname{gcd}\left(d_{1}, d_{2}, \ldots, d_{k}\right)=1$.

In the characterization of the automorphism group, we will use the concept of wreath product (similar as the lexicographical product in graph theory) [27].

Definition 2.1 Let G and H be permutation groups acting on X and Y, respectively. We define the wreath product of G and H, denoted $G \imath H$, to be the permutation group that acts on $X \times Y$ consisting of all permutations of the form $(x, y) \rightarrow\left(g(x), h_{x}(y)\right)$, where $g \in G$ and $h_{x} \in H$.

3 The automorphism group of unitary Cayley graphs

For a graph G, let $N(a, b)$ denote the number of common neighbors of the vertices a and b. The following theorem is the main tool in describing properties of the automorphisms of unitary Cayley graphs:

Theorem 3.1 ([23]) The number of common neighbors of distinct vertices a and b in the unitary Cayley graph X_{n} is given by $N(a, b)=F_{n}(a-b)$, where $F_{n}(s)$ is defined as

$$
F_{n}(s)=n \prod_{p \mid n, p \text { prime }}\left(1-\frac{\varepsilon(p)}{p}\right), \quad \text { with } \quad \varepsilon(p)=\left\{\begin{array}{lll}
1 & \text { if } p \mid s \\
2 & \text { if } \quad p \nmid s
\end{array}\right.
$$

Recall that
$\operatorname{Aut}\left(X_{n}\right)=\left\{f: X_{n} \rightarrow X_{n} \mid f\right.$ is a bijection, and $(a, b) \in E\left(X_{n}\right)$ iff $\left.(f(a), f(b)) \in E\left(X_{n}\right)\right\}$
We will first determine $\left|\operatorname{Aut}\left(X_{n}\right)\right|$, with n being a prime power.
Theorem 3.2 Let $n=p^{k}$, where p is a prime number and $k \geq 1$. Then

$$
\left|A u t\left(X_{n}\right)\right|=p!\left(\left(p^{k-1}\right)!\right)^{p} .
$$

Proof: Let $C_{0}, C_{1}, \ldots, C_{p-1}$ be the classes modulo p,

$$
C_{i}=\left\{j \mid 0 \leq j<p^{k}, j \equiv i \quad(\bmod p)\right\}, \quad 0 \leq i \leq p-1 .
$$

Two vertices a and b from X_{n} are adjacent if and only if $\operatorname{gcd}(a-b, n)=\operatorname{gcd}\left(a-b, p^{k}\right)=1$ or equivalently $p \nmid(a-b)$. This means that all vertices from some class C_{i} are adjacent to the vertices from $X_{n} \backslash C_{i}$, while there are no edges between any two vertices from C_{i}.

Let $f \in \operatorname{Aut}\left(X_{n}\right)$ be an automorphism of X_{n}. Let a and b be two vertices from the class C_{i} and $f(a) \in C_{j}$, where $0 \leq i, j \leq p-1$. It follows that $p \mid a-b$, which implies that a and b are not adjacent, and consequently $f(a)$ and $f(b)$ are not adjacent. From the above consideration, $f(a)-f(b)$ is divisible by p and we conclude that $f(b)$ belongs to the same class modulo p as $f(a)$, i.e. $f(b) \in C_{j}$. This implies that the vertices from the class C_{i} are mapped to the vertices from the class C_{j}. Since we choose an arbitrary index i, we get that the classes are permuted under the automorphism f.

Assume that the class C_{i} is mapped to the class C_{j}. Since the vertices from the class C_{i} form an independent set and the restriction of the automorphism f on the vertices of C_{i} is a bijection from C_{i} to C_{j}, we have all $\left|C_{i}\right|!=\left(p^{k-1}\right)$! permutations of the vertices of the class C_{i}. Finally, taking into account that classes and vertices permute independently, by the product rule we get that the number of automorphisms of X_{n} equals $p!\left(\left(p^{k-1}\right)!\right)^{p}$.

Define the sets

$$
C_{i}^{(j)}=\left\{0 \leq a<n \mid a \equiv i \quad\left(\bmod p_{j}\right)\right\}, \quad 1 \leq j \leq k, \quad 0 \leq i<p_{j}
$$

In [18] the present authors proved that the chromatic number of X_{n} is equal to the smallest prime p_{1} dividing n and that the color classes of X_{n} are exactly the classes modulo p_{1} and uniquely determined. This means that the maximal independent sets are exactly $C_{0}^{(1)}, C_{1}^{(1)}, \ldots, C_{p_{1}-1}^{(1)}$, and the classes modulo p_{1} permute under the automorphism f. In the following, we will prove that for an arbitrary prime number p dividing n the classes modulo p permute under the automorphism f.

Lemma 3.3 For an automorphism f of X_{n} and prime number p_{i} dividing n holds:

$$
p_{i} \mid a-b \quad \text { if and only if } \quad p_{i} \mid f(a)-f(b),
$$

where $0 \leq a, b \leq n-1$ and $1 \leq i \leq k$.
Proof: Since f^{-1} is an automorphism, we will prove that for a prime number p_{i} dividing n holds

$$
p_{i}\left|a-b \quad \Rightarrow \quad p_{i}\right| f(a)-f(b)
$$

and the opposite direction of the statement follows directly by mapping $a \mapsto f^{-1}(a)$ for $0 \leq a \leq n-1$.

Suppose that the statement of the lemma is not true and let $2 \leq j \leq k$ be the greatest index such that $p_{j} \mid a-b$ and $p_{j} \nmid f(a)-f(b)$.

First we will consider the pair $(a, b)=\left(i, i+p_{j}\right)$ such that $p_{j} \nmid f(i)-f\left(i+p_{j}\right)$, where $0 \leq i \leq n-1-p_{j}$. Using Theorem 3.1 it follows
$N\left(i, i+p_{j}\right)=F_{n}\left(p_{j}\right)=\left(p_{1}-2\right) \cdot \ldots \cdot\left(p_{j-1}-2\right)\left(p_{j}-1\right)\left(p_{j+1}-2\right) \cdot \ldots \cdot\left(p_{k}-2\right) \cdot \frac{n}{p_{1} p_{2} \ldots p_{k}}$.
Since $p_{j+1}, p_{j+2}, \ldots, p_{k}$ does not divide $f(i)-f\left(i+p_{j}\right)$ we have
$N\left(f(i), f\left(i+p_{j}\right)\right)=\left(p_{1}-\varepsilon\left(p_{1}\right)\right) \cdot \ldots \cdot\left(p_{j-1}-\varepsilon\left(p_{j-1}\right)\right)\left(p_{j}-2\right)\left(p_{j+1}-2\right) \cdot \ldots \cdot\left(p_{k}-2\right) \cdot \frac{n}{p_{1} p_{2} \ldots p_{k}}$.
The automorphism f preserves the number of common neighbors of the vertex pairs $\left(i, i+p_{j}\right)$ and $\left(f(i), f\left(i+p_{j}\right)\right)$, or equivalently $N\left(i, i+p_{j}\right)=N\left(f(i), f\left(i+p_{j}\right)\right)$. If $\varepsilon\left(p_{1}\right)=$ $\varepsilon\left(p_{2}\right)=\ldots=\varepsilon\left(p_{j-1}\right)=2$,

$$
\frac{N\left(f(i), f\left(i+p_{j}\right)\right)}{N\left(i, i+p_{j}\right)}=\frac{p_{j}-2}{p_{j}-1}<1,
$$

which is a contradiction. Thus there exists an index $1 \leq s \leq j-1$, such that $\varepsilon\left(p_{s}\right)=1$. Similarly, we have

$$
\frac{N\left(f(i), f\left(i+p_{j}\right)\right)}{N\left(i, i+p_{j}\right)} \geq \frac{\left(p_{s}-1\right)\left(p_{j}-2\right)}{\left(p_{s}-2\right)\left(p_{j}-1\right)}>1
$$

since $p_{s}<p_{j}$. This is again a contradiction, and it follows that $p_{j} \mid f(i)-f\left(i+p_{j}\right)$.
For an arbitrary $a, b \in X_{n}$ such $p_{j} \mid a-b$ and $a<b$ we have
$p_{j} \mid\left(f(a)-f\left(a+p_{j}\right)\right)+\left(f\left(a+p_{j}\right)-f\left(a+2 p_{j}\right)\right)+\ldots+\left(f\left(b-p_{j}\right)-f(b)\right)=f(a)-f(b)$, and finally the classes modulo p_{j} also permute under the automorphism f. This completes the proof.

Theorem 3.4 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{k}^{\alpha_{k}}$ be a canonical representation of n, with prime numbers $p_{1}<p_{2}<\ldots<p_{k}$. Then

$$
\left|\operatorname{Aut}\left(X_{n}\right)\right|=p_{1}!\cdot p_{2}!\cdot \ldots \cdot p_{k}!\cdot\left(\left(\frac{n}{p_{1} p_{2} \cdot \ldots \cdot p_{k}}\right)!\right)^{p_{1} p_{2} \cdot \ldots \cdot p_{k}}
$$

Proof: Let $f \in \operatorname{Aut}\left(X_{n}\right)$ be an automorphism of X_{n} and $m=p_{1} p_{2} \cdot \ldots \cdot p_{k}$ be the largest square-free number dividing n. Two vertices a and b from X_{n} are adjacent if and only if $\operatorname{gcd}(a-b, m)=1$.

Consider the classes $D_{0}, D_{1}, \ldots, D_{m-1}$, defined as follows

$$
D_{i}=\{0 \leq a<n \mid a \equiv i \quad(\bmod m)\} .
$$

The size of every class D_{i} is equal to $\frac{n}{m}$. For an arbitrary vertices $a, b \in D_{i}$ holds $m \mid a-b$, and every class modulo m is an independent set. By Lemma 3.3, we have that $f(a)-f(b)$ is divisible by m and it follows that the classes $D_{0}, D_{1}, \ldots, D_{m-1}$ permute under the
automorphism f. Let $a \in D_{i}$ and $b \in D_{j}$ be arbitrary vertices from different classes. The vertices a and b are adjacent if and only if

$$
\operatorname{gcd}(m(k-l)+(i-j), n)=1
$$

for some $0 \leq k, l \leq \frac{n}{m}-1$. Furthermore, if $i-j$ is relatively prime with n, the vertices from D_{i} and D_{j} form a complete bipartite induced subgraph of X_{n}. Otherwise, there are no edges between the classes D_{i} and D_{j}. Since the classes $\left\{D_{0}, D_{1}, \ldots, D_{m-1}\right\}$ permute under the automorphism f and each class is an independent set, for $D_{i}=f\left(D_{j}\right)$, there are exactly $\left(\frac{n}{m}\right)$! possibilities for the restriction of the automorphism f from the vertices of D_{i} on the vertices of $D_{j}, i=0,1, \ldots, m-1$.

Next we will count the number of permutations of classes D_{i}. Let i be an arbitrary index such that $0 \leq i \leq m-1$, and let $i_{1}, i_{2}, \ldots, i_{k}$ be the residue of i modulo $p_{1}, p_{2}, \ldots, p_{k}$, respectively. For each $1 \leq s \leq k$, we have $D_{i} \subseteq C_{i_{s}}^{(s)}$ implying that

$$
D_{i} \subseteq C_{i_{1}}^{(1)} \cap C_{i_{2}}^{(2)} \cap \ldots \cap C_{i_{k}}^{(k)} .
$$

On the other side for these indices $i_{1}, i_{2}, \ldots, i_{k}$, consider the following system of congruences

$$
\begin{array}{rll}
x & \equiv i_{1} & \left(\bmod p_{1}\right) \\
x & \equiv i_{2} & \left(\bmod p_{2}\right) \\
& \cdots & \\
x & \equiv i_{k} & \left(\bmod p_{k}\right) .
\end{array}
$$

According to the Chinese remainder theorem, it follows that there exists a unique solution i of the above system, such that $0 \leq i<m=p_{1} p_{2} \cdot \ldots \cdot p_{k}$, and

$$
C_{i_{1}}^{(1)} \cap C_{i_{2}}^{(2)} \cap \ldots \cap C_{i_{k}}^{(k)} \subseteq D_{i} .
$$

Finally we conclude that $D_{i}=C_{i_{1}}^{(1)} \cap C_{i_{2}}^{(2)} \cap \ldots \cap C_{i_{k}}^{(k)}$.
According to Lemma 3.3, for every prime $p_{s}, 1 \leq s \leq k$, the automorphism f permutes the classes $C_{0}^{(s)}, C_{1}^{(s)}, \ldots, C_{p_{s}-1}^{(s)}$. Thus, there exist indices $j_{1}, j_{2}, \ldots, j_{k}$ where $0 \leq j_{s}<p_{s}$, $1 \leq s \leq k$, such that $f\left(C_{i_{s}}^{(s)}\right)=C_{j_{s}}^{(s)}$. Since f is a bijection, we have

$$
f\left(C_{i_{1}}^{(1)} \cap C_{i_{2}}^{(2)} \cap \ldots \cap C_{i_{k}}^{(k)}\right)=f\left(C_{i_{1}}^{(1)}\right) \cap f\left(C_{i_{2}}^{(2)}\right) \cap \ldots \cap f\left(C_{i_{k}}^{(k)}\right)
$$

and $f\left(D_{i}\right)=C_{j_{1}}^{(1)} \cap C_{j_{2}}^{(2)} \cap \ldots \cap C_{j_{k}}^{(k)}=D_{j}$. If we denote by h_{s} the permutation of the indices modulo p_{s}, we can construct a mapping $f\left(D_{i}\right) \mapsto D_{j}$ if and only if $h_{s}\left(i_{s}\right)=j_{s}$, for $s=1,2, \ldots, k$. This means that the class $f\left(D_{i}\right)$ is determined by the permutations of classes $C_{j_{s}}^{(s)}$ for each $1 \leq s \leq k$. Since these permutations are independent, the number of permutations of the classes D_{i} is bounded from above by the product of the number of permutations of the classes $C_{j_{s}}^{(s)}$, that is $p_{1}!\cdot p_{2}!\cdot \ldots \cdot p_{k}!$.

Next we will show that the constructed mappings are indeed the automorphisms. For an arbitrary classes $D_{l^{\prime}}$ and $D_{l^{\prime \prime}}$ there exist classes $D_{p\left(l^{\prime}\right)}$ and $D_{p\left(l^{\prime \prime}\right)}$ such that $f\left(D_{l^{\prime}}\right)=$ $D_{p\left(l^{\prime}\right)}$ and $f\left(D_{l^{\prime \prime}}\right)=D_{p\left(l^{\prime \prime}\right)}$, for some permutation p of the indices $0,1, \ldots, m-1$. The permutation $p(l)$ corresponds to the solution of the following system of congruences, where $h_{i}: Z_{p_{i}} \rightarrow Z_{p_{i}}$ represent some permutations of classes $C_{j}^{(i)}, 1 \leq i \leq k$ and $0 \leq j \leq p_{i}-1$,

$$
\begin{equation*}
p(l) \equiv \sum_{i=1}^{k} c_{p_{i}} \cdot h_{i}\left(l_{i}\right) \quad(\bmod m) \tag{1}
\end{equation*}
$$

for any $0 \leq l \leq m-1$ and $l_{i} \equiv l\left(\bmod p_{i}\right), 0 \leq l_{i} \leq p_{i}-1$, for $i=1,2, \ldots, k$. Constants $c_{p_{i}}$ are the solutions of the following system of k congruence equations

$$
\begin{aligned}
c_{p_{i}} & \equiv 1 \quad\left(\bmod p_{i}\right) \\
c_{p_{i}} & \equiv 0 \quad\left(\bmod p_{j}\right), \quad 1 \leq j \leq k, j \neq i
\end{aligned}
$$

The form of the solution (1) follows directly from the Chinese remainder theorem, and we have

$$
\begin{aligned}
& \operatorname{gcd}\left(p\left(l^{\prime}\right)-p\left(l^{\prime \prime}\right), n\right)=1 \quad \Leftrightarrow \\
& \operatorname{gcd}\left(\sum_{i=1}^{k} c_{p_{i}} \cdot\left(h_{i}\left(l_{i}^{\prime}\right)-h_{i}\left(l_{i}^{\prime \prime}\right)\right), n\right)=1 \\
& \Leftrightarrow \\
& \Leftrightarrow \\
& p_{i} \nmid h_{i}\left(l_{i}^{\prime}\right)-h_{i}\left(l_{i}^{\prime \prime}\right), \quad i=1,2, \ldots, k \\
& p_{i} \nmid l_{i}^{\prime}-l_{i}^{\prime \prime}, \quad i=1,2, \ldots, k \\
& \Leftrightarrow \\
& \operatorname{gcd}\left(\sum_{i=1}^{k} c_{p_{i}} \cdot\left(l_{i}^{\prime}-l_{i}^{\prime \prime}\right), n\right)=1 \\
& \Leftrightarrow \quad \operatorname{gcd}\left(l^{\prime}-l^{\prime \prime}, n\right)=1 .
\end{aligned}
$$

Therefore, we concluded that there are exactly $p_{1}!\cdot p_{2}!\cdot \ldots \cdot p_{k}!$ possibilities for permuting the classes $\left\{D_{0}, D_{1}, \ldots, D_{m-1}\right\}$. Since the vertices from the classes can be mapped without restrictions, by the product rule the size of the automorphism group of X_{n} is equal to

$$
p_{1}!\cdot p_{2}!\cdot \ldots \cdot p_{k}!\cdot\left(\left(\frac{n}{m}\right)!\right)^{m}
$$

Let S_{n} be the symmetric group of degree n. Note that for prime number p, X_{p} is isomorphic to a complete graph K_{p} and therefore $\operatorname{Aut}\left(X_{p}\right)=S_{p}$. Also, the permutations of classes modulo m, form a group $S_{p_{1}} \times S_{p_{2}} \times \ldots \times S_{p_{k}}$.

According to the construction of automorphisms of X_{n} in Theorem 3.4, we conclude that for every permutation of classes modulo m, there are m permutations of vertices in each class. This means that the automorphism group is isomorphic to the wreath product of the permutation group of classes modulo m and the permutation groups of vertices in each class. Thus, we obtain

$$
\operatorname{Aut}\left(X_{n}\right)=\left(S_{p_{1}} \times S_{p_{2}} \times \ldots \times S_{p_{k}}\right) \imath S_{n / m} .
$$

Theorem 3.5 For an arbitrary divisor d of n, and $n^{\prime}=\frac{n}{d}=q_{1}^{\beta_{1}} \cdot q_{2}^{\beta_{2}} \cdot \ldots \cdot q_{l}^{\beta_{l}}$ holds

$$
\left|\operatorname{Aut}\left(X_{n}(d)\right)\right|=d!\cdot\left(q_{1}!\cdot q_{2}!\cdot \ldots \cdot q_{l}!\cdot\left(\left(\frac{n^{\prime}}{q_{1} q_{2} \cdot \ldots \cdot q_{l}}\right)!\right)^{q_{1} q_{2} \cdot \ldots \cdot q_{l}}\right)^{d}
$$

Proof: The graph $X_{n}(d)$ is composed of d connected components $C_{0}, C_{1}, \ldots, C_{d-1}$ isomorphic to $X_{n / d}(1)$ [4]. Suppose that f is an automorphism of $X_{n}(d)$, and let a and b be two arbitrary vertices from a component $C_{i}, 0 \leq i \leq d-1$. Since a and b are connected by a path P in C_{i}, it follows that $f(a)$ and $f(b)$ are also connected by the image $f(P)$ of the path P under the isomorphism f. This means that $f(a)$ and $f(b)$ belong to the same component $C_{j}, 0 \leq j \leq d-1$. Let $m^{\prime}=q_{1} q_{2} \cdot \ldots \cdot q_{l}$ be the largest square free number dividing n^{\prime}. The classes C_{i} permute under the automorphism f, and the size of the automorphism group of each class is given by Theorem 3.4. Finally, the size of the automorphism group of $X_{n}(d)$ equals

$$
d!\cdot\left(q_{1}!\cdot q_{2}!\cdot \ldots \cdot q_{l}!\cdot\left(\left(\frac{n^{\prime}}{m^{\prime}}\right)!\right)^{m^{\prime}}\right)^{d}
$$

From the constructions of the automorphisms in Theorems 3.4 and 3.5 we obtain the following relation

$$
\operatorname{Aut}\left(X_{n}(d)\right)=S_{d} \backslash \operatorname{Aut}\left(X_{\frac{n}{d}}\right)
$$

For $a, b \in Z_{n}$, the authors from [23] defined the affine transformation on the vertices of the graph X_{n}

$$
\psi_{a, b}: Z_{n} \rightarrow Z_{n} \quad \text { by } \quad \psi_{a, b}(x)=a x+b \quad(\bmod n) \quad \text { for } x \in Z_{n}
$$

It is proven that $\psi_{a, b}$ is an automorphism of X_{n}, if and only if $a \in U_{n}$. Moreover, $A\left(X_{n}\right)=\left\{\psi_{a, b} \mid a \in U_{n}, b \in Z_{n}\right\}$ is a subgroup of the automorphism group $\operatorname{Aut}\left(X_{n}\right)$. We call $A\left(X_{n}\right)$ the group of affine automorphisms of X_{n} and obviously

$$
\left|A\left(X_{n}\right)\right|=n \cdot \varphi(n) .
$$

Motivated by the first open question in [23], we will prove that $\left|A\left(X_{n}\right)\right| \leq\left|A u t\left(X_{n}\right)\right|$, with equality if and only if $n \in\{2,3,4,6\}$. Consider the ratio

$$
\begin{aligned}
\frac{\left|A u t\left(X_{n}\right)\right|}{\left|A\left(X_{n}\right)\right|}= & \frac{p_{1}!\cdot p_{2}!\cdot \ldots \cdot p_{k}!}{p_{1} p_{2} \cdot \ldots \cdot p_{k}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdot \ldots \cdot\left(p_{k}-1\right)}\left(\frac{\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdot \ldots \cdot p_{k}^{\alpha_{k}-1}\right)!}{p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdot \ldots \cdot p_{k}^{\alpha_{k}-1}}\right)^{2} \\
& \cdot\left(\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdot \ldots \cdot p_{k}^{\alpha_{k}-1}\right)!\right)^{p_{1} p_{2} \cdots \cdot p_{k}-2} .
\end{aligned}
$$

The first factor $\left(p_{1}-2\right)!\cdot\left(p_{2}-2\right)!\cdot \ldots \cdot\left(p_{k}-2\right)!$ is greater than or equal to 1 , with equality if and only if 2 and 3 are the only prime factors of n. The second factor $\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdot \ldots\right.$. $p_{k}^{\alpha_{k}-1}-1$)! is also greater than or equal to 1 , with equality if and only if n is a square-free number or double square-free number. The third factor $\left(\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdot \ldots \cdot p_{k}^{\alpha_{k}-1}\right)!\right)^{p_{1} p_{2} \cdots \cdots p_{k}-2}$ is greater than or equal to 1 , with equality if and only if n is a square-free number, or $k=1$ and $p_{1}=2$. It follows that $\left|A\left(X_{n}\right)\right|<\left|\operatorname{Aut}\left(X_{n}\right)\right|$ for $n=5$ and $n>6$.

4 The number of common neighbors in $X_{n}\left(d_{1}, d_{2}\right)$

Let $d_{1}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdot \ldots \cdot p_{k}^{\beta_{k}}$ and $d_{2}=p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \cdot \ldots \cdot p_{k}^{\gamma_{k}}$. If $p^{\alpha} \mid n$, but $p^{\alpha+1}$ does not divide n, we write $p^{\alpha} \| n$, i.e. α is the greatest exponent such that p^{α} divides n. We will set $F_{n}(s)=0$ if s is not an integer.

Theorem 4.1 Let $d_{2}>d_{1} \geq 1$ be the divisors of n. The number of common neighbors of distinct vertices a and b in the connected integral circulant graph $X_{n}\left(d_{1}, d_{2}\right)$ is equal to
$F_{n / d_{1}}\left(\frac{b-a}{d_{1}}\right)+2 \cdot \frac{n}{M} \cdot \prod_{p_{i} \nmid(b-a) d_{1} d_{2}}\left(p_{i}-2\right) \cdot \prod_{p_{i} \mid(b-a), p_{i} \nmid d_{1} d_{2}}\left(p_{i}-1\right) \cdot \prod_{p_{i} \mid d_{1} d_{2}, \alpha_{i} \neq \beta_{i}, \alpha_{i} \neq \gamma_{i}}\left(p_{i}-1\right)$
if $\operatorname{gcd}\left(b-a, d_{1}\right)=\operatorname{gcd}\left(b-a, d_{2}\right)=1$, and

$$
F_{n / d_{1}}\left(\frac{b-a}{d_{1}}\right)+F_{n / d_{2}}\left(\frac{b-a}{d_{2}}\right)
$$

otherwise, where $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{k}^{\alpha_{k}}$ and

$$
M=\prod_{i=1}^{k} p_{i}^{\min \left(\max \left(\beta_{i}+1, \gamma_{i}+1\right), \alpha_{i}\right)}
$$

Proof: Let c be the common neighbor of the vertices a and b from $X_{n}\left(d_{1}, d_{2}\right)$, where $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$. We have four cases based on the greatest common divisors $\operatorname{gcd}(a-c, n)$ and $\operatorname{gcd}(b-c, n)$.

Case 1. $\operatorname{gcd}(a-c, n)=d_{1}$ and $\operatorname{gcd}(b-c, n)=d_{1}$
It follows that $b-a$ is divisible by d_{1} and from Theorem 3.1 we have that the number of solutions of the system

$$
\operatorname{gcd}\left(\frac{a-c}{d_{1}}, \frac{n}{d_{1}}\right)=1 \quad \text { and } \quad \operatorname{gcd}\left(\frac{b-c}{d_{1}}, \frac{n}{d_{1}}\right)=1
$$

is $F_{n / d_{1}}\left((b-a) / d_{1}\right)$.
Case 2. $\operatorname{gcd}(a-c, n)=d_{2}$ and $\operatorname{gcd}(b-c, n)=d_{2}$
Analogously as in Case 1, we have that the number of common neighbors in this case is $F_{n / d_{1}}\left((b-a) / d_{2}\right)$ since $d_{2} \mid b-a$.

Case 3. $\operatorname{gcd}(a-c, n)=d_{1}$ and $\operatorname{gcd}(b-c, n)=d_{2}$
Let p be an arbitrary prime number that divides n. Since the divisors d_{1} and d_{2} are relatively prime, p can divide at most one of d_{1} and d_{2}.

Assume first that p does not divide neither d_{1} nor d_{2}. It follows that

$$
c \not \equiv a \quad(\bmod p) \quad \text { and } \quad c \not \equiv b \quad(\bmod p)
$$

If $a \equiv b(\bmod p)$, then c can take $p-1$ possible residues modulo p; otherwise, there are $p-2$ possibilities.

Assume that $p^{\beta} \| d_{1}$. It follows that $p \nmid d_{2}$, implying that $p \nmid b-c$ and $a \not \equiv b(\bmod p)$. In this case we have

$$
c \equiv a \quad\left(\bmod p^{\beta}\right)
$$

If $p^{\beta+1}$ does not divide n, this equation is sufficient for determine c modulo p^{β}. Otherwise, we have to take into account that $a-c$ is not divisible by $p^{\beta+1}$,

$$
c \not \equiv a \quad\left(\bmod p^{\beta+1}\right) .
$$

In both cases, since $a \not \equiv b(\bmod p)$ and $c \equiv a(\bmod p)$ it follows that $c \not \equiv b(\bmod p)$. Therefore, we have $p-1$ possibilities for c modulo $p^{\beta+1}$ for $p^{\beta+1} \mid n$ and one possibility otherwise.

Assume now that $p^{\gamma} \| d_{2}$. Analogously, if $p^{\gamma+1}$ does not divide n, we have exactly one possibility for c modulo p^{γ}; otherwise if $p^{\gamma+1}$ divides n, we have $p-1$ possibilities for c modulo $p^{\gamma+1}$.

According to the Chinese remainder theorem, we are solving the system of congruences modulo M. For primes p_{i} with $\beta_{i}=\gamma_{i}=0$ we have $p_{i} \| M$. Otherwise, either $\beta_{i}>0$ or $\gamma_{i}>0$, and we have $p_{i}^{\min \left(\beta_{i}+1, \alpha\right)} \| M$ or $p_{i}^{\min \left(\gamma_{i}+1, \alpha\right)} \| M$. If p_{i} does not divide d_{1} and d_{2}, we have $p_{i}-2$ possibilities for $p_{i} \nmid(b-a)$ and $p_{i}-1$ possibilities for $p_{i} \mid(b-a)$. For $\alpha_{i}=\beta_{i}$, we have only one possibility modulo $p^{\beta_{i}}$, while for $\alpha_{i} \neq \beta_{i}$ there are $p-1$ possibilities modulo $p^{\beta_{i}+1}$. Analogously, we have symmetric expression for the divisor d_{2}.

This gives us

$$
S=\prod_{p_{i} \nmid(b-a) d_{1} d_{2}}\left(p_{i}-2\right) \cdot \prod_{p_{i} \mid(b-a), p_{i} \nmid d_{1} d_{2}}\left(p_{i}-1\right) \cdot \prod_{p_{i} \mid d_{1}, \alpha_{i} \neq \beta_{i}}\left(p_{i}-1\right) \cdot \prod_{p_{i} \mid d_{2}, \alpha_{i} \neq \gamma_{i}}\left(p_{i}-1\right)
$$

solutions for c modulo M, and it follows that there are $\frac{n}{M} \cdot S$ solutions with $0 \leq c<n$.
Case 4. $\operatorname{gcd}(a-c, n)=d_{2}$ and $\operatorname{gcd}(b-c, n)=d_{1}$
Analogously as in Case 3, we have

$$
S=\prod_{p_{i} \nmid(b-a) d_{1} d_{2}}\left(p_{i}-2\right) \cdot \prod_{p_{i} \mid(b-a), p_{i} \nmid d_{1} d_{2}}\left(p_{i}-1\right) \cdot \prod_{p_{i} \mid d_{1} d_{2}, \alpha_{i} \neq \beta_{i}, \alpha_{i} \neq \gamma_{i}}\left(p_{i}-1\right)
$$

solutions for c.
Finally, after adding all contributions we get the formula for the number of common neighbors for a and b.

These results can be further generalized for an arbitrary integral circulant graph $X_{n}\left(d_{1}, d_{2}, \ldots, d_{k}\right)$, by considering the pairs of divisors $\left(d_{i}, d_{j}\right), 1 \leq i<j \leq k$.

5 The automorphism group of further integral circulant graphs

$5.1 n$ being a prime power

Lemma 5.1 Let $n=p^{k}$ and $d=p^{l}$, where p is odd prime such that $2 \leq l<k$ and $D=\{1, d\}$. For an automorphism f of $X_{n}(1, d)$ it holds that

$$
p^{s} \mid a-b \quad \text { if and only if } \quad p^{s} \mid f(a)-f(b),
$$

where $0 \leq a, b \leq n-1$ and $l \leq s \leq l+1$.
Proof: Let $0 \leq a, b \leq n-1$ be two vertices of $X_{n}(1, d)$ such that $a=b+p^{s}$. Suppose that p^{s} does not divide $f(a)-f(b)$. Since the automorphism f preserves the number of common neighbors of pairs (a, b) and $(f(a), f(b))$, these numbers must be equal. According to Theorem 4.1 the number of common neighbors of a and b is given by:

$$
N(a, b)=F_{p^{k}}\left(p^{s}\right)+F_{p^{k-l}}\left(p^{s-l}\right)= \begin{cases}p^{k-1}(p-1)+p^{k-l-1}(p-2), & s=l \\ p^{k-1}(p-1)+p^{k-l-1}(p-1), & s>l .\end{cases}
$$

Case 1. $s=l$.
If $p \mid f(a)-f(b)$, it holds that

$$
N(f(a), f(b))=F_{p^{k}}(f(a)-f(b))=p^{k-1}(p-1)<N(a, b) .
$$

If $p \nmid f(a)-f(b)$, we have

$$
N(f(a), f(b))=F_{p^{k}}(f(a)-f(b))+2 \cdot \frac{p^{k}}{p^{l+1}} \cdot(p-1)=p^{k-1}(p-2)+2 p^{k-l-1}(p-1),
$$

and $N(a, b)-N(f(a), f(b))=p^{k-1}-p^{k-l} \geq 0$. Since $l>1$, in both cases we have $N(f(a), f(b)) \neq N(a, b)$, which is a contradiction and finally $p^{l} \mid f(a)-f(b)$.

Case 2. $s=l+1$.
Suppose that $p^{l} \mid f(a)-f(b)$. Since $p^{l+1} \nmid f(a)-f(b)$, we have

$$
N(f(a), f(b))=F_{p^{k}}(f(a)-f(b))+F_{p^{k-l}}\left(\frac{f(a)-f(b)}{p^{l}}\right)=p^{k-1}(p-1)+p^{k-l-1}(p-2)
$$

and thus $N(f(a), f(b))<N(a, b)$.
Suppose that $p^{l} \nmid f(a)-f(b)$.
If $p \mid f(a)-f(b)$ then $N(f(a), f(b))=F_{n}(f(a)-f(b))=p^{k-1}(p-1)<N(a, b)$. If $p \nmid f(a)-f(b)$ then

$$
N(f(a), f(b))=F_{p^{k}}(f(a)-f(b))+2 \frac{p^{k}}{p^{l+1}} \cdot(p-1)=p^{k-1}(p-2)+2 p^{k-l-1}(p-1),
$$

and $N(a, b)-N(f(a), f(b))=p^{k-l-1}\left(p^{l}-p+1\right)>0$.
In both cases holds $N(f(a), f(b)) \neq N(a, b)$, which is a contradiction and finally $p^{l+1} \mid f(a)-f(b)$.

Theorem 5.2 Let $n=p^{k}$ and $d=p^{l}$, where p is odd prime, $1 \leq l \leq k-1$ and $D=\{1, d\}$.
Then

$$
\left|A u t\left(X_{n}(D)\right)\right|= \begin{cases}\left(p^{2}\right)!\cdot\left(p^{k-2}!\right)^{p^{2}} & \text { if } l=1 \\ \left(p^{l-1}!\right)^{p} \cdot(p!)^{p^{l}+1} \cdot\left(p^{k-l-1}!\right)^{p^{l+1}} & \text { if } l>1\end{cases}
$$

Proof: Let f be an automorphism of $X_{n}(1, d)$. Two vertices a and b from $X_{n}(1, d)$ are adjacent iff $p \nmid(a-b)$ or $p^{l} \| a-b$. We will distinguish three cases depending on the relation of l and k.

Case 1. $l=1$.
Let $C_{0}, C_{1}, \ldots, C_{p^{2}-1}$ be the partition of $\left\{0,1, \ldots, p^{k}-1\right\}$ modulo p^{2}. It is easy to verify that arbitrary two vertices a and b from different classes are adjacent, since p^{2} does not divide $a-b$, and therefore $\operatorname{gcd}\left(a-b, p^{k}\right) \in\{1, p\}$. Every class $C_{i}, 0 \leq i \leq p^{2}-1$ forms an independent set, and therefore the classes C_{i} permute under the automorphism f. By the product rule, it follows

$$
\left|\operatorname{Aut}\left(X_{p^{k}}(1, p)\right)\right|=\left(p^{2}\right)!\cdot\left(p^{k-2}!\right)^{p^{2}}
$$

Case 2. $3 \leq l+1=k$.
Let $\left\{C_{i}\right\}$ be a partition of the set of vertices $X_{n}(D)$ given by

$$
C_{i}=\left\{0 \leq a<p^{l+1} \mid a \equiv i \quad\left(\bmod p^{l}\right)\right\}, \quad 0 \leq i \leq p^{l}-1 .
$$

According to Lemma 5.1 these classes permute under the automorphism f. For arbitrary vertices a and b from the same class C_{i} it holds that $p^{l} \mid(a-b)$ where $0 \leq(a-b) / p^{l} \leq p-1$, which means that $p^{l+1} \nmid a-b$ and thus C_{i} is a clique. If $a \in C_{i}, b \in C_{j}$ and $i \neq j$ then $p^{l} \nmid a-b$. We conclude that if $p \mid i-j$, then there are no edges connecting two vertices from the classes C_{i} and C_{j}; while for $p \nmid i-j$ the classes C_{i} and C_{j} form a clique.

According to Theorem 3.2, the number of permutations of classes C_{i} is equal to

$$
\left|A u t\left(X_{p^{l}}\right)\right|=p!\cdot\left(p^{l-1}!\right)^{p},
$$

and the number of permutations of vertices of a class C_{i} is equal to $\left|C_{i}\right|$!. Since the size of every class modulo p^{l} is equal to p and by the product rule, we finally obtain

$$
\left|A u t\left(X_{p^{l+1}}\left(1, p^{l}\right)\right)\right|=p!\left(p^{l-1}!\right)^{p} \cdot(p!)^{p^{l}}=\left(p^{l-1}!\right)^{p} \cdot(p!)^{p^{l+1}}
$$

Case 3. $3 \leq l+1<k$.
Let $\left\{D_{i}\right\}$ be a partition of the set of vertices $X_{n}(D)$ given by,

$$
D_{i}=\left\{0 \leq a<p^{k} \mid a \equiv i \quad\left(\bmod p^{l+1}\right)\right\}, \quad 0 \leq i \leq p^{l+1}-1
$$

Since the difference of any two vertices from the same class is divisible by p^{l+1}, these vertices are not adjacent. So, the classes D_{i} form independent sets.

The vertices $a \in D_{i}$ and $b \in D_{j}, i \neq j$, are adjacent if and only if

$$
\operatorname{gcd}\left(i-j, p^{k}\right) \in\left\{1, p^{l}\right\} \quad \Leftrightarrow \quad \operatorname{gcd}\left(i-j, p^{l+1}\right) \in\left\{1, p^{l}\right\}
$$

Using Lemma 5.1, the classes D_{i} permute under the automorphism f. That is, by Case 2 the number of permutations of classes D_{i} is equal to the size of the automorphism group $\left|\operatorname{Aut}\left(X_{p^{l+1}}\left(1, p^{l}\right)\right)\right|$. The number of permutations of vertices in each class is $\left|D_{i}\right|$!. Thus, by the product rule we obtain

$$
\left|\operatorname{Aut}\left(X_{p^{k}}\left(1, p^{l}\right)\right)\right|=\left|\operatorname{Aut}\left(X_{p^{l+1}}\left(1, p^{l}\right)\right)\right| \cdot\left(p^{k-l-1}!\right)^{p^{l+1}}=\left(p^{l-1}!\right)^{p} \cdot(p!)^{p^{l+1}} \cdot\left(p^{k-l-1}!\right)^{p^{l+1}}
$$

According to the construction of the automorphisms of $X_{n}(D)$ in Theorem 5.2, we conclude that for every permutation of classes D_{i} modulo p^{l+1}, there are p^{l+1} permutations of vertices in each of these classes (Case 3). This means that the automorphism group $\operatorname{Aut}\left(X_{p^{k}}\left(1, p^{l}\right)\right)$ is isomorphic to the wreath product of the automorphism group $\operatorname{Aut}\left(X_{p^{l+1}}\left(1, p^{l}\right)\right)$ of classes modulo p^{l+1} and the permutation groups of vertices in each of these classes

$$
\operatorname{Aut}\left(X_{p^{k}}\left(1, p^{l}\right)\right)=\operatorname{Aut}\left(X_{p^{l+1}}\left(1, p^{l}\right)\right) \backslash S_{p^{k-l-1}}
$$

Furthermore, according to Case 2, the automorphism group of classes modulo p^{l+1} is isomorphic to the wreath product of the automorphism group $\operatorname{Aut}\left(X_{p^{l}}\right)$ of classes C_{i} and the permutation groups of vertices in each of these classes

$$
\operatorname{Aut}\left(X_{p^{l+1}}\left(1, p^{l}\right)\right)=\operatorname{Aut}\left(X_{p^{l}}\right) 乙 S_{p}
$$

Using Theorem 3.4 we have

$$
\operatorname{Aut}\left(X_{p^{l}}\right)=S_{p} 乙 S_{p^{l-1}}
$$

and finally

$$
\operatorname{Aut}\left(X_{p^{k}}\left(1, p^{l}\right)\right)=\left(\left(S_{p} \backslash S_{p^{l-1}}\right) \backslash S_{p}\right) \backslash S_{p^{k-l-1}} .
$$

Therefore, we completely determine the size and the structure of the automorphism group of $X_{n}(D)$, with prime power order $n=p^{k}$ for $|D| \in\{1,2\}$. Notice that in these cases the automorphism group is either the wreath product of two permutation groups or the wreath product of four permutation groups. This result improves Theorem 6.2 given in [27].

$5.2 n$ being a square-free number

Lemma 5.3 Let n be a square-free number, $p>1$ an arbitrary prime divisor of n, and $2^{m} \| \frac{n}{p}$. For an automorphism f of $X_{n}(1, p)$ and prime number $p_{i} \neq 2$ dividing $\frac{n}{p}$ holds

$$
2^{m} p_{i} \mid a-b \quad \text { if and only if } \quad 2^{m} p_{i} \mid f(a)-f(b),
$$

where $0 \leq a, b \leq n-1$ and $1 \leq i \leq k$.

Proof: Notice that since n is a square-free number, we have $m \in\{0,1\}$.
Assume first that $\frac{n}{p}$ is odd.
We will prove that if $p_{i} \mid a-b$ then $p_{i} \mid f(a)-f(b)$. Let p_{i} be the maximal prime divisor of $\frac{n}{p}$ and set $a=b+p_{i}$. Suppose that p_{i} does not divide $f(a)-f(b)$. Since the automorphism f preserves the number of common neighbors of pairs (a, b) and $(f(a), f(b))$, these numbers must be equal. According to Theorem 4.1 the number of common neighbors of a and b is given by

$$
N(a, b)=F_{n}\left(p_{i}\right)+2\left(p_{i}-1\right) \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}}(q-2)=\left(p_{i}-1\right) \cdot p \cdot \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}}(q-2) .
$$

Now, we distinguish two different cases depending on the greatest common divisor of $f(a)-f(b)$ and p.

Case 1. $p \mid f(a)-f(b)$.
According to Theorem 4.1 the number of common neighbors of $f(a)$ and $f(b)$ is given by

$$
N(f(a), f(b))=F_{n}(f(a)-f(b))+F_{\frac{n}{p}}\left(\frac{f(a)-f(b)}{p}\right)=\left(p_{i}-2\right) \cdot p \cdot \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}}(q-\varepsilon(q))
$$

If $\operatorname{gcd}\left(f(a)-f(b), \frac{n}{p}\right)>1$, there exists a prime number r dividing both $f(a)-f(b)$ and $\frac{n}{p}$. The ratio of $N(f(a), f(b))$ and $N(a, b)$ equals

$$
\begin{equation*}
\frac{N(f(a), f(b))}{N(a, b)}=\frac{\left(p_{i}-2\right)(r-1)}{\left(p_{i}-1\right)(r-2)} \cdot \frac{\prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}, r}(q-\varepsilon(q))}{\prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}, r}(q-2)} \cdot \frac{p}{p}>1 . \tag{2}
\end{equation*}
$$

It is clear that the second factor is greater than or equal to 1 . The first factor is greater than 1 , since p_{i} is the maximal prime number dividing $\frac{n}{p}$ and $p_{i}>r$. This means that $N(f(a), f(b))>N(a, b)$, which is a contradiction.

Assume now that $\operatorname{gcd}\left(f(a)-f(b), \frac{n}{p}\right)=1$. The ratio of $N(f(a), f(b))$ and $N(a, b)$ is given by

$$
\begin{equation*}
\frac{N(f(a), f(b))}{N(a, b)}=\frac{\left(p_{i}-2\right) \cdot p}{\left(p_{i}-1\right) \cdot p}<1 \tag{3}
\end{equation*}
$$

Notice that the ratio of $N(f(a), f(b))$ and $N(a, b)$ is defined in both cases, since $\frac{n}{p}$ is odd and thus $\prod_{q \left\lvert\, \frac{n}{p}\right.}(q-2) \neq 0$. Therefore, we obtain a contradiction and p_{i} divides $f(a)-f(b)$.

Case 2. $\operatorname{gcd}(f(a)-f(b), p)=1$.
According to Theorem 4.1 the number of common neighbors of $f(a)$ and $f(b)$ is given by
$N(f(a), f(b))=F_{n}(f(b)-f(a))+2\left(p_{i}-2\right) \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}}(q-\varepsilon(q))=\left(p_{i}-2\right) \cdot p \cdot \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}}(q-\varepsilon(q))$.

Similarly as in the previous case, we conclude that $N(f(a), f(b)) \neq N(a, b)$, which is a contradiction and p_{i} divides $f(a)-f(b)$.

For an arbitrary $a, b \in X_{n}(1, p)$ such $p_{i} \mid a-b$ and $a<b$ we have
$p_{i} \mid\left(f(a)-f\left(a+p_{i}\right)\right)+\left(f\left(a+p_{i}\right)-f\left(a+2 p_{i}\right)\right)+\ldots+\left(f\left(b-p_{i}\right)-f(b)\right)=f(a)-f(b)$.
Theretofore, the classes modulo p_{i} also permute under the automorphism f.
Assume now that $\frac{n}{p}$ is even.
Let p_{i} be the maximal prime divisor of $\frac{n}{p}$ and set $a=b+2 p_{i}$. Suppose that $2 p_{i}$ does not divide $f(a)-f(b)$. Since $p \nmid 2 p_{i}$, according to Theorem 4.1 the number of common neighbors of a and b is given by:

$$
N(a, b)=F_{n}\left(2 p_{i}\right)+2\left(p_{i}-1\right) \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq 2, p_{i}}(q-2)=\left(p_{i}-1\right) \cdot p \cdot \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq 2, p_{i}}(q-2)>0 .
$$

We distinguish similarly two different cases depending on the greatest common divisor of $f(a)-f(b)$ and p.

Case 1. $p \mid f(a)-f(b)$.
According to Theorem 4.1 the number of common neighbors of $f(a)$ and $f(b)$ is given by

$$
N(f(a), f(b))=F_{n}(f(a)-f(b))+F_{\frac{n}{p}}\left(\frac{f(a)-f(b)}{p}\right)=\left(p_{i}-2\right) \cdot p \cdot \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}}(q-\varepsilon(q))
$$

If $f(a)-f(b)$ is odd, then for $q=2$ we have $q-\varepsilon(q)=0$ and $N(f(a), f(b))=0<$ $N(a, b)$, which is a contradiction. Otherwise, we again conclude that $N(f(a), f(b)) \neq$ $N(a, b)$ since we have the same formulas as (2) and (3).

Case 2. $\operatorname{gcd}(f(a)-f(b), p)=1$.
Similarly, according to Theorem 4.1 the number of common neighbors of $f(a)$ and $f(b)$ is given by
$N(f(a), f(b))=F_{n}(f(b)-f(a))+2\left(p_{i}-2\right) \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}}(q-\varepsilon(q))=\left(p_{i}-2\right) \cdot p \cdot \prod_{q \left\lvert\, \frac{n}{p}\right., q \neq p_{i}}(q-\varepsilon(q))$.
If $f(a)-f(b)$ is odd, then $N(f(a), f(b))=0$, and we have again a contradiction. Otherwise, we conclude that $N(f(a), f(b)) \neq N(a, b)$, which is contradiction in both cases and $2 p_{i}$ divides $f(a)-f(b)$.

For an arbitrary $a, b \in X_{n}(1, p)$ such $2 p_{i} \mid a-b$ and $a<b$ we have $p_{i} \mid\left(f(a)-f\left(a+2 p_{i}\right)\right)+\left(f\left(a+2 p_{i}\right)-f\left(a+4 p_{i}\right)\right)+\ldots+\left(f\left(b-2 p_{i}\right)-f(b)\right)=f(a)-f(b)$. Therefore, the classes modulo $2 p_{i}$ also permute under the automorphism f.

We can now apply mathematical induction on the number of prime divisors of $n=$ $p_{1} p_{2} \cdot \ldots \cdot p_{k}$, by considering the prime divisors in decreasing order. Using the same
arguments as above we can prove that for arbitrary p_{i} dividing n, if $2^{m} p_{i} \mid a-b$ then $2^{m} p_{i} \mid f(a)-f(b)$ (in all formulas for calculating the number of common neighbors of $f(a)$ and $f(b)$ we have $\varepsilon(q)=1$ for $\left.q>p_{i}\right)$.

Since f^{-1} is an automorphism as well, the opposite direction of the statement follows directly. This concludes the proof.

Theorem 5.4 Let n be a square free number and p an arbitrary prime divisor of n. The size of the automorphism group of $X_{n}(1, p)$ is equal to

$$
\left|A u t\left(X_{n}(1, p)\right)\right|=\prod_{q \left\lvert\, \frac{n}{p}\right., q \text { prime }} q!\cdot(p!)^{\frac{n}{p}} .
$$

Proof: Let $f \in \operatorname{Aut}\left(X_{n}(1, p)\right)$ be an automorphism of $X_{n}(1, p)$. Define the sets C_{i} as follows:

$$
C_{i}=\left\{0 \leq a \leq n-1 \left\lvert\, a \equiv i \quad\left(\bmod \frac{n}{p}\right)\right.\right\}
$$

for $0 \leq i \leq \frac{n}{p}-1$. According to Lemma 5.3, the classes C_{i} permute under the automorphism f, since

$$
\frac{n}{p}\left|a-b \quad \Leftrightarrow \quad \frac{n}{p}\right| f(a)-f(b)
$$

holds for all pairs of vertices $0 \leq a, b \leq n-1$. For the special case $n=2 p$, the graph is bipartite and the classes C_{0} and C_{1} permute under the automorphism f. Therefore, for any class C_{i} there exist a class $C_{h(i)}$ such that $f\left(C_{i}\right)=C_{h(i)}$, for some permutation h of indices $0,1, \ldots, \frac{n}{p}-1$. The vertices $a \in C_{i}$ and $b \in C_{j}$ are adjacent if and only if

$$
\operatorname{gcd}\left(\frac{n}{p}(k-l)+(i-j), n\right) \in\{1, p\}
$$

for some $0 \leq k, l \leq p-1$. It follows that the edge $\{a, b\}$ exists only if $i-j$ and $\frac{n}{p}$ are relatively prime. In the same way, notice that the vertices from the same modulo class form an independent set, since for the vertices $a, b \in C_{i}$ holds $\left.\frac{n}{p} \right\rvert\, \operatorname{gcd}(a-b, n)$ and thus $\operatorname{gcd}(a-b, n) \notin\{1, p\}$. For $\operatorname{gcd}\left(i-j, \frac{n}{p}\right)=1$, the vertices from the classes C_{i} and C_{j} form a complete bipartite subgraph.

As the structure of the subgraph induced by the vertices from C_{i} and C_{j} depends only on the difference $i-j$, we obtain that the induced subgraphs consisting of the vertices from C_{i} and C_{j} are isomorphic to each other for all pairs (i, j) with $\operatorname{gcd}\left(i-j, \frac{n}{p}\right)=1$. The same conclusion holds for the pairs (i, j) such that $\operatorname{gcd}\left(i-j, \frac{n}{p}\right) \neq 1$, since in this case there are no edges between C_{i} and C_{j}. We can construct a new graph G^{\prime} with the vertex set $Z_{n / p}$ and two vertices i and j are adjacent if and only if the classes C_{i} and C_{j} form a complete bipartite graph, i. e. $\operatorname{gcd}\left(i-j, \frac{n}{p}\right)=1$. It easily follows that this graph G^{\prime} is isomorphic to $X_{n / p}$ and that each vertex i corresponds to the class C_{i}. Finally, according to Theorem 3.4 the number of permutations of these classes equals $\prod_{q \mid n, q \neq p} q$!, which is exactly the size of the automorphism group of the unitary Cayley graph $\operatorname{Aut}\left(X_{n / p}\right)$.

Assume that the class C_{i} is mapped to the class C_{j}. Since the vertices from the class C_{i} form an independent set and the restriction of the automorphism f on the vertices of C_{i} is a bijection from C_{i} to C_{j}, we have all $\left|C_{i}\right|!=p!$ permutations of the vertices of the class C_{i}. Finally, taking into account that classes and vertices permute independently, by the product rule the size of the automorphism group is

$$
\prod_{q \left\lvert\, \frac{n}{p}\right.} q!\cdot(p!)^{\frac{n}{p}}
$$

Similarly, the automorphism group of a graph with square-free order and $D=\{1, p\}$ is the wreath product of the group of class permutations C_{i} and the groups of permutations of vertices in each of these classes

$$
\operatorname{Aut}\left(X_{n}(1, p)\right)=\left(\prod_{q \left\lvert\, \frac{n}{p}\right.} S_{q}\right) \imath S_{p}
$$

6 Concluding remarks

In this paper, we determine the automorphism group of unitary Cayley graphs X_{n}, and make a step in describing the automorphism group of integral circulant graphs by examining two special cases $-n$ being a prime power or a square-free number [22, 27]. Our proofs are based on the fact that for some primes p dividing n, the classes modulo p permute under the automorphism f. Furthermore, we determine the number of common neighbors of two arbitrary vertices in $X_{n}\left(d_{1}, d_{2}\right)$. This is a main tool for the proof that classes permute by some prime modulo and therefore for the characterization of the automorphism group of $X_{n}\left(d_{1}, d_{2}\right)$. The idea of considering the number of common neighbors turns out to be essential for the general case $X_{n}(D)$, but it requires many cases.

Examples suggest that for an arbitrary integral circulant graph $X_{n}(D)$ and some primes p dividing n, the classes modulo p permute under the automorphism f. For the future research we propose the full characterization of the automorphism groups of integral circulant graphs using this approach. We believe that the automorphism groups are the product or/and wreath product of permutation groups of prime power degree.

Remark

One of the referees points out that at about the same time Akhtar et al. in [1] independently obtained similar result concerning the automorphism of unitary Cayley graph G_{R} of a finite ring R. We have read paper [1], and found that the main idea of their algebraic proof is different than our number-theoretical approach. Akhtar et al. considered another generalization of unitary Cayley graphs and emphasized the dependence of automorphisms on the underlying algebraic structure of the rings concerned. In our paper we tried to characterize the automorphism group of all integral circulant graphs based on the idea that for some divisors $d \mid n$ the classes modulo d permute under arbitrary automorphism. We illustrate these permutations of classes on some special cases of n, using the generalized formula for the number of common neighbors. Moreover, our approach can be used for establishing some upper bounds on the size of the automorphism group of integral circulant graphs. The idea of partitioning vertices into classes modulo d was used in earlier papers $[4,18]$ for characterizing the clique and chromatic number of integral circulant graphs, and we believe that it can be extended for the full characterization of integral circulant graphs.

Acknowledgement. This work was supported by Research Grants 174010, 174013 and 174033 of Serbian Ministry of Science and Technological Development. The authors are grateful to the anonymous referees whose valuable comments resulted in improvements to this article.

References

[1] R. Akhtar, M. Bogess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A. Kinzel, D. Pritikin, On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16 (2009) \#R117.
[2] S. Akbari, F. Moazami, S. Zare, Kneser Graphs and their Complements are Hyperenergetic, MATCH Commun. Math. Comput. Chem. 61 (2009) 361-368.
[3] M. Bašić, M. Petković, D. Stevanović, Perfect state transfer in integral circulant graphs, Appl. Math. Letters 22 (2009) 1117-1121.
[4] M. Bašić, A. Ilić, On the clique number of integral circulant graphs, Appl. Math. Letters 22 (2009) 1406-1411.
[5] M. Bašić, M. Petković, Some classes of integral circulant graphs either allowing or not allowing perfect state transfer, Appl. Math. Letters 22 (2009) 1609-1615.
[6] P. Berrizbeitia, R. E. Giudici, On cycles in the sequence of unitary Cayley graphs, Discrete Math. 282 (2004) 239-243.
[7] S. Blackburn, I. Shparlinski, On the average energy of circulant graphs, Linear Algebra Appl. 428 (2008) 1956-1963.
[8] E. Dobson, J. Morris, On automorphism groups of circulant digraphs of square-free order, Discrete Math. 299 (2005) 79-98.
[9] E. Dobson, Automorphism groups of metacirculant graphs of order a product of two distinct primes, Combin. Prob. Comput. 15 (2006) 105-130.
[10] E. Dobson, I. Kovács, Automorphism groups of Cayley digraphs of Z_{p}^{3}, Electron. J. Combin. 16 (2009) \#R149.
[11] E. Fuchs, Longest induced cycles in circulant graphs, Electr. J. Comb. 12 (2005) 1-12.
[12] C. Godsil, Periodic Graphs, Electr. J. Comb. 18 (2011) \#P23.
[13] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungszent. Graz 103 (1978) 1-22.
[14] I. Gutman, The energy of a graph: old and new results, Algebraic Combinatorics and Applications, Springer, Berlin, 2001, 196-211.
[15] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc. 64 (1999) 199-205.
[16] W. H. Haemers, Strongly regular graphs with maximal energy, Linear Algebra Appl. 429 (2008) 2719-2723.
[17] F. K. Hwang, A survey on multi-loop networks, Theor. Comput. Sci. 299 (2003) 107-121.
[18] A. Ilić, M. Bašić, On the chromatic number of integral circulant graphs, Comput. Math. Appl. 60 (2009) 144-150.
[19] A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 18811889.
[20] A. Ilić, Distance spectra and distance energy of integral circulant graphs, Linear Algebra Appl. 433 (2010) 1005-1014.
[21] A. Ilić, M. Bašić, I Gutman, Triply Equienergetic Graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 189-200.
[22] M. Klin, I. Kovács, Automorphism groups of rational circulant graphs through the use of Schur rings, arXiv:1008.0751 [math.CO], 2010.
[23] W. Klotz, T. Sander, Some properties of unitary Cayley graphs, Electr. J. Comb. 14 (2007) \#R45.
[24] W. Klotz, T. Sander, Integral Cayley graphs over abelian groups, Electron. J. Combin. 17 (2010) \#R81.
[25] I. Kovács, On automorphisms of circulant digraphs on p^{m} vertices, p an odd prime, Linear Algebra Appl. 356 (2002) 231-252.
[26] C. H. Li, On isomorphisms of connected Cayley graphs, Discrete Math. 178 (1998) 109-122.
[27] J. Morris, Automorphism groups of circulant graphs - a survey, in A. Bondy, J. Fonlupt, J. L. Fouquet, J. C. Fournier, and J. L. Ramirez Alfonsin (Eds.), Graph Theory in Paris (Trends in Mathematics), Birkhäuser, 2007.
[28] M. E. Muzychuk, A solution of the isomorphism problem for circulant graphs, Proc. London Math. Soc. (3) 88 (2004) 1-41.
[29] H. N. Ramaswamy, C. R. Veena, On the Energy of Unitary Cayley Graphs, Electron. J. Combin. 16 (2009) \#N24.
[30] N. Saxena, S. Severini, I. Shparlinski, Parameters of integral circulant graphs and periodic quantum dynamics, Int. J. Quant. Inf. 5 (2007) 417-430.
[31] I. Shparlinski, On the energy of some circulant graphs, Linear Algebra Appl. 414 (2006) 378-382.
[32] W. So, Integral circulant graphs, Discrete Math. 306 (2006) 153-158.
[33] W. So, Remarks on some graphs with large number of edges, MATCH Commun. Math. Comput. Chem. 61 (2009) 351-359.

