Nonexistence of graphs with cyclic defect

Mirka Miller* ${ }^{*}$
School of Electrical Engineering and Comp. Science, University of Newcastle, Australia
Department of Mathematics, University of West Bohemia, Czech Republic
Department of Computer Science, King's College London, UK

Submitted: Nov 10, 2010; Accepted: Mar 9, 2011; Published: Mar 31, 2011
Mathematics Subject Classification: 05C35, 05C75

Abstract

In this note we consider graphs of maximum degree Δ, diameter D and order $\mathrm{M}(\Delta, D)-2$, where $\mathrm{M}(\Delta, D)$ is the Moore bound, that is, graphs of defect 2 . In 1] Delorme and Pineda-Villavicencio conjectured that such graphs do not exist for $D \geq 3$ if they have the so called 'cyclic defect'. Here we prove that this conjecture holds.

Keywords: Graphs with cyclic defect, Moore bound, defect, repeat.

1 Nonexistence of graphs with cyclic defect

Let G be a graph of maximum degree Δ, diameter D and order $\mathrm{M}(\Delta, D)-2$, where $\mathrm{M}(\Delta, D)=1+\Delta+\Delta(\Delta-1)+\Delta(\Delta-1)^{2}+\cdots+\Delta(\Delta-1)^{D-1}$ is the Moore bound, that is, graphs of defect 2 . In such a graph G any vertex v can reach within D steps either two vertices (called repeats of v) in two different ways each, or one vertex (called double repeat of v) in three different ways; all the other vertices of G are reached from v in at most D steps in exactly one way. The repeat (multi)graph of $G, R(G)$, consists of the vertex set $V(G)$ and there is an edge $\{u, v\}$ in $R(G)$ if and only if v is a repeat of u (and vice versa) in G. Clearly, when defect is $2, R(G)$ is either one cycle of length $n=|V(G)|$ or a disjoint union of cycles whose sum of lengths is equal to n. If $R(G)$ is cycle of length n then we say that G has cyclic defect. Interest in such graphs is part of the general study of the

[^0]degree/diameter problem. For a survey of this problem, see [4]. Graphs with cyclic defect were first studied by Fajtlowicz [2] who proved that when $D=2$ the only graph with cyclic defect is the Mobius ladder on 8 vertices (with $\Delta=3$). Subsequently, for $D \geq 3$, Delorme and Pineda-Villavicencio [1] proposed several ingenious algebraic techniques for dealing with graphs with cyclic defect and they proved the nonexistence of such graphs for many values of D and Δ. They conjectured that graphs with cyclic defect do not exist for $D \geq 3$. In this paper we use structural properties of graphs with cyclic defect to prove that this conjecture holds.

Observation 1.1 For $\delta<1+(\Delta-1)+(\Delta-1)^{2}+\ldots+(\Delta-1)^{D-1}, \Delta \geq 3$ and $D \geq 2$, a graph of defect δ must be regular.

It is also easy to see that there are no graphs with cyclic defect of degree $\Delta=2$. Therefore, from now on we assume G to be a Δ-regular graph with cyclic defect, degree $\Delta \geq 3$, and diameter $D \geq 3$.
We say that $S \subset V(G)$ is a closed set of repeats if for every vertex of S none of its repeats is outside of S. Clearly, a graph with cyclic defect cannot contain a closed set of repeats that is of cardinality less that $|V(G)|$.
We denote by Θ_{D} the union of three independent paths of length D with common endvertices. Since the $3 D-1$ vertices of Θ_{D} comprise a closed set of repeats, while G contains $\Delta\left(1+(\Delta-1)+(\Delta-1)^{2}+\cdots+(\Delta-1)^{D-1}\right)-1$ vertices, we have

Observation 1.2 Graph with cyclic defect does not contain Θ_{D}.

Suppose G contains a cycle C of length $2 D-m, m>1$. Then for every vertex v on C, there are more than 2 vertices on C that are repeats of v. Since each vertex has at most two distinct repeats, we have immediately that $m \leq 1$. Moreover, if $m=1$ then C is a closed set of repeats consisting of $2 D-1$ vertices, while G contains $\Delta(1+(\Delta-1)+(\Delta-$ $\left.1)^{2}+\cdots+(\Delta-1)^{D-1}\right)-1$ vertices, a contradiction for every $\Delta \geq 3$. Therefore, we have

Observation 1.3 Graph with cyclic defect does not contain a cycle of length less than $2 D$.

This means that the girth of G is $2 D$, and every vertex v is contained in exactly two $2 D$-cycles, and no other cycle of length at most $2 D$.
Let S be a set of vertices in G and H a subgraph of G. We denote by $S^{\prime}=\operatorname{rep}^{H}(S)$ the set of repeats of S that occur in H. Furthermore, two $2 D$-cycles C^{1} and C^{2} are called neiqhbouring cycles if they have non-empty intersection. The following lemma was proved in [3]; it will be used to prove the main result of this paper.

Lemma 1.1 (Repeat Cycle Lemma) Let G be a graph with $D \geq 4$ and $D \geq 2$, and defect 2. Let C be a $2 D$-cycle in G. Let $\left\{C^{1}, C^{2}, \ldots, C^{k}\right\}$ be the set of neighbouring cycles of C, and $I_{i}=C^{i} \cap C$ for $1 \leq i \leq k$. Suppose at least one I_{j}, for $j \in\{1, \ldots, k\}$, is a path of length smaller than $D-1$. Then, there is an additional $2 D$-cycle C^{\prime} in G, called repeat cycle, intersecting C^{i} at $I_{i}^{\prime}=\operatorname{rep}^{C^{i}}\left(I_{i}\right)$, where $1 \leq i \leq k$.

For an illustration, see Fig. 1

Corollary 1.1 If C and C^{\prime} are repeat cycles of each other then they comprise a closed set of $4 D$ repeats.

Proof. Consider an arbitrary vertex $x \in C \cap I_{i}, i \in 1, \ldots, k$. The vertex x has two repeats: one of them is the vertex on C that is at distance D from x. The second repeat of x is on the intersection of the repeat cycle C^{\prime} and I_{i}^{\prime}. Since C and C^{\prime} are repeat cycles of each other, we have $R(C)=C \cup C^{\prime}=R\left(C^{\prime}\right)$ and so $C \cup C^{\prime}$ is a closed set of repeats.

Figure 1: Illustration for Lemma [1.1] 3].

We are now ready to prove the main result.

Theorem 1.1 Graphs with cyclic defect do not exist for $\Delta \geq 3$ and $D \geq 3$.
Proof. Let G be a graph with cyclic defect. Let C be a cycle of length $2 D$ in G. We need to consider two cases.
Case 1. There exist two $2 D$-cycles, say C_{1} and C_{2}, with intersection that is a path of length smaller than $D-1$. Then, by Corollary 1.1, cycle C_{1} has a repeat cycle C_{1}^{\prime} and the two cycles C_{1} and C_{1}^{\prime} comprise a closed set of $4 D$ repeats, a contradiction since G is a graph with cyclic defect and $\Delta\left(1+(\Delta-1)+(\Delta-1)^{2}+\cdots+(\Delta-1)^{D-1}\right)-1$ vertices.

Figure 2: Illustration for Case 2 of the proof of Theorem 1.1 [3].

Case 2. There do not exist two cycles with intersection that is a path of length smaller than $D-1$. That is, any two $2 D$-cycles have either empty intersection or they intersect in a path of length exactly $D-1$. Recall that the length of the path cannot be more since there are no Θ_{D}. Then G contains as a subgraph a succession of $2 D$-cycles C_{m}, C_{1}, C_{2}, \ldots, C_{m-1} such that any two consecutive cycles have intersection a path of length $D-1$ (that is, they share D vertices). Assume that the value of m is maximum possible. Refer to Fig 2(a). Since G is finite, C_{1} and C_{m} must also intersect in a path of length $D-1$.

There are two possibilities, depicted in Fig. 2(b) and (c). Clearly, in the first case the vertices $x_{1}, x_{2}, \ldots, x_{m}$ form a closed set of repeats for any $\Delta \geq 3$, and this set does not include the vertices $y_{1}, y_{2}, \ldots, y_{m}$ so that G does not have cyclic defect.
In the second case, for any $\Delta \geq 3$, the vertices $x_{1}, x_{2}, \ldots, x_{m}$ and the vertices $y_{1}, y_{2}, \ldots, y_{m}$ together form a closed set of repeats consisting of $2 m$ vertices which however does not include all the vertices of G if $D \geq 3$, a contradiction.

References

[1] C. Delorme and G. Pineda-Villavicencio, On graphs with cyclic defect, Electron. J. Combin. 17 (2010), \#R143.
[2] S. Fajtlowicz, Graphs of diameter 2 with cyclic defect, Colloquium Mathematicum 51 (1987), 103-106.
[3] R. Feria-Purón, M. Miller and G. Pineda-Villavicencio, On graphs of defect at most 2, preprint (2010).
[4] M. Miller and J. Širáň, Moore graphs and beyond: A survey of the degree/diameter problem, Electronic J. Combin. 11 (2005), \#DS14.

[^0]: * mirka.miller@newcastle.edu.au
 ${ }^{\dagger}$ This research was supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme

