Nonexistence of graphs with cyclic defect

Mirka Miller^{*†}

School of Electrical Engineering and Comp. Science, University of Newcastle, Australia Department of Mathematics, University of West Bohemia, Czech Republic Department of Computer Science, King's College London, UK

Submitted: Nov 10, 2010; Accepted: Mar 9, 2011; Published: Mar 31, 2011 Mathematics Subject Classification: 05C35, 05C75

Abstract

In this note we consider graphs of maximum degree Δ , diameter D and order $M(\Delta, D) - 2$, where $M(\Delta, D)$ is the *Moore bound*, that is, graphs of *defect* 2. In [1] Delorme and Pineda-Villavicencio conjectured that such graphs do not exist for $D \geq 3$ if they have the so called 'cyclic defect'. Here we prove that this conjecture holds.

Keywords: Graphs with cyclic defect, Moore bound, defect, repeat.

1 Nonexistence of graphs with cyclic defect

Let G be a graph of maximum degree Δ , diameter D and order $M(\Delta, D) - 2$, where $M(\Delta, D) = 1 + \Delta + \Delta(\Delta - 1) + \Delta(\Delta - 1)^2 + \cdots + \Delta(\Delta - 1)^{D-1}$ is the Moore bound, that is, graphs of defect 2. In such a graph G any vertex v can reach within D steps either two vertices (called repeats of v) in two different ways each, or one vertex (called double repeat of v) in three different ways; all the other vertices of G are reached from v in at most D steps in exactly one way. The repeat (multi)graph of G, R(G), consists of the vertex set V(G) and there is an edge $\{u, v\}$ in R(G) if and only if v is a repeat of u (and vice versa) in G. Clearly, when defect is 2, R(G) is either one cycle of length n = |V(G)| or a disjoint union of cycles whose sum of lengths is equal to n. If R(G) is cycle of length n then we say that G has cyclic defect. Interest in such graphs is part of the general study of the

^{*}mirka.miller@newcastle.edu.au

[†]This research was supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme

degree/diameter problem. For a survey of this problem, see [4]. Graphs with cyclic defect were first studied by Fajtlowicz [2] who proved that when D = 2 the only graph with cyclic defect is the Mobius ladder on 8 vertices (with $\Delta = 3$). Subsequently, for $D \ge 3$, Delorme and Pineda-Villavicencio [1] proposed several ingenious algebraic techniques for dealing with graphs with cyclic defect and they proved the nonexistence of such graphs for many values of D and Δ . They conjectured that graphs with cyclic defect do not exist for $D \ge 3$. In this paper we use structural properties of graphs with cyclic defect to prove that this conjecture holds.

Observation 1.1 For $\delta < 1 + (\Delta - 1) + (\Delta - 1)^2 + \ldots + (\Delta - 1)^{D-1}$, $\Delta \ge 3$ and $D \ge 2$, a graph of defect δ must be regular.

It is also easy to see that there are no graphs with cyclic defect of degree $\Delta = 2$. Therefore, from now on we assume G to be a Δ -regular graph with cyclic defect, degree $\Delta \geq 3$, and diameter $D \geq 3$.

We say that $S \subset V(G)$ is a *closed set of repeats* if for every vertex of S none of its repeats is outside of S. Clearly, a graph with cyclic defect cannot contain a closed set of repeats that is of cardinality less that |V(G)|.

We denote by Θ_D the union of three independent paths of length D with common endvertices. Since the 3D - 1 vertices of Θ_D comprise a closed set of repeats, while G contains $\Delta(1 + (\Delta - 1) + (\Delta - 1)^2 + \cdots + (\Delta - 1)^{D-1}) - 1$ vertices, we have

Observation 1.2 Graph with cyclic defect does not contain Θ_D .

Suppose G contains a cycle C of length 2D - m, m > 1. Then for every vertex v on C, there are more than 2 vertices on C that are repeats of v. Since each vertex has at most two distinct repeats, we have immediately that $m \leq 1$. Moreover, if m = 1 then C is a closed set of repeats consisting of 2D - 1 vertices, while G contains $\Delta(1 + (\Delta - 1) + (\Delta - 1)^2 + \cdots + (\Delta - 1)^{D-1}) - 1$ vertices, a contradiction for every $\Delta \geq 3$. Therefore, we have

Observation 1.3 Graph with cyclic defect does not contain a cycle of length less than 2D.

This means that the girth of G is 2D, and every vertex v is contained in exactly two 2D-cycles, and no other cycle of length at most 2D.

Let S be a set of vertices in G and H a subgraph of G. We denote by $S' = \operatorname{rep}^{H}(S)$ the set of repeats of S that occur in H. Furthermore, two 2D-cycles C^{1} and C^{2} are called *neighbouring cycles* if they have non-empty intersection. The following lemma was proved in [3]; it will be used to prove the main result of this paper.

Lemma 1.1 (Repeat Cycle Lemma) [3] Let G be a graph with $D \ge 4$ and $D \ge 2$, and defect 2. Let C be a 2D-cycle in G. Let $\{C^1, C^2, \ldots, C^k\}$ be the set of neighbouring cycles of C, and $I_i = C^i \cap C$ for $1 \le i \le k$. Suppose at least one I_j , for $j \in \{1, \ldots, k\}$, is a path of length smaller than D - 1. Then, there is an additional 2D-cycle C' in G, called repeat cycle, intersecting C^i at $I'_i = \operatorname{rep}^{C^i}(I_i)$, where $1 \le i \le k$.

For an illustration, see Fig. 1

Corollary 1.1 If C and C' are repeat cycles of each other then they comprise a closed set of 4D repeats.

Proof. Consider an arbitrary vertex $x \in C \cap I_i$, $i \in 1, ..., k$. The vertex x has two repeats: one of them is the vertex on C that is at distance D from x. The second repeat of x is on the intersection of the repeat cycle C' and I'_i . Since C and C' are repeat cycles of each other, we have $R(C) = C \cup C' = R(C')$ and so $C \cup C'$ is a closed set of repeats. \Box

Figure 1: Illustration for Lemma 1.1 [3].

We are now ready to prove the main result.

Theorem 1.1 Graphs with cyclic defect do not exist for $\Delta \geq 3$ and $D \geq 3$.

Proof. Let G be a graph with cyclic defect. Let C be a cycle of length 2D in G. We need to consider two cases.

Case 1. There exist two 2D-cycles, say C_1 and C_2 , with intersection that is a path of length smaller than D - 1. Then, by Corollary 1.1, cycle C_1 has a repeat cycle C'_1 and the two cycles C_1 and C'_1 comprise a closed set of 4D repeats, a contradiction since G is a graph with cyclic defect and $\Delta(1 + (\Delta - 1) + (\Delta - 1)^2 + \cdots + (\Delta - 1)^{D-1}) - 1$ vertices.

Figure 2: Illustration for Case 2 of the proof of Theorem 1.1 [3].

Case 2. There do not exist two cycles with intersection that is a path of length smaller than D-1. That is, any two 2D-cycles have either empty intersection or they intersect in a path of length exactly D-1. Recall that the length of the path cannot be more since there are no Θ_D . Then G contains as a subgraph a succession of 2D-cycles C_m, C_1 , C_2, \ldots, C_{m-1} such that any two consecutive cycles have intersection a path of length D-1 (that is, they share D vertices). Assume that the value of m is maximum possible. Refer to Fig 2(a). Since G is finite, C_1 and C_m must also intersect in a path of length D-1. There are two possibilities, depicted in Fig. 2(b) and (c). Clearly, in the first case the vertices x_1, x_2, \ldots, x_m form a closed set of repeats for any $\Delta \geq 3$, and this set does not include the vertices y_1, y_2, \ldots, y_m so that G does not have cyclic defect.

In the second case, for any $\Delta \geq 3$, the vertices x_1, x_2, \ldots, x_m and the vertices y_1, y_2, \ldots, y_m together form a closed set of repeats consisting of 2m vertices which however does not include all the vertices of G if $D \geq 3$, a contradiction.

References

- C. Delorme and G. Pineda-Villavicencio, On graphs with cyclic defect, Electron. J. Combin. 17 (2010), #R143.
- [2] S. Fajtlowicz, Graphs of diameter 2 with cyclic defect, Colloquium Mathematicum 51 (1987), 103–106.
- [3] R. Feria-Purón, M. Miller and G. Pineda-Villavicencio, On graphs of defect at most 2, preprint (2010).
- [4] M. Miller and J. Siráň, Moore graphs and beyond: A survey of the degree/diameter problem, Electronic J. Combin. 11 (2005), #DS14.