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Abstract

We use information theory to study recovering sets RL and strongly cancellative

sets CL on different lattices. These sets are special classes of recovering pairs and

cancellative sets previously discussed in the papers of Simonyi, Frankl, and Füredi.

We mainly focus on the lattices Bn and D
k
l . Specifically, we find upper bounds and

constructions for the sets RBn , CBn , and CDk
l
.

1 Introduction

In this paper, we study the strongly cancellative sets CL and recovering sets RL that are
subsets of points in lattices L, see Definition 2.1 and 2.2. On one hand, the study of the
former set is motivated by the work of Ahlswede, Frankl, and Füredi [8] and Fredman
[7]. Specifically, strongly cancellative sets are a special class of cancellative sets. On the
other hand, the study of recovering sets is prompted by the previous work of Simonyi [9]
on recovering pairs. A recovering pair (A, B) is an ordered pair of subsets A, B of points
in a lattice such that for any a, a′ ∈ A and b, b′ ∈ B, we have the following:

a ∧ b = a′ ∧ b′ ⇒ a = a′,

a ∨ b = a′ ∨ b′ ⇒ b = b′.

The paper of Korner and Olistky [5] shows that the upper bound of |A||B| plays an
important role in the zero-error information theory. Cohen gave an upper bound 3n for
the size of |A||B| on the Boolean lattice while Holzman and Korner improved the bound
to 2.3264n afterward. Throughout this paper, we study a special class of the recovering
pairs (RL,RL) which takes a single set RL. We call RL a recovering set. As Definition
2.1 and 2.2 shows, a recovering set is a special case of a strongly cancellative set. Here, we
focus on the upper bounds and structures of these two sets by using Information Theory.

This paper is organized as follows: Section 2 presents the definitions of strongly can-
cellative sets, recovering sets, and some results on the entropy function in Information
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Theory. In Section 3, we study the recovering set RBn
on the Boolean lattice Bn and

find an upper bound |RBn
| ≤

√
3· 20.4056n. As a result, this class of the recovering pairs

has an upper bound 3· 20.8112n = 3· (1.7546703)n on its size. In Section 4, we study
strongly cancellative sets CBn

on Bn. We give a tight upper bound 2⌊
n
2
⌋ on |CBn

| for
this lattice. Finally, Section 5 considers the strongly cancellative sets CDl1,...,lk

on the
lattice Dl1,...,lk which is the product of k chains of length l1 − 1, . . . , lk − 1. We show

that when l1 = · · · = lk = l, there exists a strongly cancellative set of size l⌊ k
2
⌋ and

|CDl,...,l
| ≤ (2l)

k
2 + k(l−1)

2
+ 1.

2 Preliminaries

For basic definitions and results concerning lattices, we encourage readers to consult
Chapter 3 of [11]. In particular, the Boolean lattice Bn is the lattice of all subsets of the
set {1, . . . , n} ordered by inclusion, and Dl1,...,lk is the lattice formed by the product of k
chains of length l1−1, . . . , lk−1, so that the points in Dl1,...,lk correspond to k-dimensional
vectors (v1, . . . , vk) with 0 ≤ vi ≤ li − 1. The ordering of points in Dl1,...,lk is as follows:

v � w ⇔ vi ≤ wi, for all 1 ≤ i ≤ k.

A cancellative set is a subset of points in lattice L such that any three different points
v1, v2, v3 in this set satisfy the following condition:

v1 ∧ v2 6= v1 ∧ v3.

We define strongly cancellative sets as a special class of cancellative sets.

Definition 2.1. A strongly cancellative set CL of lattice L is a subset of points in L such
that for any three different points a1, a2, a3 ∈ CL,

a1 ∧ a2 6= a1 ∧ a3 and a1 ∨ a2 6= a1 ∨ a3. (2.1)

Secondly, a recovering set meets all the conditions that define a strongly cancellative
set. In addition, any recovering set RL forms a recovering pair (RL,RL) on L. Here, we
give a formal definition for RL.

Definition 2.2. A recovering set RL of lattice L is a subset of points in L such that for
any four different points a1, a2, a3, a4 ∈ RL, we have

a1 ∧ a2 6= a3 ∧ a4 and a1 ∨ a2 6= a3 ∨ a4, (2.2)

a1 ∧ a2 6= a1 ∧ a3 and a1 ∨ a2 6= a1 ∨ a3. (2.3)

Now, we introduce the entropy function and show an inequality of it.
Given a discrete random variable X with m possible values x1, . . . , xm, we define the

entropy function H of X as follows:

H(X) = −
m
∑

i=1

p(xi) logb p(xi) =

m
∑

i=1

p(xi) logb

1

p(xi)
, (2.4)
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where p is the probability mass function of X and xi is the value of X. In this paper, we
always set b = 2. Also, the function x log 1

x
is concave down when x > 0. Therefore, for

any s values 0 ≤ p1, . . . , ps ≤ 1, we have

s
∑

j=1

(

pj log
1

pj

)

≤ s·
(

∑s

j=1 pj

s

)

· log

(

s
∑s

j=1 pj

)

. (2.5)

The following inequality of entropy functions is the major inequality throughout this
paper. A proof of the inequality is given in [3].

Theorem 2.3. If ξ = (ξ1, . . . , ξm) is an n-dimensional random variable, then

H(ξ) ≤
n
∑

i=1

H(ξi). (2.6)

3 Recovering Set on Boolean lattice Bn

In this section, we study recovering sets on Boolean lattices where we use ∩ and ∪ instead
of ∧ and ∨. In the following theorem, we give an upper bound for |RBn

|.

Theorem 3.1. For any recovering set RBn
, we have |RBn

| ≤
√

3· 20.4056n.

Remark 3.2. In particular, (RBn
,RBn

) is a special class of recovering pairs on the Boolean

lattice, and we give a bound
(√

3· 20.4056n
)2

which is significantly better than the cardi-
nalities of a general recovering pair discussed in [1], [9], and [10].

Proof. Let us define a random variable ξ = ai ∩ aj , where ai and aj are independently
chosen according to the uniform distribution on RBn

. We wish to show that for any value
a in ξ, there are at most three ordered pairs (ai, aj) such that a = ai∩aj. Fixed an ordered
pair (at, as) for (ai, aj), and suppose that there exists another ordered pair (at1 , as1

) such
that at1 ∩ as1

= at ∩ as = as ∩ at. We have the following two cases:

1. at 6= as. By Definition 2.2, at1 and as1
should be the same element in Bn, and we

have the following possible cases:

(a) at1 = as1
/∈ {at, as}.

In this case, since at ∩ as = at1 ∩ at1 , the set at1 is contained in at and as. It
follows that at1 ∩ at = at1 ∩ as which contradicts the second requirement of
Definition 2.2.

(b) at1 = as1
∈ {at, as}.

This leaves us exactly one choice for (at1 , as1
).

2. at = as. This is the same condition as case (b) in (1). That is to say, one of at1 and
as1

must be the set at , and (at1 , as1
) has only two possible choices.
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Consequently, at most three different ordered pairs obtain the same value in ξ. We can
give a lower bound on the entropy function of ξ based on this property.

For any a in ξ, let C(a) = {(ai, aj) : ai ∩ aj = a, and ai, aj ∈ RBn
} and Pa =

Pr (ξ = a) = |C(a)|
|RBn |2

. By the above argument, we have |C(a)| ≤ 3 and Pa ≤ 3
|RBn |2

, for

any a in ξ. Considering the entropy function in (2.4), we obtain the following inequality:

H(ξ) =
∑

a∈ξ

Pa log
1

Pa

≥
∑

a∈ξ

Pa log
|RBn

|2
3

= log
|RBn

|2
3

.

On the other hand, ξ is an n-dimensional random variable (ξ1, . . . , ξn), where

ξt =

{

1, t ∈ ai ∩ aj.

0, t /∈ ai ∩ aj.

We set RBn
(t) = {ai | ai ∈ RBn

, t ∈ ai} and PRBn
(t) =

|RBn(t)|

|RBn |
, for any 1 ≤ t ≤ n.

This shows that, Pr (ξt = 1) =
(

PRBn
(t)
)2

, for any t ∈ {1, . . . , n}. Let us denote h(x) as
x log 1

x
+ (1 − x) log 1

1−x
. We have by Theorem 2.3 that

log
|RBn

|2
3

≤ H(ξ) ≤
n
∑

t=1

H(ξt) =

n
∑

t=1

[

h
(

PRBn
(t)2
)]

, (3.1)

Consider the random variable ξ
′

= ai ∪ aj. Since entropy functions have the property
that h (x) = h (1 − x), we similarly get

log
|RBn

|2
3

≤
n
∑

t=1

h
(

1 −
(

1 −
(

PRBn
(t)
))2
)

=

n
∑

t=1

h
(

(

1 −
(

PRBn
(t)
))2
)

. (3.2)

Now, averaging (3.1) and (3.2), we obtain an upper bound for log
|RBn |2

3
, namely:

log
|RBn

|2
3

≤ 1

2

n
∑

t=1

[

h
(

PRBn
(t)2
)

+ h
(

(

1 −PRBn
(t)
)2
)]

(3.3)

≤ n

2

[

max
0≤x≤1

(

h(x2) + h
(

(1 − x)2
))

]

(3.4)

≤ n

2

[

max
0≤x≤1

(

x
h(x2)

x
+ (1 − x)

h ((1 − x)2)

1 − x

)]

. (3.5)

Finally, by the work of D. J. Kleitman, J. Shearer and D. Sturtevant [3], we know that

the function h(x2)
x

is concave down, hence, Jensen’s inequality gives

max
0≤x≤1

(

x
h(x2)

x
+ (1 − x)

h ((1 − x)2)

1 − x

)

≤ max
0≤x≤1

h((x2 + (1 − x)2)2)

x2 + (1 − x)2
.
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By some simple calculation, one can see that the function h(x2)
x

is decreasing with

1
2
≤ x ≤ 1. Therefore, 2h(1

4
) = 0.8112 is an upper bound for

h(x2)+h((1−x)2)
2

, and we
obtain an upper bound for |RBn

|:

|RBn
| ≤

√
3 · 20.4056n

4 Strongly Cancellative set on Boolean lattice Bn

In this section, we show that the maximal size of CBn
on Bn, see Definition 2.1, is 2⌊

n
2
⌋.

In addition, this is the tightest bound.

Theorem 4.1. There exists a strongly cancellative set CBn
of size 2⌊

n
2
⌋ on Bn.

Proof. We construct CBn
as follows. First, let us divide the set

{

1, . . . , 2⌊n
2
⌋
}

into ⌊n
2
⌋

blocks Si = {2i−1, 2i}, for 1 ≤ i ≤ ⌊n
2
⌋. We define CBn

to be the family of all the subsets

s =
{

s1, . . . , s⌊n
2
⌋

}

such that si ∈ Si, for 1 ≤ i ≤ ⌊n
2
⌋. Thus, we have |CBn

| = 2⌊
n
2
⌋. Now,

we show that CBn
satisfies the conditions defining strongly cancellative set.

Consider different elements b =
{

b1, . . . , b⌊n
2
⌋

}

and c =
{

c1, . . . , c⌊n
2
⌋

}

in CBn
, so that

there exists some 1 ≤ k ≤ ⌊n
2
⌋ such that bk 6= ck. Without lost of generality, assume that

bk = 2k − 1 and ck = 2k. Consequently, for any element a =
{

a1, . . . , a⌊n
2
⌋

}

, we have the

following properties:

1. bk /∈ a ∩ c and ck /∈ a ∩ b,

2. bk ∈ a ∪ b and ck ∈ a ∪ c,

3. ak = bk or ak = ck,

4. bk ∈ a ∩ b or ck ∈ a ∩ c,

5. ck /∈ a ∪ b or bk /∈ a ∪ c.

Clearly, property (3) implies (4) and (5). Moreover, (1) and (4) imply that a∩b 6= a∩c,
and similarly, (2) and (5) imply that a∪b 6= a∪c. Therefore, CBn

is a strongly cancellative
set.

Now, we show that |CBn
| ≤ 2⌊n

2
⌋.

Theorem 4.2. For any strongly cancellative CBn
on Bn, we have |CBn

| ≤ 2⌊n
2
⌋.
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Proof. Fix an element v′ ∈ CBn
. We consider the following sets:

C1(v
′) = {v ∩ v′ : v 6= v′, v ∈ CBn

},
C2(v

′) = {v ∪ v′ : v 6= v′, v ∈ CBn
}.

By Equation (2.1), we have |C1(v
′)| = |C2(v

′)| = |CBn
| − 1. This implies that

|CBn
| ≤ 1 + min (|{v : v ⊆ v′}|, |{v : v ⊇ v′}|) . (4.1)

Moreover,

min (|{v : v ⊆ v′}| , |{v : v ⊇ v′}|) ≤
∣

∣

∣

{

v : v ⊆ v∗, rank(v∗) =
⌊n

2

⌋}
∣

∣

∣
. (4.2)

We consider the following two cases:

1. 2 | n. Then we have rank(v′) =
⌊

n
2

⌋

if the equality holds in (4.2). Suppose that the
equalities in (4.1) and (4.2) hold for every v′ ∈ CBn

. Consequently, rank(v′) =
⌊

n
2

⌋

,
for every v′ ∈ CBn

, which implies that any two elements in the set are incompa-
rable. One can easily see that, C1(v

′) 6= |{v : v ⊆ v′}| and C2(v
′) 6= |{v : v ⊇ v′}|.

Therefore, the equalities in (4.1) and (4.2) can not hold at the same time.

2. 2 ∤ n. Then rank(v′) =
⌊

n
2

⌋

or
⌊

n+1
2

⌋

if the equality hold in (4.2). Suppose that the
equalities in (4.1) and (4.2) holds for every v′ ∈ CBn

. Pick some element w ∈ CBn
.

If rank(w) =
⌊

n
2

⌋

, then by (4.1) there exist other two elements w′ and w′′ in the set
such that w ∩ w′ = w and w ∩ w′′ = ∅. This implies that rank(w′) =

⌊

n+1
2

⌋

and
w′\w = {x}, where 1 ≤ x ≤ n.

By Equation (2.1), we have ∅ = w ∩ w′′ 6= w′ ∩ w′′, and thus x ∈ w′′. This means
that w ∪w′′ = w′ ∪w′′ which is not possible. As a result, the equalities in (4.1) and
(4.2) cannot hold at the same time. Similarly, one can prove the same statement
when rank(w) =

⌊

n+1
2

⌋

.

Finally, from (1) and (2), we have

|CBn
| ≤

∣

∣

∣

{

v : v ⊆ v∗, rank(v∗) =
⌊n

2

⌋}
∣

∣

∣
= 2⌊n

2 ⌋.

5 Strongly Cancellative Sets on lattices Dl1,...,lk and

Dk
l

For the definition of the lattice Dl1,...,lk , see Section 2. In particular, we say that Dk
l is a

lattice of k chains of length l−1. It is easy to show that for any two points v = (v1, . . . , vk)
and v′ = (v′

1, . . . , v
′
k) in Dl1,...,lk ,

(v1, . . . , vk) ∧ (v′
1, . . . , v

′
k) =

(

min (v1, v
′
1), . . . , min (vk, v

′
k)
)

,

(v1, . . . , vk) ∨ (v′
1, . . . , v

′
k) =

(

max (v1, v
′
1), . . . , max (vk, v

′
k)
)

.
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In the following proposition, we give a tight bound for the size of strongly cancellative
sets on Dl1,l2.

Proposition 5.1. Let CDl1,l2
be a strongly cancellative set on the lattice Dl1,l2. Then

∣

∣

∣
CDl1,l2

∣

∣

∣
≤ min(l1, l2).

Proof. Without lost of generality, we assume that l1 ≤ l2. Every point v in Dl1,l2 is a
vector (v1, v2), where 0 ≤ v1 ≤ l1 − 1 and 0 ≤ v2 ≤ l2 − 1. We proceed by contradiction.

Suppose that
∣

∣

∣
CDl1,l2

∣

∣

∣
> l1. Then there exists two points v = (v1, v2) and w = (w1, w2)

such that v1 = w1 and v2 < w2. For any point v∗ = (v∗
1, v

∗
2) /∈ {v, w}, all the following

four possible cases lead to contradiction:

1. v∗
2 ≤ v2 implies that v∗ ∧ v = v∗ ∧ w.

2. v∗
2 > w2 implies that v∗ ∨ v = v∗ ∨ w.

3. v2 ≤ v∗
2 ≤ w2 and v∗

1 ≤ v1 imply that v∗ ∨ w = v ∨ w.

4. v2 ≤ v∗
2 ≤ w2 and v∗

1 ≥ v1 imply that v∗ ∧ v = v ∧ w.

Therefore, we must have
∣

∣

∣
CDl1,l2

∣

∣

∣
≤ l1 = min(l1, l2), as desired.

The bound min(l1, l2) is tight for
∣

∣

∣
CDl1,l2

∣

∣

∣
. In particular, it is not hard to show that

the following set is a strongly cancellative set of size min(l1, l2):

CDl1,l2
= {(x, y) | x + y = min(l1, l2) − 1}.

In the following, we study the size of the strongly cancellative sets on Dk
l .

Proposition 5.2. Suppose that Ck1
is a strongly cancellative set on the lattice Dk1

l for

some small k1, and any two elements in Ck1
are incomparable. Then, for any k with

⌊

k
k1

⌋

= s, there is a strongly cancellative set Ck of size |Ck1
|s on Dk

l .

Proof. Every point in Dk
l is a k-dimensional vector (v1, . . . , vk), where 0 ≤ vi ≤ l − 1

for 1 ≤ i ≤ k. For every vector v = (v1, . . . , vk), we define subvectors induced by v as
Bj(v) = (v(j−1)k1+1, . . . , vjk1

), for 1 ≤ j ≤ s, and Bs+1(v) = (vk1s+1, . . . , vk). Let Ck to
be the set of all k-dimensional vectors v such that Bj(v) ∈ Ck1

for all 1 ≤ j ≤ s, and
Bs+1(v) is the zero vector. Clearly, we have |Ck| = |Ck1

|s.
Suppose there are three different elements v, v′, v′′ ∈ Ck such that v ∨ v′ = v ∨ v′′.

Since v′ and v′′ are different, we have Bj∗(v
′) 6= Bj∗(v

′′) for some 1 ≤ j∗ ≤ s. On the
other hand, we know Bj∗(v)∨Bj∗(v

′) = Bj∗(v)∨Bj∗(v
′′) which implies that one of Bj∗(v

′)
or Bj∗(v

′′) is equal to Bj∗(v). Therefore, v′
i � v′′

i or v′′
i � v′

i, and this contradicts the
assumption that any two different elements in Ck1

are incomparable. Similarly, it is easy
to see that v ∧ v′ 6= v∧ v′′. As a result, Ck is a strongly cancellative set of size |Ck1

|s.
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We can use this result to give a construction of a strongly cancellative set on Dk
l .

Corollary 5.3. There exists a strongly cancellative set CDk
l

on the lattice Dk
l , such that

∣

∣

∣
CDk

l

∣

∣

∣
= l⌊

k
2
⌋.

Proof. We have seen that CD2

l
= {(x, y) | x + y = l − 1} is a strongly cancellative set of

size l on D2
l such that any two elements in the set are incomparable. By Proposition 5.2,

there exists a strongly cancellative set CDk
l

of size l⌊
k
2
⌋.

We end this section with an upper bound of the size of strongly cancellative sets on
Dk

l .

Theorem 5.4. Let CDk
l

be a strongly cancellative set on Dk
l , then

∣

∣

∣
CDk

l

∣

∣

∣
≤ (2l)

k
2 +

k(l − 1)

2
+ 1.

Proof. Any element v on the lattice Dk
l is a k-dimensional vector v = (v1, . . . , vk) such

that 0 ≤ vi ≤ l − 1 for all 1 ≤ i ≤ k. We first define Cm(t) and Pm(t).

1. We define Cm(t) to be set of vectors whose m-th component is t, for any 1 ≤ t ≤ k.
That is, Cm(t) = {v | v ∈ CDk

l
, vm = t}.

2. Let v be a random element uniformly chosen in the set CDk
l
. We denote the proba-

bility that the m-th component vm of v is t by Pm(t). So,

Pm(t) =
|Cm(t)|
∣

∣

∣
CDk

l

∣

∣

∣

.

Fix an arbitrary element v ∈ CDk
l
. We define the random variable ξv = v ∧ v∗, where

v∗ is the random element uniformly chosen in CDk
l
\{v}. Suppose that there exist two

elements v1 and v2 in CDk
l

so that we obtain the same value in ξv. That is, v∧ v1 = v∧ v2

which is not possible in strongly cancellative sets. Consequently, every value in ξv appears

exactly once. Since there are totally
∣

∣

∣
CDk

l

∣

∣

∣
−1 different values for ξv, the entropy function

of ξv is

H(ξv) = log
(
∣

∣

∣
CDk

l

∣

∣

∣
− 1
)

. (5.1)

For convenience, we set N =
∣

∣

∣
CDk

l

∣

∣

∣
− 1.

On the other hand, every value in ξv is a k-dimensional vector (ξv(1), . . . , ξv(k)) such
that ξv(m) = min(vm, v∗

m) for any 1 ≤ m ≤ k and randomly chosen element v∗. Conse-
quently, for any 1 ≤ m ≤ k, ξv(m) takes all its values in {0, 1, . . . , vm}. We denote the
probability that ξv(m) = t′ by Pξv(m)(t

′). Moreover, if 0 ≤ t′ ≤ vm − 1, we should have
t′ = min(vm, v∗

m) < vm and thus, v∗
m = t′. If t′ = vm, we must have min(vm, v∗

m) = t′ = vm

which implies that vm ≤ v∗
m.
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Therefore, we obtain the following properties for Pξv(m)(t
′):

Pξv(m)(t
′) =



















|Cm(t′)|
N

, 0 ≤ t′ ≤ vm − 1.
»

Pl−1

t′
1
=vm

|Cm(t′
1
)|

–

−1

N
, t′ = vm.

0, vm + 1 ≤ t′ ≤ l − 1.

(5.2)

The entropy function of ξv(m) can be computed as follows:

H (ξv(m)) = H
(

Pξv(m)(0), . . . ,Pξv(m)(vm − 1),Pξv(m)(vm)
)

=
vm
∑

t′=0

Pξv(m)(t
′) log

1

Pξv(m)(t′)
.

Furthermore, by Eq.(5.1) and Theorem (2.3), we have

log N ≤
k
∑

m=1

H (ξv(m)) =

k
∑

m=1

vm
∑

t′=0

Pξv(m)(t
′) log

1

Pξv(m)(t′)
. (5.3)

The above equation holds for every element v in the set CDk
l
. If we take the average

over all the elements in the set CDk
l
, we obtain

log N ≤

∑

v∈C
Dk

l

∑k

m=1 H (ξv(m))

N + 1
=

∑k

m=1

∑

v∈C
Dk

l

H (ξv(m))

N + 1
. (5.4)

Moreover, from (2), we know that the probability that vm = t for some 0 ≤ t ≤ l − 1 is

Pm(t) = |Cm(t)|
N+1

, and therefore, (5.4) can be rewritten as follows:

log N ≤
k
∑

m=1

l−1
∑

t=0

Pm(t)

(

t
∑

t′=0

Pξv(m)(t
′) log

1

Pξv(m)(t′)

)

. (5.5)

Now, we consider the random variable ξ
′

v = v ∨ v∗, where v∗ is also independently
chosen under the uniform distribution on CDk

l
\{v}. Thus, we have the following:

Pξ′v(m)(t
′) =



















0, 0 ≤ t′ ≤ vm − 1.
»

Pvm

t′
1
=0

|Cm(t′
1
)|

–

−1

N
, t′ = vm.

|Cm(t′)|
N

, vm + 1 ≤ t′ ≤ l − 1.

(5.6)

By similar arguments, Eq.(5.6) implies that:

log N ≤
k
∑

m=1

l−1
∑

t=0

Pm(t)

(

l−1
∑

t′=t

Pξv(m)(t
′) log

1

Pξv(m)(t′)

)

. (5.7)
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For convenience, let P ′
m(t′) = |Cm(t′)|

N
. Also, we set qm(t) =

»

Pl−1

t′
1
=t

|Cm(t′
1
)|

–

−1

N
, and q′m(t) =

»

Pt

t′
1
=0

|Cm(t′
1
)|

–

−1

N
.

Consider the following inequality,

t
∑

t′=0

Pξv(m)(t
′) log

1

Pξv(m)(t′)
+

l−1
∑

t′=t

Pξv(m)(t
′) log

1

Pξv(m)(t′)
(5.8)

≤
(

l−1
∑

t′=0

P ′
m(t′) log

1

P ′
m(t′)

)

+ qm(t) log
1

qm(t)
+ q′m(t) log

1

q′m(t)
(5.9)

≤
(

N + 1

N

)

log
lN

N + 1
+ (qm(t) + q′m(t)) · log

(

2

qm(t) + q′m(t)

)

. (5.10)

Note that (5.9) holds because p log 1
p

> 0, when 0 < p < 1, and (5.10) holds by the

inequality in (2.5).

Finally, by adding (5.5) and (5.7), the above result implies that

2 log N ≤
k
∑

m=1

l−1
∑

t=0

Pm(t)

[

(qm(t) + q′m(t)) · log

(

2

qm(t) + q′m(t)

)

+

(

1 +
1

N

)

log l

]

= k

(

1 +
1

N

)

log l +

k
∑

m=1

l−1
∑

t=0

Pm(t)· (qm(t) + q′m(t)) · log

(

2

qm(t) + q′m(t)

)

≤ k + k

(

1 +
1

N

)

log l.

The last inequality is due to the fact that function x log 2
x

is decreasing with x ≥ 1 and

that qm(t) + q′m(t) = 1 + |Cm(t)|−1
N

≥ 1 when Pm(t) = |Cm(t)|
N+1

6= 0.

Therefore, we have

N ≤ 2
k
2 l

k
2 (1+ 1

N ). (5.11)

Consider the function f(N) = N−2
k
2 l

k
2
(1+ 1

N ). The inequality (5.11) implies that f(N) ≤ 0

and is increasing with N . If we set N1 = (2l)
k
2 + k(l−1)

2
, then it is easy to see that

f(N1) =
k(l − 1)

2
+ (2l)

k
2 ·
(

1 − (1 + l − 1)
k

2N1

)

(5.12)

≥ k(l − 1)

2
+ (2l)

k
2 ·
(

1 −
(

1 +
(l − 1)k

2N1

))

(5.13)

=
k(l − 1)

2
− (2l)

k
2

N1
· k(l − 1)

2
≥ 0, (5.14)

where (5.12) implies (5.13) because (1 + a)b ≤ 1 + ab when b ≤ 1 and a ≥ 0.
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As a result, since f(N) ≤ 0 ≤ f(N1),

∣

∣

∣
CDk

l

∣

∣

∣
− 1 = N ≤ N1 = (2l)

k
2 +

k(l − 1)

2
.
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