The Ramsey number $r\left(K_{5}-P_{3}, K_{5}\right)$

Luis Boza*
Departamento de Matemática Aplicada I
Universidad de Sevilla, Seville, Spain

boza@us.es
Submitted: Dec 2, 2010; Accepted: Apr 4, 2011; Published: Apr 14, 2011
Mathematics Subject Classification: 05D10

Abstract

For two given graphs G_{1} and G_{2}, the Ramsey number $r\left(G_{1}, G_{2}\right)$ is the smallest integer n such that for any graph G of order n, either G contains G_{1} or the complement of G contains G_{2}. Let K_{m} denote a complete graph of order m and $K_{n}-P_{3}$ a complete graph of order n without two incident edges. In this paper, we prove that $r\left(K_{5}-P_{3}, K_{5}\right)=25$ without help of computer algorithms.

1 Introduction

All graphs considered in this paper are simple graphs without loops. For two given graphs G_{1} and G_{2} and a given integer n, let $R\left(G_{1}, G_{2} ; n\right)$ denote the set of all graphs G of order n, such that G does not contain G_{1} and \bar{G} does not contain G_{2}, where \bar{G} is the complement of G. The Ramsey number $r\left(G_{1}, G_{2}\right)$ is the smallest integer n such that $R\left(G_{1}, G_{2} ; n\right)$ is empty.

The values of $r\left(G_{1}, G_{2}\right)$ for all graphs G_{1} and G_{2} of order at most five up to the three cases that G_{1} is one of the graphs $K_{5}-P_{3}, K_{5}-e$ and K_{5} and $G_{2}=K_{5}$ are found in $[1,3,5,6,7,8,9,10,11,12,15,16,17,18]$.

Kalbfleisch [13] proved that $r\left(K_{5}-P_{3}, K_{5}\right) \geq 25$ and McKay and Radziszowski [15] found 350904 graphs belonging to $R\left(K_{4}, K_{5} ; 24\right) \subseteq R\left(K_{5}-P_{3}, K_{5} ; 24\right)$, but there might be more of them. Recently, Black, Leven and Radziszowski [2] proved that $r\left(K_{5}-P_{3}, K_{5}\right) \leq$ 26 and Clavert, Schuster and Radziszowski [4] computed the main result of the present paper.

[^0]
2 Main result

In this paper we find the value of $r\left(K_{5}-P_{3}, K_{5}\right)$ without help of computer algorithms. The main result is the following:

Theorem $2.1 r\left(K_{5}-P_{3}, K_{5}\right)=25$.
In order to prove Theorem 2.1, we proceed by reduction to the absurd. Suppose that there exists a graph $G \in R\left(K_{5}-P_{3}, K_{5} ; 25\right)$. Since $r\left(K_{4}, K_{5}\right)=25$ [15] we have G contains K_{4}. Let \mathcal{K} be the set of cliques of G of order 4 , let $K \in \mathcal{K}$ be such that $\sum_{v \in V(K)} d(v)=\max \left\{\sum_{v \in V(X)} d(v): X \in \mathcal{K}\right\}$ and let v_{1}, v_{2}, v_{3} and v_{4} be the vertices of K. We may suppose without loss of generality that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq d\left(v_{3}\right) \geq d\left(v_{4}\right)$.

Let $|A|$ denote the cardinality of the set A. If F is a graph then $V(F)$ denotes its vertex set. The neighborhood $N_{F}(v)$ of a vertex v is the set of vertices adjacent to v in the graph F. If G_{1} is isomorphic to a subgraph of G_{2} then we use $G_{1} \subseteq G_{2}$ to denote it. If A is a subset of $V(F)$, then $F[A]$ is the subgraph induced by A. If $v \in V(F), d_{F}(v)$ is the degree of v in F. The maximum and minimum degree of F are denoted by $\Delta(F)$ and $\delta(F)$, respectively.

Let d, V and N denote $d_{G}, V(G)$ and N_{G}, respectively.
If k is a positive integer, $F \in R\left(K_{m}-P_{3}, K_{n} ; k\right)$ and $v \in V(F)$ then $F\left[N_{F}(v)\right] \in$ $R\left(K_{m-1}-P_{3}, K_{n} ; d_{F}(v)\right)$ and $F\left[N_{\bar{F}}(v)\right] \in R\left(K_{m}-P_{3}, K_{n-1} ; k-1-d_{F}(v)\right)$. Thus $\Delta(F) \leq$ $r\left(K_{m-1}-P_{3}, K_{n}\right)-1$ and $\delta(F) \geq k-r\left(K_{m}-P_{3}, K_{n-1}\right)$. Since $r\left(K_{5}-P_{3}, K_{4}\right)=18$ [7] we have $\delta(G) \geq 7$.

In the rest of the paper, i and j are two different integers with $1 \leq i, j \leq 4$.
Let $A_{i}=N\left(v_{i}\right)-V(K)$ and $D=V(G)-V(K)-\bigcup_{k=1}^{4} A_{k} . A_{i} \cap A_{j}=\emptyset$, because in otherwise G should contain $K_{5}-P_{3}$. Hence $\left\{V(K), A_{1}, A_{2}, A_{3}, A_{4}, D\right\}$ is a partition of V. Obviously, $\left|A_{i}\right|=d\left(v_{i}\right)-3 \geq 4$.

If $u \in A_{i}$ or $u \in D$ then $\left|N(u) \cap A_{i}\right|$, the number of vertices belonging to A_{j} adjacent to u, is denoted by $e_{j}(u)$.

Let H_{i} denote the graph $G\left[V(G)-\left(A_{i} \cup V(K)\right)\right]=G\left[N_{\bar{G}}\left(v_{i}\right)\right]$. Clearly $H_{i} \in R\left(K_{5}-\right.$ $\left.P_{3}, K_{4} ; 21-\left|A_{i}\right|\right)$.

If $u \in V-V(K)-D, g(u)$ will represent the integer k for which $u \in A_{k}$. Also, if $u \in D$, we define $g(u)=0$.

In order to prove Theorem 2.1, we need the following results:
Lemma 2.1 Let $u \in A_{i}$ and $w \in D$. Then $d(u)-9 \leq e_{j}(u) \leq d(u)+\left|A_{j}\right|-13$ and $d(w)-8 \leq e_{i}(w) \leq d(w)+\left|A_{i}\right|-12$.

Proof. Since $H_{j} \in R\left(K_{5}-P_{3}, K_{4} ; 21-\left|A_{j}\right|\right), r\left(K_{4}-P_{3}, K_{4}\right)=9[6]$ and $r\left(K_{5}-P_{3}, K_{3}\right)=9$ [7], we have $d_{H_{j}}(u), d_{H_{j}}(w) \leq \Delta\left(H_{j}\right) \leq r\left(K_{4}-P_{3}, K_{4}\right)-1=8$ and $d_{H_{j}}(u), d_{H_{j}}(w) \geq$ $\delta\left(H_{j}\right) \geq 21-\left|A_{j}\right|-r\left(K_{5}-P_{3}, K_{3}\right)=12-\left|A_{j}\right|$. The results follow on noting that $d(u)=d_{H_{j}}(u)+e_{j}(u)+1$ and $d(w)=d_{H_{i}}(w)+e_{i}(w)$.

Corollary 2.1 Let k be, with $1 \leq k \leq 4$ and $k \neq i$, and let $u \in A_{i}$. Then $e_{j}(u)+4-\left|A_{j}\right| \leq$ $e_{k}(u)$.

Proof. The result is obtained from $e_{j}(u) \leq d(u)+\left|A_{j}\right|-13$ and $d(u)-9 \leq e_{k}(u)$.
Corollary 2.2 The degree in G of every vertex of D is 10 .
Proof. Let $w \in D$. Since $d(w)=d_{D}(w)+\sum_{k=1}^{4} e_{k}(w)$, by Lemma 2.1, we have $d_{D}(w)+$ $4(d(w)-8) \leq d(w) \leq d_{D}(w)+\sum_{k=1}^{4}\left(d(w)+\left|A_{k}\right|-12\right)$. Thus $3 d(w) \geq 48-\sum_{k=1}^{4}\left|A_{k}\right|-$ $d_{D}(w) \geq 48-\sum_{k=1}^{4}\left|A_{k}\right|-(|D|-1)=28$ and $3 d(w) \leq 32-d_{D}(w) \leq 32$. As $28 \leq 3 d(w) \leq$ 32, the result follows.

Lemma 2.2 The vertices of degree 7 or 8 in G belong to K.
Proof. Let $u \in V(G)-V(K)$. On the one hand, if $u \in D$ then, by Corollary 2.2, $d(u)=10$, thus $d(u) \geq 9$. On the other hand, if $u \in A_{i}$ then, by Lemma 2.1, $d(u)=$ $1+d_{G\left[A_{i}\right]}(u)+|D \cap N(u)|+\sum_{k=1, k \neq i}^{4} e_{k}(u) \leq 1+\left(\left|A_{i}\right|-1\right)+|D|+\sum_{k=1, k \neq i}^{4}\left(d(u)+\left|A_{k}\right|-13\right)=$ $3 d(u)+\sum_{k=1}^{4}\left|A_{k}\right|+|D|-39=3 d(u)+21-39$. Therefore $d(u) \geq 9$.

Corollary 2.3 G has exactly one subgraph isomorphic to K_{4}.
Proof. Suppose, to the contrary, that there exists $K^{\prime} \in \mathcal{K}-\{K\}$. Since $K_{5}-P_{3} \nsubseteq G$, we have $\left|V(K) \cap V\left(K^{\prime}\right)\right| \leq 1$ and, by Lemma 2.2, there are at least three vertices in K^{\prime} with degree in G at least 9 . Thus $\sum_{v \in V\left(K^{\prime}\right)} d(v) \geq 3 \cdot 9+1 \cdot 7=34$. As $21 \geq \sum_{k=1}^{4}\left|A_{k}\right|=$ $\sum_{k=1}^{4}\left(d\left(v_{k}\right)-3\right)$, we have $\sum_{k=1}^{4} d\left(v_{k}\right) \leq 33$, contradicting the definition of K.

Corollary 2.4 Let $u \in V-V(K)$, then $K_{3} \nsubseteq G[N(u)]$.
Proof. If there is a clique of order 3 in $G[N(u)]$, let u_{1}, u_{2} and u_{3} be its vertices. $G\left[\left\{u, u_{1}, u_{2}, u_{3}\right\}\right]$ is a subgraph of G different of K isomorphic to K_{4}, contradicting Lemma 2.3.

Corollary 2.5 $G\left[A_{i}\right] \in R\left(K_{3}, K_{4} ;\left|A_{i}\right|\right)$.
Proof. If $K_{3} \subseteq G\left[A_{i}\right]$, then let u_{1}, u_{2} and u_{3} be the vertices of a clique of order 3 of $G\left[A_{i}\right]$. $G\left[\left\{u_{1}, u_{2}, u_{3}, v_{i}\right\}\right]$ is a subgraph of G isomorphic to K_{4} different from K, contradicting Corollary 2.3.

If $K_{4} \subseteq \overline{G\left[A_{i}\right]}$, then let u_{1}, u_{2}, u_{3} and u_{4} be the four vertices of a clique of order 4 of $\overline{G\left[A_{i}\right]} . \bar{G}\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{j}\right\}\right]$ is a subgraph of \bar{G} isomorphic to K_{5}, a contradiction. Thus $G\left[A_{i}\right] \in R\left(K_{3}, K_{4} ;\left|A_{i}\right|\right)$.

Corollary 2.6 $H_{i} \in R\left(K_{4}, K_{4} ; 21-\left|A_{i}\right|\right)$.
Proof. K is not a subgraph of H_{i}, thus, by Corollary 2.3, $K_{4} \nsubseteq H_{i}$. Since $H_{i} \in R\left(K_{5}-\right.$ $\left.P_{3}, K_{4} ; 21-\left|A_{i}\right|\right)$ we have $K_{4} \nsubseteq \overline{H_{i}}$, concluding the proof.

Lemma $2.3 D=\emptyset$.

Proof. Suppose, to the contrary, that there exists $w \in D$. Let $X=V(G)-V(K)-$ $N(w)-\{w\}$. Since $N(w) \cap V(K)=\emptyset$, and, by Corollary $2.2,|N(w)|=10$, we have $|X|=25-4-10-1=10$. As K is not a subgraph of $G[X]$, by Corollary $2.3, K_{4} \nsubseteq$ $G[X]=\overline{\bar{G}[X]} . \quad r\left(K_{3}, K_{4}\right)=9[10]$, thus $R\left(K_{3}, K_{4} ; 10\right)=\emptyset$ and $\bar{G}[X] \notin R\left(K_{3}, K_{4} ; 10\right)$, hence $K_{3} \subseteq \bar{G}[X]$. Let u_{1}, u_{2} and u_{3} be the vertices of a clique of order 3 of $\bar{G}[X]$ and let $k \in\{1,2,3,4\}-\left\{g\left(u_{1}\right), g\left(u_{2}\right), g\left(u_{3}\right)\right\}$. Then $\bar{G}\left[\left\{w, v_{k}, u_{1}, u_{2}, u_{3}\right\}\right] \subseteq \bar{G}$ is isomorphic to K_{5}, a contradiction.

Lemma 2.4 If $\bar{G}\left[A_{i}\right]$ contains a clique of order 3, with vertices w_{1}, w_{2} and w_{3}, then $\left|\left(N\left(w_{1}\right)-N\left(w_{2}\right)-N\left(w_{3}\right)\right) \cap V\left(H_{i}\right)\right| \leq 2$.

Proof. Let $Y=\left(N\left(w_{1}\right)-N\left(w_{2}\right)-N\left(w_{3}\right)\right) \cap V\left(H_{i}\right)$. By Corollary 2.4, $K_{3} \nsubseteq G[Y] \subseteq$ $G\left[N\left(w_{1}\right)\right]$. If $K_{2} \subseteq \overline{G[Y]}$ then let $u_{1} u_{2}$ be an edge of $\overline{G[Y]}$ and let $k \in\{1,2,3,4\}-$ $\underline{\left\{i, g\left(u_{1}\right), g\left(u_{2}\right)\right\} . \overline{G\left[\left\{w_{1}, w_{2}, u_{1}, u_{2}, v_{k}\right\}\right]} \text { is isomorphic to } K_{5} \text {, a contradiction. Thus } K_{2} \nsubseteq}$ $\overline{G[Y]}$ and $G[Y] \in R\left(K_{3}, K_{2} ;|Y|\right)$. Therefore $\left|\left(N\left(w_{1}\right)-N\left(w_{2}\right)-N\left(w_{3}\right)\right) \cap V\left(H_{i}\right)\right|=|Y| \leq$ $r\left(K_{3}, K_{2}\right)-1=2$.

Lemma 2.5 If $\bar{G}\left[A_{i}\right]$ contains two adjacent vertices w_{1} and w_{2} then $\mid V\left(H_{i}\right) \cap N\left(w_{1}\right) \cap$ $N\left(w_{2}\right) \mid \leq 3$.

Proof. Let $Y=V\left(H_{i}\right) \cap N\left(w_{1}\right) \cap N\left(w_{2}\right)$. If $K_{2} \subseteq G[Y]$ then let u_{1} and u_{2} be the vertices of an edge of $G[Y] . G\left[\left\{w_{1}, w_{2}, u_{1}, u_{2}\right\}\right]$ is a subgraph of G isomorphic to K_{4} and different from K, contradicting Corollary 2.3. Thus $K_{2} \nsubseteq G[Y]$.

By Corollary 2.6, $K_{4} \nsubseteq \overline{G[Y]} \subseteq \overline{H_{i}}$. Thus $G[Y] \in R\left(K_{2}, K_{4} ;|Y|\right)$ and $\mid V\left(H_{i}\right) \cap N\left(w_{1}\right) \cap$ $N\left(w_{2}\right)\left|=|Y| \leq r\left(K_{2}, K_{4}\right)-1=3\right.$.

Lemma 2.6 Let $u \in A_{i}$, then the following statements are verified: $d_{G\left[A_{i}\right]}(u) \leq 3$, $\sum_{k=1, k \neq i}^{4} e_{k}(u) \leq 8$ and $d(u) \leq 11$.

Proof. Suppose, to the contrary, that $d_{G\left[A_{i}\right]}(u) \geq 4$. Let u_{1}, u_{2}, u_{3} and u_{4} be four different vertices belonging to $N_{G\left[A_{i}\right]}(u)$.

If $K_{2} \subseteq G\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]$, then let $u_{p}, u_{q} \in\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be two adjacent vertices. $G\left[\left\{u_{p}, u_{q}, u, v_{i}\right\}\right]$ is a subgraph of G isomorphic to K_{4} different from K, contradicting Corollary 2.3. Thus $K_{2} \nsubseteq G\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]$ and $\bar{G}\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right] \subseteq \overline{H_{i}}$ is isomorphic to K_{4}, contradicting Corollary 2.6. Hence $d_{G\left[A_{i}\right]}(u) \leq 3$.

By Corollary 2.4, $K_{3} \nsubseteq G\left[V\left(H_{i}\right) \cap N(u)\right] \subseteq G[N(u)]$ and, by Corollary 2.6, $K_{4} \nsubseteq$ $\overline{G\left[V\left(H_{i}\right) \cap N(u)\right]} \subseteq \overline{H_{i}}$. Therefore $G\left[V\left(H_{i}\right) \cap N(u)\right] \in R\left(K_{3}, K_{4} ;\left|V\left(H_{i}\right) \cap N(u)\right|\right)$ and $8=r\left(K_{3}, K_{4}\right)-1 \geq\left|V\left(H_{i}\right) \cap N(u)\right|=\sum_{k=1, k \neq i}^{4}\left|V\left(A_{k}\right) \cap N(u)\right|=\sum_{k=1, k \neq i}^{4} e_{k}(u)$, completing the second part of the proof.

Finally, by Lemma 2.1, $d(u)-9 \leq e_{j}(u)$, thus $3 d(u)-27 \leq \sum_{k=1, k \neq i}^{4} e_{k}(u) \leq 8$ and $d(u) \leq 11$.

Lemma 2.7 Let $u \in A_{i}$, then $\left|A_{i}\right| \leq 2 d(u)+d_{G\left[A_{i}\right]}(u)-17$.

Proof. By Lemma 2.1, $e_{j}(u) \leq d(u)-13+\left|A_{j}\right|$. Therefore $d(u)-d_{G\left[A_{i}\right]}(u)-1=$ $\sum_{k=1, k \neq i}^{4} e_{k}(u) \leq 3 d(u)-39+\sum_{k=1, k \neq i}^{4}\left|A_{k}\right|=3 d(u)-39+\left(21-\left|A_{i}\right|\right)$ and $\left|A_{i}\right| \leq$ $2 d(u)+d_{G\left[A_{i}\right]}(u)-17$.

Corollary 2.7 Let $u \in A_{i}$, then $d_{G\left[A_{i}\right]}(u) \geq 1$ and if $d_{G\left[A_{i}\right]}(u)=1$ then $\left|A_{i}\right|=4$.
Proof. By Lemma 2.6, $d(u)=1+\sum_{k=1, k \neq i}^{4} e_{k}(u)+d_{G\left[A_{i}\right]}(u) \leq 9+d_{G\left[A_{i}\right]}(u)$. If $d_{G\left[A_{i}\right]}(u)=0$ then $d(u) \leq 9$ and, by Lemma 2.7, $\left|A_{i}\right| \leq 1$, contradicting $\left|A_{i}\right| \geq 4$. If $d_{G\left[A_{i}\right]}(u)=1$ then $d(u) \leq 10$ and, by Lemma 2.7, $\left|A_{i}\right| \leq 4$, thus $\left|A_{i}\right|=4$.

Corollary 2.8 If $\left|A_{i}\right|=7$ and $u \in A_{i}$ then $d(u)=11$.
Proof. By Lemmas 2.6 and 2.7, $7=\left|A_{i}\right| \leq 2 d(u)+d_{G\left[A_{i}\right]}(u)-17 \leq 2 d(u)+3-17$, thus $2 d(u) \geq 21$ and $d(u) \geq 11$. Since $d(u) \leq 11$, we conclude the proof.

In the rest of the paper if we assign the name W to an ordered set of vertices, $\left\{u_{1}, \ldots, u_{p}\right\} \subseteq A_{i}$, with $p \geq 3$, then $\left|\left(N\left(u_{k}\right)-\bigcup_{t=1, t \neq k}^{p} N\left(u_{t}\right)\right) \cap V\left(H_{i}\right)\right|$ will be denoted by $a_{k},\left|\left(N\left(u_{h}\right) \cap N\left(u_{k}\right)-\bigcup_{t=1, t \neq h, k}^{p} N\left(u_{t}\right)\right) \cap V\left(H_{i}\right)\right|$ by $b_{h, k}$, and $\mid\left(N\left(u_{h}\right) \cap N\left(u_{k}\right) \cap N\left(u_{l}\right)-\right.$ $\left.\bigcup_{t=1, t \neq h, k, l}^{p} N\left(u_{t}\right)\right) \cap V\left(H_{i}\right) \mid$ by $c_{h, k, l}$.

Lemma 2.8 If $\bar{G}\left[A_{i}\right]$ contains a clique of order 3, with vertices u_{1}, u_{2} and u_{3}, then $39-2\left|A_{i}\right| \leq d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(u_{3}\right)-d_{G\left[A_{i}\right]}\left(u_{1}\right)-d_{G\left[A_{i}\right]}\left(u_{2}\right)-d_{G\left[A_{i}\right]}\left(u_{3}\right)$.

Proof. Let $W=\left\{u_{1}, u_{2}, u_{3}\right\}$, let $w \in V\left(H_{i}\right)$, and let $k \in\{1,2,3,4\}-\{i, g(w)\}$. Since $\bar{G}\left[\left\{u_{1}, u_{2}, u_{3}, w, v_{k}\right\}\right]$ is not isomorphic to K_{5}, w is adjacent to at least a vertex of W and, therefore, every vertex of $V\left(H_{i}\right)$ is adjacent to at least a vertex of W. Hence:

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+b_{1,2}+b_{1,3}+b_{2,3}+c_{1,2,3}=\left|V\left(H_{i}\right)\right|=21-\left|A_{i}\right| \tag{1}
\end{equation*}
$$

On the one hand, since u_{1} is adjacent to $d\left(u_{1}\right)-d_{G\left[A_{i}\right]}\left(u_{1}\right)-1$ vertices of H_{i} we have:

$$
\begin{equation*}
a_{1}+b_{1,2}+b_{1,3}+c_{1,2,3}=d\left(u_{1}\right)-d_{G\left[A_{i}\right]}\left(u_{1}\right)-1 \tag{2}
\end{equation*}
$$

Analogously, u_{2} and u_{3} are adjacent to $d\left(u_{2}\right)-d_{G\left[A_{i}\right]}\left(u_{2}\right)-1$ and $d\left(u_{3}\right)-d_{G\left[A_{i}\right]}\left(u_{3}\right)-1$ vertices of H_{i} respectively, thus:

$$
\begin{align*}
& a_{2}+b_{1,2}+b_{2,3}+c_{1,2,3}=d\left(u_{2}\right)-d_{G\left[A_{i}\right]}\left(u_{2}\right)-1 \tag{3}\\
& a_{3}+b_{1,3}+b_{2,3}+c_{1,2,3}=d\left(u_{3}\right)-d_{G\left[A_{i}\right]}\left(u_{3}\right)-1 \tag{4}
\end{align*}
$$

On the other hand, by Lemma 2.4:

$$
\begin{align*}
& a_{1}=\left|\left(N\left(u_{1}\right)-N\left(u_{2}\right)-N\left(u_{3}\right)\right) \cap V\left(H_{i}\right)\right| \leq 2 \tag{5}\\
& a_{2}=\left|\left(N\left(u_{2}\right)-N\left(u_{1}\right)-N\left(u_{3}\right)\right) \cap V\left(H_{i}\right)\right| \leq 2 \tag{6}
\end{align*}
$$

$$
\begin{equation*}
a_{3}=\left|\left(N\left(u_{3}\right)-N\left(u_{1}\right)-N\left(u_{2}\right)\right) \cap V\left(H_{i}\right)\right| \leq 2 \tag{7}
\end{equation*}
$$

Finally, from $(2)+(3)+(4)+(5)+(6)+(7)-2(1)$ we have:

$$
c_{1,2,3} \leq d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(u_{3}\right)-d_{G\left[A_{i}\right]}\left(u_{1}\right)-d_{G\left[A_{i}\right]}\left(u_{2}\right)-d_{G\left[A_{i}\right]}\left(u_{3}\right)-39+2\left|A_{i}\right| .
$$

We obtain the result noting that $c_{1,2,3}$ is non-negative.
Corollary 2.9 If $\bar{G}\left[A_{i}\right]$ contains a clique of order 3 , then $\left|A_{i}\right| \geq 6$ and if $\left|A_{i}\right|=6$ then for any vertex u of the clique, $d_{G\left[A_{i}\right]}(u)=2$ and $d(u)=11$.

Proof. Let u_{1}, u_{2}, and u_{3} be the three vertices of the clique. By Corollary 2.7, $d_{G\left[A_{i}\right]}\left(u_{1}\right)$, $d_{G\left[A_{i}\right]}\left(u_{2}\right), d_{G\left[A_{i}\right]}\left(u_{3}\right) \geq 1$ and, by Lemma 2.6, $d\left(u_{1}\right), d\left(u_{2}\right), d\left(u_{3}\right) \leq 11$.

Therefore, by Lemma 2.8, $39-2\left|A_{i}\right| \leq d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(u_{3}\right)-d_{G\left[A_{i}\right]}\left(u_{1}\right)-d_{G\left[A_{i}\right]}\left(u_{2}\right)-$ $d_{G\left[A_{i}\right]}\left(u_{3}\right) \leq 11+11+11-1-1-1=30$ and $\left|A_{i}\right| \geq 5$. Hence, by Corollary 2.7, $d_{G\left[A_{i}\right]}\left(u_{1}\right), d_{G\left[A_{i}\right]}\left(u_{2}\right), d_{G\left[A_{i}\right]}\left(u_{3}\right) \geq 2$, and $39-2\left|A_{i}\right| \leq d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(u_{3}\right)-d_{G\left[A_{i}\right]}\left(u_{1}\right)-$ $d_{G\left[A_{i}\right]}\left(u_{2}\right)-d_{G\left[A_{i}\right]}\left(u_{3}\right) \leq 11+11+11-2-2-2=27$, thus $\left|A_{i}\right| \geq 6$.

If $\left|A_{i}\right|=6$, on the one hand, $27=39-2\left|A_{i}\right| \leq d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(u_{3}\right)-d_{G\left[A_{i}\right]}\left(u_{1}\right)-$ $d_{G\left[A_{i}\right]}\left(u_{2}\right)-d_{G\left[A_{i}\right]}\left(u_{3}\right) \leq d(u)+11+11-2-2-2=d(u)+16$, hence $d(u)=11$. On the other hand, $27=39-2\left|A_{i}\right| \leq d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(u_{3}\right)-d_{G\left[A_{i}\right]}\left(u_{1}\right)-d_{G\left[A_{i}\right]}\left(u_{2}\right)-d_{G\left[A_{i}\right]}\left(u_{3}\right) \leq$ $11+11+11-d_{G\left[A_{i}\right]}(u)-2-2=29-d_{G\left[A_{i}\right]}(u)$, therefore $d_{G\left[A_{i}\right]}(u)=2$.

Corollary 2.10 Let $u \in A_{i}$, then $d(u) \geq 10$.
Proof. By Lemma 2.6, $d_{G\left[A_{i}\right]}(u) \leq 3$. If $d(u) \leq 9$ then by Lemma 2.2, $d(u)=9$ and, by Lemma 2.7, $\left|A_{i}\right| \leq 2 d(u)+d_{G\left[A_{i}\right]}(u)-17 \leq 18+3-17=4$, thus $\left|A_{i}\right|=4$. By Lemma 2.1, $8-d_{G\left[A_{i}\right]}(u)=d(u)-1-d_{G\left[A_{i}\right]}(u)=\sum_{k=1, k \neq i}^{4} e_{k}(u) \leq \sum_{k=1, k \neq i}^{4}\left(\left|A_{k}\right|-13+d(u)\right)=$ $\sum_{k=1, k \neq i}^{4}\left|A_{k}\right|-12=(21-4)-12=5$. Hence $d_{G\left[A_{i}\right]}(u) \geq 3$ and u is adjacent to the three vertices of $A_{i}-\{u\}$.

By Corollary 2.9, $K_{3} \nsubseteq \overline{G\left[A_{i}\right]}$ and at least two of the three vertices of $A_{i}-\{u\}$ are adjacent. Let w_{1} and w_{2} denote them. Then u, w_{1} and w_{2} are the vertices of a clique of $G\left[A_{i}\right]$, contradicting Corollary 2.5 and completing the proof.

From Corollaries 2.5 and 2.9 and Lemma 2.6, it is easy to check the next result:
Corollary 2.11 1. If $\left|A_{i}\right|=4$ then $G\left[A_{i}\right]$ is isomorphic to $2 K_{2}, P_{4}$ or C_{4}.
2. If $\left|A_{i}\right|=5$ then $G\left[A_{i}\right]$ is isomorphic to C_{5}.
3. If $\left|A_{i}\right|=6$ then $G\left[A_{i}\right]$ is isomorphic to C_{6} or $S K_{2,3}$ (the graph obtained subdividing one edge of $K_{2,3}$).

Now, we prove that $G\left[A_{i}\right]$ is isomorphic neither to C_{5} nor to $S K_{2,3}$.
Lemma 2.9 $G\left[A_{i}\right]$ is not isomorphic to C_{5}.

Proof. Suppose, to the contrary, that $G\left[A_{i}\right]$ is isomorphic to C_{5}. Let $W=\left\{u_{1}, \ldots, u_{5}\right\}$ denote its vertices, with its edges being $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}$ and $u_{1} u_{5}$.

Let $w \in V\left(H_{i}\right)$. By Lemmas 2.1 and 2.6 and Corollary $2.10,1 \leq d(w)-9 \leq e_{i}(w) \leq$ $d(w)-13+\left|A_{i}\right|=d(w)-8 \leq 3$, thus every vertex of H_{i} is adjacent to 1,2 or 3 vertices of $G\left[A_{i}\right]$ and we have:

$$
\begin{equation*}
\sum_{k=1}^{5} a_{k}+\sum_{1 \leq k<m \leq 5} b_{k, m}+\sum_{1 \leq k<m<n \leq 5} c_{k, m, n}=\left|V\left(H_{i}\right)\right|=16 \tag{8}
\end{equation*}
$$

On the one hand, by Lemma 2.5:

$$
\begin{align*}
& b_{1,2}+c_{1,2,3}+c_{1,2,4}+c_{1,2,5}=\left|V\left(H_{i}\right) \cap N\left(u_{1}\right) \cap N\left(u_{2}\right)\right| \leq 3 \tag{9}\\
& b_{2,3}+c_{1,2,3}+c_{2,3,4}+c_{2,3,5}=\left|V\left(H_{i}\right) \cap N\left(u_{2}\right) \cap N\left(u_{3}\right)\right| \leq 3 \tag{10}\\
& b_{3,4}+c_{1,3,4}+c_{2,3,4}+c_{3,4,5}=\left|V\left(H_{i}\right) \cap N\left(u_{3}\right) \cap N\left(u_{4}\right)\right| \leq 3 \tag{11}\\
& b_{4,5}+c_{1,4,5}+c_{2,4,5}+c_{3,4,5}=\left|V\left(H_{i}\right) \cap N\left(u_{4}\right) \cap N\left(u_{5}\right)\right| \leq 3 \tag{12}\\
& b_{1,5}+c_{1,2,5}+c_{1,3,5}+c_{1,4,5}=\left|V\left(H_{i}\right) \cap N\left(u_{1}\right) \cap N\left(u_{5}\right)\right| \leq 3 \tag{13}
\end{align*}
$$

On the other hand, let $Y=V\left(H_{i}\right)-N\left(u_{1}\right)-N\left(u_{3}\right)$. By Corollary 2.6, $K_{4} \nsubseteq G[Y] \subseteq$ H_{i}. If $K_{2} \subseteq \overline{G[Y]}$ then let w_{1} and w_{2} be the vertices of an edge of $\overline{G[Y]}$ and let $k \in$ $\{1,2,3,4\}-\left\{i, g\left(w_{1}\right), g\left(w_{2}\right)\right\} . \overline{G\left[\left\{u_{1}, u_{3}, w_{1}, w_{2}, v_{k}\right\}\right]}$ is isomorphic to K_{5}, a contradiction. Thus $K_{2} \nsubseteq \overline{G[Y]}, G[Y] \in R\left(K_{4}, K_{2} ;|Y|\right)$ and:

$$
\begin{align*}
a_{2}+a_{4}+a_{5}+b_{2,4} & +b_{2,5}+b_{4,5}+c_{2,4,5}=\left|V\left(H_{i}\right)-N\left(u_{1}\right)-N\left(u_{3}\right)\right|= \\
& =|Y| \leq r\left(K_{4}, K_{2}\right)-1=3 \tag{14}
\end{align*}
$$

Similarly $G\left[V\left(H_{i}\right)-N\left(u_{1}\right)-N\left(u_{4}\right)\right] \in R\left(K_{4}, K_{2} ;\left|V\left(H_{i}\right)-N\left(u_{1}\right)-N\left(u_{4}\right)\right|\right)$ and:

$$
\begin{gather*}
a_{2}+a_{3}+a_{5}+b_{2,3}+b_{2,5}+b_{3,5}+c_{2,3,5} \leq 3 \tag{15}\\
G\left[V\left(H_{i}\right)-N\left(u_{2}\right)-N\left(u_{4}\right)\right] \in R\left(K_{4}, K_{2} ;\left|V\left(H_{i}\right)-N\left(u_{2}\right)-N\left(u_{4}\right)\right|\right) \text { and: } \\
a_{1}+a_{3}+a_{5}+b_{1,3}+b_{1,5}+b_{3,5}+c_{1,3,5} \leq 3 \tag{16}\\
G\left[V\left(H_{i}\right)-N\left(u_{2}\right)-N\left(u_{5}\right)\right] \in R\left(K_{4}, K_{2} ;\left|V\left(H_{i}\right)-N\left(u_{2}\right)-N\left(u_{5}\right)\right|\right) \text { and: } \\
a_{1}+a_{3}+a_{4}+b_{1,3}+b_{1,4}+b_{3,4}+c_{1,3,4} \leq 3 \tag{17}
\end{gather*}
$$

$$
\begin{gather*}
G\left[V\left(H_{i}\right)-N\left(u_{3}\right)-N\left(u_{5}\right)\right] \in R\left(K_{4}, K_{2} ;\left|V\left(H_{i}\right)-N\left(u_{3}\right)-N\left(u_{5}\right)\right|\right) \text { and: } \\
a_{1}+a_{2}+a_{4}+b_{1,2}+b_{1,4}+b_{2,4}+c_{1,2,4} \leq 3 \tag{18}
\end{gather*}
$$

From (9) $+\cdots+(18)$ we have:

$$
\begin{equation*}
3 \sum_{k=1}^{5} a_{k}+2 \sum_{1 \leq k<m \leq 5} b_{k, m}+2 \sum_{1 \leq k<m<n \leq 5} c_{k, m, n} \leq 30 \tag{19}
\end{equation*}
$$

Finally, from (19) - 2(8) we obtain $\sum_{k=1}^{5} a_{k} \leq-2$. This contradiction completes the proof.

Lemma 2.10 $G\left[A_{i}\right]$ is not isomorphic to $S K_{2,3}$.
Proof. Suppose, to the contrary, that $G\left[A_{i}\right]$ is isomorphic to $S K_{2,3}$. Let $W=\left\{u_{1}, \ldots, u_{4}\right\}$ be the set of vertices of A_{i} of degree 2 in $G\left[A_{i}\right]$, with its only edge being $u_{1} u_{2}$. Every vertex of W belongs to a clique of order 3 contained in $\bar{G}\left[A_{i}\right]$, thus, by Corollary 2.9, each vertex of W has degree 11 in G. Let $h=\left|V\left(H_{i}\right) \cap \bigcap_{n=1}^{4} N\left(u_{n}\right)\right|$.

Since $d\left(u_{1}\right)=11$ and $d_{G\left[A_{i}\right]}\left(u_{1}\right)=2$ we have that, $\left|N(u) \cap V\left(H_{i}\right)\right|$, the number of edges incident to u_{1} and a vertex of H_{i} is:

$$
\begin{equation*}
a_{1}+b_{1,2}+b_{1,3}+b_{1,4}+c_{1,2,3}+c_{1,2,4}+c_{1,3,4}+h=d\left(u_{1}\right)-d_{G\left[A_{i}\right]}\left(u_{1}\right)-1=8 \tag{20}
\end{equation*}
$$

On the one hand, by Lemma 2.4:

$$
\begin{equation*}
a_{1}+b_{1,2}=\left|\left(N\left(u_{1}\right)-N\left(u_{3}\right)-N\left(u_{4}\right)\right) \cap V\left(H_{i}\right)\right| \leq 2 \tag{21}
\end{equation*}
$$

On the other hand, let $Y=V\left(H_{i}\right) \cap N\left(u_{1}\right) \cap N\left(u_{3}\right)$. By Corollary 2.4, $K_{3} \nsubseteq G[Y] \subseteq$ $G\left[N\left(u_{1}\right)\right]$. If $K_{2} \subseteq \overline{G[Y]}$ then let w_{1} and w_{2} be the vertices of an edge of $\overline{G[Y]}$ and let $k \in$ $\{1,2,3,4\}-\left\{i, g\left(w_{1}\right), g\left(w_{2}\right)\right\} . \overline{G\left[\left\{u_{1}, u_{3}, w_{1}, w_{2}, v_{k}\right\}\right]}$ is isomorphic to K_{5}, a contradiction. Therefore $K_{2} \nsubseteq \overline{G[Y]}, G[Y] \in R\left(K_{3}, K_{2} ;|Y|\right)$ and:

$$
\begin{equation*}
b_{1,3}+c_{1,2,3}+c_{1,3,4}+h=\left|V\left(H_{i}\right) \cap N\left(u_{1}\right) \cap N\left(u_{3}\right)\right|=|Y| \leq r\left(K_{3}, K_{2}\right)-1=2 \tag{22}
\end{equation*}
$$

Similarly $G\left[V\left(H_{i}\right) \cap N\left(u_{1}\right) \cap N\left(u_{4}\right)\right] \in R\left(K_{3}, K_{2} ;\left|V\left(H_{i}\right) \cap N\left(u_{1}\right) \cap N\left(u_{4}\right)\right|\right)$ and:

$$
\begin{equation*}
b_{1,4}+c_{1,2,4}+c_{1,3,4}+h \leq 2 \tag{23}
\end{equation*}
$$

From $(21)+(22)+(23)-(20)$ we obtain $c_{1,3,4}+h \leq-2$, a contradiction.
Finally, we prove Theorem 2.1:
Proof. By Corollaries 2.8 and 2.11 and Lemmas 2.9 and 2.10, $\left|A_{1}\right|=7,\left|A_{2}\right|=6,\left|A_{3}\right|=$ $\left|A_{4}\right|=4, G\left[A_{2}\right]$ is isomorphic to C_{6} and all vertices of $A_{1} \cup A_{2}$ have degree 11 in G. Let s denote the number of edges of $G\left[A_{3}\right]$.

By Corollary 2.6, $H_{4} \in R\left(K_{4}, K_{4} ; 17\right)$. Kalbfleisch [14] proved that there is exactly one graph in the set $R\left(K_{4}, K_{4} ; 17\right)$ and every vertex of this graph has degree 8 , thus, for any $w \in V\left(H_{4}\right), d_{H_{4}}(w)=8$.

If $u \in A_{1} \cup A_{2}$, by Lemma 2.1, $2=d(u)-9 \leq e_{3}(u) \leq d(u)-13+\left|A_{3}\right|=2$, thus $e_{3}(u)=2$ and the number of edges of H_{4} with a vertex belonging to $A_{1} \cup A_{2}$ and another vertex belonging to A_{3} is $\sum_{w \in A_{3}}\left(e_{1}(w)+e_{2}(w)\right)=\sum_{u \in A_{1} \cup A_{2}} e_{3}(u)=2\left|A_{1} \cup A_{2}\right|=26$.

If $w \in A_{3}$, then $8=d_{H_{4}}(w)=d_{G\left[A_{3}\right]}(w)+e_{1}(w)+e_{2}(w)$. Thus $32=\sum_{w \in A_{3}} 8=$ $\sum_{w \in A_{3}} d_{G\left[A_{3}\right]}(w)+\sum_{w \in A_{3}}\left(e_{1}(w)+e_{2}(w)\right)=2 s+26$ and $s=3$. Hence, by Corollary 2.11, $G\left[A_{3}\right]$ is isomorphic to P_{4}.

In the following, we assume that $i=3$. Let $W=\left\{u_{1}, \ldots, u_{4}\right\}$ be the vertices of A_{3}, with the edges of $G\left[A_{3}\right]$ being $u_{1} u_{2}, u_{2} u_{3}$ and $u_{3} u_{4}$.

Let $w \in V\left(H_{3}\right)$. By Lemmas 2.1 and 2.6 and Corollary $2.10,1 \leq d(w)-9 \leq e_{3}(w) \leq$ $d(w)-13+\left|A_{3}\right|=d(w)-9 \leq 2$, thus every vertex of H_{3} is adjacent to 1 or 2 vertices of A_{3} and $\left|N\left(u_{2}\right) \cap V\left(H_{3}\right)\right|$ is:

$$
\begin{equation*}
a_{2}+b_{1,2}+b_{2,3}+b_{2,4}=d\left(u_{2}\right)-d_{G\left[A_{3}\right]}\left(u_{2}\right)-1 \geq 10-2-1=7 \tag{24}
\end{equation*}
$$

Let $Y_{1}=V\left(H_{3}\right) \cap N\left(u_{2}\right)-N\left(u_{1}\right)-N\left(u_{3}\right)$. By Corollary 2.4, $K_{3} \nsubseteq G\left[Y_{1}\right] \subseteq G\left[N\left(u_{2}\right)\right]$. If $K_{2} \subseteq \overline{G\left[Y_{1}\right]}$ then let w_{1} and w_{2} be the vertices of an edge of $\overline{G\left[Y_{1}\right]}$ and let $k \in$ $\{1,2,4\}-\left\{g\left(w_{1}\right), g\left(w_{2}\right)\right\} . \bar{G}\left[\left\{u_{1}, u_{3}, w_{1}, w_{2}, v_{k}\right\}\right]$ is isomorphic to K_{5}, a contradiction. Hence $K_{2} \nsubseteq \overline{G\left[Y_{1}\right]}, G\left[Y_{1}\right] \in R\left(K_{3}, K_{2} ;\left|Y_{1}\right|\right)$ and:

$$
\begin{equation*}
a_{2}+b_{2,4}=\left|V\left(H_{3}\right) \cap N\left(u_{2}\right)-N\left(u_{1}\right)-N\left(u_{3}\right)\right|=\left|Y_{1}\right| \leq r\left(K_{3}, K_{2}\right)-1=2 \tag{25}
\end{equation*}
$$

On the one hand, by Lemma 2.5:

$$
\begin{equation*}
b_{1,2}=\left|V\left(H_{3}\right) \cap N\left(u_{1}\right) \cap N\left(u_{2}\right)\right| \leq 3 \tag{26}
\end{equation*}
$$

On the other hand, let $Y_{2}=V\left(H_{3}\right) \cap N\left(u_{2}\right) \cap N\left(u_{3}\right)$. If $K_{2} \subseteq G\left[Y_{2}\right]$ then let w_{1} and w_{2} be the vertices of an edge of $G\left[Y_{2}\right] . G\left[\left\{w_{1}, w_{2}, u_{2}, u_{3}\right\}\right]$ is a subgraph of G isomorphic to K_{4} and different from K, contradicting Corollary 2.3, thus $K_{2} \nsubseteq G\left[Y_{2}\right]$. If $K_{2} \subseteq \overline{G\left[Y_{2}\right]}$ then let w_{1} and w_{2} be the vertices of an edge of $\overline{G\left[Y_{2}\right]}$ and let $k \in\{1,2,4\}-\left\{g\left(w_{1}\right), g\left(w_{2}\right)\right\}$. $\bar{G}\left[\left\{u_{1}, u_{4}, w_{1}, w_{2}, v_{k_{3}}\right\}\right]$ is isomorphic to K_{5}, a contradiction. Hence $K_{2} \nsubseteq \overline{G\left[Y_{2}\right]}, G\left[Y_{2}\right] \in$ $R\left(K_{2}, K_{2} ;\left|Y_{2}\right|\right)$ and:

$$
\begin{equation*}
b_{2,3}=\left|V\left(H_{3}\right) \cap N\left(u_{2}\right) \cap N\left(u_{3}\right)\right|=\left|Y_{2}\right| \leq r\left(K_{2}, K_{2}\right)-1=1 \tag{27}
\end{equation*}
$$

From (25) $+(26)+(27)$ we obtain $a_{2}+b_{1,2}+b_{2,3}+b_{2,4} \leq 6$, contradicting (24) and completing the proof of Theorem 2.1.

References

[1] A. Babak, S.P. Radziszowski and Kung-Kuen Tse. Computation of the Ramsey Number $R\left(B_{3}, K_{5}\right)$. Bulletin of the Institute of Combinatorics and its Applications, 41:71-76, 2004.
[2] K. Black, D. Leven and S.P. Radziszowski. New Bounds on Some Ramsey Numbers. To appear in the Journal of Combinatorial Mathematics and Combinatorial Computing, 2009. http://www.cs.rit.edu/~spr/PUBL/publ.html.
[3] R. Bolze and H Harborth. The Ramsey Number $r\left(K_{4}-x, K_{5}\right)$. The Theory and Applications of Graphs, (Kalamazoo, MI, 1980), 109-116, 1981.
[4] J.A. Calvert, M.J. Schuster and S.P. Radziszowski, The Computation of $R\left(K_{5}-\right.$ $\left.P_{3}, K_{5}\right)=25$. http://www.cs.rit.edu/~spr/PUBL/publ.html.
[5] V. Chvátal and F. Harary. Generalized Ramsey Theory for Graphs, II. Small Diagonal Numbers Proc. Am. Math. Soc., 32:389-394, 1972.
[6] V. Chvátal and F. Harary. Generalized Ramsey Theory for Graphs, III. Small OffDiagonal Numbers Pacific Journal of Mathematics, 41:335-345, 1972.
[7] M. Clancy. Some small Ramsey numbers. Journal of Graph Theory, 1:89-91, 1977.
[8] C. Clapham, G. Exoo, H. Harborth, I. Mengersen and J. Sheehan. The Ramsey Number of $K_{5}-e$, Journal of Graph Theory, 13, 7-15, 1989.
[9] G. Exoo, H. Harborth and I. Mengersen. The Ramsey Number of K_{4} versus $K_{5}-e$. Ars Combnatoria, 25A:277-286, 1988.
[10] R.E. Greenwood and A.M. Gleason. Combinatorial Relations and Chromatic Graphs. Canadian Journal of Mathematics, 7:1-7, 1955.
[11] G.R.T. Hendry. Ramsey Numbers for Graphs with Five Vertices. Journal of Graph Theory, 13:245-248, 1989.
[12] G.R.T. Hendry. The Ramsey Numbers $r\left(K_{2}+K_{3}, K_{4}\right)$ and $r\left(K_{1}+C_{4}, K_{4}\right)$. Utilitas Mathematica, 35:40-54, 1989, addendum in 36:25-32, 1989.
[13] J.G. Kalbfleisch. Construction of Special Edge-Chromatic Graphs. Canadian Mathematical Bulletin, 8:575-584, 1965.
[14] J.G. Kalbfleisch. Chromatic Graph and Ramsey's Theorem. Ph.D. thesis, University of Waterloo, January 1966.
[15] B.D. McKay and S.P. Radziszowski. $R(4,5)=25$. Journal of Graph Theory, 19:309322, 1995.
[16] S.P. Radziszowski. Small Ramsey Numbers. The Electronic Journal of Combinatorics, Dynamic Surveys: DS1, 2009. http://www.combinatorics.org/.
[17] S.P. Radziszowski, J. Stinehour and Kung-Kuen Tse. Computation of the Ramsey Number $R\left(W_{5}, K_{5}\right)$. Bulletin of the Institute of Combinatorics and its Applications, 47:53-57, 2006.
[18] Y. Yuansheng and G.R.T. Hendry. The Ramsey Number $r\left(K_{1}+C_{4}, K_{5}-e\right)$. Journal of Graph Theory, 19:13-15, 1995.

[^0]: *This research is supported by the Andalusian Government under project P06-FQM-01649.

