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Abstract

We study the recursions A(n) = A(n−a−Ak(n−b))+A(Ak(n−b)) where a ≥ 0,
b ≥ 1 are integers and the superscript k denotes a k-fold composition, and also the
recursion C(n) = C(n − s − C(n − 1)) + C(n − s − 2 − C(n − 3)) where s ≥ 0 is
an interger. We prove that under suitable initial conditions the sequences A(n) and
C(n) will be defined for all positive integers, and be monotonic with their forward
difference sequences consisting only of 0 and 1. We also show that the sequence
generated by the recursion for A(n) with parameters (k, a, b) = (k, 0, 1), and initial
conditions A(1) = A(2) = 1, satisfies A(En) = En−1 where En is a generalized
Fibonacci recursion defined by En = En−1 + En−k with En = 1 for 1 ≤ n ≤ k.

1 Introduction

We study the behaviour of sequences defined by two types of recursions:

A(n) = A(n − a − Ak(n − b)) + A(Ak(n − b)) (1.1)

C(n) = C(n − s − C(n − 1)) + C(n − s − 2 − C(n − 3)). (1.2)

In recursion (1.1), the parameters a ≥ 0, b ≥ 1 and k ≥ 1 are integers and the superscript
k denotes a k-fold composition of A(n). This recursion generalizes one studied by Conway
and others corresponding to k = 1, a = 0 and b = 1 [1, 5]. Grytczuk [3] studied one of
these generalizations in detail. Recursion (1.2) is a special case of recursions of the form

C(n) =

k∑

i=1

C(n − ai − C(n − bi)) (1.3)
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where the parameters ai ≥ 0 and bi ≥ 1 are integers. Recursion (1.3) with parameters
k = 2, a1 = 0, b1 = 1, a2 = 1 and b2 = 2 is a well-known meta-Fibonacci recursion
considered by Conolly and others [1, 6]. As such, recursions of the form (1.3) are sometimes
called Conolly type. These recursions, in particular recursion (1.2) along with its variants,
have received recent attention due to their rich combinatorial properties under very specific
sets of initial conditions (see [4, 2] and the references cited therein).

Given recursions of the form (1.1) and (1.3) along with some initial conditions, it is
not immediate that such recursions are well-defined for all n ≥ 1 in the sense that for any
n, arguments of the form Ak(n−b), n−a−Ak(n−b) or n−a−C(n−b) lie in the interval
[1, n − 1]. The value of these arguments must necessarily lie within [1, n − 1] for the
recursive definition to work. A sequence of positive integers {an} is called slow-growing if
an − an−1 ∈ {0, 1} for all n. In this paper we derive properties of the initial conditions of
(1.1) and (1.2) which guarantee that the recursions are defined for all positive integers n,
and that the resulting sequence is slow-growing. Slow-growing meta-Fibonacci sequences
have been the subject of much study (see, for example, [1, 4, 5, 6] and the references cited
therein).

We also consider sequences satisfying (1.1) with parameters (k, a, b) = (k, 0, 1), which
have been studied by Grytczuk [3]. For A(n) corresponding to the parameters (k, a, b) =
(2, 0, 1) with initial conditions A(1) = A(2) = 1, Grytczuk found a correspondence be-
tween the resulting sequence A(n) and certain operations on binary words. He used this
method to show that A(Fn) = Fn−1 where Fn are the Fibonacci numbers, and stated that
similar phenomenon should hold for A(n) with parameters (k, a, b) = (k, 0, 1) and initial
conditions A(1) = A(2) = 1. Namely that A(En) = En−1 where En is the generalized
Fibonacci sequence defined by En = En−1 + En−k with En = 1 for 1 ≤ n ≤ k. Grytczuk
stated that his methods could be generalized to prove this property but we shall take an
alternate - much simpler - route to prove it.

2 The Conway type recursion A(n)

Consider recursion (1.1) with fixed parameters (k, a, b). Suppose recursion (1.1) is given
b + j (j ≥ 0) slow-growing initial conditions that are positive integers. We shall say that
A(n) is slow-growing until term m if A(n)−A(n−1) ∈ {0, 1} for n ∈ [2, m]. For n > b+j
the computation of A(n) requires that both the arguments Ak(n−b) and n−a−Ak(n−b)
in the recursive evaluation of A(n) satisfy 0 < Ak(n−b) < n and 0 < n−a−Ak(n−b) < n.
As a ≥ 0, these two conditions for term n are equivalent to

0 < Ak(n − b) < n − a for n > b + j. (2.1)

We assume that A(1) = 1. For A(b + j + 1) to be defined, condition (2.1) for term
b + j + 1 requires that Ak(j + 1) ∈ (0, j + 1 + b − a). However, the slow-growing and
positive initial conditions, along with the fact A(1) = 1, imply that Ak(i) is positive and
slow-growing up to term b + j. Since j + 1 ≤ b + j, Ak(j + 1) lies within the initial
conditions, and so the verification of condition (2.1) for term b + j + 1 depends on the
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initial conditions. Also, we require that A(b + j + 1)−A(b + j) ∈ {0, 1} for slow-growth.
In turns out that these conditions are sufficient for A(n) to be well-defined for all positive
integers n and be slow-growing. We prove this in the following proposition. But note that
if b > a then A(b + j + 1) will be defined because the slow-growth of Ak(i) up to term
b + j implies that 0 < Ak(j + 1) ≤ Ak(1) + j = j + 1 < (b − a) + j + 1, which establishes
condition (2.1) for term b + j + 1.

Proposition 1. Let A(n) = A(n − a−Ak(n− b)) + A(Ak(n − b)) with a ≥ 0, b ≥ 1, and
k ≥ 1 integers. Suppose that A(n) is given b + j initial conditions (j ≥ 0) that satisfy:

I) The b + j initial conditions are positive integers, slow-growing, and A(1) = 1.

II) A(b + j + 1) is defined and satisfies A(b + j + 1) − A(b + j) ∈ {0, 1}.

Then A(n) is defined for all positive integers n, remains slow-growing, and is unbounded.

Proof. We induct on n to show that A(n) is defined and slow-growing for n ≥ b + j + 1.
Set ∆(n) = A(n)−A(n− 1). Hypotheses II guarantees the existence of A(b + j + 1) and
that ∆(b + j + 1) ∈ {0, 1}, which starts off the induction process.

Assume that A(i) is defined and slow-growing until term n. We first show that A(n+1)
is defined. For this we need Ak(n+1−b) ∈ (0, n+1−a) so that condition (2.1) is satisfied
for n + 1. The fact that A(i) is slow-growing up to term n and A(1) = 1 imply that for
1 ≤ i ≤ n, A(i) ≤ A(1)+ i−1 = i. Thus A2(i) is defined up to term n, satisfies A2(1) = 1,
and remains slow-growing up to n due to A(i) being slow-growing till n. Iterating this
argument, it follows that for any integer l ≥ 1, Al(i) is defined and slow-growing up to
term n. As b ≥ 1 and n ≥ b + j + 1, we have that 2 ≤ n − b + 1 ≤ n. Thus using
condition (2.1) for n and the fact that Ak(i) is slow-growing up to n, we deduce that
Ak(n+1−b) ≤ Ak(n−b)+1 < n−a+1 and Ak(n+1−b) > 0 since the initial conditions
are positive. This shows that A(n + 1) is defined.

To verify the slow-growing property at n + 1 we rearrange the terms of ∆(n + 1) as

∆(n + 1) = A(Ak(n + 1 − b)) − A(Ak(n − b))

+A(n + 1 − a − Ak(n + 1 − b)) − A(n − a − Ak(n − b)) .

The two cases to consider are ∆(n+1− b) = 0 or ∆(n+1− b) = 1 for n ≥ b+ j +1 (note
that the argument lies in the interval [2, n] so there is no problem with well-definedness).

Case 1: ∆(n + 1 − b) = 0. In this case A(n + 1 − b) = A(n − b), which implies
that Ak(n + 1 − b) = Ak(n − b). The compositions are defined as we noted that Ak(i) is
defined and slow-growing up to n. As Ak(n+1− b) = Ak(n− b), the first summand in the
rearranged version of ∆(n+1) vanishes, and after substituting Ak(n− b) for Ak(n+1− b)
into the second summand we get

∆(n + 1) = A(n + 1 − a − Ak(n − b)) − A(n − a − Ak(n − b))

= ∆(n − a − Ak(n − b) + 1).
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Condition (2.1) for n implies that 1 < n− a−Ak(n− b) + 1 < n + 1. This bound for the
argument n − a − Ak(n − b) + 1 guarantees that ∆(n − a − Ak(n − b) + 1) is defined as
the argument lies in [2, n]. The induction hypothesis now implies that ∆(n + 1) ∈ {0, 1}.

Case 2: ∆(n + 1 − b) = 1. This implies that A(n + 1 − b) = A(n − b) + 1. Using
the fact that Ak−1(i) is slow-growing up to n, and that A(n − b) + 1 ≤ n − b + 1 ≤ n
due to b ≥ 1, it follows that Ak(n + 1 − b) = Ak−1(A(n − b) + 1) = Ak(n − b) + δ where
δ ∈ {0, 1}. If δ = 0 then the proof goes through the same route as case 1 because we get
Ak(n + 1 − b) = Ak(n − b) as above. If δ = 1 then substituting Ak(n + 1 − b) with the
value Ak(n − b) + 1 gives

∆(n + 1) = A(Ak(n − b) + 1) − A(Ak(n − b))

+A(n + 1 − a − Ak(n − b) − 1) − A(n − a − Ak(n − b))

= A(Ak(n − b) + 1) − A(Ak(n − b))

= ∆(Ak(n + 1 − b)) since Ak(n + 1 − b) − 1 = Ak(n − b).

The last quantity ∆(Ak(n + 1 − b)) ∈ {0, 1} because 2 ≤ Ak(n + 1 − b) ≤ n by condition
(2.1) for term n, and the fact that Ak(n + 1 − b) = Ak(n − b) + 1.

Induction shows that A(n) is defined and slow-growing for all n. A(n) must be un-
bounded, for otherwise, there is a m such that A(m + i) = M for all i ≥ 0. Then for
i ≥ b, the definition of A(n) and the boundedness assumption imply that M = A(m+i) =
A(m + i− a− M̂) + A(M̂) where M̂ = Ak−1(M) ∈ [1, M ]. Set i = max {b, M̂ + a} to get
that M = A(M̂) + M ; a contradiction.

When A(n) is considered with parameters (k, a, b) satisfying b > a, and initial condi-
tions A(1) = · · · = A(b+j) = 1 then it generates a slow-growing and unbounded sequence
by Proposition 1. The sequences generated by A(n) with parameters (k, 0, 1) and initial
conditions A(1) = A(2) = 1 have been studied by Grytczuk as mentioned in the intro-
duction. See Table 1 for values of A(n) with k = 2. Fix the parameter k and consider the
corresponding sequence En defined by En = En−1 + En−k with initial conditions En = 1
for 1 ≤ n ≤ k. We now prove the property of A(n) which relates to En as was mentioned
in the introduction (see Table 1 to observe this phenomenon for k = 2).

Table 1: A(n) with parameters (2, 0, 1) and A(1) = A(2) = 1.
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A(n) 1 1 2 3 3 4 5 5 6 7 7 8 8 9 10 11 12 12 12 13 13 14

Theorem 2.1. Let A(n) = A(Ak(n−1))+A(n−Ak(n−1)) with A(1) = A(2) = 1. Then
A(En) = En−1 for n ≥ 2.

Proof. It is immediate from the initial conditions of En and of A(i) that for 2 ≤ j ≤ k,
A(Ej) = A(1) = 1 = Ej−1. For the other cases we will use a three statement induction
argument on the index n of En. Throughout this argument we use that A(i) is slow-
growing and unbounded as per Proposition 1. The hypotheses are that for n > k,
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1. A(En) = En−1

2. A(En−j − 1) = En−j−1 for some 0 ≤ j ≤ k − 1

3. A(En + 1) = En−1 + 1

An easy inductive argument or calculation shows that for 1 ≤ j ≤ k, Ek+j = j+1, and
A(j +1) = j (see Table 1 for the k = 2 case). Hence, for 1 ≤ j ≤ k, A(Ek+j) = A(j +1) =
j = Ek+j−1. For the base case k + 1, we get A(Ek+1) = A(2) = 1 = Ek, A(Ek+1 − 1) =
A(1) = 1 = Ek and A(Ek+1 +1) = A(3) = 2 = Ek + 1. Assume that the three hypotheses
hold up to n, and note since A(i) is slow and unbounded, A−1({En}) = [α, β]. In the
following, if k = 1 then take Ak−1(i) = i.

En + 1 = A(β + 1) = A(β + 1 − Ak−1(En)) + A(Ak−1(En))

= A(β + 1 − En+1−k) + En−k (by hypothesis 1).

Therefore, A(β + 1 − En+1−k) = En − En−k + 1 = En−1 + 1. Hypothesis 1 and 3
for n, and the slow-growing property imply that A(i) > En−1 if and only if i > En. So
β + 1−En+1−k > En, and hence β ≥ En + En+1−k = En+1. Similarly, A(α − 1) = En − 1
and

En = A(α) = A(α − Ak−1(En − 1)) + Ak(En − 1).

By using the first two hypotheses along with the fact that A(i) is slow-growing, we
claim that Ak(En − 1) = En−k. Indeed, A(En − 1) = En−1 or A(En − 1) = En−1 − 1 by
hypothesis 1 and the fact that A(i) is slow-growing. In the former case we use hypothesis
1 repeatedly to deduce that Ak(En − 1) = En−k. In the latter case, we get A2(En − 1) =
A(En−1 − 1) but A(En−1 − 1) = En−1 or En−2 − 1 by hypothesis 1 and the slow-growth
of A(i). If A(En−1 − 1) = En−2 − 1 we keep repeating the argument, and use hypothesis
2 for n to eventually find a j ∈ [0, k − 1] such that A(En−j − 1) = En−j−1. At that point
we have the equation Aj+1(En − 1) = En−j−1 to which we compose A(i) the remaining
k − j − 1 times to deduce that Ak(En − 1) = En−k via hypothesis 1.

Analogously, we deduce that Ak−1(En − 1) = En−k+1 − δ where δ ∈ {0, 1}. Therefore
En−1 = En −En−k = A(α−En−k+1 + δ), which implies that α−En−k+1 + δ ≤ En because
A(i) > En−1 for i > En. Thus α ≤ En + En−k+1 = En+1, and with β ≥ En+1 from the
previous paragraph, we deduce that A(En+1) = En.

In order to support hypothesis 2 for n + 1, we note that if A(En−j − 1) = En−j−1 for
any 0 ≤ j < k−1 then there is nothing to show. So we can assume from hypothesis 2 for n
that A(En−k+1−1) = En−k and A(En−j −1) = En−j−1−1 for 0 ≤ j < k−1. Aiming for a
contradiction, if A(En+1−1) 6= En then it would follow that A(En+1−1) = En−1 because
A(En+1) = En as shown above, and A(i) is slow-growing. Then from the assumption above
for hypothesis 2, we get Ak(En+1 − 1) = En−k+1 − 1 after applying A(i) to both sides of
A(En+1 − 1) = En − 1 a total of k − 1 times. But now

En = A(En+1) = A(En+1 − En−k+1 + 1) + A(En−k+1 − 1)

= A(En + 1) + En−k (recall that A(En−k+1 − 1) = En−k).
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Therefore, A(En + 1) = En − En−k = En−1; a contradiction to hypothesis 3 for n.
To establish hypothesis 3 for n + 1 we note that

A(En+1 + 1) = A(En+1 + 1 − En−k+1) + En−k (by hypothesis 1)

= A(En + 1) + En−k

= En−1 + 1 + En−k = En + 1 (by hypothesis 3 for n).

This completes the inductive argument.

One implication of Theorem 2.1 is that if limn→∞

A(n)
n

exists then it must be the

same as limn→∞

En−1

En

. The latter limit is φ−1
k where φk is the largest positive root of the

polynomial xk−xk−1−1: the characteristic polynomial of the recursion En = En−1+En−k.
However, it is an open question as to whether A(n)

n
converges as n → ∞ for any k ≥ 2.

For k = 1, Mallows showed in [5] that limn→∞

A(n)
n

= 1
2
, settling a question of Conway.

3 The Conolly type recursion C(n)

Consider the general Conolly type recursion (1.3). Fix a particular recursion from the
family (1.3) given with r ≥ max {bi} initial conditions that are positive integers. For the
resulting sequence C(n), define ∆(n) = C(n) − C(n − 1) and ∆i(n) = C(n − ai − C(n −
bi)) − C(n − 1 − ai − C(n − 1 − bi)), so that ∆(n) =

∑k

i=1 ∆i(n). The following lemma
appears first in [4] as Lemma 6.1, where the authors deal with another recursion of the
form in (1.3).

Lemma 3.1. Suppose that for m > r the sequence C(n) is defined up to term m + 1
and slow-growing up to term m. Then ∆i(m + 1) ∈ {0, 1} for 1 ≤ i ≤ k. When k = 2,
if ∆(m + 1) /∈ {0, 1} then ∆(m + 1) = 2, and ∆1(m + 1) = ∆2(m + 1) = 1. Also
when k = 2, for r + 1 < n ≤ m + 1, ∆i(n) = 1 if and only if ∆(n − bi) = 0 and
∆(n − ai − C(n − 1 − bi)) = 1.

Proof. By the assumptions that C(n) is slow-growing up to term m and bi ≥ 1, it follows
that ∆(m + 1 − bi) ∈ {0, 1}. If ∆(m + 1 − bi) = 1 then

[m + 1 − ai − C(m + 1 − bi)] − [m − ai − C(m − bi)] = 1 − ∆(m + 1 − bi) = 0.

Thus ∆i(m + 1) = 0 because the arguments in both terms of the difference are equal. If
∆(m+1− bi) = 0 then m+1− ai −C(m+1− bi) = 1+ (m− ai −C(m− bi)), and hence
∆i(m+1) = ∆(m+1−a1−C(m−bi)). Note that m+1−a1−C(m−bi) ∈ [2, m] since the
existence of C(m) requires that C(m−bi) ∈ (0, m−ai). Thus ∆(m+1−a1−C(m−bi)) ∈
{0, 1}.

When k = 2, since each ∆i(m + 1) ∈ {0, 1}, if ∆(m + 1) /∈ {0, 1} then we must have
each ∆i(m + 1) = 1 and ∆(m +1) = ∆1(m +1) +∆2(m + 1) = 2. Furthermore, the same
calculations in the previous paragraph with m + 1 replaced with n shows that for r + 1 <
n ≤ m + 1, ∆i(n) = 1 if and only if ∆(n− bi) = 0 and ∆(n− ai −C(n− 1− bi)) = 1.
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Now we focus on the recursion C(n) = C(n− s−C(n− 1))+ C(n− s− 2−C(n− 3))
in (1.2) given with r ≥ 3 initial conditions that are positive integers. For n > r, the term
C(n) is defined if and only if C(n− 1) ∈ (0, n− s) and C(n − 3) ∈ (0, n− s − 2); in fact,
the second condition suffices. For notational convenience, let C1(n) = C(n−s−C(n−1))
and C2(n) = C(n− 2− s−C(n− 2)), and note that C1(n− 2) = C2(n). Let ∆(n), ∆1(n)
and ∆2(n) be defined as before.

Lemma 3.2. Suppose C(n) is defined and slow-growing up until term m > r, and in
addition there is no n with 3 ≤ n ≤ m such that ∆(n) = ∆(n − 1) = 1. Then for all n
with r < n ≤ m, C1(n) − C2(n) ∈ {0, 1}.

Proof. By the assumption of slow-growth, C(n − 1) − C(n − 3) ∈ {0, 1, 2}. Thus the
difference d = [n− s−C(n− 1)]− [n− s− 2−C(n− 3)] lies in {0, 1, 2} as well. We have
that

C1(n) = C(n − s − C(n − 1)) = C(n − s − 2 − C(n − 3) + d).

If d = 0 then C1(n) = C2(n). If d = 1 then C1(n)−C2(n) = ∆(n−s−1−C(n−3)) ∈ {0, 1}
because 2 ≤ n − s − 1 − C(n − 3) ≤ m where the first inequality follows since C(n) is
defined and the second follows as n ≤ m, s ≥ 0 and C(n − 3) ≥ 1. Lastly, if d = 2 then
C1(n)−C2(n) = ∆(n−s−C(n−3))+∆(n−s−C(n−3)−1). Our assumption guarantees
that there cannot be two consecutive differences of 1 since the argument of each ∆ term
is within [2, m]. Thus we get C1(n) − C2(n) ∈ {0, 1}.

The consequence of Lemma 3.2 is that so long as the assumptions are met up to
m > r, for n ∈ [r + 1, m], if ∆(n) is even then C1(n) = C2(n) = C(n)

2
. If ∆(n) is odd then

C1(n) = C2(n) + 1 = C(n)+1
2

.

Theorem 3.3. Suppose that the recursion for C(n) in (1.2) is given r ≥ 3 initial condi-
tions that are positive integers. Suppose the following holds:

I) The term C(r + 1) is defined via the recursion for C(n).

II) There does not exists any 3 ≤ n ≤ r such that ∆(n) = ∆(n − 1) = 1.

III) The sequence C(n) is slow-growing up to term r + 1.1

Then C(n) is defined and slow-growing for all n ≥ 1. There also does not exists any n ≥ 3
such that ∆(n) = ∆(n − 1) = 1.

Proof. Suppose not for the sake of a contradiction. We consider three cases for how the
claim could fail to be true, based on which of the three conditions fails first.

Case 1: There is a minimal m such that C(m) is not defined while C(n) is slow-
growing until term m−1. Then m > r+1 by hypothesis I. The term C(m) will be defined
if and only if 1 ≤ m−s−C(m−1) ≤ m−1 and 1 ≤ m−s−2−C(m−3) ≤ m−1. The second

1Clearly if C(n) is slow-growing up to term r + 1 then C(r + 1) must be defined. But we still keep
hypothesis I for clarity of exposition in the proof.
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inequality for both cases is trivial since C(m−1) ≥ 1. For the first inequalities, note that
m−1 ≥ r+1 so that C(m−1) is defined via the recursion. As such 1 ≤ m−1−s−C(m−2)
and 1 ≤ m− s − 3− C(m− 4). By the assumption of slow-growth until m − 1, we know
that ∆(m−1) and ∆(m−3) lie in {0, 1}. Thus C(m−1) ≤ C(m−2)+1 ≤ m−1−s and
C(m−3) ≤ m−s−3 from the two inequalities in the previous sentence. This establishes
that C(m) is indeed defined contrary to assumption.

Case 2: There is a minimal value of m such that ∆(m) = ∆(m− 1) = 1, and for this
minimal value of m, C(n) is slow-growing up to term m. Then m > r by hypothesis III,
and there is no 3 ≤ n < m such that ∆(n) = ∆(n − 1) = 1. If C(m) is even then by

Lemma 3.2, C1(m) = C2(m) = C(m)
2

. Our assumption implies that C(m−2) = C(m)−2,

so C(m − 2) is also even and C1(m − 2) = C(m)
2

− 1. Thus C2(m) 6= C1(m − 2), which
is a contradiction to C2(m) = C1(m − 2) as noted earlier. In the case that C(m) is odd,

Lemma 3.2 implies that C1(m) = C(m)+1
2

. Since C(m − 1) = C(m) − 1, it follows that

C(m − 1) is even and C1(m − 1) = C(m)−1
2

. Hence C1(m) 6= C1(m − 1). But by using
∆(m − 1) = 1 we get that

C1(m) = C(m − s − C(m − 1)) = C(m − s − (C(m − 2) + 1)) = C1(m − 1).

This is another contradiction, and thus it cannot be the case that ∆(m) = ∆(m−1) = 1.

Case 3: There is a minimal value of m such that ∆(m) /∈ {0, 1}, and for this minimal
value of m, it is not true that ∆(n) = ∆(n − 1) = 1 for any 3 ≤ n < m. Then
m > r + 1 due to hypothesis II. Lemma 3.1 implies that ∆(m) = 2, ∆1(m) = 1, and
∆2(m) = 1. Also by Lemma 3.1, ∆(m−1) = 0, ∆(m− s−C(m−2)) = 1, ∆(m−3) = 0,
∆(m − s − 2 − C(m − 4)) = 1.

Now, consider the value of ∆(m − 2), which by assumption lies in {0, 1}. Assume
for the sake of a contradiction that ∆(m − 2) = 0. Under this assumption, we have
that ∆1(m − 2) = 0 since Lemma 3.1 says that ∆1(m − 2), ∆2(m − 2) ∈ {0, 1} while
∆(m− 2) = ∆1(m− 2) + ∆2(m− 2). When ∆1(m− 2) = 0, Lemma 3.1 also implies that
∆(m − 3) = 1 or ∆(m − 2 − s − C(m − 4)) = 0. But this contradicts ∆(m − 3) = 0 and
∆(m− s− 2−C(m− 4)) = 1 from the previous paragraph, implying that ∆(m− 2) = 1.

So we know that ∆(m − 3) = 0 and ∆(m − 2) = 1. From this we deduce that
the arguments m − s − C(m − 2) and m − s − 2 − C(m − 4) are consecutive, while
∆(m − s − C(m − 2)) = ∆(m − s − 2 − C(m − 4)) = 1 from before. This means
condition II fails at m − s − C(m − 2), and contradicts the minimality assumption
provided 3 ≤ m − s − C(m − 2) < m. The second inequality is trivial while for the first
we note that since m > r + 1, C(m − 1) is computed via the recursion. This implies
that C(m − 4) ≤ m − 4 − s, which is necessary for C(m − 1) to be defined. Thus
C(m − 2) = C(m − 4) + 1 ≤ m − 3 − s as required.

It is also clear that C(n) must be unbounded despite not having consecutive incre-
ments. Indeed if C(n) is bounded then there exists a maximum value M ≥ 1 and a m ∈ N

such that C(n) = M for all n ≥ m, in light of the slow-growing nature of C(n). However,
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setting N = m+3+s+M , we see that M = C(N) = C(N−s−M)+C(N −s−2−M) =
C(m + 3) + C(m + 1) = 2M ; a contradiction.

The upshot of Theorem 3.3 is that if the initial conditions of C(n) are slow-growing and
do not have consecutive increments of 1, then C(n) will be slow-growing for all n as long as
it is slow-growing until the term following the initial conditions. For example, C(n) with
initial conditions all set to 1 has this property. So does C(n) with initial conditions that
give rise to a combinatorial interpretation for the resulting sequence as explored in [2, 4]
and some of the references cited therein. The following corollary concerns the behaviour
of C(n)

n
.

Corollary 3.4. Let C(n) satisfy all three hypotheses of Theorem 3.3. Then C(n) satisfies

lim supn→∞

C(n)
n

≤ 1
2

with equality unless lim infn→∞

C(n)
n

= 0.

Proof. Given n ≥ 2, write n− 1 = 2q + r with r ∈ {0, 1}. Since C(n) is slow-growing and
does not have consecutive increments, it follows that

C(n) = C(1) +

q∑

i=1

[∆(2i) + ∆(2i + 1)] + ∆(n) · δr,1

≤ C(1) + q + 1 where q = ⌊
n − 1

2
⌋

It follows that lim supn→∞

C(n)

n
≤ lim supn→∞

⌊n−1
2
⌋

n
=

1

2
. Using the recursive definition

of C(n) we get

C(n)

n
=

C(n − s − C(n − 1))

n − s − C(n − 1)
·
n − s − C(n − 1)

n

+
C(n − s − 2 − C(n − 3))

n − s − 2 − C(n − 3)
·
n − s − 2 − C(n − 3)

n
.

Let l = lim infn→∞

C(n)
n

and u = lim supn→∞

C(n)
n

. The bound C(n) ≤ C(1) + ⌊n−1
2
⌋ + 1

shows that both n− s−C(n−1) and n− s−2−C(n−3) go to infinity as n → ∞. Thus

lim infn→∞

C(n−s−C(n−1))
n−s−C(n−1)

≥ l and lim infn→∞

C(n−s−2−C(n−3))
n−s−2−C(n−3)

≥ l. On the other hand,

lim inf
n→∞

n − s − C(n − 1)

n
= lim inf

n→∞

n − s − 2 − C(n − 3)

n
= 1 − u.

Thus after taking a liminf in the expression for C(n)
n

above, we get l ≥ 2l(1 − u). Clearly
l ≥ 0, and so u ≥ 1/2 unless l = 0. This establishes the corollary.

Further considerations

In Theorem 3.3 we made the assumption that the initial conditions of C(n) contain
no consecutive increments along with being slow-growing. It would be interesting to
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know whether the consecutive increments condition is necessary or simply sufficient. The
authors are not aware of any examples where the initial conditions have consecutive
increments while C(n) remains slow-growing. Relating to Corollary 3.4, one question to

consider is when does it hold that limn→∞

C(n)
n

= 1
2
?

It would also be worthwhile to prove something similar to Theorem 3.3 for other
Conolly type recursions of the form (1.3). As far as the authors are aware almost all
slow-growing Conolly type sequences result from a specific combinatorial interpretation
of the corresponding recursion under sets of initial conditions that are forced on by the
interpretation itself (see [4] and the references cited therein). The combinatorial inter-
pretation does not consider the case when all the initial conditions of the recursion under
consideration are set to 1. So it would be interesting to explore what other recursions of
the form (1.3) result in slow-growing sequences with all initial conditions equal to 1.

Going back to the recursion for A(n) in (1.1) with parameters (k, a, b) = (k, 0, 1)
and initial conditions A(1) = A(2) = 1, it would be of much interest to know whether

limn→∞

A(n)
n

exists for all k ≥ 2. As we stated, the value of this limit - if it exists- follows
from Theorem 2.1. Finally, it would be worthwhile to study related recursions of the form

A(n) = A(n − a − Ak(n − b)) + A(Ak(n − c))

where a ≥ 0, b ≥ 1 and c ≥ 1 are integers. Under what set of parameters k, a, b, c and
initial conditions is the resulting sequence A(n) defined for all positive integers and/or
slow-growing?
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