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To Doron Zeilberger who turned me into an addict of creative guessing

Abstract

For the q-tangent function introduced by Foata and Han (this volume) we provide
the continued fraction expansion, by creative guessing and a routine verification.
Then an even more recent q-tangent function due to Cieslinski is also expanded.
Lastly, a general version is considered that contains both versions as special cases.

1 Foata and Han’s tangent function

Foata and Han [3] defined

sin(r)
q (u) =

∑

n≥0

(−1)n (qr; q)2n+1

(q; q)2n+1
u2n+1,

cos(r)
q (u) =

∑

n≥0

(−1)n (qr; q)2n

(q; q)2n

u2n,

tan(r)
q (u) =

sin(r)
q (u)

cos
(r)
q (u)

.

Here we use the (classic) notation, where we assume |q| < 1:

(x; q)n := (1 − x)(1 − xq) . . . (1 − xqn−1).

Note that for r → ∞, we obtain the classic q-tangent function of Jackson’s [5].
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In this paper, we compute the continued fraction expansion of this new q-tangent
function. In the spirit of Zeilberger, the coefficients in it (ak in the sequel) were obtained
first by guessing them. After that, some additional power series sk(z) were also guessed
(using the recursion that later will be proved). Once one has them, the proof of a recursion
for sk(z) is routine, and turns immediately into the continued fraction expansion. In a
sense, this is the most elementary approach possible.

Set, for k ≥ −1,

sk(z) := q(
k+1
2 )

∑

n≥0

(qr−k; q2)k+n+1(q
r+k+1; q2)n

(q; q2)k+n+1(q2; q2)n

zn,

and for k ≥ 0

ak =
(qr+1−k; q2)k(1 − q2k+1)

(qr−k; q2)k+1qk
.

Note that for r → ∞, we obtain

ak =
1 − q2k+1

qk
,

which are the well-known coefficients for the classic q-tangent function.
Now we compute

[zn]
(

sk−1(z) − aksk(z)
)

= q(
k

2)
(qr+1−k; q2)k+n(qr+k; q2)n

(q; q2)k+n(q2; q2)n

−
(qr+1−k; q2)k(1 − q2k+1)

(qr−k; q2)k+1qk
q(

k+1
2 ) (qr−k; q2)k+n+1(q

r+k+1; q2)n

(q; q2)k+n+1(q2; q2)n

= q(
k

2)
(qr−k; q2)k+n+1(q

r+k+1; q2)n

(q; q2)k+n+1(q2; q2)n

×

[

(qr+1−k; q2)k(1 − q2k+2n+1)

(qr−k; q2)k(1 − qr+k+2n)
−

(qr+1−k; q2)k(1 − q2k+1)

(qr−k; q2)k+1

]

= q(
k

2) (qr−k; q2)k+n+1(q
r+k+1; q2)n(qr+1−k; q2)k

(q; q2)k+n+1(q2; q2)n(qr−k; q2)k

[

1 − q2k+2n+1

1 − qr+k+2n
−

1 − q2k+1

1 − qr+k

]

= q(
k

2) (qr−k; q2)k+n+1(q
r+k+1; q2)n(qr+1−k; q2)k

(q; q2)k+n+1(q2; q2)n(qr−k; q2)k

q2k+1(1 − q2n)(1 − qr−k−1)

(1 − qr+k+2n)(1 − qr+k)

= q(
k+1
2 ) (qr−k; q2)k+n(q

r+k+1; q2)n(qr−1−k; q2)k+1

(q; q2)k+n+1(q2; q2)n−1(qr−k; q2)k+1

= q(
k+1
2 ) (qr−1−k; q2)k+n+1(q

r+k+2; q2)n−1

(q; q2)k+n+1(q2; q2)n−1

= [zn−1]sk+1(z).

Since the constant term in this difference cancels out, we found the recurrence

sk−1(z) − aksk(z) = zsk+1(z).
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Therefore we have

zs0

s−1

=
zs0

a0s0 + zs1

=
z

a0 +
zs1

s0

=
z

a0 +
z

a1 +
z

a2 +
z

. . .

.

If r is a positive integer, this continued fraction expansions stops, since sr(z) = 0.
Replacing z by −z we get

zs0(−z)

s−1(−z)
=

z

a0 −
z

a1 −
z

a2 −
z

. . .

.

This translates into a continued fraction of tan
(r)
q (u):

tan(r)
q (u) =

u

a0 −
u2

a1 −
u2

a2 −
u2

. . .

.

2 Cieslinski’s new q-tangent

After a first draft about the Foata and Han q-tangent was produced, a further q-
tangent function was introduced by Cieslinski [1]. Recall that Jackson’s [5] classical
q-trigonometric functions are defined as

sinq z =
∑

n≥0

(−1)nz2n+1

(q; q)2n+1

,

cosq z =
∑

n≥0

(−1)nz2n

(q; q)2n

.

Sometimes, instead of (q; q)n, the term (q; q)n/(1 − q)n is used, but that is clearly
just a change of variable. The corresponding tangent function is defined by tanq z =
sinq z/ cosq z.

Cieslinski [1] introduced new (“improved”?) q-trigonometric functions:

Sinq(2z) =
2 tanq z

1 + tan2
q z

,
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Cosq(2z) =
1 − tan2

q z

1 + tan2
q z

.

Of course, this also introduces a (new) q-tangent function: Tanq(z) = Sinq(z)/Cosq(z).
As we know, q-tangents are good candidates for beautiful continued fraction expan-

sions [6, 4, 7, 8]; and this is confirmed by the results of the previous section. This new
version is no exception; we are going to prove that

z Tan(2z) =
z2

a0 +
z2

a1 +
z2

. . .

with

a2k =
(1 − q4k+1)(−q; q2)2

k

2qk(−q2; q2)2
k

,

a2k+1 = −
2(1 − q4k+3)(−q2; q2)2

k

qk(−q; q2)2
k+1

.

As before, we obtain all the relevant quantities first by guessing them.
First, we need the power series expansions of sine and cosine:

Sinq(2z) =
∑

n≥0

z2n+1 (−1)n(−1; q)2n+1

(q; q)2n+1
,

Cosq(2z) =
∑

n≥0

z2n (−1)n(−1; q)2n

(q; q)2n

.

Cieslinski [1] has given the representations

Sinq(2z) =
eiz

q Eiz
q − e−iz

q E−iz
q

2i
,

Cosq(2z) =
eiz

q Eiz
q + e−iz

q E−iz
q

2
,

with

ez
q =

∑

n≥0

zn

(q; q)n

, Ez
q =

∑

n≥0

znq(
n

2)

(q; q)n

.

From this, the desired expansions follow from comparing coefficients and simple q-
identities.

Now define

σ0 :=
∑

n≥0

zn (−1)n(−1; q)2n+1

(q; q)2n+1
,

σ−1 :=
∑

n≥0

zn (−1)n(−1; q)2n

(q; q)2n
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and, more generally,

σ2k =
qk2

(−1)k(−q2; q2)k

(−q; q2)k

∑

n≥0

zn (−1)n(−1; q)2k+2n+1

(q; q2)2k+n+1(q2; q2)n

,

σ2k+1 =
qk2+k(−1)k+1(−q2; q2)k+1

(−1; q2)k+1

∑

n≥0

zn (−1)n(−1; q)2k+2n+1

(q; q2)2k+n+2(q2; q2)n

.

As in the previous section, we obtain the recursion

σi+1 =
σi−1 − aiσi

z

by a routine computation.
Consequently, we can write

zσ0

σ−1

=
zσ0

a0σ0 + zσ1

=
z

a0 +
zσ1

σ0

=
z

a0 +
z

a1 +
zσ2

σ1

=
z

a0 +
z

a1 +
z

a2 +
z

. . .

.

The claimed continued fraction expansion of z Tan(2z) follows from this by substituting
z by z2.

I was informed that this expansion could also be derived using results of Denis [2].
The present elementary approach should, however, not be without merits.

3 A uniform approach to the two q-tangents

It is apparent that

sinq(u) =
∑

n≥0

(−1)n (w; q)2n+1

(q; q)2n+1
u2n+1,

cosq(u) =
∑

n≥0

(−1)n (w; q)2n

(q; q)2n

u2n,

tanq(u) =
sinq(u)

cosq(u)

generalises for w = qr the Foata and Han version, and for w = −1 the Cieslinski version.
Our elementary approach can handle this situation as well:

Set

σ0(z) =
∑

n≥0

(w; q)2n+1

(q; q)2n+1
zn,

σ−1(z) =
∑

n≥0

(w; q)2n

(q; q)2n

zn,
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then

ak =
(wq1−k; q2)k(1 − q2k+1)

(wq−k; q2)k+1qk

and

σk(z) = q
k(k+1)

2

∑

n≥0

zn (wq−k; q2)n+k+1(wqk+1; q2)n

(q; q2)n+k+1(q2; q2)n

.

As before, we get

σk+1 =
σk−1 − akσk

z
and

zσ0(z)

σ−1(z)
=

z

a0 +
z

a1 +
z

a2 +
z

. . .

.

This gives the expansion of the q-tangent:

zσ0(−z2)

σ−1(−z2)
=

z

a0 −
z2

a1 −
z2

a2 −
z2

. . .

.
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