Continued fractions related to (t, q)-tangents and variants

Helmut Prodinger
Department of Mathematics
7602 Stellenbosch, South Africa
hproding@sun.ac.za

Submitted: May 16, 2011; Accepted: Aug 3, 2011; Published: Aug 19, 2011
Mathematics Subject Classifications: 05A30, 05A10

To Doron Zeilberger who turned me into an addict of creative guessing

Abstract

For the q-tangent function introduced by Foata and Han (this volume) we provide the continued fraction expansion, by creative guessing and a routine verification. Then an even more recent q-tangent function due to Cieslinski is also expanded. Lastly, a general version is considered that contains both versions as special cases.

1 Foata and Han's tangent function

Foata and Han [3] defined

$$
\begin{aligned}
\sin _{q}^{(r)}(u) & =\sum_{n \geq 0}(-1)^{n} \frac{\left(q^{r} ; q\right)_{2 n+1}}{(q ; q)_{2 n+1}} u^{2 n+1}, \\
\cos _{q}^{(r)}(u) & =\sum_{n \geq 0}(-1)^{n} \frac{\left(q^{r} ; q\right)_{2 n}}{(q ; q)_{2 n}} u^{2 n}, \\
\tan _{q}^{(r)}(u) & =\frac{\sin _{q}^{(r)}(u)}{\cos _{q}^{(r)}(u)} .
\end{aligned}
$$

Here we use the (classic) notation, where we assume $|q|<1$:

$$
(x ; q)_{n}:=(1-x)(1-x q) \ldots\left(1-x q^{n-1}\right) .
$$

Note that for $r \rightarrow \infty$, we obtain the classic q-tangent function of Jackson's [5].

In this paper, we compute the continued fraction expansion of this new q-tangent function. In the spirit of Zeilberger, the coefficients in it (a_{k} in the sequel) were obtained first by guessing them. After that, some additional power series $s_{k}(z)$ were also guessed (using the recursion that later will be proved). Once one has them, the proof of a recursion for $s_{k}(z)$ is routine, and turns immediately into the continued fraction expansion. In a sense, this is the most elementary approach possible.

Set, for $k \geq-1$,

$$
\left.s_{k}(z):=q^{(k+1} 2\right) \sum_{n \geq 0} \frac{\left(q^{r-k} ; q^{2}\right)_{k+n+1}\left(q^{r+k+1} ; q^{2}\right)_{n}}{\left(q ; q^{2}\right)_{k+n+1}\left(q^{2} ; q^{2}\right)_{n}} z^{n}
$$

and for $k \geq 0$

$$
a_{k}=\frac{\left(q^{r+1-k} ; q^{2}\right)_{k}\left(1-q^{2 k+1}\right)}{\left(q^{r-k} ; q^{2}\right)_{k+1} q^{k}} .
$$

Note that for $r \rightarrow \infty$, we obtain

$$
a_{k}=\frac{1-q^{2 k+1}}{q^{k}}
$$

which are the well-known coefficients for the classic q-tangent function.
Now we compute

$$
\begin{aligned}
& {\left[z^{n}\right]\left(s_{k-1}(z)-a_{k} s_{k}(z)\right)=q^{\binom{k}{2}} \frac{\left(q^{r+1-k} ; q^{2}\right)_{k+n}\left(q^{r+k} ; q^{2}\right)_{n}}{\left(q ; q^{2}\right)_{k+n}\left(q^{2} ; q^{2}\right)_{n}}} \\
& -\frac{\left(q^{r+1-k} ; q^{2}\right)_{k}\left(1-q^{2 k+1}\right)}{\left(q^{r-k} ; q^{2}\right)_{k+1} q^{k}} q^{\left({ }_{2}^{k+1}\right)} \frac{\left(q^{r-k} ; q^{2}\right)_{k+n+1}\left(q^{r+k+1} ; q^{2}\right)_{n}}{\left(q ; q^{2}\right)_{k+n+1}\left(q^{2} ; q^{2}\right)_{n}} \\
& =q^{\binom{k}{2}} \frac{\left(q^{r-k} ; q^{2}\right)_{k+n+1}\left(q^{r+k+1} ; q^{2}\right)_{n}}{\left(q ; q^{2}\right)_{k+n+1}\left(q^{2} ; q^{2}\right)_{n}} \\
& \times\left[\frac{\left(q^{r+1-k} ; q^{2}\right)_{k}\left(1-q^{2 k+2 n+1}\right)}{\left(q^{r-k} ; q^{2}\right)_{k}\left(1-q^{r+k+2 n}\right)}-\frac{\left(q^{r+1-k} ; q^{2}\right)_{k}\left(1-q^{2 k+1}\right)}{\left(q^{r-k} ; q^{2}\right)_{k+1}}\right] \\
& =q^{\binom{k}{2}} \frac{\left(q^{r-k} ; q^{2}\right)_{k+n+1}\left(q^{r+k+1} ; q^{2}\right)_{n}\left(q^{r+1-k} ; q^{2}\right)_{k}}{\left(q ; q^{2}\right)_{k+n+1}\left(q^{2} ; q^{2}\right)_{n}\left(q^{r-k} ; q^{2}\right)_{k}}\left[\frac{1-q^{2 k+2 n+1}}{1-q^{r+k+2 n}}-\frac{1-q^{2 k+1}}{1-q^{r+k}}\right] \\
& =q^{\binom{k}{2}} \frac{\left(q^{r-k} ; q^{2}\right)_{k+n+1}\left(q^{r+k+1} ; q^{2}\right)_{n}\left(q^{r+1-k} ; q^{2}\right)_{k}}{\left(q ; q^{2}\right)_{k+n+1}\left(q^{2} ; q^{2}\right)_{n}\left(q^{r-k} ; q^{2}\right)_{k}} \frac{q^{2 k+1}\left(1-q^{2 n}\right)\left(1-q^{r-k-1}\right)}{\left(1-q^{r+k+2 n}\right)\left(1-q^{r+k}\right)} \\
& =q^{\binom{k+1}{2}} \frac{\left(q^{r-k} ; q^{2}\right)_{k+n}\left(q^{r+k+1} ; q^{2}\right)_{n}\left(q^{r-1-k} ; q^{2}\right)_{k+1}}{\left(q ; q^{2}\right)_{k+n+1}\left(q^{2} ; q^{2}\right)_{n-1}\left(q^{r-k} ; q^{2}\right)_{k+1}} \\
& =q^{\binom{k+1}{2}} \frac{\left(q^{r-1-k} ; q^{2}\right)_{k+n+1}\left(q^{r+k+2} ; q^{2}\right)_{n-1}}{\left(q ; q^{2}\right)_{k+n+1}\left(q^{2} ; q^{2}\right)_{n-1}} \\
& =\left[z^{n-1}\right] s_{k+1}(z) .
\end{aligned}
$$

Since the constant term in this difference cancels out, we found the recurrence

$$
s_{k-1}(z)-a_{k} s_{k}(z)=z s_{k+1}(z)
$$

Therefore we have

$$
\frac{z s_{0}}{s_{-1}}=\frac{z s_{0}}{a_{0} s_{0}+z s_{1}}=\frac{z}{a_{0}+\frac{z s_{1}}{s_{0}}}=\frac{z}{a_{0}+\frac{z}{a_{1}+\frac{z}{a_{2}+\frac{z}{\ldots}}}} .
$$

If r is a positive integer, this continued fraction expansions stops, since $s_{r}(z)=0$.
Replacing z by $-z$ we get

$$
\frac{z s_{0}(-z)}{s_{-1}(-z)}=\frac{z}{a_{0}-\frac{z}{a_{1}-\frac{z}{a_{2}-\frac{z}{\cdots}}}}
$$

This translates into a continued fraction of $\tan _{q}^{(r)}(u)$:

$$
\tan _{q}^{(r)}(u)=\frac{u}{a_{0}-\frac{u^{2}}{a_{1}-\frac{u^{2}}{a_{2}-\frac{u^{2}}{\ldots}}}}
$$

2 Cieslinski's new \boldsymbol{q}-tangent

After a first draft about the Foata and Han q-tangent was produced, a further q tangent function was introduced by Cieslinski [1]. Recall that Jackson's [5] classical q-trigonometric functions are defined as

$$
\begin{aligned}
& \sin _{q} z=\sum_{n \geq 0} \frac{(-1)^{n} z^{2 n+1}}{(q ; q)_{2 n+1}} \\
& \cos _{q} z=\sum_{n \geq 0} \frac{(-1)^{n} z^{2 n}}{(q ; q)_{2 n}}
\end{aligned}
$$

Sometimes, instead of $(q ; q)_{n}$, the term $(q ; q)_{n} /(1-q)^{n}$ is used, but that is clearly just a change of variable. The corresponding tangent function is defined by $\tan _{q} z=$ $\sin _{q} z / \cos _{q} z$.

Cieslinski [1] introduced new ("improved"?) q-trigonometric functions:

$$
\operatorname{Sin}_{q}(2 z)=\frac{2 \tan _{q} z}{1+\tan _{q}^{2} z},
$$

$$
\operatorname{Cos}_{q}(2 z)=\frac{1-\tan _{q}^{2} z}{1+\tan _{q}^{2} z} .
$$

Of course, this also introduces a (new) q-tangent function: $\mathcal{T}^{2} n_{q}(z)=\operatorname{Sin}_{q}(z) / \operatorname{Cos}_{q}(z)$.
As we know, q-tangents are good candidates for beautiful continued fraction expansions $[6,4,7,8]$; and this is confirmed by the results of the previous section. This new version is no exception; we are going to prove that

$$
z \mathcal{T} a n(2 z)=\frac{z^{2}}{a_{0}+\frac{z^{2}}{a_{1}+\frac{z^{2}}{\ldots}}}
$$

with

$$
\begin{aligned}
a_{2 k} & =\frac{\left(1-q^{4 k+1}\right)\left(-q ; q^{2}\right)_{k}^{2}}{2 q^{k}\left(-q^{2} ; q^{2}\right)_{k}^{2}}, \\
a_{2 k+1} & =-\frac{2\left(1-q^{4 k+3}\right)\left(-q^{2} ; q^{2}\right)_{k}^{2}}{q^{k}\left(-q ; q^{2}\right)_{k+1}^{2}} .
\end{aligned}
$$

As before, we obtain all the relevant quantities first by guessing them.
First, we need the power series expansions of sine and cosine:

$$
\begin{aligned}
& \operatorname{Sin}_{q}(2 z)=\sum_{n \geq 0} z^{2 n+1} \frac{(-1)^{n}(-1 ; q)_{2 n+1}}{(q ; q)_{2 n+1}} \\
& \operatorname{Cos}_{q}(2 z)=\sum_{n \geq 0} z^{2 n} \frac{(-1)^{n}(-1 ; q)_{2 n}}{(q ; q)_{2 n}}
\end{aligned}
$$

Cieslinski [1] has given the representations

$$
\begin{aligned}
& \operatorname{Sin}_{q}(2 z)=\frac{e_{q}^{i z} E_{q}^{i z}-e_{q}^{-i z} E_{q}^{-i z}}{2 i} \\
& \operatorname{Cos}_{q}(2 z)=\frac{e_{q}^{i z} E_{q}^{i z}+e_{q}^{-i z} E_{q}^{-i z}}{2}
\end{aligned}
$$

with

$$
e_{q}^{z}=\sum_{n \geq 0} \frac{z^{n}}{(q ; q)_{n}}, \quad E_{q}^{z}=\sum_{n \geq 0} \frac{z^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}
$$

From this, the desired expansions follow from comparing coefficients and simple q identities.

Now define

$$
\begin{aligned}
\sigma_{0} & :=\sum_{n \geq 0} z^{n} \frac{(-1)^{n}(-1 ; q)_{2 n+1}}{(q ; q)_{2 n+1}}, \\
\sigma_{-1} & :=\sum_{n \geq 0} z^{n} \frac{(-1)^{n}(-1 ; q)_{2 n}}{(q ; q)_{2 n}}
\end{aligned}
$$

and, more generally,

$$
\begin{aligned}
\sigma_{2 k} & =\frac{q^{k^{2}}(-1)^{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(-q ; q^{2}\right)_{k}} \sum_{n \geq 0} z^{n} \frac{(-1)^{n}(-1 ; q)_{2 k+2 n+1}}{\left(q ; q^{2}\right)_{2 k+n+1}\left(q^{2} ; q^{2}\right)_{n}}, \\
\sigma_{2 k+1} & =\frac{q^{k^{2}+k}(-1)^{k+1}\left(-q^{2} ; q^{2}\right)_{k+1}}{\left(-1 ; q^{2}\right)_{k+1}} \sum_{n \geq 0} z^{n} \frac{(-1)^{n}(-1 ; q)_{2 k+2 n+1}}{\left(q ; q^{2}\right)_{2 k+n+2}\left(q^{2} ; q^{2}\right)_{n}} .
\end{aligned}
$$

As in the previous section, we obtain the recursion

$$
\sigma_{i+1}=\frac{\sigma_{i-1}-a_{i} \sigma_{i}}{z}
$$

by a routine computation.
Consequently, we can write

$$
\frac{z \sigma_{0}}{\sigma_{-1}}=\frac{z \sigma_{0}}{a_{0} \sigma_{0}+z \sigma_{1}}=\frac{z}{a_{0}+\frac{z \sigma_{1}}{\sigma_{0}}}=\frac{z}{a_{0}+\frac{z}{a_{1}+\frac{z \sigma_{2}}{\sigma_{1}}}}=\frac{z}{a_{0}+\frac{z}{a_{1}+\frac{z}{a_{2}+\frac{z}{\ldots}}}} .
$$

The claimed continued fraction expansion of $z \mathcal{T} a n(2 z)$ follows from this by substituting z by z^{2}.

I was informed that this expansion could also be derived using results of Denis [2]. The present elementary approach should, however, not be without merits.

3 A uniform approach to the two q-tangents

It is apparent that

$$
\begin{aligned}
\sin _{q}(u) & =\sum_{n \geq 0}(-1)^{n} \frac{(w ; q)_{2 n+1}}{(q ; q)_{2 n+1}} u^{2 n+1} \\
\cos _{q}(u) & =\sum_{n \geq 0}(-1)^{n} \frac{(w ; q)_{2 n}}{(q ; q)_{2 n}} u^{2 n} \\
\tan _{q}(u) & =\frac{\sin _{q}(u)}{\cos _{q}(u)}
\end{aligned}
$$

generalises for $w=q^{r}$ the Foata and Han version, and for $w=-1$ the Cieslinski version. Our elementary approach can handle this situation as well:

Set

$$
\begin{aligned}
\sigma_{0}(z) & =\sum_{n \geq 0} \frac{(w ; q)_{2 n+1}}{(q ; q)_{2 n+1}} z^{n} \\
\sigma_{-1}(z) & =\sum_{n \geq 0} \frac{(w ; q)_{2 n}}{(q ; q)_{2 n}} z^{n}
\end{aligned}
$$

then

$$
a_{k}=\frac{\left(w q^{1-k} ; q^{2}\right)_{k}\left(1-q^{2 k+1}\right)}{\left(w q^{-k} ; q^{2}\right)_{k+1} q^{k}}
$$

and

$$
\sigma_{k}(z)=q^{\frac{k(k+1)}{2}} \sum_{n \geq 0} z^{n} \frac{\left(w q^{-k} ; q^{2}\right)_{n+k+1}\left(w q^{k+1} ; q^{2}\right)_{n}}{\left(q ; q^{2}\right)_{n+k+1}\left(q^{2} ; q^{2}\right)_{n}} .
$$

As before, we get

$$
\sigma_{k+1}=\frac{\sigma_{k-1}-a_{k} \sigma_{k}}{z}
$$

and

$$
\frac{z \sigma_{0}(z)}{\sigma_{-1}(z)}=\frac{z}{a_{0}+\frac{z}{a_{1}+\frac{z}{a_{2}+\frac{z}{\ldots}}}}
$$

This gives the expansion of the q-tangent:

$$
\frac{z \sigma_{0}\left(-z^{2}\right)}{\sigma_{-1}\left(-z^{2}\right)}=\frac{z}{a_{0}-\frac{z^{2}}{a_{1}-\frac{z^{2}}{a_{2}-\frac{z^{2}}{\cdots}}}}
$$

References

[1] J. L. Cieslinski. Improved q-exponential and q-trigonometric functions. Appl. Math. Lett., to appear, 2011.
[2] R. Y. Denis. On (a) generalization of (a) continued fraction of Gauss. Int. J. Math. Math. Sci., 4:741-746, 1990.
[3] D. Foata and G.-N. Han. The (t, q)-analogs of secant and tangent numbers. Electronic Journal of Combinatorics, 18(2):\#P7, 2011.
[4] M. Fulmek. A continued fraction expansion for a q-tangent function. Sém. Lothar. Combin., 45:Art. B45b, 5 pp. (electronic), 2000/01.
[5] F. H. Jackson. A basic-sine and cosine with symbolic solutions of certain differential equations. Proc. Edinburg Math. Soc., 22:28-39, 1904.
[6] H. Prodinger. Combinatorics of geometrically distributed random variables: new q tangent and q-secant numbers. Int. J. Math. Math. Sci., 24(12):825-838, 2000.
[7] H. Prodinger. A continued fraction expansion for a q-tangent function: an elementary proof. Sém. Lothar. Combin., 60:Art. B60b, 3, 2008/09.
[8] H. Prodinger. Continued fraction expansions for q-tangent and q-cotangent functions. Discrete Math. Theor. Comput. Sci., 12(2):47-64, 2010.

