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Abstract

A pattern P of length j has the minimal overlapping property if two consecutive

occurrences of the pattern can overlap in at most one place, namely, at the end

of the first consecutive occurrence of the pattern and at the start of the second

consecutive occurrence of the pattern. For patterns P which have the minimal

overlapping property, we derive a general formula for the generating function for

the number of consecutive occurrences of P in words, permutations and k-colored

permutations in terms of the number of maximum packings of P which are patterns

of minimal length which has n consecutive occurrences of the pattern P . Our results

have as special cases several results which have appeared in the literature. Another

consequence of our results is to prove a conjecture of Elizalde that two permutations

α and β of size j which have the minimal overlapping property are strongly c-Wilf

equivalent if α and β have the same first and last elements.

1 Introduction

For any alphabet A, we let A∗ denote the set of all words over A and we let ǫ denote the
empty word. Given any word w = w1 . . . wn ∈ {0, . . . , k−1}∗, we let

∑

w = w1+ · · ·+wn,
|w| = n, z(w) =

∏n
i=1 zwi

, and red(w) be the word that results by replacing the i-th
smallest integer that appears in w by i−1. For example, red(13443551) = 01221330. Given
any word u ∈ {0, . . . , k − 1}j such that red(u) = u, we say that a word w = w1 . . . wn ∈
{0, . . . , k − 1}n has a u-match starting at position i if red(wiwi+1 . . . wi+j−1) = u. If
u ∈ {0, . . . , k − 1}j, then we say that w = w1 . . . wn ∈ {0, . . . , k − 1}n has an exact u-
match starting at position i if wiwi+1 . . . wi+j−1 = u. Let u-mch(w) denote the number
of u-matches in the word w and Eu-mch(w) denote the number of exact u-matches in w.
For example, if u = 010 and w = 14121010330, then w has u-matches starting at positions
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1, 3, and 5 and has an exact u-match starting at position 5 so that u-mch(w) = 3 and
Eu-mch(w) = 1.

Let Sn denote the symmetric group. Given any sequence σ = σ1 · · ·σn of distinct inte-
gers, we let pred(σ) be the permutation that results by replacing the i-th smallest integer
that appears in the sequence σ by i. For example, if σ = 2 7 5 4, then pred(σ) = 1 4 3 2.
Given a permutation τ = τ1 . . . τj in the symmetric group Sj , we say that a permutation
σ = σ1 . . . σn ∈ Sn has a τ -match at starting at position i if pred(σi . . . σi+j−1) = τ . Let
τ -mch(σ) be the number of τ -matches in the permutation σ. We let

[n]p,q = pn−1 + pn−2q + · · · + pqn−2 + qn−1 =
pn − qn

p − q
,

[n]p,q! = [1]q[2]q · · · [n]q, and
[

n

k

]

p,q

=
[n]p,q!

[k]p,q![n − k]p,q!

denote the usual p, q-analogues of n, n!, and
(

n
k

)

. We shall use the standard conventions
that [0]p,q = 0 and [0]p,q! = 1. Setting p = 1 in [n]p,q, [n]p,q!, and

[

n
k

]

p,q
yields [n]q, [n]q!, and

[

n
k

]

q
, respectively. For any permutation σ = σ1 . . . σn ∈ Sn, we let inv(σ) equal the number

of 1 ≤ i < j ≤ n such that σi > σj and coinv(σ) equal the number of 1 ≤ i < j ≤ n such
that σi < σj .

A k-colored permutation of size n is a pair (σ, u) ∈ Sn × {0, 1, . . . , k − 1}n and can be
thought of as an element in the wreath product Ck ≀ Sn of the cyclic group Ck and the
symmetric group Sn. Thus we will let Ck ≀Sn denote the set of all k-colored permutations
of size n. Given a pair (τ, u) ∈ Ck ≀ Sj such that red(u) = u, we say that a k-colored
permutation (σ, w) ∈ Ck ≀Sn has (τ, u)-match starting at position i if pred(σi · · ·σi+j−1) =
τ and red(wiwi+1 . . . wi+j−1) = u. If (τ, u) ∈ Ck ≀ Sj, we say that a k-colored permutation
(σ, w) ∈ Ck ≀ Sn has an exact (τ, u)-match starting at position i if pred(σi · · ·σi+j−1) = τ
and wiwi+1 . . . wi+j−1 = u. Let (τ, u)-mch((σ, w)) denote the number of (τ, u)-matches
in (σ, w) and (τ, Eu)-mch((σ, w)) denote the number of exact (τ, u)-matches in (σ, w).
For example, if σ = 132 and u = 010 and (σ, w) = (25316498, 14121010), then (σ, w)
has (τ, u)-matches starting at positions 1 and 6 and has an exact (τ, u)-match starting at
position 6 so that (τ, u)-mch((σ, w)) = 2 and (τ, Eu)-mch((σ, w)) = 1.

There are a number of papers on exact (τ, u)-pattern matching and exact (τ, u)-pattern
avoidance in Ck ≀ Sn, see [7, 16, 17, 18]. Our notions of (τ, u)-pattern matching was first
introduced in [13] where the authors studied (τ, u)-matches for patterns of length 2.

Let u be a word in {0, 1, . . . , k − 1}j. If red(u) = u, then we say that u has the k-

minimal overlapping property if the smallest i such that there exists a w ∈ {0, 1, . . . , k−1}i

with u-mch(w) = 2 is 2j − 1. This means that in a word w ∈ {0, 1, . . . , k − 1}∗, two u-
matches in w can share at most one letter which must occur at the end of the first u-match
and at the start of the second u-match. Similarly, we say that u has the k-exact match

minimal overlapping property if the smallest i such that there exists a w ∈ {0, 1, . . . , k−1}i

with Eu-mch(w) = 2 is 2j − 1. For example, it is easy to see that 010 has the both the
k-minimal overlapping property and the k-exact match minimal overlapping property for
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all k ≥ 2. However, u = 0011 does not have the k-minimal overlapping property for
k ≥ 3 since u-mch(001122) = 2. Also u = 0011 does not have the k-exact matching
minimal overlapping property since no two exact u-matches can have a letter in common.
However, u = 01020 has the k-exact match minimal overlapping property for all k ≥ 3
and the k-minimal overlapping property for k = 3, but it does not have the k-minimal
overlapping property for k ≥ 4 since u-mch(0102030) = 2.

We say that a permutation τ ∈ Sj where j ≥ 3 has the minimal overlapping property if
the smallest i such that there is a permutation σ ∈ Si with τ -mch(σ) = 2 is 2j−1. Again
this means that in any permutation σ = σ1 . . . σn, any two τ -matches in σ can share at
most one letter which must be at the end of the first τ -match and the start of the second
τ -match. For example τ = 123 does not have the minimal overlapping property since
the τ -mch(1234) = 2 and the τ -match starting at position 1 and the τ -match starting
at position 2 share two letters, namely, 2 and 3. However, it is easy to see that the
permutation τ = 132 does have the minimal overlapping property. That is, the fact that
there is an ascent starting at position 1 and descent starting at position 2 means that
there cannot be two τ -matches in a permutation σ ∈ Sn which share 2 or more letters.

Suppose that we are given u ∈ {0, 1, . . . , k − 1}j and τ ∈ Sj. If red(u) = u, then we
say that u has the Ck ≀ Sn-minimal overlapping property if the smallest i such that there
exists a (σ, w) ∈ Ck ≀ Si with (τ, u)-mch(w) = 2 is 2j − 1. This means that in a k-colored
permutation (σ, w), two (τ, u)-matches in (σ, w) can share at most one pair of letters which
must occur at the end of the first (τ, u)-match and at the start of the second (τ, u)-match.
Similarly, we say that (τ, u) has the Ck ≀ Sn-exact match minimal overlapping property if
the smallest i such that there exists a (σ, w) ∈ Ck ≀ Si with (τ, Eu)-mch((σ, w)) = 2 is
2j − 1. For example, it is easy to see that (132, 010) has the both the Ck ≀ Sn-minimal
overlapping property and the Ck ≀ Sn-exact match minimal overlapping property for all
k ≥ 2. However, (τ, u) = (2143, 0011) does not have the Ck ≀ Sn-minimal overlapping
property for k ≥ 3 since (τ, u)-mch((214365, 001122)) = 2. Note (τ, u) = (2143, 0011)
does not have the Ck ≀ Sn-exact match minimal overlapping property since no two exact
(τ, u)-matches can have a pair of letters in common. Also (τ, u) = (12345, 01020) has the
Ck ≀ Sn-exact match minimal overlapping property for all k ≥ 3 and the Ck ≀ Sn-minimal
overlapping property for k = 3, but it does not have the Ck ≀ Sn-minimal overlapping
property for k ≥ 4 since (τ, u)-mch((1234567, 0102030)) = 2.

The main goal of this paper is to find generating functions for the number of matches
of minimal overlapping patterns in words, permutations, and k-colored permutations.
To this end, suppose that u ∈ {0, 1, . . . , k − 1}j. If red(u) = u and u has the k-minimal
overlapping property, then the shortest words w ∈ {0, 1, . . . , k−1}∗ such that u-mch(w) =
n have length j + (n − 1)(j − 1) = n(j − 1) + 1 so we let MPk

u,n(j−1)+1 denote the set of

words w ∈ {0, 1, . . . , k − 1}n(j−1)+1 such that u-mch(w) = n. We will refer to elements of
MPk

u,n(j−1)+1 as maximum packings for u. We let

mpk
u,n(j−1)+1 = |MPk

u,n(j−1)+1|,

mpk
u,n(j−1)+1(r) =

∑

w∈MPk
u,n(j−1)+1

r
P

w, and
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mpk
u,n(j−1)+1(z0, . . . , zk−1) =

∑

w∈MPk
u,n(j−1)+1

z(w).

If u has the k-exact match minimal overlapping property, then the shortest words w ∈
{0, 1, . . . , k−1}∗ such that Eu-mch(w) = n have length n(j−1)+1 so we let EMPk

u,n(j−1)+1

denote the set of words w ∈ {0, 1, . . . , k − 1}n(j−1)+1 such that Eu-mch(w) = n. We will
refer to elements of EMPk

u,n(j−1)+1 as exact match maximum packings for u. We let

empk
u,n(j−1)+1 = |EMPk

u,n(j−1)+1|,

empk
u,n(j−1)+1(r) =

∑

w∈EMPk
u,n(j−1)+1

r
P

w, and

empk
u,n(j−1)+1(z0, . . . , zk−1) =

∑

w∈EMPk
u,n(j−1)+1

z(w).

For example, suppose that u = 010 and k ≥ 2. Then the only w ∈ {0, 1, . . . , k − 1}2n+1

such that Eu-mch(w) = n is 0(10)n so that empk
010,2n+1 = 1, emp010,2n+1(r) = rn, and

empk
010,n(j−1)+1(z0, . . . , zk−1) = zn+1

0 zn
1 for all n ≥ 1 and k ≥ 2. However, if we are just

considering u-matches instead of exact u-matches in {0, 1, . . . , k − 1}2n+1, then the only
words w ∈ {0, 1, . . . , k − 1}2n+1 such that u-mch(w) = n are of the form si1si2j . . . sins
where s ∈ {0, 1, . . . , k − 2} and i1, . . . , in ∈ {s + 1, . . . , k − 1}. Thus

mpk
010,2n+1 =

k−2
∑

s=0

(k − 1 − s)n =

k−1
∑

i=1

in,

mpk
010,2n+1(r) =

k−2
∑

s=0

r(n+1)s(rs+1[k − 1 − s]r)
n =

k−1
∑

i=1

r2n(k−i)−n−1[i]nr , and

mpk
010,2n+1(z0, . . . , zk−1) =

k−2
∑

s=0

zn+1
s (

k−1
∑

t=s+1

zt)
n.

If τ ∈ Sj has the minimal overlapping property, then again the shortest permutations σ
such that τ -mch(σ) = n have length n(j−1)+1. Thus we let MPτ,n(j−1)+1 equal the set of
permutations σ ∈ Sn(j−1)+1 such that τ -mch(σ) = n. Again we refer to the permutations
in MPn,n(j−1)+1 as maximum packings for τ . Then we let mpτ,n(j−1)+1 = |MPτ,n(j−1)+1|
and

mpτ,n(j−1)+1(p, q) =
∑

σ∈MPτ,n(j−1)+1

qinv(σ)pcoinv(σ).

In general, it is a difficult problem to compute mpτ,n(j−1)+1 or mpτ,n(j−1)+1(p, q), but we
can compute these in the case that τ starts either ends or starts with 1 or ends or starts
with j. For example, we shall prove the following theorem.

Theorem 1. Suppose that τ = τ1 . . . τj where τ1 = 1 and τj = s, then
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mpτ,(n+1)(j−1)+1(p, q) =

pcoinv(τ)qinv(τ)p(s−1)n(j−1)

[

(n + 1)(j − 1) + 1 − s

j − s

]

p,q

mpτ,n(j−1)+1(p, q)

so that

mpτ,(n+1)(j−1)+1(p, q) =
(

pcoinv(τ)qinv(τ)
)n+1

p(s−1)(j−1)(n+1
2 )

n+1
∏

i=1

[

i(j − 1) + 1 − s

j − s

]

p,q

. (1)

Note that if τ = τ1 . . . τj ∈ Sj has the minimal overlapping property, then the re-
verse of τ , τ r = τj . . . τ1, and the complement of τ , τ c = (j + 1 − τ1) . . . (j + 1 − τj),
also have the minimal overlapping property. Thus one can use Theorem 1 to compute
mpτ,(n+1)(j−1)+1(p, q) in the case where τ either ends or starts with j or ends with 1.

Now suppose that u ∈ {0, 1, . . . , k − 1}j and τ ∈ Sj . If red(u) = u and (τ, u) has the
Ck ≀Sn-minimal overlapping property, then the shortest k-colored permutations (σ, w) such
that (τ, u)-mch((σ, w)) = n have length n(j−1)+1. Thus we let MPk

(τ,u),n(j−1)+1 equal the
set of k-colored permutations (σ, w) ∈ Ck ≀Sn(j−1)+1 such that (τ, u)-mch((σ, w)) = n. We
refer to the k-colored permutations in MPk

(τ,u),n(j−1)+1 as maximum packings for (τ, u).
We let

mpk
(τ,u),n(j−1)+1 = |MPk

(τ,u),n(j−1)+1|,

mpk
(τ,u),n(j−1)+1(p, q, r) =

∑

(σ,w)∈MPk
(τ,u),n(j−1)+1

pcoinv(σ)qinv(σ)r
P

w, and

mpk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1) =

∑

(σ,w)∈MPk
(τ,u),n(j−1)+1

pcoinv(σ)qinv(σ)z(w).

Similarly, we let EMPk
(τ,u),n(j−1)+1 equal the set of (σ, w) ∈ Ck ≀ Sn(j−1)+1 such that

(τ, Eu)-mch((σ, w)) = n. We refer to the k-colored permutations in EMPk
(τ,u),n(j−1)+1 as

exact match maximum packings for (τ, u). We let

empk
(τ,u),n(j−1)+1 = |EMPk

(τ,u),n(j−1)+1|,

empk
(τ,u),n(j−1)+1(p, q, r) =

∑

(σ,w)∈EMPk
(τ,u),n(j−1)+1

pcoinv(σ)qinv(σ)r
P

w, and

empk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1) =

∑

(σ,w)∈EMPk
(τ,u),n(j−1)+1

pcoinv(σ)qinv(σ)z(w).

Then the main goal of this paper is to prove the following. Let u ∈ {0, 1, . . . , k − 1}j

and τ ∈ Sj where j ≥ 3.
(I) If red(u) = u and u has the k-minimal overlapping property, then

∑

n≥0

tn
∑

w∈{0,1,...,k−1}n

xu-mch(w)z(w) =
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1

1 − ((z0 + · · · + zk−1)t +
∑

n≥1 tn(j−1)+1(x − 1)nmpk
u,n(j−1)+1(z0, . . . , zk−1))

. (2)

(II) If u has the k-exact match minimal overlapping property, then

∑

n≥0

tn
∑

w∈{0,1,...,k−1}n

xEu-mch(w)z(w) =

1

1 − ((z0 + · · · + zk−1)t +
∑

n≥1 tn(j−1)+1(x − 1)nempk
u,n(j−1)+1(z0, . . . , zk−1))

. (3)

(III) If red(u) = u and (τ, u) has the Ck ≀ Sn-minimal overlapping property, then

∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

x(τ, u)-mch((σ,u))pcoinv(σ)qinv(σ)z(w) =

1

1 − ((z0 + · · ·+ zk−1)t +
∑

n≥1
tn(j−1)+1

[n(j−1)+1]p,q!
(x − 1)nmpk

(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1))
.

(4)

(IV) If (τ, u) ∈ Ck ≀ Sj has the Ck ≀ Sn-exact match minimal overlapping property, then

∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

x(τ, Eu)-mch((σ,u))pcoinv(σ)qinv(σ)z(w) =

1

1 − ((z0 + · · · + zk−1)t +
∑

n≥1
tn(j−1)+1

[n(j−1)+1]q!
(x − 1)nempk

(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1))
.

(5)

The special case of (3) or (4) when k = 1 proves the following result.
(V) If τ ∈ Sj has the minimal overlapping property, then

∑

n≥0

tn

n!

∑

σ∈Sn

xτ -mch(σ)pcoinv(σ)qinv(σ) =

1

1 − (t +
∑

n≥1
tn(j−1)+1

[n(j−1)+1]p,q!
(x − 1)nmpτ,n(j−1)+1(p, q))

. (6)

We shall prove all of our generating functions by applying an appropriate ring homo-
morphism, defined on the ring Λ of symmetric functions over infinitely many variables
x1, x2, . . ., to a simple symmetric function identity. There has been a long line of research,
[2], [3], [1] [14], [15], [19], [20], [21], [23], [25], [22], which shows that a large number of gen-
erating functions for permutation statistics can be obtained by applying homomorphisms
defined on Λ to simple symmetric function identities. For example, the n-th elementary
symmetric function, en, and the n-th homogeneous symmetric function, hn, are defined
by the generating functions

E(t) =
∑

n≥0

entn =
∏

i

(1 + xit) (7)
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and

H(t) =
∑

n≥0

hntn =
∏

i

1

1 − xit
. (8)

Thus
H(t) = 1/E(−t). (9)

It is well known that {e0, e1, . . .} is an algebraically independent set of generators for
Λ and hence we can define a ring homomorphism ξ : Λ → R where R is a ring by
simply specifying ξ(en) for all n ≥ 0. We shall prove (1)-(5) by applying appropriate ring
homomorphisms to (9).

We shall show that several theorems that have been proved in the literature are special
cases of (I)-(V). For example, let

Aτ (t) =
∑

n≥0

tn

n!
|{σ ∈ Sn : τ -mch(σ) = 0}| (10)

and

Pτ (t, x) =
∑

n≥0

tn

n!

∑

σ∈Sn

xτ -mch(σ). (11)

Elizalde and Noy [8] proved a number of results about Aτ (t) and Pτ (x, t). For example,
they showed that

P132(t, x) =
1

1 −
∫ t

0
e

(x−1)z2

2 dz
, and

P1342(t, x) =
1

1 −
∫ t

0
e

(x−1)z3

6 dz
.

Later Kitaev [11] used an inclusion exclusion argument to prove the following result.

Theorem 2. Let τ = 12 · · ·aσ(a+1), where σ is a permutation of {a+2, a+3, . . . , k+1},
then

Aτ (t) =
1

1 − t +
∑

i≥1
(−1)i+1tki+1

(ki+1)!

∏i
j=2

(

jk−a
k−a

)
. (12)

Permutations of the form 132, 1342, and τ = 12 · · ·aσ(a + 1) have the minimal over-
lapping property so that p, q-analogues of the results of Elizalde and Noy and Kitaev’s
result are special cases of our main results.

We shall see that our results have many applications to the consecutive Wilf equiv-
alence problem. That is, given α, β ∈ Sn, we say that α is c-Wilf equivalent to β if
Aα(t) = Aβ(t). Given permutations α, β ∈ Sn, we say that α is strongly c-Wilf equiv-
alent to β if Pα(t, x) = Pβ(t, x). It is easy to see that c-Wilf equivalences classes and
strong c-Wilf equivalence classes are closed under complement and reverse.

Elizalde [7] conjectured that if α = α1 . . . αj and β = β1 . . . βj are permutations in
Sj which have the minimal overlapping property and α1 = β1 and αj = βj, then α and
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β are strongly c-Wilf equivalent. Note that (5) tells us that if α and β are elements of
Sj which have the minimal overlapping property and mpα,s(j−1)+1 = mpβ,s(j−1)+1 for all
s ≥ 1, then Pα(x, t) = Pβ(x, t) and, hence, α and β are strongly c-Wilf equivalent. Thus
to prove Elizalde’s conjecture, we need only show that if α = α1 . . . αj and β = β1 . . . βj

are elements of Sj which have minimal overlapping property and α1 = β1 and αj = βj ,
then mpα,s(j−1)+1 = mpβ,s(j−1)+1 for all s ≥ 1. We shall prove this fact in Section 3. We
note that Elizalde’s conjecture has been proved independently by Vladimir Dotsenko and
Anton Khoroshkin [4] by a different method.

Our results will also allow us to find generating functions for the distribution for
the number of non-overlapping matches of a pattern in permutations, words, and col-
ored permutations. That is, if u ∈ {0, 1, . . . , k − 1}j is such that red(u) = u and
w ∈ {0, 1, . . . , k − 1}n, then we let u-nlap(w) denote the maximum number of non-
overlapping u-matches in w where we say that two u-matches in w overlap that they
have at least one position in common. Similarly, we let Eu-nlap(w) denote the maximum
number of non-overlapping exact u-matches in w. If τ ∈ Sj and σ ∈ Sn, let τ -nlap(σ)
denote the maximum number of non-overlapping τ matches in σ. If (τ, u) ∈ Ck ≀ Sj is
such that red(u) = u and (σ, w) ∈ Ck ≀Sn, then we let (τ, u)-nlap((σ, w)) denote the max-
imum number of non-overlapping (τ, u)-matches in (σ, w). Similarly, if (τ, u) ∈ Ck ≀ Sj ,
then we let (τ, Eu)-nlap((σ, w)) denote the maximum number of non-overlapping exact
(τ, u)-matches in (σ, w).

Kitaev [10, 11] showed that if one can compute Aτ (t), then one can automatically
compute the exponential generating function for the distribution of τ -nlap(σ). That is,
Kitaev [10, 11] proved that

Theorem 3.
∑

n≥0

tn

n!

∑

σ∈Sn

xτ-nlap(τ)σ =
Aτ (t)

(1 − x) + x(1 − t)Aτ (t)
(13)

where Aτ (t) =
∑

n≥0
tn

n!
|{σ ∈ Sn : τ -mch(τ)σ = 0}|.

Mendes and Remmel [19] proved a q-analogue of Theorem 3. That is, they proved
that

∞
∑

n=0

tn

[n]q!

∑

σ∈Sn

xτ -nlap(σ)qinv(σ) =
Aτ (q, t)

(1 − x) + x(1 − t)Aτ (q, t)
(14)

where Aτ (q, t) =
∑

n≥0
tn

[n]q!

∑

σ∈Sn,τ -mch(σ)=0 qinv(σ). Kitaev and Mansour [12] proved an

analogue of Theorem 3 for words. That is, they proved that if u ∈ {0, 1, . . . , k−1}∗, then

∑

n≥0

tn
∑

w∈{0,1,...,k−1}n

xEu-nlap(w) =
Au(t)

1 − x((kt − 1)Au(t))
(15)

where Au(t) =
∑

n≥0 tn|{w ∈ {0, 1, . . . , k−1}n : Eu-mch(w) = 0}|. One can easily modify
Kitaev and Mansour’s proof to prove the following refinement of their results. That is, if

Au(t, z0, . . . , zk−1) =
∑

n≥0

tn
∑

w∈{0,1,...,k−1}n,u-mch(w)=0

z(w),
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EAu(t, z0, . . . , zk−1) =
∑

n≥0

tn
∑

w∈{0,1,...,k−1}n,Eu-mch(w)=0

z(w),

Nu(t, x, z0, . . . , zk−1) =
∑

n≥0

tn
∑

w∈{0,1,...,k−1}n

xu-nlap((σ,w))z(w), and

ENu(t, x, z0, . . . , zk−1) =
∑

n≥0

tn
∑

w∈{0,1,...,k−1}n

xEu-nlap((σ,w))z(w),

then

Nu(t, x, z0, . . . , zk−1) =
Au(t, z0, . . . , zk−1)

1 − x(1 + ((z0 + · · · zk−1)t − 1)Au(t, z0, . . . , zk−1))
and

ENu(t, x, z0, . . . , zk−1) =
EAu(t, z0, . . . , zk−1)

1 − x(1 + ((z0 + · · · zk−1)t − 1)EAu(t, z0, . . . , zk−1))
.

Kitaev, Niedermaier, Remmel and Reihl [13] proved an analogue of Kitaev’s theorem
for k-colored permutations. That is, let

N(τ,u)(x, r, q, t) =
∑

n≥0

tn

[n]q!

∑

(σ,w)∈Ck ≀Sn

qinv(σ)r
P

wx(τ, u)-nlap((σ,w)), (16)

and

A(τ,u)(r, q, t) =
∑

n≥0

tn

[n]q!

∑

(σ,w)∈Ck ≀Sn,(τ, u)-mch((σ,w))=0

qinv(σ)r
P

w. (17)

Then they showed that

N(τ,u)(x, r, q, t) =
A(τ,u)(r, q, t)

1 − x(1 + ([k]rt − 1)A(τ,u)(r, q, t))
. (18)

One can easily modify the proofs in [13] to obtain the following refinements of their results:

N(τ,u)(t, x, p, q, z0, . . . , zk−1) =

A(τ,u)(t, p, q, z0, . . . , zk−1)

1 − x(1 + ((z0 + · · · zk−1)t − 1)A(τ,u)(t, p, q, z0, . . . , zk−1))

and

EN(τ,u)(t, x, p, q, z0, . . . , zk−1) =

A(τ,u)(t, p, q, z0, . . . , zk−1)

1 − x(1 + ((z0 + · · · zk−1)t − 1)EA(τ,u)(t, p, q, z0, . . . , zk−1))

where

A(τ,u)(t, p, q, z0, . . . , zk−1) =
∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck ≀Sn,(τ, u)-mch((σ,w))=0

pcoinv(σ)qinv(σ)z(w),
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EA(τ,u)(t, p, q, z0, . . . , zk−1) =
∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck ≀Sn,(τ, Eu)-mch((σ,w))=0

pcoinv(σ)qinv(σ)z(w),

N(τ,u)(t, x, p, q, z0, . . . , zk−1) =
∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck ≀Sn

pcoinv(σ)qinv(σ)x(τ, u)-nlap((σ,w))z(w),

and

EN(τ,u)(t, p, q, z0, . . . , zk−1) =
∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck ≀Sn

pcoinv(σ)qinv(σ)x(τ, Eu)-nlap((σ,w))z(w).

The outline of this paper is as follows. In section 2, we shall give the necessary
background on symmetric functions and brick tabloids that we shall need for our results.
In section 3, we shall prove results (I)-(V) listed above. We shall also show that we can
obtain the generating functions for the number of consecutive occurrences in words and
k-colored permutations of patterns which do not allow any overlaps as special cases of
our proofs of (I)-(V). In section 4, we shall compute the number of maximum packings
for various words, permutations, and k-colored permutations and show how Elizalde’s
conjecture follows from our results. Finally, in section 5, we shall briefly discuss some
extensions of our results.

2 Symmetric Functions

In this section we give the necessary background on symmetric functions needed for our
proofs of the generating functions (I)-(IV).

Let Λ denote the ring of symmetric functions over infinitely many variables x1, x2, . . .
with coefficients in the field of complex numbers C.

Let λ = (λ1, . . . , λℓ) be an integer partition, that is, λ is a finite sequence of weakly
increasing nonnegative integers. Let ℓ(λ) denote the number of nonzero integers in λ. If
the sum of these integers is n, we say that λ is a partition of n and write λ ⊢ n. For any
partition λ = (λ1, . . . , λℓ), let eλ = eλ1 · · · eλℓ

. The well-known fundamental theorem of
symmetric functions says that {eλ : λ is a partition} is a basis for Λ or, equivalently, that
{e0, e1, . . .} is an algebraically independent set of generators for Λ. Similarly, if we define
hλ = hλ1 · · ·hλℓ

, then {hλ : λ is a partition} is also a basis for Λ. Since {e0, e1, . . .} is an
algebraically independent set of generators for Λ, we can specify a ring homomorphism θ
on Λ by simply defining θ(en) for all n ≥ 0.

A brick tabloid of shape (n) and type λ = (λ1, . . . , λk) is a filling of a row of n squares
of cells with bricks of lengths λ1, . . . , λk such that bricks to not overlap. One brick tabloid
of shape (12) and type (1, 1, 2, 3, 5) is displayed below.

Figure 1: A brick tabloid of shape (12) and type (1, 1, 2, 3, 5).
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Let Bλ,n denote the set of all λ-brick tabloids of shape (n) and let Bλ,n = |Bλ,n|.
Eğecioğlu and Remmel proved in [5] that

hn =
∑

λ⊢n

(−1)n−ℓ(λ)Bλ,neλ. (19)

We end this section with a lemma from [22] that will be needed in later sections. Fix a
brick tabloid T = (b1, . . . , bℓ(µ)) ∈ Bµ,n. Let IF (T ) denote the set of all fillings of the cells
of T = (b1, . . . , bℓ(µ)) with the numbers 1, . . . , n so that the numbers increase within each
brick reading from left to right. We then think of each such filling as a permutation of Sn

by reading the numbers from left to right. For example, Figure 2 pictures an element of
IF (3, 6, 3) whose corresponding permutation is 4 6 12 1 5 7 8 10 11 2 3 9.

64 1 5 7 8 10 1112 2 3 9

Figure 2: An element of IF (3, 6, 3).

Then the following lemma which is proved in [22] gives a combinatorial interpretation

to p
Pℓ(µ)

i=1 (bi
2 )

[

n
b1,...,bℓ(µ)

]

p,q
.

Lemma 4. If T = (b1, . . . , bℓ(µ)) is a brick tabloid in Bµ,n, then

p
P

i (
bi
2 )

[

n

b1, . . . , bℓ(µ)

]

p,q

=
∑

σ∈IF (T )

qinv(σ)pcoinv(σ).

3 Generating functions for minimal overlapping pat-

terns

The main goal of this section is to prove results (I)-(V) described in the introduction. We
shall start with results (I) and (II) since their proofs will illustrate the general method.

Theorem 5. Let u ∈ {0, 1, . . . , k − 1}j where j ≥ 3.

(I) If u has the k-minimal overlapping property and red(u) = u, then

∑

n≥0

tn
∑

w∈{0,1,...,k−1}n

xu-mch(w)z(w) =

1

1 − ((z0 + · · ·+ zk−1)t +
∑

n≥1 tn(j−1)+1(x − 1)nmpk
u,n(j−1)+1(z0, . . . , zk−1))

. (20)

(II) If u has the k-exact match minimal overlapping property, then
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∑

n≥0

tn
∑

w∈{0,1,...,k−1}n

xEu-mch(w)z(w) =

1

1 − ((z0 + · · · + zk−1)t +
∑

n≥1 tn(j−1)+1(x − 1)nempk
u,n(j−1)+1(z0, . . . , zk−1))

. (21)

Proof. Suppose that u ∈ {0, . . . , k − 1}j has the minimal overlapping property and
red(u) = u. We define a ring homomorphism Θ on Λ by letting

(1) Θ(e0) = 1,
(2) Θ(e1) = z0 + · · ·+ zk−1,
(3) Θ(es(j−1)+1) = (−1)s(j−1)(x − 1)smpk

u,s(j−1)+1(z0, . . . , zk−1) for all s ≥ 1, and

(4) Θ(en) = 0 if n 6∈ {1} ∪ {s(j − 1) + 1 : s ≥ 1}.

Note that if Θ(en) 6= 0 and n ≥ 1, then the sign associated with Θ(en) is just (−1)n−1.
We claim that for all n ≥ 1,

Θ(hn) =
∑

w∈{0,1,...,k−1}n

xu-mch(w)z(w). (22)

That is, by (19), we have that

Θ(hn) =
∑

µ⊢n

(−1)n−ℓ(µ)Bµ,nΘ(eµ). (23)

Now if µ is not a partition whose parts come from {1} ∪ {s(j − 1) + 1 : s ≥ 1}, then
Θ(eµ) = 0. Thus let Pj,n denote the set of all partitions of n whose parts come from
{1}∪ {s(j − 1) + 1 : s ≥ 1}. For any statement A, let χ(A) = 1 if A is true and χ(A) = 0
if A is false. It follows that

Θ(hn) =
∑

µ∈Pj,n

(−1)n−ℓ(µ)
∑

(b1,...,bℓ(µ))∈Bµ,n

ℓ(µ)
∏

i=1

Θ(ebi
) =

∑

µ∈Pj,n

(−1)n−ℓ(µ)
∑

(b1,...,bℓ(µ))∈Bµ,n

ℓ(µ)
∏

i=1

(−1)bi−1((z0 + · · ·+ zk−1)χ(bi = 1)+

(x − 1)(bi−1)/(j−1)mpk
u,bi

(z0, . . . , zk−1)χ(bi > 1)) =

∑

µ∈Pj,n

∑

(b1,...,bℓ(µ))∈Bµ,n

ℓ(µ)
∏

i=1

((z0 + · · · + zk−1)χ(bi = 1)+

(x − 1)(bi−1)/(j−1)mpk
u,bi

((z0, . . . , zk−1))χ(bi > 1)). (24)

Next we want to give a combinatorial interpretation to the right hand side of (24). Suppose
that we have a brick tabloid B = (b1, . . . , bℓ) of size n such that bi ∈ {1} ∪ {s(j − 1) + 1 :
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s ≥ 1} for all i. Then if bi = 1, we shall interpret z0 + · · · + zk−1 as allowing us to fill bi

with any letter from {0, 1, . . . , k − 1}. If bi = s(j − 1) + 1 > 1, then we shall interpret
the term (x − 1)(bi−1)/(j−1)mpk

u,bi
(z0, . . . , zk−1) = (x − 1)smpk

u,s(j−1)+1(z0, . . . , zk−1) as the

number of ways of filling bi with a word vi ∈ MPk
u,s(j−1)+1 and then labeling each cell in

bi which is the start of a u-match in vi with either x or −1. Let Ou,n denote the set of all
labeled brick tabloids that can be constructed in this way. Thus an O ∈ Ou,n will consist
of a triple T = (B, w, L) where

1. B = (b1, . . . , bℓ) is a brick tabloid of shape (n) such that bi ∈ {1} ∪ {s(j − 1) + 1 :
s ≥ 1} for all i,

2. w = w1 . . . wn ∈ {0, 1, . . . , k − 1}n is a word such that wi lies in i-th cell of B for
i = 1, . . . , n,

3. if bi = 1, then the letter in the cell corresponding to bi can be any letter from
{0, 1, . . . , k − 1}, and

4. if bi = s(j − 1) + 1 > 1, then the cells of bi are filled with a word vi which is a
maximum packing for u of size s(j − 1) + 1 and each cell of bi which corresponds to
the start of a u-match in vi is labeled with either −1 or x.

We then define the weight of T , wt(T ), to be z(w) times the product of the x labels
in T and the sign of T , sign(T ), to be the product of the −1 labels in T . For exam-
ple, if k = 5 and u = 010, then in Figure 3, we have pictured four elements of O010,17,
Ti = (B(i), w(i), L(i)) for i = 1, . . . , 4. Then wt(T (1)) = xz3

0z
5
1z

2
2z

4
3z

3
4 , sign(T (1)) = 1,

wt(T (2)) = x2z4
0z

4
1z

2
2z

3
3z

4
4 , sign(T (2)) = 1, wt(T (3)) = x2z3

0z
5
1z

2
2z

4
3z

3
4 , sign(T (3)) = 1,

wt(T (4)) = x2z3
0z

5
1z

2
2z

4
3z

3
4 , and sign(T (4)) = −1. It follows that

Θ(hn) =
∑

T∈Ou,n

sign(T )wt(T ). (25)

T

T

T

1

2

3

0 2 04 1 3 1 4 1 2 1 0 3 4 33 1

x −1 −1 −1−1

T4 0 2 04 1 3 1 4 1 2 1 0 3 4 3

x x −1 −1 −1

0 2 04 1 3 1 4 1 2 1 0 3 4 3

x x −1 −1 −1

31

3 1

0 2 04 1 3 1 4 1 2 1 0 3 4 3

x x −1 −1 −1

04

−1

−1

Figure 3: Elements of O010,17.
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Next we define a sign-reversing weight-preserving involution I : Ou,n → Ou,n. If
T = (B, w, L), then to define I(T ), we scan the cells of B = (b1, . . . , bℓ) from left to right
looking for the first time where one of the following cases hold.

Case 1. There is a brick bi of size j whose first cell is labeled with −1. In this case,
I(T ) = (B∗, w∗, L∗) where B∗ results from B by replacing the brick bi by j bricks of size
1, w∗ = w, and L∗ arises from L by removing the label −1 from the first cell of bi.

Case 2. There are j consecutive bricks of size 1 in B, bi, bi+1, . . . , bi+j−1 such that the
letters in these cells form a u-match. In this case, I(T ) = (B∗, w∗, L∗) where B∗ results
from B by replacing the bricks bi, bi+1, . . . , bi+j−1 by a single brick b of size j, w∗ = w,
and L∗ arises from L by labeling the first cell of b with a −1.

Case 3. There is a brick bi of size (s + 1)(j − 1) + 1 where s ≥ 1 such that all the
labels on bi are x’s except for the cell that is j cells from the right which is labeled with
−1. In this case, I(T ) = (B∗, w∗, L∗) where B∗ results from B by replacing the brick bi

by a brick of size s(j − 1) + 1 followed by j − 1 bricks of size 1, w∗ = w, and L∗ arises
from L by removing the −1 label that was in bi.

Case 4. There are j consecutive bricks in B, bi, bi+1, . . . , bi+j−1 such that bi = s(j−1)+1 >
1 and bi+1, . . . bi+j−1 are of size 1, all the labels on bi are x’s, and the letters in these bricks
form a maximum packing for u of size (s+1)(j− 1)+1. In this case, I(T ) = (B∗, w∗, L∗)
where B∗ results from B by replacing the bricks bi, bi+1, . . . , bi+j−1 by a single brick b of
size (s+1)(j−1)+1, w∗ = w, and L∗ arises from L by labeling the last cell of bi with a −1.

Case 5. There is a brick bi of size (s + 1)(j − 1) + 1 where s ≥ 1 such that the first cell
of bi is labeled with −1. In this case, I(T ) = (B∗, w∗, L∗) where B∗ results from B by
replacing the brick bi by j − 1 bricks of size 1 followed by a brick of size s(j − 1) + 1,
w∗ = w, and L∗ arises from L by removing the −1 label that was on the first cell of bi.

Case 6. There are j consecutive bricks in B, bi, bi+1, . . . , bi+j−1 such that bi, . . . bi+j−2

are bricks of size 1 and bi+j−1 = s(j − 1) + 1 > 1 and the letters in these bricks form
a maximum packing for u of size (s + 1)(j − 1) + 1. In this case, I(T ) = (B∗, w∗, L∗)
where B∗ results from B by replacing the bricks bi, bi+1, . . . , bi+j−1 by a single brick b of
size (s+1)(j−1)+1, w∗ = w, and L∗ arises from L by adding a −1 label on the first cell of b.

Case 7. There is a brick bi of size s(j − 1) + 1 where s ≥ 3 such that the first cell
is labeled with an x and there is a cell which has a label −1 which is not the j-th cell from
the right. Let t be the left-most cell of bi which is labeled with −1. Then in this case,
I(T ) = (B∗, w∗, L∗) where B∗ results from B by replacing the brick bi by j consecutive
bricks c1, c2, . . . , cj−1, cj where c1 contains all the cells of bi up to and including cell t,
c2, . . . , cj−1 are bricks of size 1, and cj contains the remaining cells of bi, w = w∗, and L∗

is the labeling that results from L by removing the −1 label from cell t.
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Case 8. There are j consecutive bricks bi, bi+1, . . . , bi+j−1 such that bi = c(s− 1) + 1 > 1
and there are no −1 labels in bi, bi+1, . . . , bi+j−2 are bricks of size 1, bi+j−1 = d(j −
1) + 1 > 1, and the letters in these three bricks form a maximum packing for u of size
(c + d + 1)(j − 1) + 1. In this case, I(T ) = (B∗, w∗, L∗) where B∗ results from B by
replacing the j bricks bi, bi+1, . . . , bi+j−1 by a single brick b, w∗ = w, and L∗ results from
L by adding a label −1 on the last cell of bi.

If none of Cases 1-8 apply, then we set I(T ) = T .
For example, consider images of T1, . . . , T4 pictured in Figure 3. It is easy to see that

T1 is in Case 1 so that I(T ) results by replacing the second brick by three bricks of size 1
and removing the −1 label. This results in I(T1) pictured in the first row of Figure 4. It
is then easy to see that I(T1) is in Case 2 so that I2(T1) = T1. T2 is in Case 3 where bi is
the second brick. Thus we obtain I(T2) by replacing b2 with a brick of size 3 followed by
two bricks of size 1 and removing the −1 label from cell 4. I(T2) is pictured in the second
row of Figure 4. It is then easy to see that I(T2) will be in Case 4 so that I2(T2) = T2.
T3 is in Case 5 where bi is the third brick. Thus we obtain I(T3) by replacing b3 by two
bricks of size 1 followed by a brick of size 7 and removing the −1 label on cell 5. I(T3) is
pictured in the third row of Figure 4. It is then easy to see that I(T3) will be in Case 6
so that I2(T3) = T3. Finally, T4 is in Case 7 with t = 9 so that we replace the fifth brick
by three consecutive bricks of sizes 3, 1, and 3, reading from left to right, and remove the
−1 label for cell 9. I(T4) is pictured in the forth row of Figure 4. It is then easy to see
that I(T4) will be in Case 8 so that I2(T4) = T4.

T1

T2

T3

T4

0 2 04 1 3 1 4 1 2 1 0 3 4 33 1

x −1 −1 −1

0 2 04 1 3 1 4 1 2 1 0 3 4 3

x x −1 −1

0 2 04 1 3 1 4 1 2 1 0 3 4 3

x x −1 −1 −1

31

3 1

0 2 04 1 3 1 4 1 2 1 0 3 4 3

x x −1 −1 −1

04

I(     )

I(     )

I(     )

I(     )

Figure 4: The images under I of the elements in Figure 3.

First we claim that I is an involution. For this we have to do a case by case analysis.
Fix some T = (B, w, L) ∈ Ou,n such that I(T ) 6= T . Let B = (b1, . . . , bℓ). Note that in
every case, I(T ) is defined by changing the brick structure on some cells s, s+1, . . . , s+j−1
where wsws+1 . . . ws+j−1 is a u-match in w.

First suppose that I(T ) was defined using Case 1 and that the brick of size j that
was used in the definition of I(T ) is bi and bi covers cells t, t + 1, . . . , t + j − 1. Then
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in I(T ), we have the possibility to recombine the bricks of size 1 that now cover cells
t, t + 1, . . . , t + j − 1. Thus if I2(T ) 6= T , then it must be the case that we took some
action which involved a u-match wsws+1 . . . ws+j−1 where s < t. Now it cannot be that
s + j − 1 < t since otherwise we could have taken the same action by changing the brick
structure on cells s, s + 1, . . . , s + j − 1 in T which would violate the fact that we always
take an action on the left-most possible cells that we can when defining I(T ). Because
u has the minimal overlapping property, the only other possibility is that t = s + j − 1.
Now if s > 1, then the minimal overlapping property for u implies that ws−1ws . . . ws+j−2

is not a u-match and hence the cells s−1, s, . . . , s+ j−2 cannot lie in a single brick since
the last j-cells in any brick b of size greater than 1 must correspond to a u-match in w.
Thus it must be that in T , cells s + 1, . . . , s + j− 2 must be covered by bricks of size 1. If
cell s is also covered by a brick of size 1, then we could apply Case 6 to T using the j − 1
bricks of size 1 covering cells s, . . . , s + j − 2 plus bi which would contradict the fact that
for T , we are in Case 1 using brick bi. If cell s is part of brick b of size > 1, then we could
apply Case 8 to T using b plus the j − 2 bricks of size 1 covering cells s + 1, . . . , s + j − 2
plus bi which again would contradict the fact that for T , we are in Case 1 using brick bi.
If s = 1, then cells s, . . . , s + j − 2 must be covered by bricks of size 1 so that we could
apply Case 6 to T using the j − 1 bricks of size 1 covering cells s, . . . , s + j − 2 plus bi

which would contradict the fact that for T , we are in Case 1 using brick bi. Thus the
left-most u-match that we can use to define the image of I for I(T ) is the u-match that
lies in the j bricks of size 1 covering cells t, t+1, . . . , t+ j − 1 in which case we know that
I2(T ) = T . An entirely similar analysis will show that if I(T ) is defined using Case 2,
then I2(T ) = T .

Next suppose that I(T ) was defined by Case 3 using a brick bi of size a(j − 1) + 1
where a ≥ 2 and bi covers cells t, t + 1, . . . , t + a(j − 1). Then in I(T ), there is a single
brick b covering cells t, t+1, . . . , t+(a−1)(j−1) followed by j−1 bricks of size 1 covering
cells t + (a − 1)(j − 1) + 1, . . . , t + a(j − 1) and all the labels on b are x’s. In this case, if
I2(T ) 6= T , then it must be the case that we took some action which involved a u-match
wsws+1 . . . ws+j−1 where s < t. But then we could have taken some action by changing
the brick structure on cells s, s + 1, . . . , s + j − 1 in T which would violate the fact that
we always take an action on the left-most possible cells that we can when defining I(T ).
Thus it must be the case that the left-most action that we can take to define I on I(T ) is
to combine b with the j − 1 bricks of size 1 that follow b and hence I2(T ) = T . A similar
analysis will show that if I(T ) was defined using Case 4, then I2(T ) = T .

Next suppose that I(T ) was defined by Case 5 using brick bi = a(j − 1) + 1 where
a ≥ 2. The analysis in this case is essentially the same as the analysis of Case 1. That is,
suppose that bi covers cells t, t+1, . . . , t+ a(j− 1). We are assuming that cell t is labeled
with −1. Then in I(T ), the first j − 1 cells of bi will be covered with bricks of size 1 and
the remaining cells of bi with a single brick b. Thus if I2(T ) 6= T , then it must be the
case that we took some action which involved a u-match wsws+1 . . . ws+j−1 where s < t.
Now it cannot be that s + j − 1 < t since otherwise we could have taken the same action
by changing the brick structure on cells s, s + 1, . . . , s + j − 1 in T which would violate
the fact that we always take an action on the left-most possible cells that we can when
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defining I(T ). Because u has the minimal overlapping property, the only other possibility
is that t = s + j − 1. Now if s > 1, then the minimal overlapping property for u implies
that ws−1ws . . . ws+j−2 is not a u-match and hence the cells s − 1, s, . . . , s + j − 2 cannot
lie in a single brick since the the last j-cells in any brick b of size greater than 1 must
correspond to a u-match in w. Thus it must be that in T , cells s + 1, . . . , s + j − 2 must
be covered by bricks of size 1. If cell s is also covered by a brick of size 1, then we could
apply Case 6 to T using the j − 1 bricks of size 1 covering cells s, . . . , s + j − 2 plus bi

which would contradict the fact that for T , we are in Case 5 using brick bi. If cell s is
part of brick b of size > 1, then we could apply Case 8 to T using b plus the j−2 bricks of
size 1 covering cells s + 1, . . . , s + j − 2 plus bi which again would contradict the fact that
for T , we are in Case 5 using brick bi. If s = 1, then cells s, . . . , s + j − 2 must be covered
by bricks of size 1 so that we could apply Case 6 to T using the j − 1 bricks of size 1
covering cells s, . . . , s+ j − 2 plus bi which would contradict the fact that for T , we are in
Case 5 using brick bi. Thus the left-most u-match that we can use to define the image of
I for I(T ) is the u-match that lies j − 1 bricks of size 1 covering cells t, t+1, . . . , t+ j − 1
plus the brick b in which case we know that I2(T ) = T . An entirely similar analysis will
show that if I(T ) is defined using Case 6, then I2(T ) = T .

Finally suppose that I(T ) was defined using Case 7 using a brick bi of size a(j−1)+1
where a ≥ 3. Suppose that bi covers cells t, t + 1, . . . , t + a(j − 1). We are assuming
that cell t has label x and that the left-most cell of bi which is labeled with −1 occurs
on cell t + b(j − 1) where 1 ≤ b < a − 1. Then in I(T ) there is a single brick b∗

covering cells t, t + 1, . . . , t + b(j − 1) followed by j − 2 bricks of size 1 covering cells
t + b(j − 1) + 1, . . . , t + b(j − 1) + j − 2 followed by a brick b∗∗ covering the remaining
cells of bi. Moreover all the labels on b∗ are x’s. In this case, if I2(T ) 6= T , then it must
be the case that we took some action which involved a u-match wsws+1 . . . ws+j−1 where
s < t. But then we could have taken some action by changing the brick structure on cells
s, s + 1, . . . , s + j − 1 in T which would violate the fact that we always take an action
on the left-most possible cells that we can when defining I(T ). Thus it must be the case
that the left-most action that we can take to define is to recombine b∗ plus the following
j − 2 bricks of size 1 plus b∗∗ into a single brick so that I2(T ) = T . An entirely similar
analysis will show that if I(T ) is defined using Case 8, then I2(T ) = T .

It is easy to see that if I(T ) 6= T , then sign(T )wt(T ) = −sign(I(T ))wt(I(T )). Hence
I shows that

Θ(hn) =
∑

T∈Ou,n,I(T )=T

sign(T )wt(T ). (26)

Thus we must examine the fixed points of I. Suppose that T = (B, w, L) is a fixed point
of I where B = (b1, . . . , bℓ). There cannot be any −1 labels on any of the bricks in B
since otherwise we could apply one of Cases 1, 3, 5, or 7. Thus if I(T ) = T , sign(T ) = 1.
It follows that wt(T ) = xcz(w) where c is the number of u-matches in w that lie entirely
with in some brick bi in B. We claim that any u-match in w must lie entirely within some
brick. That is, suppose that w = w1 . . . wn and wsws+1 . . . ws+j−1 a u-match that does not
lie in a single brick. Because u has the minimal overlapping property, there are only four
possibilities, namely,
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(i) cells s, s + 1, . . . , s + j − 1 are covered by bricks of size 1,
(ii) cell s is part of brick bi of size > 1 and cells s + 1, . . . , s + j − 1 are covered by bricks
of size 1,
(iii) cell s + j − 1 is part of brick bi of size > 1 and cells s, . . . , s + j − 2 are covered by
bricks of size 1, or
(iv) cell s is part of a brick bi of size > 1 bi+1, . . . , bi+j−2 are bricks of size 1 covering cells
s + 1, . . . , s + j − 2, and cell s + j − 1 is part of brick bi+j−1 which is of size > 1.
In case (i), we could apply Case 2 of the definition of I to cells s, s+1, . . . , s+j−1. In case
(ii), we could apply Case 4 of the definition of I to cells of bi plus cells s+1, . . . , s+ j−1.
In case (iii), we could apply Case 6 of the definition of I to cells s, . . . , s + j − 2 plus
the cells of bi. In case (iv), we can apply Case 8 of the definition of I to the cells of
contained in the bricks bi, . . . , bi+j−1. Thus in all the cases (i)-(iv), it would be the case
that I(T ) 6= T which contradicts our choice of T . Thus we have shown that if I(T ) = T ,
then sign(T )wt(T ) = xu-mch(w)z(w). Finally note that if w ∈ {0, . . . , k−1}n, then we can
construct a fixed point of I by placing bricks which cover the maximal length maximum
packings in w, covering the remaining cells by bricks of size 1, and labeling the start of
each u-match in w by x. It thus follows that

Θ(hn) =
∑

w∈{0,...,k−1}n

xu-mch(w)z(w).

But then

Θ(H(t)) =
∑

n≥0

tn
∑

w∈{0,...,k−1}n

xu-mch(w)z(w) = Θ(1/E(−t)) =

1

1 +
∑

n≥1(−t)nΘ(en)
=

1

1 − ((z0 + · · ·+ zk−1)t +
∑

n≥1 tn(j−1)+1(x − 1)nmpk
u,n(j−1)+1(z0, . . . , zk−1))

which proves (20).
If we replace u-matchings by exact u-matching throughout the proof of (20), then we

will get a proof of (21).

Next we prove our main results for k-colored permutations.

Theorem 6. (III) If (τ, u) ∈ Ck ≀ Sj, red(u) = u, and (τ, u) has the Ck ≀ Sn-minimal

overlapping property, then

∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

x(τ, u)-mch((σ,u))pcoinv(σ)qinv(σ)z(w) = (27)

1

1 − ((z0 + · · · + zk−1)t +
∑

n≥1
tn(j−1)+1

[n(j−1)+1]p,q!
(x − 1)nmpk

(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1))
.

the electronic journal of combinatorics 18 (2011), #P25 18



(IV) If (τ, u) ∈ Ck ≀ Sj has the Ck ≀ Sn-exact match minimal overlapping property, then

∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

x(τ, Eu)-mch((σ,u))pcoinv(σ)qinv(σ)z(w) = (28)

1

1 − ((z0 + · · · + zk−1)t +
∑

n≥1
tn(j−1)+1

[n(j−1)+1]q!
(x − 1)nempk

(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1))
.

Proof. We shall see that the proof of Theorem 6 is very similar to the proof of Theorem 5.
Suppose that (τ, u) ∈ Ck ≀Sj has the Ck ≀Sn-minimal overlapping property and red(u) = u.
We define a ring homomorphism Γ on Λ by letting

(1) Γ(e0) = 1,
(2) Γ(e1) = z0 + · · ·+ zk−1,
(3) Γ(es(j−1)+1) = (−1)s(j−1)(x − 1)s 1

[s(j−1)+1]p,q!
mpk

(τ,u),s(j−1)+1(p, q, z0, . . . , zk−1) for all

s ≥ 1, and
(4) Γ(en) = 0 if n 6∈ {1} ∪ {s(j − 1) + 1 : s ≥ 1}.

Note that if Γ(en) 6= 0 and n ≥ 1, then the sign associated with Γ(en) is just (−1)n−1.
We claim that for all n ≥ 1,

[n]p,q!Γ(hn) =
∑

(σ,w)∈Ck ≀Sn

pcoinv(σ)qinv(σ)x(τ, u)-mch(w)z(w). (29)

That is, by (19), we have that

[n]p,q!Γ(hn) = [n]p,q!
∑

µ⊢n

(−1)n−ℓ(µ)Bµ,nΓ(eµ). (30)

Now if µ is not a partition whose parts come from {1} ∪ {s(j − 1) + 1 : s ≥ 1}, then
Γ(eµ) = 0. Thus let Pj,n denote the set of all partitions of n whose parts come from
{1} ∪ {s(j − 1) + 1 : s ≥ 1}. It follows that

[n]p,q!Γ(hn) = [n]p,q!
∑

µ∈Pj,n

(−1)n−ℓ(µ)
∑

(b1,...,bℓ(µ))∈Bµ,n

ℓ(µ)
∏

i=1

Γ(ebi
) =

[n]p,q!
∑

µ∈Pj,n

(−1)n−ℓ(µ)
∑

(b1,...,bℓ(µ))∈Bµ,n

ℓ(µ)
∏

i=1

(−1)bi−1((z0 + · · · + zk−1)χ(bi = 1)+

(x − 1)(bi−1)/(j−1) 1

[bi]p,q!
mpk

(τ,u),bi
(p, q, z0, . . . , zk−1)χ(bi > 1)) =

∑

µ∈Pj,n

∑

(b1,...,bℓ(µ))∈Bµ,n

p
Pℓ(µ)

i=1 (bi
2 )

[

n

b1, . . . , bℓ(µ)

]

p,q

ℓ(µ)
∏

i=1

((z0 + · · ·+ zk−1)χ(bi = 1)+
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(x − 1)(bi−1)/(j−1)p−(bi
2 )mpk

(τ,u),bi
(p, q, z0, . . . , zk−1)χ(bi > 1)). (31)

Next we want to give a combinatorial interpretation to the right hand side of (31). Suppose
that we have a brick tabloid B = (b1, . . . , bℓ) of size n such that bi ∈ {1} ∪ {s(j − 1) + 1 :

s ≥ 1} for all i. By Lemma 4, we can interpret p
Pℓ(µ)

i=1 (bi
2 )

[

n
b1,...,bℓ(µ)

]

p,q
as the ways of filling

the cells of B with a permutation α such that α is increasing in each brick of B and we
weight α by pcoinv(α)qinv(α). Then if bi = 1, we shall interpret z0 + · · · + zk−1 as allowing
us to place any letter from {0, 1, . . . , k − 1} on top of the integer from α that is in brick
bi. If bi = s(j − 1) + 1 > 1, then let 1 ≤ ai

1 < . . . < ai
s(j−1)+1 ≤ n be the elements of α

which are in the cells of bi reading from left to right. We shall interpret the term

(x − 1)(bi−1)/(j−1)p−(bi
2 )mp(τ,u),bi

(p, q, z0, . . . , zk−1) =

(x − 1)sp−(bi
2 )mp(τ,u),s(j−1)+1(p, q, z0, . . . , zk−1)

as the number of ways of filling bi with a pair (βi, vi) ∈ MPk
(τ,u),s(j−1)+1 and then labeling

each cell in bi which is the start of (τ, u)-match in (βi, vi) with either x or −1. In this

case, we weight (βi, vi) by p−(bi
2 )pcoinv(βi)qinv(βi)z(vi). Finally, we replace the numbers by

1, . . . , s(j − 1) + 1 that occur in βi by a1, . . . , as(j−1)+1 respectively. Doing this for each
brick will result in a filling of the cells of B with a pair (σ, w) ∈ Ck ≀ Sn. We claim
that that coinv(α) −

∑

bi>1

(

bi

2

)

+ coinv(βi) = coinv(σ). That is, coinv(α) accounts for
the coinversions that come from pairs of elements that lie in two different bricks plus
∑

bi>1

(

bi

2

)

which accounts for the coinversions that come from pairs that lie in the same

brick. Thus coinv(α) −
∑

bi>1

(

bi

2

)

counts only the coinversions that come from pairs of
elements in σ that lie in two different bricks. Then

∑

bi>1 coinv(βi) accounts for the
coinversions that come from pairs of σ that lie in the same brick. A similar argument
will show that inv(α) +

∑

bi>1 inv(βi) = inv(σ). Thus the final weight of (σ, w) will be

pcoinv(σ)qinv(σ)z(w).
Let Q(τ,u),n denote the set of all labeled brick tabloids that can be constructed in this

way. Thus a Q ∈ Q(τ,u),n will consist of a triple T = (B, (σ, w), L) where σ = σ1 . . . σn ∈
Sn, w = w1 . . . wn ∈ {0, 1, . . . , k − 1}n, and

1. B = (b1, . . . , bℓ) is a brick tabloid of shape (n) such that bi ∈ {1} ∪ {s(j − 1) + 1 :
s ≥ 1} for all i,

2. (σ, w) ∈ Ck ≀ Sn is a k-colored permutation,

3. if bi = 1 and covers cell t, then (σt, wt) is allowed to be any pair from {1, . . . , n} ×
{0, 1, . . . , k − 1}, and

4. if bi = s(j − 1) + 1 > 1, then cells of bi are filled with a pair (γi, vi) such that
(pred(γi), vi) is a maximum packing for (τ, u) of size s(j − 1) + 1 and each cell of bi

which corresponds to the start of (τ, u)-match in (γi, vi) is labeled with either −1
or x.
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We then define the weight of T , wt(T ), to be pcoinv(σ)qinv(σ)z(w) times the product of the
x labels in T and the sign of T , sign(T ), to be the product of the −1 labels in T . For
example, if k = 5 and (τ, u) = (213, 010), then in Figure 5 we have pictured four elements
of Q(213,010),17, Ti = (B(i), (σ(i), w(i)), L(i)) for i = 1, . . . , 4. Then
wt(T (1)) = xz3

0z
5
1z

2
2z

4
3z

3
4p

65q71, sign(T (1)) = 1,
wt(T (2)) = x2z4

0z
4
1z

2
2z

3
3z

4
4p

65q71, sign(T (2)) = 1,
wt(T (3)) = x2z3

0z
5
1z

2
2z

4
3z

3
4p

66q70, sign(T (3)) = 1,
wt(T (4)) = x2z3

0z
5
1z

2
2z

4
3z

3
4p

66q70, and sign(T (4)) = 1. It follows that

[n]p,q!Γ(hn) =
∑

T∈Q(τ,u),n

sign(T )wt(T ). (32)

T2

T3

T4

T1

0 2 04 1 3 1 4 1 2 1 0 3 4 3

x −1 −1 −1

17 9 5 6 1610 11 1 7 315
4 0

x −1

0 2 04 1 3 1 4 1 2 1 0 3 4 33 1

x −1 −1 −1−1

17 9 4 6 1610 11 12 1 7 3152 8 13

2 13

5

12 84 14

14

0 2 04 1 3 1 4 1 2 1 0 3 4 3

−1 −1 −1

17 9 5 6 1610 11 1 7 315
31
4 2 13 148 12

x −1

0 2 04 1 3 1 4 1 2 1 0 3 4 3

x −1 −1 −1

17 9 5 6 1610 11 1 7 315
31

−1

4 2 13 148 12

x

x

Figure 5: Elements of Q(213,010),17.

Next we define a sign-reversing weight-preserving involution I : Q(τ,u),n → Q(τ,u),n in
essentially the same way that we did in Theorem 5. That is, if T = (B, (σ, w), L), then
to define I(T ), we scan the cells of B = (b1, . . . , bℓ) from left to right looking for the first
time we are in one of the following cases.

Case 1. There is a brick bi of size j whose first cell is labeled with −1. In this case,
I(T ) = (B∗, (σ∗w∗), L∗) where B∗ results from B by replacing the brick bi by j bricks of
size 1, (σ∗, w∗) = (σ, w), and L∗ arises from L by removing the label −1 from the first
cell of bi.

Case 2. There are j consecutive bricks of size 1 in B, bi, bi+1, . . . , bi+j−1 such that the
letters in these cells form a (τ, u)-match. In this case, I(T ) = (B∗, (σ∗, w∗), L∗) where
B∗ results from B by replacing the bricks bi, bi+1, . . . , bi+j−1 by a single brick b of size j,
(σ∗, w∗) = (σ, w), and L∗ arises from L by labeling the first cell of b with a −1.

Case 3. There is a brick bi of size (s + 1)(j − 1) + 1 where s ≥ 1 such that all the
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labels on bi are x’s except for the cell that is j cells from the right which is labeled with
−1. In this case, I(T ) = (B∗, (σ∗, w∗), L∗) where B∗ results from B by replacing the brick
bi by a brick of size s(j − 1) + 1 followed by j − 1 bricks of size 1, (σ∗, w∗) = (σ, w), and
L∗ arises from L by removing the −1 label that was in bi.

Case 4. There are j consecutive bricks in B, bi, bi+1, . . . , bi+j−1 such that
bi = s(j − 1) + 1 > 1 and bi+1, . . . bi+j−1 are of size 1, all the labels on bi are x’s, and
the letters in these bricks form a maximum packing for (τ, u) of size (s + 1)(j − 1) + 1.
In this case, I(T ) = (B∗, (σ∗, w∗), L∗) where B∗ results from B by replacing the bricks
bi, bi+1, . . . , bi+j−1 by a single brick b of size (s + 1)(j − 1) + 1, (σ∗, w∗) = (σ, w), and L∗

arises from L by labeling the last cell of bi with a −1.

Case 5. There is a brick bi of size (s + 1)(j − 1) + 1 where s ≥ 1 such that the first cell
of bi is labeled with −1. In this case, I(T ) = (B∗, (σ∗, w∗), L∗) where B∗ results from B
by replacing the brick bi by j − 1 bricks of size 1 followed by a brick of size s(j − 1) + 1,
(σ∗, w∗) = (σ, w), and L∗ arises from L by removing the −1 label that was on the first
cell of bi.

Case 6. There are j consecutive bricks in B, bi, bi+1, . . . , bi+j−1 such that bi, . . . bi+j−2 are
of size 1 and bi+j−1 = s(j − 1) + 1 > 1 and the letters in these bricks form a maximum
packing for (τ, u) of size (s + 1)(j − 1) + 1. In this case, I(T ) = (B∗, (σ∗, w∗), L∗) where
B∗ results from B by replacing the bricks bi, bi+1, . . . , bi+j−1 by a single brick b of size
(s + 1)(j − 1) + 1, (σ∗, w∗) = (σ, w), and L∗ arises from L by labeling the first cell of b
with a −1.

Case 7. There is a brick bi of size s(j − 1) + 1 where s ≥ 3 such that the first cell
is labeled with an x and there is a cell which has a label −1 which is not the j-th cell from
the right. Let t be the left-most cell of bi which is labeled with −1. Then in this case,
I(T ) = (B∗, (σ∗, w∗), L∗) where B∗ results from B by replacing the brick bi by j consecu-
tive bricks c1, c2, . . . , cj−1, cj where c1 contains all the cells of bi up to and including cell t,
c2, . . . , cj−1 are bricks of size 1, and cj contains the remaining cells of bi, (σ∗, w∗) = (σ, w),
and L∗ is the labeling that results from L by removing the −1 label from cell t.

Case 8. There are j consecutive bricks bi, bi+1, . . . , bi+j−1 such that bi = c(s− 1) + 1 > 1
and has no −1 labels, bi+1, . . . , bi+j−2 are bricks of size 1, bi+j−1 = d(j−1)+1 > 1, and the
letters in these three bricks form a maximum packing for (τ, u) of size (c+d+1)(j−1)+1.
In this case, I(T ) = (B∗, (σ∗, w∗), L∗) where B∗ results from B by replacing the j bricks
bi, bi+1, . . . , bi+j−1 by a single brick b, (σ∗, w∗) = (σ, w), and L∗ results from L by adding
a label −1 on the last cell of bi.

If none of Cases 1-8 apply, then we set I(T ) = T .
For example, the images of T1, . . . , T4 as pictured in Figure 5 are pictured in Figure 6.
As in Theorem 5, I is a sign-reversing weight-preserving involution. Hence I shows
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T1

T2

T3

T4

0 2 04 1 3 1 4 1 2 1 0 3 4 3

x −1 −1 −1

17 9 5 610 11 1 7 315
4 0

x

0 2 04 1 3 1 4 1 2 1 0 3 4 33 1

x −1 −1 −1

17 9 4 610 11 12 1 7 3152 8 13

2 1312 84

0 2 04 1 3 1 4 1 2 1 0 3 4 3

−1 −1 −1

17 9 5 610 11 1 7 315
31
4 2 138 12

x

0 2 04 1 3 1 4 1 2 1 0 3 4 3

x −1 −1 −1

17 9 5 610 11 1 7 315
31
4 2 138 12

x

x

I(     )

I(     )

I(     )

I(     )

5

16

16

16

16 14

14

14

14

Figure 6: The images under I of the elements in Figure 5.

that
[n]p,q!Γ(hn) =

∑

T∈Q(τ,u),n,I(T )=T

sign(T )wt(T ).

Thus we must examine the fixed points of I. We can argue exactly as in Theorem 1 that
if I(T ) = T where T = (B, (σ, w), L), then sign(T ) = 1 since there can be no −1 labels
and wt(T ) = x(τ, u)-mch((σ,w))pcoinv(σ)qinv(σ)z(w). Moreover if (σ, w) ∈ Ck ≀ Sn, then we can
construct a fixed point of I by placing bricks which cover the maximal length maximum
packings for (τ, u) in (σ, w), covering the remaining cells by bricks of size 1, and labeling
the start of each (τ, u)-match in w by x. It thus follows that

[n]p,q!Γ(hn) =
∑

(σ,w)∈Ck ≀Sn

x(τ, u)-mch((σ,w))pcoinv(σ)qinv(σ)z(w).

But then,

Γ(H(t)) =
∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck ≀Sn

x(τ, u)-mch((σ,w))pcoinv(σ)qinv(σ)z(w) = Γ(1/E(−t)) =

1

1 +
∑

n≥1(−t)nΓ(en)
=

1

1 − ((z0 + · · ·+ zk−1)t +
∑

n≥1
tn(j−1)+1

[n(j−1)+1]p,q!
(x − 1)nmpk

(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1))

which proves (27).
If we replace (τ, u)-matchings by exact (τ, u)-matching throughout the proof of (27),

then we will get a proof of (28).

We note that in the special case of Theorem 6 where k = 1, so that the underlying
alphabet is is just {0}, a pair (τ, 0j) ∈ C1 ≀ Sn has the 1-minimal overlapping property if
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and only if τ has the minimal overlapping property. Thus if k = 0 and we set z0 = 1 in
Theorem 6, we obtain the following corollary.

Corollary 7. Suppose that τ ∈ Sj has the minimal overlapping property. Then

∑

n≥0

tn

[n]p,q!

∑

σ∈Sn

xτ-mch(σ)pcoinv(σ)qinv(σ) =

1

1 − (t +
∑

n≥1
tn(j−1)+1

[n(j−1)+1]p,q!
(x − 1)nmpτ,n(j−1)+1(p, q))

. (33)

We end this section by observing that the proofs of Theorems 5 and 6 can be special-
ized to give another interesting pair of results. That is, we say that a word u = u1 . . . uj ∈
{0, . . . , k − 1}j has the k-non-overlapping property (k-exact match non-overlapping prop-

erty) if the smallest i such that there exists a word w ∈ {0, . . . , k − 1}i with u-mch(w) =
2 (Eu-mch(w) = 2) is 2j. Thus u has the k-non-overlapping (k-exact match non-
overlapping) property if no two u-matches (exact u-matches) can share a letter. For
example, if k = 3 and u = 00112, then it is easy to see that u has both the k-non-
overlapping property and the k-exact match non-overlapping property. However, if k = 3
and v = 011, then v has the k-exact match non-overlapping property but does not have
the non-overlapping property since w = 01122 has two v-matches. Similarly, we say
that (τ, u) ∈ Ck ≀ Sj has the Ck ≀ Sn-non-overlapping property (Ck ≀ Sn-exact match non-

overlapping property) if the smallest i such that there exists a k-colored permutation
(σ, w) ∈ Ck ≀ Si with (τ, u)-mch(w) = 2 ((τ, Eu)-mch(w) = 2) is 2j. Clearly, there
can be no permutations which have the non-overlapping property so that the only way
a (τ, u) ∈ Ck ≀ Sj can have the Ck ≀ Sn-non-overlapping property (Ck ≀ Sn-exact match
non-overlapping property) is if u has the k-non-overlapping property (k-exact match non-
overlapping property).

We can still define the notion of a maximum packing for words u ∈ {0, . . . , k − 1}∗

which have the k-non-overlapping (k-exact match non-overlapping) property and for k-
colored permutations which have the Ck ≀ Sn-non-overlapping (Ck ≀ Sn-exact match non-
overlapping) property, it is just that in such cases the only maximum packings are of size
j. It is then easy to check that the proofs of Theorems 5 and 6 go through exactly as
before except that only Cases 1 and 2 of the involution apply. Thus we have the following
theorems.

Theorem 8. Let u ∈ {0, 1, . . . , k − 1}j where j ≥ 3.

(I) If u has the k-non-overlapping property and red(u) = u, then

∑

n≥0

tn
∑

w∈{0,1,...,k−1}n

xu-mch(w)z(w) =

1

1 − ((z0 + · · ·+ zk−1)t + (x − 1)mpk
u,j(z0, . . . , zk−1)tj)

. (34)
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(II) If u has the k-exact match non-overlapping property, then

∑

n≥0

tn
∑

w∈{0,1,...,k−1}n

xEu-mch(w)z(w) =

1

1 − ((z0 + · · · + zk−1)t + (x − 1)empk
u,j(z0, . . . , zk−1)tj)

. (35)

Theorem 9. (III) If (τ, u) ∈ Ck ≀ Sj, red(u) = u, and (τ, u) has the Ck ≀ Sn-non-

overlapping property, then

∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

x(τ, u)-mch((σ,u))pcoinv(σ)qinv(σ)z(w) =

1

1 − ((z0 + · · · + zk−1)t + tj

[j]p,q!
(x − 1)mpk

(τ,u),j(p, q, z0, . . . , zk−1))
. (36)

(IV) If (τ, u) ∈ Ck ≀ Sj has the Ck ≀ Sn-exact match non-overlapping property, then

∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

x(τ, Eu)-mch((σ,u))pcoinv(σ)qinv(σ)z(w) =

1

1 − ((z0 + · · ·+ zk−1)t + tj

[j]q!
(x − 1)empk

(τ,u),j(p, q, z0, . . . , zk−1))
. (37)

4 Computing the number of maximum packings

In this section, we shall give several examples where we can compute the functions
mpk

u,n(j−1)+1(z0, . . . , zk−1), empk
u,n(j−1)+1(z0, . . . , zk−1), mpk

(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1),

empk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1), and mpτ,n(j−1)+1(p, q).

First suppose that u ∈ {0, 1, . . . , k − 1}j has the k-exact match minimal overlapping
property. Then it is trivial to compute empk

u,n(j−1)+1(z0, . . . , zk−1). That is, if u = u1 . . . uj,

then we must have u1 = uj so that it is simple to see that empk
u,n(j−1)+1(z0, . . . , zk−1) =

zu1(zu2 · · · zuj
)n. Thus for example, if u = 01a0 where a ≥ 1, then

empk
01a0,n(j−1)+1(z0, . . . , zk−1) = z0(z0z

a
1 )n = zn+1

0 zan
1

for all k ≥ 2.
Next suppose that u = u1 . . . uj ∈ {0, 1, . . . , k − 1}j has the k-minimal overlapping

property and red(u) = u. In the case where u1 = uj, it is again relatively straightforward
to compute mpk

u,n(j−1)+1(z0, . . . , zk−1). For example if u = 01a0 where a ≥ 1, then all

maximum packings for u of length n(a + 1) + 1 are of the form

i ba
1 i ba

2 i . . . i ba
n i
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where b1, . . . , bn ∈ {i + 1, . . . , k − 1}. Thus

mpk
01a0,2n+1(z0, . . . , zk−1) =

k−2
∑

i=0

zn+1
i (

k−1
∑

j=i+1

za
j )n.

If v = 10a1 where a ≥ 1, then all maximum packings for v of length n(a + 1) + 1 are of
the form

i ba
1 i ba

2 i . . . i ba
n i

where b1, . . . , bn ∈ {0, . . . , i − 1}. Thus

mpk
10a1,2n+1(z0, . . . , zk−1) =

k−1
∑

i=1

zn+1
i (

i−1
∑

j=0

za
j )n.

However, it is no longer the case that we are forced to have u1 = uj if u has the k-minimal
overlapping property. For example if k ≥ 3 and u = 001, then w = 00112 has 2 u-matches
so the 001 has the k-minimal overlapping property for k ≥ 3. We note that in such cases,
there cannot be maximal packings of arbitrary length. That is, suppose that u1 < uj.
Then it is easy to see that in a maximum packing w = w1 . . . wn(j−1)+1 for u, we must
have that

w1 < wj < w2(j−1)+1 < w3(j−1)+1 < · · · < wn(j−1)+1

so that it is impossible to have n ≥ k. A similar argument applies in the case where u1 >
uj. It follows from Theorem 5 that if u = u1 . . . uj ∈ {0, 1, . . . , k − 1}j has the k-minimal
overlapping property and u1 6= uj, then

∑

n≥0 tn
∑

w∈{0,1,...,k−1}n xu-mch(w)z(w) is a rational

function. In general, it is still rather straightforward to compute mpk
u,n(j−1)+1(z0, . . . , zk−1).

For example, if u = 001, then all maximum packings for u must be of the form

a1a1a2a2 . . . ararar+1

where 0 ≤ a1 < · · · < ar+1 ≤ k − 1. Thus

mpk
001,2n+1(z0, . . . , zk−1) =











0 if n > k

zk−1

∏k−2
i=0 z2

i if n = k
∑

0≤a1<···<an+1≤k−1 zan+1

∏n
i=1 z2

ai
if 1 ≤ n < k.

If τ ∈ Sj has the minimal overlapping property, then it seems to be a difficult problem
to compute mpτ,n(j−1)+1(p, q) in general. However, there is at least one special case where
it is easy, namely, when τ starts with 1. That is, in that case, we have the following
theorem.

Theorem 10. Suppose that τ = τ1 . . . τj has the minimal overlapping property where

τ1 = 1 and τj = s. Then for all n ≥ 1.

mpτ,(n+1)(j−1)+1(p, q) =
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pcoinv(τ)qinv(τ)p(s−1)n(j−1)

[

(n + 1)(j − 1) + 1 − s

j − s

]

p,q

mpτ,n(j−1)+1(p, q)

so that

mpτ,(n+1)(j−1)+1(p, q) =
(

pcoinv(τ)qinv(τ)
)(n+1)

p(s−1)(j−1)(n+1
2 )

n+1
∏

i=1

[

i(j − 1) + 1 − s

j − s

]

p,q

. (38)

Proof. Suppose that σ = σ1 . . . σ(n+1)(j−1)+1 is a maximum packing for τ . Since τ1 = 1, it
must be the case that σ1 is less than σ2, . . . , σj , σj is less than σj+1, . . . , σj+(j−1), σ2j−1 is
less than σ2j , . . . , σ2j−1+(j−1), etc.. It follows that σ1 = 1 and that σj must be less than
σj+1, . . . , σ(n+1)(j−1)+1. We claim that σj must be s. We know that σj ≥ s because the
fact that σ1 . . . σj is a τ -match means that there must be s − 1 elements of σ1, . . . , σj−1

which are less than σj . However if σj > s, then 1, . . . , σj − 1 must be among σ1, . . . , σj−1

which would violate the fact that σj is the s-th smallest element among σ1, . . . , σj.
It follows that 1, . . . , s must be among σ1, . . . , σj which means that the positions of

1, . . . , s in σ1 . . . σj must be the same as the positions of 1, . . . , s in τ . But then we have
(

(n+1)(j−1)+1−s
j−s

)

ways to choose the remaining j − s elements in σ1 . . . σj and once we have
chosen these j− s elements, their positions are completely determined by τ since σ1 . . . σj

is a τ -match. Moreover pred(σj . . . σ(n+1)(j−1)+1) must be an element of MPτ,n(j−1)+1. It
then follows that

mpτ,(n+1)(j−1)+1 =

(

(n + 1)(j − 1) + 1 − s

j − s

)

mpτ,n(j−1)+1.

Next consider the problem of computing mpτ,(n+1)(j−1)+1(p, q). For any σ in
MPτ,(n+1)(j−1)+1, we can organize the count of inversions and coinversions of σ by

(a) counting the inversions and coinversions among σ1 . . . σj which contributes a factor
of pcoinv(τ)qinv(τ) to pcoinv(σ)qinv(σ),

(b) counting the inversions and coinversions between 1, . . . s− 1 and σj+1 . . . σ(n+1(j−1)+1

which contributes a factor of p(s−1)n(j−1) to pcoinv(σ)qinv(σ),

(c) counting the inversions and coinversions among {σ1, . . . , σj} − {1, . . . , s} and

σj+1 . . . σ(n+1)(j−1)+1 which contributes a factor of
[

(n+1)(j−1)+1−s
j−s

]

p,q
to

mpτ,(n+1)(j−1)+1(p, q) as we vary over all choices {σ1, . . . , σj} − {1, . . . , s}, and

(d) counting the inversions and coinversions among σj . . . σ(n+1)(j−1)+1.

Thus

mpτ,(n+1)(j−1)+1(p, q) =

pcoinv(τ)qinv(τ)p(s−1)n(j−1)

[

(n + 1)(j − 1) + 1 − s

j − s

]

p,q

mpτ,n(j−1)+1(p, q).

Iterating this recursion then yields (38).
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By our remarks in the introduction, if τ ∈ Sj has the minimal overlapping property,
then τ r and τ c have the minimal overlapping property. Thus we can use Theorem 10 to
find formulas for mpτ,(n+1)(j−1)+1(p, q) when either τ starts or ends in j or ends in 1.

It follows from Corollary 7 and Theorem 10 that if j ≥ 3 and τ = τ1 . . . τj ∈ Sj has
the minimal overlapping property, τ1 = 1 and τj = s, then

Pτ (t, x, p, q) =
∑

n≥0

tn

[n]p,q!

∑

σ∈Sn

xτ -mch(σ)pcoinv(σ)qinv(σ) =

1

1 − (t +
∑

n≥1
(x−1)ntn(j−1)+1

[n(j−1)+1]p,q!
(pcoinv(τ)qinv(τ))

(n+1)
p(s−1)(j−1)(n+1

2 ) ∏n+1
i=1

[

i(j−1)+1−s
j−s

]

p,q
)
.

(39)

For example, both 132 and 1342 have the minimal overlapping property. As stated in
the introduction, Elizalde and Noy [8] proved that

P132(t, q) =
∑

n≥0

tn

n!

∑

σ∈Sn

x132-mch(σ)

=
1

1 −
∫ t

0
e(x−1)z2/2dz

=
1

1 −
∑

n≥0
(x−1)nt2n+1

2n(n!)(2n+1)

.

By Theorem 10, we have

mp132,2n+1(p, q) = (p2q)np2(n
2)

n
∏

i=1

[2i − 1]p,q. (40)

Plugging equation (40) into Corollary 7, we get the following p, q-analogue of Elizalde and
Noy’s result for P132(t, x).

P132(t, x, p, q) =
∑

n≥0

tn

[n]p,q!

∑

σ∈Sn

x132-mch(σ)pcoinv(σ)qinv(σ)

=
1

1 − (t +
∑

n≥1
(x−1)nt2n+1

[2n+1]p,q!
pn2+nqn

∏n
i=1[2i − 1]p,q)

=
1

1 −
∑

n≥0
pn2+nqn(x−1)nt2n+1

[2n+1]p,q
Qn

i=1[2i]p,q

.

Similarly, Elizalde and Noy [8] proved that

P1342(t, x) =
∑

n≥0

tn

n!

∑

σ∈Sn

x1342-mch(σ)
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=
1

1 −
∫ t

0
e(x−1)z3/6dz

=
1

1 −
∑

n≥0
(x−1)nt3n+1

6n(n!)(3n+1)

.

By Theorem 10, we have

mp1342,2n+1 = (p3q2)np3(n
2)

n
∏

i=1

[

3n + 1 − 2

2

]

p,q

= p(3n2+3n)/2q2n
n

∏

i=1

[3n − 1]p,q[3n − 2]p,q

[2]p,q

. (41)

Plugging equation (41) into Corollary 7, we get the following p, q-analogue of Elizalde and
Noy’s result for P1342(t, x).

P1342(t, x, p, q) =
∑

n≥0

tn

[n]p,q!

∑

σ∈Sn

x1342-mch(σ)pcoinv(σ)qinv(σ)

=
1

1 − (t +
∑

n≥1
(x−1)nt3n+1

[3n+1]p,q!
p(3n2+3n)/2q2n 1

[2]np,q

∏n
i=1[3i − 1]p,q[3i − 2]p,q)

=
1

1 −
∑

n≥0
p(3n2+3n)/2q2n(x−1)nt3n+1

[3n+1]p,q[2]np,q

Qn
i=1[3i]p,q

.

Now if τ = 12 . . . aσa + 1 where σ is a permutation of {a + 2, . . . , k + 1}, then τ has
the minimal overlapping property. Note that

coinv(τ) =

(

a + 1

2

)

+ a(k − a) + coinv(σ) and

inv(τ) = (k − a) + inv(σ).

Thus using Corollary 7 and Theorem 10, we can derive the following generalization of
Kitaev’s Theorem 2.

Theorem 11. Let τ = 12 . . . aσa+1 where σ is a permutation of {a+2, . . . , k+1}. Then

∑

n≥0

tn

[n]p,q!

∑

σ∈Sn

xτ-mch(σ)pcoinv(σ)qinv(σ) =

1

1 − (t +
∑

i≥0
(x−1)i+1tik+1

[ik+1]p,q!
(pa(k−a)+coinv(σ)+(a+1

2 )qk−a+inv(σ))(i+1)pak(i+1
2 ) ∏i

j=2

[

jk−a
k−a

]

p,q

.

(42)

Next following a suggestion of Sergey Kitaev, we show that if α and β are two permu-
tations in Sj which have the minimal overlapping property and have the same first and
last elements, then for any n, mpα,n(j−1)+1 = mpβ,n(j−1)+1. That is, we shall prove the
following.
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Theorem 12. Suppose α = α1 . . . αj and β = β1 . . . βj are minimal overlapping permu-

tations in Sj and α1 = β1 and αj = βj, then for all n ≥ 1,

mpα,n(j−1)+1 = mpβ,n(j−1)+1. (43)

If in addition, pcoinv(α)qinv(α) = pcoinv(β)qinv(β), then

mpα,n(j−1)+1(p, q) = mpβ,n(j−1)+1(p, q). (44)

Proof. Suppose that we wanted to construct all maximum packings σ = σ1 . . . σn(j−1)+1 of
size n(j−1)+1 for α or β. One way to do this is to partition {1, . . . , n(j−1)+1} into sets
T1, . . . , Tn where |T1| = j and |Ti| = j−1 for i ≥ 2 and use the elements of T1 for σ1 . . . σj ,
use the elements of T2 for σj+1 . . . σ2j−1, use the elements of T3 for σ2j . . . σ3j−2, etc.. Of
course, this will not work for all choices of T1, . . . Tn. That is, if α = 132 and we pick
T1 = {4, 5, 6} and T2 = {1, 2}, then there will be no way to use T1 for the elements σ1σ2σ3

and use T2 for the elements σ4σ5 to produce a maximum packing for 132. That is, in such
a situation, we must let σ1 = 3, σ2 = 5, and σ3 = 4. But then σ3 will be greater than σ4

and σ5 so that this choice will not allow us to construct a maximum packing for 132. Our
claim is that for any choice of T1, . . . , Tn, either we cannot construct a maximum packing
for either α or β in this way or we can construct a maximum packing for both α and β
in this way. For example, if α = 24153, then we have pictured in Figure 7 choices for
T1, T2, T3, and T4 and the steps needed to construct a maximum packing for α. Clearly,
given T1, there is only one way to place the elements of T1 so that σ1 . . . σ5 is a α-match.
This is pictured in the second row of Figure 7. In this process, σ5 = 6 must be the third
largest element of T1 since α5 = 3. But then to continue, it must be the case that 6 is the
second largest element of {6} ∪ T2 if σ5 . . . σ9 is an α-match. Since 6 is the second largest
element in {6}∪T2, the positions of the elements of T2 are then forced by the requirement
that σ5 . . . σ9 be an α-match which is pictured in row three of Figure 7. In particular, σ9

must be the third largest element of {6} ∪ T2 so that σ9 = 8. To continue, it must be the
case that 8 is the second largest element of {8} ∪ T3 if σ9 . . . σ13 is an α-match and σ13

must be the third largest element of {8}∪T3. In this case, 8 is the second largest element
of {8} ∪ T3 and we are forced to have σ13 = 11 since 11 is the third largest element of
{8} ∪ T3. Finally, it must be the case that 11 is the second largest element of {11} ∪ T4

which is true in this case so that we can complete the construction of a maximum packing
for α using T1, . . . , T4.

In general, suppose that α1 = β1 = s and αj = βj = t, Then to be able to use
T2 to continue the construction of a maximum packing for either α or β, we must have
that the t-th largest element a1 of T1 is the s-th largest element of {a1} ∪ T2. If not,
we cannot use T1, . . . , Tn to construct a maximum packing for either α or β. If so, then
the t-th largest element a2 of {a1} ∪ T2 must be the s-largest element of {a2} ∪ T3. If
not, we cannot use T1, . . . , Tn to construct a maximum packing for either α or β. If so,
then the t-th largest element a3 of {a2} ∪ T3 must be the s-largest element of {a3} ∪ T4,
etc. Thus it is easy to see that we can use T1, . . . , Tn to construct a maximum packing
σ for α if and only if we can use T1, . . . , Tn to construct a maximum packing σ∗ for β.
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α =
T  = T  = T  = T  =

Figure 7: Constructing maximum packings for α = 24153.

Moreover, it is easy to see that if pcoinv(α)qinv(α) = pcoinv(β)qinv(β), then it will be the case
that pcoinv(σ)qinv(σ) = pcoinv(σ∗)qinv(σ∗). Thus (43) and (44) hold.

We can now use Theorem 12 and Corollary 7 to prove Elizalde’s conjecture stated
in the introduction. That is, suppose that α = α1 . . . αj and β = β1 . . . βj are minimal
overlapping permutations in Sj and α1 = β1 and αj = βj . Elizalde [7] conjectured that it
must be the case that α and β are strongly c-Wilf equivalent. By Theorem 12, we know
that in such a situation, mpα,n(j−1)+1 = mpβ,n(j−1)+1 for all n ≥ 1 and, hence, by Corollary
7 with p = q = 1, we know that

∑

n≥0

tn

n!

∑

σ∈Sn

xα-mch(σ) =

1

1 − (t +
∑

n≥1
tn(j−1)+1

(n(j−1)+1)!
(x − 1)nmpα,n(j−1)+1)

=

1

1 − (t +
∑

n≥1
tn(j−1)+1

(n(j−1)+1)!
(x − 1)nmpβ,n(j−1)+1)

=

∑

n≥0

tn

n!

∑

σ∈Sn

xβ-mch(σ).

Thus Elizalde’s conjecture follows. If in addition, pcoinv(α)qinv(α) = pcoinv(β)qinv(β), then by
the same reasoning, we get the even stronger conclusion that

∑

n≥0

tn

[n]p,q!

∑

σ∈Sn

xα-mch(σ)pcoinv(α)qinv(α) =
∑

n≥0

tn

[n]p,q!

∑

σ∈Sn

xβ-mch(σ)pcoinv(β)qinv(β).

We note that Elizalde’s conjecture has been proved independently by Vladimir Dot-
senko and Anton Khoroshkin [4] using cluster algebras and ideas similar to Theorem
12.
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Next we consider the problem of computing mpk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1)

(empk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1)) for (τ, u) ∈ Ck ≀ Sn which have the Ck ≀ Sn-minimal

overlapping property (Ck ≀ Sn-exact match minimal overlapping property). There are
several reasons why a (τ, u) ∈ Ck ≀ Sj can have the Ck ≀ Sn-minimal overlapping property.
For example, it could be that u has the k-minimal overlapping property such as (τ, u) =
(12 . . . a + 2, 01a0). In this case it is easy to see that

mpk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1) = p(n(j−1)+1

2 )mpk
u,n(j−1)+1(z0, . . . , zk).

It could also be that τ has the minimal overlapping property such as (τ, u) = (132, 000).
In this case, it is easy to see that

mpk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1) = mpk

τ,n(j−1)+1(p, q)
k−1
∑

i=0

z
n(j−1)+1
i .

If it is the case that u has the k-minimal overlapping property and τ has the minimal
overlapping property, then it is easy to see that

mpk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1) = mpτ,n(j−1)+1(p, q)mpk

u,n(j−1)+1(z0, . . . , zk). (45)

However, there are cases like (τ, u) = (152364, 001100) which has the Ck ≀ Sn-minimal
overlapping property where neither u has the k-minimal overlapping property nor τ has
the minimal overlapping property. Now if τ starts with 1, then we can mimic the reasoning
in Theorem 10 to find an explicit formula for mpk

(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1). That
is, suppose τ = τ1 . . . τj ∈ Sj is a permutation such that τ1 = 1 and τj = s. Then

let MP
{1,j,2j−1,...,(n−1)j−(n−2)}
τ,n(j−1)+1 denote the set of permutations in Sn(j−1)+1 which have τ -

matches starting at positions 1, j, 2j − 1, 3j − 2, . . . , (n − 1)j − (n − 2) and let

mp
{1,j,2j−1,...,(n−1)j−(n−2)}
τ,n(j−1)+1 (p, q) =

∑

σ∈MP
{1,j,2j−1,...,(n−1)j−(n−2)}
τ,n(j−1)+1

pcoinv(σ)qinv(σ).

If u = u1 . . . uj ∈ {0, 1, . . . , k − 1}j and red(u) = u, we let MP
k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1

denote the set of all words w ∈ {0, 1, . . . , k − 1}n(j−1)+1 which have u-matches starting at
positions 1, j, 2j − 1, 3j − 2, . . . , (n − 1)j − (n − 2) and let

mp
k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1 (z0, . . . , zk−1) =

∑

w∈MP
k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1

z(w).

Similarly, if u = u1 . . . uj ∈ {0, 1, . . . , k − 1}j , we let EMP
k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1 denote

the set of all words w ∈ {0, 1, . . . , k − 1}n(j−1)+1 which have exact u-matches starting at
positions 1, j, 2j − 1, 3j − 2, . . . , (n − 1)j − (n − 2) and let

emp
k,{1,j,2j−1,...,(n−1)j−(n−2)}
τ,n(j−1)+1 (z0, . . . , zk−1) =

∑

w∈EMP
k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1

z(w).
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Then using the same reasoning as in Theorem 10, we can show that

mp
{1,j,2j−1,...,(n−1)j−(n−2),nj−(n−1)}
τ,(n+1)(j−1)+1 (p, q) =

pcoinv(τ)qinv(τ)p(s−1)n(j−1)

[

(n + 1)(j − 1) + 1 − s

j − s

]

p,q

mp
{1,j,2j−1,...,(n−1)j−(n−2)}
τ,n(j−1)+1 (p, q) (46)

so that

mp
{1,j,2j−1,...,(n−1)j−(n−2)}
τ,(n+1)(j−1)+1 (p, q, z0, . . . , zk−1) =

(

pcoinv(τ)qinv(τ)
)(n+1)

p(s−1)(j−1)(n+1
2 )

n+1
∏

i=1

[

i(j − 1) + 1 − s

j − s

]

p,q

. (47)

We then have the following theorem.

Theorem 13. Suppose that (τ, u) ∈ Ck ≀Sn has the Ck ≀Sn-minimal overlapping property,

red(u) = u, and τ = τ1 . . . τj where τ1 = 1 and τj = s. Then

mpk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1) =

mp
{1,j,2j−1,...,(n−1)j−(n−2)}
τ,n(j−1)+1 (p, q) mp

k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1 (z0, . . . , zk) =

mp
k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1 (z0, . . . , zk)×

(

pcoinv(τ)qinv(τ)
)n

p(s−1)(j−1)(n
2)

n
∏

i=1

[

i(j − 1) + 1 − s

j − s

]

p,q

.

Similarly if (τ, u) ∈ Ck ≀Sn has the Ck ≀Sn-exact match minimal overlapping property and

τ = τ1 . . . τj where τ1 = 1 and τj = s, then

empk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1) =

mp
{1,j,2j−1,...,(n−1)j−(n−2)}
τ,n(j−1)+1 (p, q) emp

k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1 (z0, . . . , zk) =

emp
k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1 (z0, . . . , zk)×

(

pcoinv(τ)qinv(τ)
)n

p(s−1)(j−1)(n
2)

n
∏

i=1

[

i(j − 1) + 1 − s

j − s

]

p,q

.

Now suppose that α = α1 . . . αj and β = β1 . . . βj are two permutations in Sj such
that α1 = β1 and αj = βj and u ∈ {0, . . . , k − 1}j is such that (α, u) and (β, u) have the
Ck ≀Sn-minimal overlapping property (Ck ≀Sn-exact match minimal overlapping property).
Then we can use the same reasoning at Theorem 12 to show that for all n ≥ 1,

mp
{1,j,2j−1,...,(n−1)j−(n−2)}
α,n(j−1)+1 = mp

{1,j,2j−1,...,(n−1)j−(n−2)}
β,n(j−1)+1 .

If, in addition, pcoinv(α)qinv(α) = pcoinv(β)qinv(β), then

mp
{1,j,2j−1,...,(n−1)j−(n−2)}
α,n(j−1)+1 (p, q) = mp

{1,j,2j−1,...,(n−1)j−(n−2)}
β,n(j−1)+1 (p, q).
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Since for τ ∈ {α, β},

mpk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1) =

mp
{1,j,2j−1,...,(n−1)j−(n−2)}
τ,n(j−1)+1 (p, q) mp

k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1 (z0, . . . , zk)

and

empk
(τ,u),n(j−1)+1(p, q, z0, . . . , zk−1) =

mp
{1,j,2j−1,...,(n−1)j−(n−2)}
τ,n(j−1)+1 (p, q) emp

k,{1,j,2j−1,...,(n−1)j−(n−2)}
u,n(j−1)+1 (z0, . . . , zk),

we have the following extension of Theorem 12.

Theorem 14. Suppose α = α1 . . . αj and β = β1 . . . βj are permutations in Sj and α1 = β1

and αj = βj. If u ∈ {0, 1, . . . , k − 1}j is such that red(u) = u and (α, u) and (β, u) have

the Ck ≀ Sn-minimal overlapping property, then

∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

x(α,u)-mch((σ,w))z(w) =
∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

x(β,u)-mch((σ,w))z(w). (48)

If, in addition, pcoinv(α)qinv(α) = pcoinv(β)qinv(β), then

∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck ≀Sn

x(α,u)-mch((σ,w)pcoinv(σ)qinv(σ)z(w) =

∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck ≀Sn

x(β,u)-mch((σ,w)pcoinv(σ)qinv(σ)z(w). (49)

If u ∈ {0, 1, . . . , k − 1}j is such that (α, u) and (β, u) have the Ck ≀ Sn-exact match

minimal overlapping property, then

∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

xE(α,u)-mch((σ,w))z(w) =
∑

n≥0

tn

n!

∑

(σ,w)∈Ck ≀Sn

xE(β,u)-mch((σ,w))z(w). (50)

If, in addition, pcoinv(α)qinv(α) = pcoinv(β)qinv(β), then

∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck ≀Sn

xE(α,u)-mch((σ,w))pcoinv(σ)qinv(σ)z(w) =

∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck ≀Sn

xE(β,u)-mch((σ,w))pcoinv(σ)qinv(σ)z(w). (51)
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5 Extensions

In this section, we shall briefly remark about two simple ways to extend the results of
the previous sections. First, we can replace single occurrences of words, permutations,
and k-colored permutations by sets of words, permutations, and k-colored permutations.
That is, suppose Υ is a set of words in {0, 1, . . . , k − 1}j such that red(u) = u for all
u ∈ Υ, then we say w = w1 . . . wn ∈ {0, 1, . . . , k−1}n has an Υ-match starting at position
i if red(wi . . . wi+j−1) ∈ Υ. Let Υ-mch(w) denote the number of Υ-matches in w. We say
that Υ has the k-minimal overlapping property if the smallest i such that there exists a
w ∈ {0, 1, . . . , k − 1}i with Υ-mch(w) = 2 is 2j − 1. Similarly, if Υ is a set of words in
{0, 1, . . . , k − 1}j, then we say w = w1 . . . wn ∈ {0, 1, . . . , k − 1}n has an exact Υ-match
starting at position i if wi . . . wi+j−1 ∈ Υ. Let EΥ-mch(w) denote the number of exact
Υ-matches in w. We say that u has the k-exact match minimal overlapping property if the
smallest i such that there exists a w ∈ {0, 1, . . . , k − 1}i with EΥ-mch(w) = 2 is 2j − 1.
If Υ is a set of permutations in Sj , then we say that a permutation σ = σ1 . . . σn ∈ Sn

has an Υ-match starting at position i if pred(σi . . . σi+j−1) ∈ Υ. Let Υ-mch(σ) denote
the number of Υ-matches in σ. We say that Υ has the minimal overlapping property if
the smallest i such that there exists a σ ∈ Si with Υ-mch(σ) = 2 is 2j − 1. If Υ is a
set of colored permutations in Ck ≀ Sn such that red(u) = u for all (τ, u) ∈ Υ, then we
say (σ, w) ∈ Ck ≀ Sn where σ = σ1 . . . σn and w = w1 . . . wn has an Υ-match starting
at position i if (pred(σi . . . σi+j−1), red(wi . . . wi+j−1)) ∈ Υ Let Υ-mch((σ, w)) denote the
number of Υ-matches in (σ, w). We say that Υ has the Ck ≀ Sn-minimal overlapping

property if the smallest i such that there exists a (σ, w) ∈ Ck ≀ Si with Υ-mch((σ, w)) = 2
is 2j−1. If Υ is a set of colored permutations in Ck ≀Sn, then we say that (σ, w) ∈ Ck ≀Sn

where σ = σ1 . . . σn and w = w1 . . . wn has an exact Υ-match starting at position i if
(pred(σi . . . σi+j−1), wi . . . wi+j−1) ∈ Υ. Let EΥ-mch((σ, w)) denote the number of exact
Υ-matches in (σ, w). We say that Υ has the Ck ≀ Sn-exact match minimal overlapping

property if the smallest i such that there exists a (σ, w) ∈ Ck ≀Si with EΥ-mch((σ, w)) = 2
is 2j − 1.

It should be clear that the obvious analogues of Theorem 5 in Section 3 for words
u ∈ {0, 1, . . . , k − 1}j which have the k-minimal overlapping or the k-exact match mini-
mal overlapping property also holds for sets of words Υ ⊆ {0, 1, . . . , k − 1}j which have
the k-minimal overlapping or the k-exact match minimal overlapping property with the
same proofs. Similarly, the obvious analogues of Theorem 6 in Section 3 for k-colored
permutations (τ, u) ∈ Ck ≀Sj which have the k-minimal overlapping or the k-exact match
minimal overlapping property also hold for sets of k-colored permutations Υ ⊆ Ck ≀ Sj

which have the k-minimal overlapping or the k-exact match minimal overlapping property
with the same proofs.

We also note that the proofs of Theorems 5 and 6 did not depend on the fact that we
used a finite alphabet {0, 1, . . . , k − 1}. That is, if N = {0, 1, . . .} is the set of natural
numbers, then we can extend our definitions to words or sets of words in N∗ and N-colored
permutations or sets of N-colored permutations in the obvious way. That is, if Υ ⊆ N

j has
the N-minimal overlapping property (the N-exact match minimal overlapping property),

the electronic journal of combinatorics 18 (2011), #P25 35



then we let MPN

Υ,n(j−1)+1 (EMPN

Υ,n(j−1)+1) denote the set of all w ∈ N
n(j−1)+1 which

are maximum packings (exact match maximum packings) for Υ. We let CN ≀ Sn denote
the set of all pairs (σ, w) such σ ∈ Sn and w ∈ Nn and we call the elements of CN ≀ Sn

N-colored permutations. Then if Υ ⊆ CN ≀ Sn has the CN ≀ Sn-minimal overlapping prop-
erty (the CN ≀ Sn-exact match minimal overlapping property), then we let MPN

Υ,n(j−1)+1

(EMPN

Υ,n(j−1)+1) denote the set of all (σ, w) ∈ CN ≀Sn which are maximum packings (exact
match maximum packings) for Υ. Then we define

mpN

Υ,n(j−1)+1(z0, z1, . . .) =
∑

w∈MPN

Υ,n(j−1)+1

z(w),

empN

Υ,n(j−1)+1(z0, z1, . . .) =
∑

w∈EMPN

Υ,n(j−1)+1

z(w),

mpN

Υ,n(j−1)+1(p, q, z0, z1, . . .) =
∑

(σ,w)∈MPN

Υ,n(j−1)+1

pcoinv(σ)qinv(σ)z(w) and

empN

Υ,n(j−1)+1(p, q, z0, z1, . . .) =
∑

(σ,w)∈EMPN

Υ,n(j−1)+1

pcoinv(σ)qinv(σ)z(w).

Then if j ≥ 3, the following hold.

(I)N If Υ ⊆ Nj has the N-minimal overlapping property and is such that for all u ∈ Υ,
red(u) = u, then

∑

n≥0

tn
∑

w∈Nn

xΥ-mch(w)z(w) =

1

1 − ((
∑

i≥0 zi)t +
∑

n≥1 tn(j−1)+1(x − 1)nmpN

Υ,n(j−1)+1(z0, z1, . . .))
. (52)

(II)N If Υ ⊆ Nj has the k-exact match minimal overlapping property, then

∑

n≥0

tn
∑

w∈Nn

xEΥ-mch(w)z(w) =

1

1 − ((
∑

i≥0 zi)t +
∑

n≥1 tn(j−1)+1(x − 1)nempN

u,n(j−1)+1(z0, z1, . . .))
. (53)

(III)N If Υ ⊆ CN ≀ Sj has the CN ≀ Sn-minimal overlapping property and is such that for
all (τ, u) ∈ Υ, red(u) = u, then

∑

n≥0

tn

n!

∑

(σ,w)∈CN≀Sn

xΥ-mch((σ,w))pcoinv(σ)qinv(σ)z(w) =

1

1 − ((
∑

i≥0 zi)t +
∑

n≥1
tn(j−1)+1

[n(j−1)+1]p,q!
(x − 1)nmpN

Υ,n(j−1)+1(p, q, z0, z1, . . .))
. (54)
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(IV )N If Υ ⊆ CN ≀ Sj has the CN ≀ Sn-exact match minimal overlapping property, then

∑

n≥0

tn

n!

∑

(σ,w)∈CN≀Sn

xEΥ-mch((σ,u))pcoinv(σ)qinv(σ)z(w) =

1

1 − ((
∑

i≥0 zi)t +
∑

n≥1
tn(j−1)+1

[n(j−1)+1]q!
(x − 1)nempN

Υ,n(j−1)+1(p, q, z0, z1, . . .))
. (55)
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