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Abstract

We identify several subsets of the partitions of [n], each characterized by the
avoidance of a pair of patterns, respectively of lengths four and five. Each of the
classes we consider is enumerated by the Catalan numbers. Furthermore, the mem-
bers of each class having a prescribed number of blocks are enumerated by the
Narayana numbers. We use both algebraic and combinatorial methods to establish
our results. In some of the cases, we make use of the kernel method to solve the
recurrence arising when a further statistic is considered. In other cases, we define
bijections with previously enumerated classes which preserve the number of blocks.
Two of our bijections are of an algorithmic nature and systematically replace the
occurrences of one pattern with those of another having the same length.

1 Introduction

If n ≥ 1, then a partition of [n] = {1, 2, . . . , n} is any collection of non-empty, pairwise
disjoint subsets, called blocks, whose union is [n]. (If n = 0, then there is a single empty
partition of [0] = ∅ which has no blocks.) A partition Π having exactly k blocks is called
a k-partition. We will denote the set of all k-partitions of [n] by Pn,k and the set of all
partitions of [n] by Pn. A partition Π is said to be in standard form if it is written as
Π = B1/B2/ · · · , where the blocks are arranged in ascending order according to the size
of the smallest elements. One may also represent Π = B1/B2/ · · · ∈ Pn, expressed in
the standard form, equivalently as π = π1π2 · · · πn, wherein j ∈ Bπj , 1 ≤ j ≤ n, called
the canonical sequential form; and, in such case, we will write Π = π. For example, the
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partition Π = 1, 5, 7/2, 3/4, 8/6 ∈ P8,4 has as its cano nical sequential form π = 12231413.
Note that π = π1π2 · · · πn ∈ Pn,k is a restricted growth function from [n] to [k] (see, e.g.,
[16] or [18] for details), meaning that it satisfies the following three properties: (i) π1 = 1,
(ii) π is onto [k], and (iii) πi+1 ≤ max{π1, π2, . . . , πi}+ 1 for all i, 1 ≤ i ≤ n− 1. In what
follows, we will represent set partitions as words using their canonical sequential forms
and consider some particular cases of the general problem of counting the members of a
partition class having various restrictions imposed on the order of the letters.

A classical pattern τ is a member of [`]m which contains all of the letters in [`]. We
say that a word σ ∈ [k]n contains the classical pattern τ if σ contains a subsequence
that is order-isomorphic to τ . Otherwise, we say that σ avoids τ . For example, a word
σ = σ1σ2 · · ·σn avoids the pattern 231 if it has no subsequence σiσjσk with i < j < k
and σk < σi < σj and avoids the pattern 1221 if it has no subsequence σiσjσkσ` with
σi = σ` < σj = σk. The pattern avoidance question has been the topic of much research
in enumerative combinatorics, starting with Knuth [6] and Simion and Schmidt [13] on
permutations. See, for example, the papers by Noonan and Zeilberger [10], Robertson,
Wilf and Zeilberger [11], and Mansour and Vainshtein [8]. More recently, the problem
has been considered on further structures such as words, compositions, and finite set
partitions. For the avoidance problem on set partitions, we refer the reader to the papers
by Klazar [5], Sagan [12], and Jeĺınek and Mansour [4] and to the references therein.

We will use the following notation. Suppose {w1, w2, . . .} is a set of classical patterns.
Let Pn(w1, w2, . . .) be the subset of Pn consisting of those partitions whose sequential
representations avoid {w1, w2, . . .}, and let Pn,k(w1, w2, . . .) = Pn,k ∩ Pn(w1, w2, . . .). We
will denote the cardinalities of Pn(w1, w2, . . .) and Pn,k(w1, w2, . . .) by pn(w1, w2, . . .) and
pn,k(w1, w2, . . .), respectively. From the definitions, note that

pn(w1, w2, . . .) =
∑
k≥0

pn,k(w1, w2, . . .).

The Catalan numbers Cn, named after the nineteenth century Belgian mathematician
Eugene Catalan, have been shown to count many structures occurring in both enumerative
and algebraic combinatorics. They seem to date to 1751, when Euler showed that the
number of triangulations of an n-gon is given by the product 2·6·10···(4n−10)

2·3···(n−1) , which is now
called Cn−2. Perhaps the most fundamental structure counted by Cn is the set of lattice
paths from (0, 0) to (2n, 0) using up (1, 1) and down (1,−1) steps that never dip below the
x-axis (called Catalan or Dyck paths). Among the other important structures counted
by Cn are the plane binary trees having n + 1 leaves, the standard Young tableaux of
shape (n, n − 1), and the linear expansions of the poset 2 × n. In terms of avoidance,
it is well known that Cn counts the number of permutations of [n] avoiding a single
classical pattern τ , where τ is any member of S3 (see, e.g., [6] or [13]) as well as the
number of partitions of [n] avoiding either 1212 or 1221 (called non-crossing and non-
nesting partitions, respectively; see, e.g., [5] or [4]). The Cn have generating function (see
(2.5.16) of [20])

C(x) =
∑
n≥0

Cnx
n =

1−
√

1− 4x

2x
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and are given by the closed form Cn = 1
n+1

(
2n
n

)
. To date, there are at least 190 structures

known to be enumerated by the Catalan numbers; see Stanley’s website [15] for a complete
list.

The Narayana numbers Nn,k count the set of Catalan paths of semilength n having
exactly k peaks. Among their other combinatorial interpretations is that they count the
number of 132-avoiding permutations of size n having k−1 descents as well as the number
of full binary trees with n internal nodes and k − 1 jumps. The numbers Nn,k also count
the non-crossing (or non-nesting) partitions of size n having exactly k blocks. They may
be arranged in an array having row sums equal to the Catalan number such that the entry
in the n-th row and k-th column is Nn,k (sometimes called the Catalan triangle). The
Narayana numbers (indeed, a q-analogue of them) were first discovered by MacMahon
(see Article 495 of [7]) and later rediscovered by Narayana [9]. The Nn,k are given by the
generating function

N(x, q) =
∑
n,k≥0

Nn,kx
nqk =

1 + x(1− q)−
√

1− 2x(1 + q) + x2(1− q)2
2x

and have the closed form Nn,k = 1
k

(
n−1
k−1

)(
n
k−1

)
if n, k ≥ 1. For further information on these

numbers, see A001263 in [14] as well as the paper by Sulanke [17].
In this paper, we identify eight classes of the partitions of [n] each avoiding a classical

pattern of length four and another of length five and each enumerated by the Catalan
number Cn. Furthermore, there are Nn,k members of each class having a prescribed
number k of blocks. In addition to providing apparently new combinatorial interpretations
for the Catalan and Narayana sequences, this addresses specific cases of a general question
raised by Goyt [3], for example, regarding the enumeration of classes of partitions avoiding
two or more patterns. Analogous results concerning the avoidance of two patterns by a
permutation have been given, for example, by Bóna [2] and West [19]. Our main result is
the following theorem which we prove as a series of propositions in the next section.

Theorem 1.1. If n, k ≥ 0, then pn,k(u, v) = Nn,k for the following pairs (u, v):

(1) (1222, 12323) (2) (1222, 12332) (3) (1211, 12321)
(4) (1211, 12312) (5) (1121, 12231) (6) (1121, 12132)
(7) (1112, 12123) (8) (1112, 12213).

In particular, we have pn(u, v) = Cn for all n.

To show this, we give algebraic proofs for cases (1), (3), (5), (6), and (7) and find
one-to-one correspondences between cases (1) and (2), (3) and (4), and (7) and (8).
To establish (3), (5), (6), and (7), we make use of the kernel method (see [1]) to solve
the functional equations that arise once certain parameters have been introduced. Our
bijections between cases (3) and (4) and between (7) and (8) are of an algorithmic nature
and systematically replace occurrences of 12312 (resp., 12213) with ones of 12321 (resp.,
12123) without introducing 1211 (resp., 1112). Furthermore, based on numerical evidence,
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there are no other pattern pairs u and v of lengths four and five such that pn(u, v) = Cn
for all n.

We remark that in proving (3), (5), (6), and (7) above, we make use of auxiliary
statistics in two fundamentally different ways which enable us to find a recurrence that
we can solve and establish the result. For cases (3) and (5) in section 2.2 below, to find
pn,k(u, v), we first refine this number by describing a statistic on Pn,k(u, v) and letting
an,k,c denote the number of elements of Pn,k(u, v) for which the value of the statistic is
c. We then write a recurrence for an,k,c, which we are able to solve by the kernel method
and thus find pn,k(u, v) =

∑
c≥0 an,k,c. See Zeilberger [21] for a further description and

examples of this strategy of refinement in finding an explicit formula for a sequence. For
cases (6) and (7) in section 2.3 below, we make use of a different strategy wherein we
consider a nested sequence of subsets S0 ⊇ S1 ⊇ · · · of Pn,k(u, v) such that all members
of Si have statistic value at least i for a certain statistic defined on Pn,k(u, v). We then
are able to find a recurrence for generating functions related to this statistic, which we
can solve by the kernel method and thus establish the cardinality of S0 = Pn,k(u, v).

2 Proof of the main result

2.1 The cases {1222, 12323} and {1222, 12332}
In this section, we consider the cases of avoiding {1222, 12323} and {1222, 12332}.

Proposition 2.1. We have∑
n,k≥0

pn,k(1222, 12323)xnqk = N(x, q). (1)

Hence, for all n, k ≥ 1, the number of set partitions of [n] with exactly k blocks that avoid
both 1222 and 12323 is given by 1

k

(
n−1
k−1

)(
n
k−1

)
, the Narayana number Nn,k.

Proof. Suppose π = π1π2 · · · is non-empty and avoids {1222, 12323}. Then π may
be formed by writing a non-empty sequence of the letter 1 directly in front of α =
α1α2 · · · and then writing a possibly empty sequence of 1’s directly after each letter
of α, where α is some partition on the letters {2, 3, . . .} avoiding {111, 1212}. Let
A(x, q) =

∑
n,k≥0 pn,k(1222, 12323)xnqk and B(x, q) =

∑
n,k≥0 pn,k(111, 1212)xnqk. From

the foregoing observation, we have

A(x, q) = 1 +
xq

1− x
B

(
x

1− x
, q

)
. (2)

To compute B(x, q), note that any non-empty partition β avoiding {111, 1212} may
be written as either β = 1β′ or β = 1β′1β′′, where β′ and β′′ contain no 1’s and avoid
{111, 1212}. Furthermore, every letter of β′′ is greater than every letter of β′ in the second
case. Thus B(x, q) satisfies the relation

B(x, q) = 1 + xqB(x, q) + x2qB2(x, q),
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which implies

B(x, q) =
1− xq −

√
1− 2xq + x2(q2 − 4q)

2x2q
. (3)

Substituting (3) into (2) yields the requested formula for A(x, q).

We now show the equivalence of avoiding {1222, 12323} and {1222, 12332}.

Proposition 2.2. If n, k ≥ 0, then pn,k(1222, 12323) = pn,k(1222, 12332).

Proof. Suppose π ∈ Pn,k(1222, 12323) has exactly j occurrences of the letter 1, where
n, k ≥ 2. Cover up all of the 1’s in π and let α denote the remaining letters, which
constitute a member of Pn−j,k−1(111, 1212) (on the letters {2, 3, . . .}). By Corollary 19 in
[4], we know that there exists a bijection from Pm,i(1212) to Pm,i(1221) for all m and i
which preserves block sizes, i.e., the number of occurrences of each letter in the canonical
form. Thus, it restricts to a bijection between Pn−j,k−1(111, 1212) and Pn−j,k−1(111, 1221).
Let α′ denote the corresponding member of Pn−j,k−1(111, 1221). Replace the letters of α
in π with those of α′ (keeping the positions of the 1’s fixed). If π′ denotes the resulting
partition, then π′ belongs to Pn,k(1222, 12332) and the mapping π 7→ π′ is a bijection.

2.2 The cases {1211, 12321}, {1121, 12231}, and {1211, 12312}
We will first consider the case of avoiding {1211, 12321}. In what follows, we will call a
(maximal) sequence of identical consecutive letters a run (of the letter). We will consider
forming members of Pn,k(1211, 12321) by first writing a non-empty sequence of the letter
k and then subsequently adding the letters k − 1, k − 2, . . . , 1.

Definition 2.3. Given a partition π = π1π2 · · · πm on the letters {2, 3, . . .} and avoiding
the patterns 1211 and 12321, let us call the letter πi an active site if one may write a
single 1 directly to the right of πi within the partition 1π without creating an occurrence
of 12321. All other letters of π will be said to be inactive.

Our use of the phrase active site is in accordance with the generating tree methodology
described in [19]. Note that no occurrence of 1211 is created since only a single 1 is added
after an element greater than or equal to two and also nothing changes if one adds a
non-empty run of 1’s having arbitrary length at the beginning instead of a single 1.
To illustrate, consider the partition π = 2234355546 on {2, 3, . . .} avoiding {1211, 12321}.
Note that the first four letters of π are active, whereas the last six are inactive (in general,
all letters coming after and including the second 1 in the leftmost occurrence of 121 in
such a partition are inactive, while those coming before it are active).

LetAn,k,c denote the set of partitions of length n on the letters {2, 3, . . . , k+1} avoiding
the patterns 1211 and 12321 and having exactly c active sites. Let an,k,c := |An,k,c|; note
that pn,k(1211, 12321) =

∑n
c=1 an,k,c for all n, k ≥ 1 The following lemma provides an

explicit recurrence for the array an,k,c, where n, k, c ≥ 1.
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Lemma 2.4. The numbers an,k,c satisfy the recurrence

an,k,c =
c−1∑
j=1

an−j,k−1,c−j +
c−1∑
j=1

n−j−1∑
t=c−j

an−j−1,k−1,t, n ≥ k, c ≥ 2, (4)

with an,1,c = δn,c if 1 ≤ c ≤ n and an,k,c = 0 if k > n, if c > n, or if n ≥ 2 and c = 1.

Proof. The boundary conditions are readily verified. Note that if n ≥ 2, then there are
at least two active sites in π ∈ Pn (the letters used in π being {2, 3, . . .}), and if π ∈ Pn,1,
then all of the letters of π correspond to active sites.

If k, c ≥ 2, we first observe that a member π ∈ An,k,c may be obtained by writing a
run of 1’s of length j just before a member α ∈ An−j,k−1,c−j for some j, 1 ≤ j ≤ c−1, and
then adding one to each letter of the resulting partition. Note that all of the active sites in
α remain active in π and that there are j additional active sites created corresponding to
the positions directly following the j added 1’s. Thus, there are

∑c−1
j=1 an−j,k−1,c−j possible

members of An,k,c in this case.
Alternatively, one may add the 1’s in the procedure described in the previous para-

graph as two separate runs, the second of which has length one. Note that this is the only
other option since we are to avoid 1211. Suppose one were to write a sequence consisting
of j 1’s just before β ∈ An−j−1,k−1,t, write a single 1 just after the (c − j)-th active site
of β from the left (assuming c − j ≤ t and 1 ≤ j ≤ c − 1), and then add one to each
letter. The resulting partition π belongs to An,k,c. To see this, note that all of the active
sites in β to the left of (and including) the (c − j)-th one remain active in π, with the
j 2’s in the first run also active. On the other hand, the active sites of β to the right
of (c − j)-th one become inactive in π, with the final 2 in π also inactive. Furthermore,
no other active sites are lost or created in the transition from β to π. T hus, there are∑c−1

j=1

∑n−j−1
t=c−j an−j−1,k−1,t members of An,k,c having exactly j+1 2’s occurring as two runs

for some j. Combining this case with the prior one yields (4).

Using recurrence (4), one can find pn,k(1211, 12321).

Proposition 2.5. We have∑
n,k≥0

pn,k(1211, 12321)xnqk = N(x, q). (5)

Proof. Define An,k(v) =
∑n

c=1 an,k,cv
c−1. Multiplying recurrence (4) by vc−1 and summing
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over 1 ≤ c ≤ n (note that (4) also holds for c = 1), we obtain

An,k(v) =
n−2∑
j=1

n−2∑
i=j

(
vi

n−j−1∑
t=i−j+1

an−1−j,k−1,t

)
+

n−1∑
j=1

j∑
i=1

aj,k−1,iv
n+i−j−1

=
n−2∑
j=1

n−j−1∑
i=1

vj(1− vi)
1− v

an−1−j,k−1,i +
n−1∑
j=1

vjAn−j,k−1(v)

=
n−2∑
j=1

vj

1− v
(An−1−j,k−1(1)− vAn−1−j,k−1(v)) +

n−1∑
j=1

vjAn−j,k−1(v)

=
n−k∑
j=1

vj

1− v
(An−1−j,k−1(1)− vAn−1−j,k−1(v)) +

n−k+1∑
j=1

vjAn−j,k−1(v),

where n, k ≥ 2, since Am,j(v) = 0 if j > m. Now define Ak(x; v) =
∑

n≥k An,k(v)xn. Then
the above recurrence gives

Ak(x; v) =
∑
n≥k

(
xn

n−k∑
j=1

vj

1− v
(An−1−j,k−1(1)− vAn−1−j,k−1(v))

)

+
∑
n≥k

(
xn

n−k+1∑
j=1

vjAn−j,k−1(v)

)

=
x2v

(1− v)(1− xv)

∑
j≥k−1

(Aj,k−1(1)xj − vAj,k−1(v)xj) +
xv

1− xv
∑
j≥k−1

Aj,k−1(v)xj

=
x2v

(1− v)(1− xv)
(Ak−1(x; 1)− vAk−1(x; v)) +

xv

1− xv
Ak−1(x; v), k ≥ 2.

Define A(x, q; v) =
∑

k≥1Ak(x; v)qk. Multiplying the above recurrence by qk, summing
over all k ≥ 2, and noting the initial condition A1(x; v) = x

1−xv , we obtain

A(x, q; v) =
xq

1− xv
+

x2qv

(1− v)(1− xv)
(A(x, q; 1)− vA(x, q; v)) +

xqv

1− xv
A(x, q; v),

which is equivalent to(
1− xqv

1− xv
+

x2qv2

(1− v)(1− xv)

)
A(x, q; v) =

xq

1− xv
+

x2qv

(1− v)(1− xv)
A(x, q; 1). (6)

This type of functional equation may be solved systematically using the kernel method
(see [1]). If we set the coefficient of A(x, q; v) in (6) equal to zero, and solve for v = v0 in
terms of x and q, we obtain

v0 =
1 + x(1 + q)−

√
1− 2x(1 + q) + x2(1− q)2

2x(1 + q + xq)
.
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Note that of the two possible values of v0, only this one yields a power series in x and q.
Substituting v = v0 into (6) gives∑

n,k≥1

pn,k(1211, 12321)xnqk = A(x, q; 1) =
v0 − 1

xv0

=
1− x(1 + q)−

√
1− 2x(1 + q) + x2(1− q)2

2x
,

as required.

Using (6) and the expression for A(x, q; 1), one can find A(x, q; v) and recover the
coefficient an,k,c. We next consider the case of avoiding {1121, 12231}. We start with a
similar definition for active site.

Definition 2.6. Given a partition π = π1π2 · · · πm on the letters {2, 3, . . .} and avoiding
the patterns 1121 and 12231, let us call the letter πi an active site if one may write a
non-empty run of 1’s directly to the right of πi within the partition 1π without creating an
occurrence of 12231. All other letters of π will be said to be inactive.

For example, in the partition π = 2344225336 on {2, 3, . . .} avoiding {1121, 12231},
the first six letters of π are active and no others (note that the 5 corresponds to the 2 in
the leftmost occurrence of 112 in π, so all letters after and including it are inactive). In
the definition above, only a single run of 1’s is to be inserted into the partition 1π, whence
no occurrences of 1121 are created. Let Bn,k,c denote the set of partitions of length n on
the letters {2, 3, . . . , k + 1} avoiding the patterns 1121 and 12231 and having exactly c
active sites. Let bn,k,c := |Bn,k,c|; note that pn,k(1121, 12231) =

∑n
c=1 bn,k,c for all n, k ≥ 1

The following lemma provides an explicit recurrence for the array bn,k,c, where n, k, c ≥ 1.

Lemma 2.7. The numbers bn,k,c satisfy the recurrence

bn,k,c = bn−1,k−1,c−1 +
n−c∑
t=1

bn−c,k−1,t +
c−1∑
j=2

n−j∑
t=c−j

bn−j,k−1,t, n ≥ k, c ≥ 2, (7)

with bn,1,c = δn,c if 1 ≤ c ≤ n and bn,k,c = 0 if k > n, if c > n, or if n ≥ 2 and c = 1.

Proof. The boundary conditions are readily verified, so assume k, c ≥ 2. First suppose
that there is only one run of 2’s in π ∈ Bn,k,c and that its length is j. Then either j = 1
or j = c. For if j ≥ 2, then the first j positions of π are all active and no others, which
implies j = c. If j = 1, then there are bn−1,k−1,c−1 possible members of Bn,k,c, while if
j = c, there are

∑n−c
t=1 bn−c,k−1,t = pn−c,k−1(1121, 12231) possible members.

Alternatively, one may add the 1’s as two separate runs, the first of which has length
one. Note that this is the only other option since we are to avoid 1121. Suppose we first
write a single 1 just before β ∈ Bn−j,k−1,t, next write a run of j − 1 1’s just after the
(c− j)-th active site of β from the left (assuming c− j ≤ t and 2 ≤ j ≤ c− 1), and then
add one to each letter. Similar reasoning as in the proof of Lemma 2.4 above then shows
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that the resulting partition π belongs to Bn,k,c and that the number of partitions formed
in this manner is

∑c−1
j=2

∑n−j
t=c−j bn−j,k−1,t. Combining this case with the prior two yields

(7).

Proposition 2.8. We have∑
n,k≥0

pn,k(1121, 12231)xnqk = N(x, q). (8)

Proof. Define Bn,k(v) =
∑n

j=1 bn,k,cv
c−1. Multiplying recurrence (7) by vc−1 and summing

over 2 ≤ c ≤ n, we obtain for n, k ≥ 2,

Bn,k(v) = vBn−1,k−1(v) +
n−k∑
j=1

vjBn−1−j,k−1(1) +
n−k+1∑
j=2

vj

1− v
(Bn−j,k−1(1)− vBn−j,k−1(v)).

Now define Bk(x; v) =
∑

n≥k Bn,k(v)xn. Then the above recurrence gives for k ≥ 2,

Bk(x; v) = xvBk−1(x; v) +
∑
n≥k−1

xn+2v

1− xv
Bn,k−1(1)

+
∑
n≥k−1

xn+2v2

(1− v)(1− xv)
(Bn,k−1(1)− vBn,k−1(v))

= xvBk−1(x; v) +
x2v

1− xv
Bk−1(x; 1) +

x2v2

(1− v)(1− xv)
(Bk−1(x; 1)− vBk−1(x; v)).

Define B(x, q; v) =
∑

k≥1Bk(x; v)qk. Multiplying the above recurrence by qk, summing
over all k ≥ 2, and noting the initial condition B1(x; v) = x

1−xv , we obtain

B(x, q; v) =
xq

1− xv
+ xqvB(x, q; v) +

x2qv2

(1− v)(1− xv)
(B(x, q; 1)− vB(x, q; v))

+
x2qv

1− xv
B(x, q; 1),

which is equivalent to(
1− xqv +

x2qv3

(1− v)(1− xv)

)
B(x, q; v) =

xq

1− xv
+

x2qv

(1− v)(1− xv)
B(x, q; 1).

We again use the kernel method and substitute v = v0 =
1+x(1+q)−

√
1−2x(1+q)+x2(1−q)2

2x(1+q+xq)
into

the last equation to obtain

B(x, q; 1) =
1− x(1 + q)−

√
1− 2x(1 + q) + x2(1− q)2

2x
,

as required.
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Proposition 2.9. If n, k ≥ 0, then pn,k(1211, 12321) = pn,k(1211, 12312).

Proof. We will define an explicit bijection f between the sets A = Pn,k(1211, 12321) and
B = Pn,k(1211, 12312), assuming k ≥ 3. Let π ∈ A. We will first describe a sequence of
partitions π2, π3, . . . , πk, where π2 = π and πk belongs to B. To do so, first consider the
leftmost occurrence of the letter 3 in π2. Since π2 avoids both 1211 and 12321, there can
be at most one 1 and one 2 occurring after this 3, with the 2 coming later than the 1 if
both occur. We define the partition π3 as follows. If both a 1 and a 2 occur after the
leftmost occurrence of the letter 3 in π2, then we switch the positions of this 1 and 2 to
obtain π3. Otherwise, we let π3 = π2.

Now consider the position of the leftmost 4 in π3. Any members of [3] occurring after
this 4 can occur at most once (note that no 3 is moved in the first step). Within the
subsequence of π3 comprising these members of [3], cyclicly shift the 3, if it occurs, from
the last to the first position to obtain π4; otherwise, let π4 = π3. In general, for each
m, 3 ≤ m ≤ k, starting with m = 3, rewrite any elements of [m − 1] occurring after the
leftmost m in descending order, if necessary, to obtain the partition πm (by shifting the
m− 1, if it occurs, to the first position among these elements); otherwise, let πm = πm−1.
Consider the resulting sequence of partitions π2 = π, π3, . . . , πk, and let f(π) = πk.

Note that f preserves the number of blocks and is seen to be a bijection, its inverse
obtained by reversing each of the steps described, starting with the last. To show that
f(π) ∈ B, note first that any members of [i − 1] coming after the leftmost i in πi occur
singly in descending order. Note further that in the step going from πi to πi+1, the relative
order of the elements of [i − 1] following the leftmost i does not change as there is only
possibly a cyclic shift between the letter i and some of the members of [i−1] which occurs
only if there is an i coming after the leftmost i+1 (note that the letters in all of the other
positions of πi are unchanged in this step). Likewise, the members of [i− 1] coming after
the leftmost i occur singly in descending order in the partition πj for each j > i (in fact,
this subset of [i− 1] is the same in πj for all j > i). Thus, for each letter i ≥ 2, it is not
possible for i to correspond to the 2 in an occurrence of 1211 in f(π) nor is it possible for
a letter i ≥ 3 to correspond to the 3 in an occurrence of 12312. This implies f(π) ∈ B,
as desired.

Below is an example of the bijection f when n = 15 and k = 7:

π = π2 = 123142553647567→ π3 = 123241553647567→ π4 = 123243551647567→
π5 = 123243554617567→ π6 = 123243554657167→ π7 = 123243554657617 = f(π).

2.3 The cases {1121, 12132}, {1112, 12123}, and {1112, 12213}
We first consider the case of avoiding {1121, 12132}. To do so, we introduce the auxiliary
generating functions Gk = Gk(x), k ≥ 1, for the number of partitions of Pn(1121, 12132)
of the form

π = 12 · · · kπ(k)kπ(k−1)(k − 1)π(k−2) · · · 2π(1)1π(0),
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where the π(i), 0 ≤ i ≤ k, are possibly empty and contain only letters in {k+1, k+2, . . .}.
Note that the subset of Pn(1121, 12132) counted by the coefficient of xn in Gj is contained
within the subset counted by the coefficient of xn in Gi if i < j, with G0 enumerating all
members of Pn(1121, 12132), by definition. It is possible to give a recurrence for the Gk.

Lemma 2.10. If k ≥ 1, then

Gk = x2Gk−1 + xGk +
1

1− x
Gk+1 +

k−1∑
m=0

x2(k−m)

(1− x)k+1−mGm+1, (9)

with G0 =
∑

n≥0 pn(1121, 12132)xn.

Proof. Let Hk = Hk(x) be the generating function for the same partitions counted by Gk,
but with the added condition π(k) 6= ∅. From the definitions, we then have

Gk = x2Gk−1 +Hk, k ≥ 1, (10)

since, if π(k) is empty, we may simply delete the two (consecutive) occurrences of the letter
k as they can play no role in forming a possible 1121 or 12132 subsequence.

Note that in partitions counted by Hk, the word π(k) must begin with the letter k+ 1.
We now consider the following cases concerning the last occurrence of the letter k + 1 in
a partition π counted by Hk:

1. Exactly one k + 1 occurs in π.

2. There are at least two occurrences of k+ 1 in π, with the last occurrence in π(m) for
some m, 0 ≤ m ≤ k − 1.

3. There are at least two occurrences of k + 1 in π, with the last one in π(k).

In the first case, we may safely delete the k+1 from π without affecting the enumeration
since it is extraneous concerning possible occurrences of 1121 and 12132, which implies
that the contribution in this case is xGk. In the second case, observe that there can be
no letters c greater than k + 1 between the second k and the last occurrence of the letter
k+ 1, for otherwise there would be an occurrence of 12132 involving k, k+ 1, and c. Also
in this case, if a second k + 1 occurs in π(k), then there can be no letter d greater than
k+1 coming after it in π(k), for otherwise there would be an occurrence of 1121 with k+1
and d. Putting these observations together, we see that π must have the form

π =12 · · · k(k + 1)α(k)(k + 1) · · · (k + 1)k(k + 1) · · · (k + 1)(k − 1) · · · (m+ 1)

(k + 1) · · · (k + 1)α(m)mα(m−1)(m− 1) · · ·α(1)1α(0),

where α(0), α(1), . . . , α(m) and α(k) are possibly empty and contain only letters in {k +
2, k + 3, . . .} and where all but the last run of the letter k + 1 are possibly empty. Note
that one may pinch off both copies of the letters m+ 1,m+ 2, . . . , k − 1 as well as all of
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the k + 1’s since they are extraneous concerning a possible occurrence of 1121 or 12132.
This leaves partitions of the form

π = 12 · · ·mkα(k)kα(m)mα(m−1)(m− 1) · · ·α(1)1α(0)

to consider concerning the avoidance of 1121 and 12132, which are clearly enumerated by
Gm+1. Thus, for each m, 0 ≤ m ≤ k − 1, partitions of the form described in the second

case are enumerated by the generating function x2(k−m)

(1−x)k−mGm+1, upon restoring the two
copies of the letters m + 1, . . . , k − 1 and k + 1 as well as any other k + 1’s occurring in
the runs.

In the third case above, we see that partitions must have the form

π = 12 · · · k(k + 1)α(k+1)(k + 1) · · · (k + 1)α(k)kα(k−1)(k − 1)α(k−2) · · · 1α(0),

where the run of the letter k + 1 is non-empty and the α(i) are possibly empty. Pinching
off any k + 1’s occurring in this run past the first one, we see that the partitions in this
case contribute 1

1−xGk+1. Combining the three cases yields

Hk = xGk +
k−1∑
m=0

x2(k−m)

(1− x)k−m+1
Gm+1 +

1

1− x
Gk+1, k ≥ 1. (11)

Substituting (11) into (10) gives (9).

Proposition 2.11. We have∑
n≥0

pn(1121, 12132)xn = C(x). (12)

Proof. First note that a partition avoiding {1121, 12132} may either be empty, have ex-
actly one occurrence of 1, or be of the form π = 1π′1 · · · 1π′′, where the run of 1’s in the
middle is non-empty and π′ and π′′ contain no 1’s and are possibly empty. This implies
the relation

G0 = 1 + xG0 +
1

1− x
G1,

or G1 = (1 − x)2G0 − (1 − x). Now let G(x, t) =
∑

k≥0Gk(x)tk; note that G(x, 0) =

G0(x) =
∑

n≥0 pn(1121, 12132)xn. Multiplying (9) by tk and summing over k ≥ 1 yields

G(x, t)−G(x, 0) = x2tG(x, t) + x(G(x, t)−G(x, 0))

+
1

(1− x)t
(G(x, t)−G1(x)t−G(x, 0))

+
∑
k≥1

tk
k−1∑
m=0

x2(k−m)

(1− x)k−m+1
Gm+1(x)

=

(
x2t+ x+

1

(1− x)t

)
G(x, t)−

(
1 +

1

(1− x)t

)
G(x, 0) + 1

+
x2

(1− x)(1− x− x2t)
(G(x, t)−G(x, 0)),
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which may be rewritten as

(1− x2t)(1− t+ 2xt+ x2t2)

(1− x− x2t)t
G(x, t) =

1

(1− x− x2t)t
G(x, 0)− 1. (13)

Setting the coefficient of G(x, t) equal to zero in (13), and solving for t, we obtain the
three roots

t0 =
1

x2
,

1− 2x+
√

1− 4x

2x2
,

1− 2x−
√

1− 4x

2x2
,

only the last of which is permissible since t0 = t(x) must be a power series in x. Thus,
we have ∑

n≥0

pn(1121, 12132)xn = G(x, 0) = (1− x− x2t0)t0 =
1−
√

1− 4x

2x
,

as required.

Remark 2.12. One may also add a parameter q marking the number of blocks and con-
sider the further generating function Gk(x, q), where Gk(x, 1) = Gk(x). Then the reason-
ing used in the proof of Lemma 2.10 shows that the Gk(x, q) satisfy the following recurrence
for k ≥ 1:

Gk(x, q) = x2qGk−1(x, q) + xqGk(x, q) +
1

1− x
Gk+1(x, q) +

k−1∑
m=0

x2(k−m)qk−m

(1− x)k−m+1
Gm+1(x, q).

Proceeding in a similar manner, one may obtain∑
n,k≥0

pn,k(1121, 12132)xnqk = N(x, q),

which implies pn,k(1121, 12132) is the Narayana number.

We next consider the case of avoiding {1112, 12123}. We will use the same pyramidal
structure as before. Let Uk = Uk(x), k ≥ 1, be the generating function for the number of
partitions of Pn(1112, 12123) of the form

π = 12 · · · kπ(k)kπ(k−1)(k − 1)π(k−2) · · · 2π(1)1π(0),

where the π(i), 0 ≤ i ≤ k, are possibly empty and contain only letters in {k+1, k+2, . . .}.
We now give a recurrence for the Uk.

Lemma 2.13. If k ≥ 1, then

Uk = x2Uk−1 + xUk + Uk+1 +
k−1∑
m=0

x2m+2

(1− x)m+1
Uk−m +

k∑
m=0

x2m+1

(1− x)m+1
Uk+1−m, (14)

with U0 =
∑

n≥0 pn(1112, 12123)xn.
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Proof. Let Vk = Vk(x) be the generating function for the same partitions counted by Uk,
but with the added condition π(k) 6= ∅. From the definitions, we then have

Uk = x2Uk−1 + Vk, k ≥ 1. (15)

Note that in partitions counted by Vk, the word π(k) must begin with the letter k + 1.
We now consider the following cases concerning a possible second occurrence of the letter
k + 1 in a partition π counted by Vk:

1. Exactly one k + 1 occurs in π.

2. There are at least two occurrences of k+ 1 in π, with the second occurrence in π(m)

for some m, 0 ≤ m ≤ k − 1.

3. There is a second k + 1 in π(k).

In the first case, we may safely delete the k+1 from π without affecting the enumeration
since it is extraneous concerning possible occurrences of 1112 and 12123, which implies
that the contribution in this case is xUk. In the second case, observe that there can be
no letters greater than k + 1 to the right of the second k + 1, for otherwise there would
be an occurrence of 12123. Thus, π must have the form

π =12 · · · k(k + 1)α(k)kα(k−1)(k − 1) · · ·α(m+1)(m+ 1)α(m)(k + 1) · · · (k + 1)

m(k + 1) · · · (k + 1)(m− 1) · · · 2(k + 1) · · · (k + 1)1(k + 1) · · · (k + 1),

where α(m), α(m−1), . . . , α(k) are possibly empty and contain only letters in {k+2, k+3, . . .}
and where all but the first run of the letter k + 1 are possibly empty. Note that one may
expunge both copies of the letters 1, 2, . . . ,m as well as all of the k + 1’s since they
are extraneous concerning a possible occurrence of 1112 or 12123. Thus, for each m,
partitions of the form described in the second case are enumerated by the generating
function x2m+2

(1−x)m+1Uk−m, 0 ≤ m ≤ k − 1. Combining the three cases implies

Vk = xUk +
k−1∑
m=0

x2m+2

(1− x)m+1
Uk−m +Wk, k ≥ 1, (16)

where Wk is the generating function counting the partitions of the form described in the
third case above.

To compute Wk, consider cases on whether there are two or more occurrences of the
letter k+1 and, if there are more, on the occurrence of the third k+1. If there are exactly
two k + 1’s, then the contribution is Uk+1. On the other hand, if the third k + 1 occurs
in π(m), where 0 ≤ m ≤ k, then reasoning similar to that used in the prior paragraph
shows that the contribution is x2m+1

(1−x)m+1Uk+1−m. Thus, Wk = Uk+1+
∑k

m=0
x2m+1

(1−x)m+1Uk+1−m.

Recurrence (14) now follows from (15) and (16).
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Note that the recurrence for Gk in (9) above may be rewritten as

Gk = x2Gk−1 + xGk +
1

1− x
Gk+1 +

(
1 +

x

1− x

) k−1∑
m=0

x2(k−m)

(1− x)k−m
Gm+1

= x2Gk−1 + xGk +Gk+1 +
k−1∑
m=0

x2m+2

(1− x)m+1
Gk−m +

k∑
m=0

x2m+1

(1− x)m+1
Gk+1−m,

which is the same as the recurrence for Uk in (14). This implies, by the kernel method,
that U0 = G0, which yields the following result.

Proposition 2.14. If n ≥ 0, then pn(1112, 12123) = Cn.

Remark 2.15. Upon adding an additional parameter q that marks the number of blocks,
one can show further that pn,k(1112, 12123) = Nn,k. It is also possible to construct a direct
bijection preserving the number of blocks between the partitions counted by Gj and those
counted by Uj for all j ≥ 1, which implies pn,k(1121, 12132) = pn,k(1112, 12123).

Finally, we come to the case of avoiding {1112, 12213}. For this, we will define an
explicit bijection between Pn(1112, 12123) and Pn(1112, 12213) which preserves the num-
ber of blocks. We will need the following two definitions, the first of which is directly
analogous to one given for permutations.

Definition 2.16. Given a partition π = π1π2 · · · πn ∈ Pn, the position πi will be called
a right-to-left maximum of π (rlm) if there exists no index j > i such that πj ≥ πi; by
definition, the final letter πn of π is always an rlm.

For example, if π = 123243423322 ∈ P12, then the letters in the seventh, tenth, and
twelfth positions correspond to rlm’s.

Definition 2.17. If π ∈ Pn,k and i ∈ [k], then we will denote by π ∩ [i] the word obtained
by replacing each letter of π greater than i with the symbol x.

For example, if π = 1232442535 ∈ P10,5 and i = 3, then π ∩ [i] = 1232xx2x3x. Note
that π ∩ [i] is itself a partition having i blocks when one considers only the positions
occupied by letters. In the proof which follows, we will often perform operations on the
partition π ∩ [i] and then restore the letters greater than i to their original positions.

Proposition 2.18. If n, k ≥ 0, then pn,k(1112, 12123) = pn,k(1112, 12213).

Proof. We will define an explicit bijection between the sets A = Pn,k(1112, 12123) and
B = Pn,k(1112, 12213). Suppose π = π1π2 · · · πn ∈ A has exactly t rlm’s. Let m1 < m2 <
· · · < mt denote the set of letters corresponding to the rlm’s of π (note m1 = πn and
mt = k). Let ai denote the index of the position of the rightmost occurrence of mi within
π for each i ∈ [t] (note a1 > a2 > · · · > at, with a1 = n and at equal the index of the
rightmost k in π). For example, if n = 12, k = 4, and π = 123324414332 ∈ A, then t = 3,
with m1 = 2, m2 = 3, m3 = 4 and a1 = 12, a2 = 11, a3 = 9.
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Let π0 = π and suppose we form a partition π1 from π0 in the following manner. First,
move all of the letters of m1− 1 within π0 ∩ [m1− 1] except the first, which remains fixed
in its position, to the very end (so as to remove any occurrences of 1221 in which the 2
corresponds to m1 − 1). Once this operation is done, put back the letters belonging to

{m1,m1+1, . . . , k} (which were covered by x’s) and let π
(1)
0 denote the resulting partition.

Then repeat with π
(1)
0 ∩[m1−2], moving all of the (m1−2)’s to the very end, except for the

first, calling the resulting partition π
(2)
0 . Subsequently repeat this for m1−3,m1−4, . . . , 1

to obtain a sequence of partitions π
(0)
0 = π0, π

(1)
0 , . . . , π

(m−1)
0 (all of which have length n).

Let π1 = π
(m−1)
0 .

Let π′1 denote the partition obtained by considering only the first a2 positions of π1.
Now repeat the procedure described in the previous paragraph starting with π′1, this time
using the letters m2 − 1,m2 − 2, . . . ,m1. That is, first move all (m2 − 1)’s, except the
first, to the end of π′1 ∩ [m2 − 1]. Then repeat this with m2 − 2 on the resulting partition
intersected with [m2 − 2], etc., until one considers m1. Let π2 denote the partition of
length n obtained after one performs the final step described with m1, puts back all of
the letters belonging to {m1 + 1,m1 + 2, . . . , k} (which are covered by x’s at this point),
and also puts back all of the letters coming after position a2. Let π′2 denote the first a3
positions of π2, and repeat the process with π′2 and the letters m3 − 1,m3 − 2, . . . ,m2 to
obtain the partition π3.

Now repeat the above procedure t times (in the last step, one moves the letters mt−1 =
k − 1,mt − 2, . . . ,mt−1), which yields a sequence of partitions π0 = π, π1, π2, . . . , πt. Let
f(π) = πt. Since the process is seen to preserve the positions of rlm’s, its inverse can be
obtained by composing the inverses of the individual steps in reverse order. Note further
that the mapping f preserves the number of blocks in a partition (in fact, πi ∈ Pn,k for
all i ∈ [t]).

We now show f(π) ∈ B. First note that there is an occurrence of 12213 in a partition
π if and only if there is an occurrence of 12213 in which the 3 corresponds to an rlm, and,
likewise, one may assume that the 2 in a possible occurrence of 1112 also corresponds to
an rlm. Observe further that once the letters of the element ` ∈ [k − 1] are moved in
the procedure described, then there can be no occurrences of 12213 arising in later steps
where the 2 corresponds to `. To see this, suppose letters of j ∈ [k − 1] are moved in
some later step. If j > `, then no 12213 can arise in which the 2 corresponds to ` since
the relative order of the letters belonging to [`] does not change in this case, and if j < `,
then no such 12213 can arise since the positions of the letters ` relative to those in [`− 1]
do not change in later steps. Similarly, no 1112 can arise since one may verify that the
number of times any u ∈ [k − 1] appears to the left of v remains fixed throughout the
process, where v is the smallest rlm with v > u.

Remark 2.19. In addition to the number of blocks and the positions of rlm’s, the above
bijection also preserves (1) the size of each block, (2) the smallest element in each block,
and (3) the elements in the last block.
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Below is an example of the bijection when n = 15 and k = 6:

π = π0 = 123443552166543→ π1 = 123443551266543→ π2 = 123441552366543→
π3 = 123412553466543→ π4 = 123412534566543 = f(π).

3 Conclusion

The general problem of enumerating the partitions of [n] avoiding two (or more) patterns
of length four or more seems to be difficult, with explicit solutions not possible in many
cases. One could nonetheless attempt to describe all of the distinct Wilf equivalence
classes for two patterns with given lengths (which would extend the work done in [4]
describing all of the equivalence classes for a single pattern up to length seven). Here, we
have identified eight subsets of the partitions of [n] whose members avoid two classical
patterns, each of which is counted by Cn and has a refinement counted by Nn,k. We also
have given explicit bijections from the classes (1), (3), (6), and (7) in Theorem 1.1 above
to (2), (4), (7), and (8), respectively. We leave the task of finding bijections between
the remaining classes as a challenge to the reader. It would also be interesting if direct
bijections with Dyck paths (or other structures enumerated by Cn) could be found in
some of the more difficult cases. Furthermore, based on numerical evidence, there are no
other pattern pairs u and v of lengths four and five such that pn(u, v) = Cn for all n, upon
sorting through all of the possible cases for u and v. Thus, there are no other members of
the Wilf equivalence class for partitions corresponding to Cn involving a pattern of length
four and another of length five. The bijections, though, used to prove Propositions 2.2,
2.9, and 2.18 can be extended to show the equivalence of some infinite families of pattern
pairs, the details of which we leave to the interested reader. However, we were unable to
enumerate, in general, the number of partitions of [n] avoiding these pattern pairs.

Proposition 3.1. If n, k ≥ 0, then

(i) pn,k(12i, 123 · · · j23 · · · j) = pn,k(12i, 123 · · · jj(j − 1) · · · 2), i, j ≥ 2,

(ii) pn,k(121i, 12 · · · j21) = pn,k(121i, 12 · · · j12), i ≥ 2, j ≥ 3,

(iii) pn,k(1
i2, 12123) = pn,k(1

i2, 12213), i ≥ 2.
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