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Abstract

Concave compositions are compositions (i.e. ordered partitions) of a number
in which the parts decrease up to the middle summand(s) and increase thereafter.
Perhaps the most surprising result is for even length, concave compositions where the
generating function turns out to be the quotient of two instances of the pentagonal
number theorem with variations of sign. The false theta function discoveries also
lead to new facts about concatenatable, spiral, self-avoiding walks.

1 Introduction

Concave compositions are situated between ordinary integer partitions (where 3 + 3 + 1
and 3 + 1 + 3 are considered the same partition of 7) and integer compositions (where
3 + 3 + 1 and 3 + 1 + 3 are considered two different compositions of 7).

Concave compositions of even length (CCELs), 2m, are sums of the form
∑

ai +
∑

bi

where
a1 > a2 > · · · > am = bm < bm−1 < · · · < b1

where am ≧ 0.
Concave compositions of odd length, 2m+1, come in two flavors. First (CCOL1s) are

sums of the form
∑

ai +
∑

bi

a1 > a2 > · · · > am+1 < bm < bm−1 < · · · < b1,

where am+1 ≧ 0.
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Second (CCOL2s)

a1 > a2 > · · · > am+1 ≦ bm < bm−1 < · · · < b1,

where am+1 ≧ 0.
We denote by ce(n), co1(n) and co2(n) the number of CCELs, CCOL1s, CCOL2s

respectively that sum to n. The related generating functions are CE(q) =
∑

n≧0 ce(n)qn,

CO1(q) =
∑

n≧0 co1(n)qn, and CO2(q) =
∑

n≧0 co2(n)qn.

Theorem 1. For |q| < 1,

CE(q) =

1 −
∞
∑

n=1

qn(3n−1)/2(1 − qn)

1 +

∞
∑

n=1

(−1)nqn(3n−1)/2(1 + qn)

=
1 − q + q2 − q5 + q7 − q12 + q15 − · · ·

1 − q − q2 + q5 + q7 − q12 − q15 + · · ·

= 1 + 2q2 + 2q3 + 4q4 + 4q5 + 8q6 + · · · .

By the way of illustrations we note that the eight CCELs of 6 are 5001, 1005, 4002,
2004, 3003, 33, 2112, 210012.

Theorem 2. For |q| < 1,

CO1(q) =

1 −
∞
∑

n=1

q2n(3n−1)(1 − q4n)

1 +

∞
∑

n=1

(−1)nqn(3n−1)/2(1 + qn)

=
1 − q4 + q8 − q20 + q28 − q48 + q60 − · · ·

1 − q − q2 + q5 + q7 − q12 − q15 + · · ·

= 1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 9q6 + · · · .

Here there are nine CCOL1s of 6: 6, 501, 105, 402, 204, 303, 312, 213, 21012.

Theorem 3. For |q| < 1,

CO2(q) =

1 +
∞
∑

n=1

q2n(3n−4)+3(1 − q4n−2)

1 +

∞
∑

n=1

(−1)nqn(3n−1)/2(1 + qn)

=
1 + q − q3 + q11 − q17 + q33 − q43 + · · ·

1 − q − q2 + q5 + q7 − q12 − q15 + · · ·

= 1 + 2q + 3q2 + 4q3 + 7q4 + 10q5 + 15q6 + · · · .
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Here there are fifteen CCOL2s of 6, namely the nine listed after Theorem 2 plus the
following six: 600, 411, 41001, 32001, 31002, 21003.

The impetus for this work lies in [6]. In that paper, the role of q-orthogonal polynomials
in the study of Rogers-Ramanujan type identities was being extended. The results here
in Section 3 are a natural outgrowth of that work. From these analytic results, concave
compositions developed naturally.

In Section 2 we present q-series representations of CE(q), CO1(q) and CO2(q). Section 3
provides new q-series identities that are necessary to prove Theorems 1–3. Section 4 then
proves these theorems, Section 5 is devoted to related partition identities. Perhaps the
simplest of these can be stated using Frobenius symbol representation of partitions [3; p.
1] or [11; p. 60].

Theorem 4. The number of partitons of n whose Frobenius symbol has no 0 on the
top row equals the number of partitions of n in which the smallest number that is not a
summand is odd.

For example, there are eight such partitions of 7 with the required Frobenius symbol:

(

6

0

)

,

(

5

1

)

,

(

1

5

)

,

(

4

2

)

,

(

2

4

)

,

(

3

3

)

,

(

31

10

)

,

(

21

20

)

,

and the eight partitions of 7 with an odd the smallest non-summand are:

7, 5+2, 4+3, 4+2+1, 3+2+2, 2+2+2+1, 2+2+1+1+1, 2+1+1+1+1+1+1.

Section 6 looks at the implications for concatenatable SSAWS. Section 7 concludes
with a plethora of questions raised by these discoveries.

2 Generating Functions

In this section we present three very similar theorems. The proofs are so much that same
that we only include the first in detail.

Theorem 5.

CE(q) =

∞
∑

n=0

qn2+n

(q)2
n(1 − q2n+2)

,

where (A)n = (A; q)n = (1 − A)(1 − Aq) · · · (1 − Aqn−1).
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Proof. The CCELs with 2m + 2 parts have as generating function

∞
∑

m=0

∑

a1>···>am>am+1=bm+1<···<b1
am+1=bm+1≧0

qa1+···+am+1+bm+1+···+b1

=
∞
∑

m=0

(

q(
m+1

2 )

(q)m

)2 ∞
∑

am+1=0
am+1=bm+1

qmam+1+mbm+1+am+1+bm+1

=
∞
∑

m=0

qm2+m

(q)2
m

1

(1 − q2m+2)
.

The penultimate line of the proof follows from the standard method for generating
partitions into m distinct parts each larger than am+1.

Theorem 6.

CO1(q) =

∞
∑

n=0

qn2+n

(q)2
n(1 − q2n+1)

.

Proof. Everything is the same as the proof of Theorem 5 except bm+1 is missing.

Theorem 7.

CO2(q) =

∞
∑

n=0

qn2

(q)2
n(1 − q2n+1)

.

Proof. The previous arguments easily show that

CO2(q) − CO1(q) =
∞
∑

n=1

qn2

(q)n−1(q)n(1 − q2n+1)
,

and this together with Theorem 6 implies Theorem 7.

3 q-Series Identities

We begin with a new q-hypergeometric series sumation. We require the standard notation
[8; p. 4]:

r+1φr

(

a0, a1, . . . , ar; q, t

b1, . . . , br

)

=
∞
∑

n=0

(a0)n(a1)n · · · (ar)ntn

(q)n(b1)n · · · (br)n

.

Theorem 8. For integers 0 ≦ m ≦ n,

3φ2

(

q−n, aqn, x; q, q

aqm, xq

)

=
xn
(

a
x

)

n
(q)n(a)m

(

a
x

)

m
(xq)n(a)n

.
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Remark. This result can be given a very elementary proof using Pfaff’s method [5]. Our
proof situates this identity in the q-hypergeometric literature.

Proof. Rewrite identity (III.11) from [8; p. 241] as

3φ2

(

q−n, b, c; q, q

d, e

)

=

(

bc
d

)n

(e)n

n
∑

j=0

(q−n)j

(

d
b

)

j

(

d
c

)

j
qj
(

deqj

bc

)

n−j

(q)j(d)j

. (3.1)

In this identity set b = aqn, d = aqm, c = x and e = xq. Thus d/b = qm−n, which
means that each term of the sum vanishes for j > n−m. Also deqj/bc = qm+j+1−n, which
means that each term of the sum vanishes if j ≦ n − m − 1. Therefore the only non-
vanishing term of the sum is j = n −m. Simplifying that one term yields the right-hand
expression in Theorem 8.

Theorem 9.

∞
∑

n=0

qn2

an(1 − x)

(q)n(aq)n(1 − xqn)
=

1

(aq; q)∞

(

1 +

∞
∑

n=1

(−a)nqn(3n−1)/2(1 − aq2n)xn
(

aq
x

)

n−1

(xq)n

)

.

Proof. We begin by recalling the weak form of Bailey’s Lemma [4; p. 27, eq.(3.33)]

∞
∑

j=0

qj2

ajβj =
1

(aq)∞

∞
∑

j=0

qj2

ajαj , (3.2)

where

βn =

n
∑

r=0

αr

(q)n−r(aq)n+r
(3.3)

or equivalently [2; p. 278, eq.(4.1)]

αn =
(1 − aq2n)(−1)nq(

n

2)(a)n

(1 − a)(q)n

n
∑

j=0

(

q−n
)

j
(aqn)j qjβj . (3.4)

Now take

βn =
(x)n

(aq)n(xq)n

, (3.5)

and evaluate αn by applying Theorem 8 with m = 1 (first noting that α0 = β0 = 1), so
for n ≧ 1

αn =
xn
(

aq
x

)

n−1
(q)n(1 − a)

(xq)n(a)n

. (3.6)

Substituting (3.5) and (3.6) into (3.2) we obtain the identity stated in Theorem 9.
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Theorem 10.

∞
∑

n=0

qn2

an(1 − a2)

(q)n(a)n (1 − a2q2n)
=

1

(aq; q)∞

(

1 +
∞
∑

n=1

a2nqn(3n−1)/2(1 − aq2n)(−q)n−1

(−aq)n

)

.

Proof. We shall use the weak form of Bailey’s Lemma as exemplified in (3.2) and (3.4)
with now

βn =
(1 − a2)

(q)n(a)n(1 − a2q2n)
. (3.7)

Hence by (3.4), α0 = β0 = 1, and for n ≧ 1

αn =
(1 − aq2n) (−1)nq(

n

2)(a)n

(1 − a)(q)n
3φ2

(

q−n, aqn,−a; q, q

aq,−aq

)

=
(1 − aq2n) (−1)nq(

n

2)(a)n

(1 − a)(q)n

·
(−a)n(−1)n(q)n(1 − a)

2(−aq)n(a)n

=
anq(

n

2) (1 − aq2n) (−q)n−1

(−aq)n

. (3.8)

Substituting (3.7) and (3.8) into (3.2), we obtain Theorem 9.

4 Proofs of Theorems 1–3

Lemma 11.
∞
∑

n=0

qn2−n

(q)2
n

=
2

(q)∞
.

Proof. We know [1; p. 20, set z = qr+1 and multiply by 1
(q)r

] (cf. [9; p. 872, eq.(1)] for

case r = 1) that for each integer r ≧ 0

∞
∑

n=0

qn2+rn

(q)n(q)n+r
=

1

(q)∞
. (4.1)

Hence

∞
∑

n=0

qn2−n

(q)2
n

−
1

(q)∞
=

∞
∑

n=0

qn2−n

(q)2
n

−
∞
∑

n=0

qn2

(q)2
n

(by (4.1) with r = 0)

=

∞
∑

n=0

qn2−n (1 − qn)

(q)2
n

=

∞
∑

n=1

qn2−n

(q)n(q)n−1

=

∞
∑

n=0

qn2+n

(q)n(q)n+1
=

1

(q)∞
(by (4.1) with r = 1),

and comparing the extremes in the above string of equations we deduce Lemma 11.
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Proof of Theorem 1. If we set a = 1 in Theorem 10, we see that

1 + 2

∞
∑

n=1

qn2

(q)n(q)n−1 (1 − q2n)
=

1

(q)∞

(

1 +

∞
∑

n=1

qn(3n−1)/2 (1 − qn)

)

. (4.2)

Also by Theorem 5

1 + 2
∞
∑

n=1

qn2

(q)n(q)n−1 (1 − q2n)
+ CE(q)

= 1 + 2

∞
∑

n=1

qn2

(q)2
n (1 + qn)

+

∞
∑

n=0

qn2+n

(q)2
n (1 − q2n+2)

=

∞
∑

n=0

2qn2

(q)2
n (1 + qn)

+

∞
∑

n=1

qn2−n

(q)n(q)n−1 (1 + qn)

=

∞
∑

n=0

qn2−n (2qn + (1 − qn))

(q)2
n (1 + qn)

=
∞
∑

n=0

qn2−n

(q)2
n

=
2

(q)∞
(by Lemma 11)

Therefore,

CE(q) =
2

(q)∞
−

(

1 + 2

∞
∑

n=1

qn2

(q)2
n (1 + qn)

)

=
2

(q)∞
−

1

(q)∞

(

1 +

∞
∑

n=1

qn(3n−1)/2 (1 − qn)

)

=
1

(q)∞

(

1 −
∞
∑

n=1

qn(3n−1)/2 (1 − qn)

)

,

which is Theorem 1.

Proof of Theorems 2 and 3. We begin by noting that

∞
∑

n=0

q2n2

(q2; q2)2
n (1 − q2n+1)

=

∞
∑

n=0

q2n2

(1 + q2n+1)

(q2; q2)2
n (1 − q4n+2)

= CO2(q
2) + qCO1(q

2), (4.3)

by Theorems 6 and 7. Consequently, if we can prove that

∞
∑

n=0

q2n2

(q2; q2)2
n (1 − q2n+1)

=
1

(q2; q2)∞

∞
∑

n=0

(−1)nq3n2 (

1 + q2n+1 + q4n+2 + q6n+3
)

, (4.4)
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then Theorem 2 (resp. 3) will follow by extracting the odd (resp. even) parts of (4.4) and
invoking (4.3).

To prove (4.4), we replace q by q2 in Theorem 9; then we set a = 1 and x = q. Hence

∞
∑

n=0

q2n2

(q2; q2)2
n (1 − q2n+1)

=
1

(q2; q2)∞ (1 − q)

(

1 +
∞
∑

n=1

(−1)nq3n2

(1 − q4n) (1 − q)

(1 − q2n−1) (1 − q2n+1)

)

=
1

(q2; q2)∞

(

1

1 − q
+

∞
∑

n=1

(−1)nq3n2

(1 − q2n−1 + q2n−1 (1 − q2n−1))

(1 − q2n−1) (1 − q2n+1)

)

=
1

(q2; q2)∞

(

∞
∑

n=0

(−1)nq3n2

1 − q2n+1
+

∞
∑

n=1

(−1)nq3n2+2n−1

1 − q2n−1

)

=
1

(q2; q2)∞

∞
∑

n=0

(−1)nq3n2

(1 − q8n+4)

1 − q2n+1

(replacing n by n + 1 in the second sum)

=
1

(q2; q2)∞

∞
∑

n=0

(−1)nq3n2 (

1 + q2n+1 + q4n+2 + q6n+3
)

,

which proves (4.4) and consequently Theorems 2 and 3.

5 Partition Identities

We start this section with a result that is best phrased in terms of Frobenius symbols
[3; p. 1]. We recall that the Frobenius symbol two equi-length rows of decreasing, non-
negative integers. Usually one determines the Frobenius symbol from the Ferrers graph.
For example, the partition 7 + 7 + 6 + 4 + 4 + 2 + 2 (a partition of 32) has the Ferrers
graph:

u s s s s s s

s u s s s s s

s s u s s s

s s s u

s s s s

s s

s s

Now if one enumerates the entries in the 4 rows to the right of the diagonal for the top
row, and the 4 columns below the diagonal for the bottom row, we obtain the Frobenius
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symbol of this partition:
(

6 5 3 0
6 5 2 1

)

.

Note that the number being partitioned is the sum of the entries in the Frobenius symbol
plus the number of columns (i.e. 6 + 6 + 5 + 5 + 3 + 2 + 0 + 1 + 4 = 32).

Lemma 12.
∞
∑

n=0

qn2+n

(q)2
n

=
1

(q)∞

∞
∑

n=0

(−1)nqn(n+1)/2.

Remark. This result is effectively equivalent to an identity of Auluck [7; p. 681, eq.(10)].
We include a short proof for completeness.

Proof. In (III.2) of [8; p. 241] replace a and b each by q/τ , c by q2, and z by τ 2. Then
let τ → 0 and Lemma 12 follows.

Proof Theorem 4. If we let Fφ(n) denote the number of partitions of n whose Frobenius
symbols do not have 0 in the top row, then

∞
∑

n=0

Fφ(n)qn = 1 +
∞
∑

r=1

∑

a1>···>ar≧1
b1>···>br≧0

qa1+···ar+b1+···+br+r

= 1 +
∞
∑

r=1

q(
r+1

2 )

(q)r
·
q(

r

2)

(q)r
· qr

= 1 +

∞
∑

r=1

qr2+r

(q)2
r

=
1

(q)∞

∞
∑

n=0

(−1)nq(
n+1

2 ) (by Lemma 12)

=
1

(q)∞

∞
∑

n=0

qn(2n+1)
(

1 − q2n+1
)

=
∞
∑

n=0

q1+2+3+···+2n

∞
∏

j=1
j 6=2n+1

(

1 − qj
)

.

The nth term of this latter sum is the generating function for partitions in which 2n + 1
is the smallest integer that is not a part. Summing over all n we find the latter sum is
the generating function for all partitions in which the first non-summand is odd.

Corollary 13. The number of partitions of n whose Frobenius symbol has a 0 on the
top row equals the number of partitions of n in which the smallest number that is not a
summand is even.
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Proof. The sets of partitions of n enumerated here are the respective complements of the
sets of paritions of n listed in Theorem 4.

Theorems 1–3 each have interpretations of the same nature as Theorem 4. We state
the interpretation explicitly for Theorem 1, and we leave the

Theorem 14. CE(n) equals the number of partitions of n in which either: (i) 1 does not
appear, or (ii) the smallest odd not appearing is 4m − 3 and 2m − 1 appears at least m
times, or (iii) the smallest odd not appearing is 4m−1 and 2m−1 appears at least m+1
times.

Proof. We clearly describe the way this result follows from Theorem 1.

CE(q) =
1

(q)∞

∞
∑

n=0

(−1)nqn(3n+1)/2
(

1 − q2n+1
)

=
(1 − q) + (q2 − q5) + (q7 − q12) + (q15 − q22) + (q26 − q35) + · · ·

(q)∞

=
1

∞
∏

n=2

(1 − qn)

+
q1+1

∞
∏

n=1
n 6=3

(1 − qn)

+
q1+3+3

∞
∏

n=1
n 6=5

(1 − qn)

+
q1+3+3+3+5

∞
∏

n=1
n 6=7

(1 − qn)

+
q1+3+5+5+5+7

∞
∏

n=1
n 6=9

(1 − qn)

+
q1+3+5+5+5+5+7+9

∞
∏

n=1
n 6=11

(1 − qn)

+
q1+3+5+7+7+7+7+9+11

∞
∏

n=1
n 6=13

(1 − qn)

+ · · ·

Similar results could be provided for CO1(q) where now the second type of partitions
deals with the smallest non-parts 6≡ 4 (mod 8). For CO2(q) −

1
(q)∞

, one would consider

smallest non-parts ≡ 2 (mod 4).

6 Concatenatable Spiral, Self-Avoiding Walks

(= CSSAWs)

In [10], Guttmann and Hirschhorn reveal a bijection between the partitions of n, and the
number of CSSAWs of length n.

Spiral, self-avoid walks are walks in the standard two-dimensional integral lattice with
the requirement that (1) the walk starts along the positive y-axis, (2) each unit step is
either straight ahead or a 90◦ turn to the right, (3) a possible right turn at the terminus
of the walk could be of any length without intersecting the walk.

For example, the five CSSAWs of length 4 are
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The Guttmann-Hirschhorn construction is effectively a mapping between the CSSAWs
and the Frobenius symbols for the partitions of n. Namely, begin with a Frobenius symbol,
say

(

3 2 1
3 1 0

)

.

Now add 1 to each entry in the bottom row to obtain

(

3 2 1

4 2 1

)

.

The arrows tell the successive lengths of segments in the CSSAW

.

When a positive integer terminates the top row, the CSSAW will of necessity have an odd
number of turns. When zero terminates the top row originally, then there will be an even
number of turns in the CSSAW.

Thus Theorem 4 is equivalent to the following:

Corollary 15. The number of CSSAWs of length n with an odd number of turns equals
the number of partitions of n in which the smallest integer not appearing is odd.

In the case n = 4, we see three CSSAWs with an odd number of turns, and the related
partitons are 4, 2 + 2, 2 + 1 + 1.

Corollary 13 is thus equivalent to the following:

Corollary 16. The number of CSSAWs of length n with an even number of turns equals
the number of partitions of n in which the smallest integer not appearing is even.

In the case n = 4, we see two CSSAWs with an even number of turns, and the related
partitions are 3 + 1, 1 + 1 + 1 + 1.
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7 Conclusion and Open Problems

There are numerous other instances of

f(a, b, c) = (q)∞

∞
∑

n=0

qn2+an

(q)2
n (1 − qbn+c)

that appear interesting. There are, of course, relationships of the form

f(a, b, c) − qcf(a + b, b, c) = (q)∞

∞
∑

n=0

qn2+an

(q)2
n

, (7.1)

and
f(a, 2b, 2c) + qcf(a + b, b, c) = f(a, b, c). (7.2)

These indicate that some nice forms of f(a, b, c) arise from linear combinations of simpler
cases.

For example,

f(3, 2, 1) =
1

q

(

f(1, 2, 1)− (q)∞

∞
∑

n=0

qn2+n

(q)2
n

)

=
1

q

(

1 −

∞
∑

n=1

q2n(3n−1)
(

1 − q4n
)

−

∞
∑

n=0

(−1)nq(
n+1

2 )

)

(by Theorems 2 and 6 and Lemma 12)

=

∞
∑

n=1

(

−q6n2−2n−1 + q6n2+2n−1 − (−1)nqn(n+1)/2−1
)

= 1 − q2 − q3 + q5 + q7 − q9 + q14 − q15 − q20 + 2q27 − q35 + · · ·

Obviously, it is natural to ask for combinatorial proof of Theorems 1, 2, 3, 4, and 14
(and Corollaries 13, 15 and 16).

This entire study had, as was mentioned in the introduction, its origins in bringing
orthogonal polynomials especially the big q-Jacobi polynomials back into the study of
q-series and partition identities [6]. This effort will be continued with further applications
and examples.
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