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Abstract

A labeling of a graph is a function from the vertices of the graph to some finite
set. In 1996, Albertson and Collins defined distinguishing labelings of undirected
graphs. Their definition easily extends to directed graphs. Let G be a directed
graph associated to the k-block presentation of a Bernoulli scheme X . We deter-
mine the automorphism group of G, and thus the distinguishing labelings of G.
A labeling of G defines a finite factor of X . We define demarcating labelings and
prove that demarcating labelings define finitarily Markovian finite factors of X .
We use the Bell numbers to find a lower bound for the number of finitarily Marko-
vian finite factors of a Bernoulli scheme. We show that demarcating labelings of G
are distinguishing.

1 Introduction

A process is a quadruple (X,U , µ, T ) whereX is the set of doubly infinite sequences on
some alphabet A, U is the σ-algebra generated by the coordinates, µ is a shift invariant
probability measure on (X,U), and T is the left shift by one. When we refer to a process
X , we are referring to this quadruple. A process is a Bernoulli scheme if µ = pZ for
some probability vector p. We will need the following definitions.

Definition 1.1. Let k be a positive integer. The process X(k) called the k-stringing (or k-block
presentation) of X is defined as follows. The state space of X(k) is all allowable sequences of
length k in X , and X(k)

n = (Xn, Xn+1, . . . , Xn+k−1) (n ∈ Z).
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Definition 1.2. Let a ∈ A where P (Xn = a) > 0. We say a is a renewal state of X if
the σ-algebras U(Xn+1, Xn+2, . . . ) and U(. . . , Xn−2, Xn−1) are independent given the event
[Xn = a]. If there exists such an a, we say X is a renewal process.

Definition 1.3. A process X is Markov if for all a ∈ A where P (Xn = a) > 0, a is a renewal
state inX . A process Y is k-step Markov if Y (k) is Markov. A process Z is finitarily Markovian
if for some k, Z(k) is a renewal process.

In 1983, Rissanen [19] introduced the class of models we are calling finitarily Marko-
vian processes. These processes have gone by several names including variable length
Markov chains and Markov chains of variable order. The terminology finitarily Marko-
vian comes from [15].

Let (X,U , µ, T ) and (Y,V , ν, S) be two processes. A factor map f from (X,U , µ, T )
to (Y,V , ν, S) is a measurable equivariant map from a subset of X of full measure to a
subset of Y of full measure which takes µ to ν. A factor map f : X → Y is a k-block
factor if for k ∈ Z+, x ∈ X , (f(x))1 = (f(x1, x2, . . . , xk))1. In other words, f is a (not nec-
essarily injective) labeling of the k-blocks in X . A k-block factor of X is a 1-block factor
of X(k). If the precise k is not of interest, we will say f is a finite factor. Let X = {0, 1}Z
with measure µ = (p0, p1)

Z. We are in search of necessary and sufficient conditions for a
finite factor of a 2-state Bernoulli scheme to be finitarily Markovian. In the next section
we discuss our motivation for studying this problem. Also in Section 2, we present
two finite factors of 2-state Bernoulli schemes, one that is finitarily Markovian and one
that is not. These examples demonstrate that the conditions which may be necessary
when p0 6= p1 may not be necessary in the special case that p0 = p1. When p0 6= p1,
we conjecture that a combinatorial condition on f is necessary and sufficient. If f is
viewed as a labeling of a directed graph Gk associated with X(k), then the condition is
that f be r-distinguishing [2]. In Section 3 we define r-distinguishing and determine
the r-distinguishing labelings of Gk. In Section 4 we define r-demarcating labelings.
We show that r-demarcating is sufficient for the factor to be finitarily Markovian. In
Section 5, we show that r-demarcating implies r-distinguishing. In Section 6 we use
Bell numbers to count the number of finite factors of a Bernoulli scheme in order to
show that most finite factors are finitarily Markovian. We end with some remarks and
a discussion of future directions.

2 Motivation and Examples

2.1 Classifying ergodic processes

After Kolmogorov introduced entropy to dynamical systems [10], it was hypothesized
that entropy is a complete isomorphism invariant for Bernoulli schemes. Ornstein later
proved this conjecture [16]. However, prior to Ornstein’s result, mathematicians be-
gan trying to construct isomorphisms between various independent processes with
the same entropy. Meshalkin was one of these mathematicians and in 1959 he showed
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that Bernoulli schemes with non-isomorphic state spaces can be isomorphic [14]. His
results would later be expanded by Blum and Hanson [4]. Meshalkin, however, not
only constructed an isomorphism, but a finitary isomorphism. Isomorphism and fini-
tary isomorphism are formally defined as follows [8]. We will use the shorthand x[m,n]
to mean xmxm+1 . . . xn.

Definition 2.1. Let (X,U , µ, T ) and (Y,V , ν, S) be two processes. An isomorphism φ from
(X,U , µ, T ) to (Y,V , ν, S) is a bimeasurable equivariant map from a subset of X of measure
one to a subset of Y of measure one which takes µ to ν. The isomorphism φ is finitary if for
almost every x ∈ X there exists integers m 6 n such that the zero coordinates of φ(x) and
φ(x′) agree for almost all x′ ∈ X with x[m,n] = x′[m,n], and similarly for φ−1. If we drop the
requirement that φ be invertible, we say φ is a finitary factor.

Keane and Smorodinsky improved on Ornstein’s result with the following theorem.

Theorem 2.2. Entropy is a complete finitary isomorphism invariant for Bernoulli schemes [8].

The theory of finitary isomorphisms found in [1], [7], [8], [9], [21], [22] and [28] has
paralleled the theory of measure-theoretic isomorphisms as outlined by Ornstein and
Sinai in [16], [17] and [27]. There are, however, results on the measure-theoretic side
that are noticeably missing in the finitary theory. For instance, we know that all factors
of Bernoulli schemes are measure-theoretically isomorphic to Bernoulli schemes [16].
The following finitary equivalent remains unresolved.

Conjecture 2.3. Entropy is a complete finitary isomorphism invariant for finitary factors of
Bernoulli schemes.

The question of whether all finitary factors are finitarily isomorphic to a Bernoulli
scheme appeared in [21]. It was later conjectured in [28]. The conjecture is reiterated in
a recent survey of finitary codings [23]. This survey also serves as a nice introduction
to the study of finitary isomorphisms.

In the proof of Theorem 2.2, Keane and Smorodinsky used what is commonly re-
ferred to as the marker and filler technique. In [25] and [26], this technique is described
in detail. One might hope that the marker and filler methods could be extended to
prove the above conjecture. In [24] and [25], it is shown that r-processes would play a
role in any such extension.

Definition 2.4. We say a renewal state a ∈ A has n-Bernoulli distribution if for some nonneg-
ative integer n, P [Xn′ = a|X0 = a] = P [Xn′ = a] for all n′ > n. An r-process X is a renewal
process such that a renewal state in X has n-Bernoulli distribution.

A process X is m-dependent if the σ-algebras U(Xm+1, Xm+2, ...) and U(..., X−1, X0)
are independent. Finite factors of Bernoulli schemes arem-dependent [28]. If a renewal
process is m-dependent, then clearly any renewal state in that process has m-Bernoulli
distribution. So, if a finite factor is a renewal process, it is an r-process. If a finite factor
is finitarily Markovian, it is continuously isomorphic to to an r-process.

the electronic journal of combinatorics 19 (2012), #P1 3



We will show through our work in Sections 3 and 4, that most finite factors of
Bernoulli schemes are finitarily Markovian. We also give a sufficient condition on the
factor map for the finite factor to be finitarily Markovian. This gives us a way to con-
struct a large class of processes that are r-processes or are continuously isomorphic to
r-processes. Since r-processes may be pivotal in resolving the above conjecture, this
construction is useful.

2.2 Two examples

We now present two examples. Since it is nontrivial to find a finite factor of a Bernoulli
scheme that is not finitarily Markovian, we begin with such an example.

Example 2.5. Let X = {0, 1}Z with measure µ = (p0, p1)
Z where p0 6= p1. Let f : X → Y

where (f(x))i = (xi + xi+1) mod 2. Then Y is not finitarily Markovian.

Proof. Let y ∈ Y . For any positive integer n let Rn = y[−n,−1]. There are two words
of length n + 1 in X that map to Rn under f . Let An and Bn be these two words. So,
if f(x)[−n,−1] = Rn, then 0 < p(x[−n, 0] = An) < 1 and 0 < p(x[−n, 0] = Bn) < 1.
We will refer to An and Bn as the possible pre-images of Rn. Notice that An and Bn are
duals of each other. That is, An is obtained from Bn by replacing every 0 with a 1 and
every 1 with a 0. Let An(0) = card{xi| − n 6 i 6 0, xi = 0 and x[−n, 0] = An}. Let
Bn(0) = card{xi| − n 6 i 6 0, xi = 0 and x[−n, 0] = Bn}. Then Bn(0) = n− An(0), and
as n→∞, either

(i)
An(0)

n+ 1
→ p0 and

Bn(0)

n+ 1
→ p1 or (ii)

Bn(0)

n+ 1
→ p0 and

An(0)

n+ 1
→ p1.

Since X = {0, 1}Z with measure µ = (p0, p1)
Z and p0 6= p1, in case (i), we obtain that

An is the true pre-image of Rn and in case (ii), Bn is the true pre-image of Rn.
Suppose y0 = 0. Let x be such that f(x) = y. Then x0x1 = 00 or x0x1 = 11. Also,

y1 = 0 if and only if x0x1x2 = 000 or x0x1x2 = 111. Then we have p[y1 = 0|x0x1 = 11] =
p1 and p[y1 = 0|x0x1 = 00] = p0. Since only one of Bn and An can be the true pre-image
of Rn, either limn→∞ p[y1 = 0|Rn] = p1 or limn→∞ p[y1 = 0|Rn] = p0. Since for any finite
n, both An and Bn map to Rn, the true probability that y1 = 0 cannot be determined
from Rn for any finite n. Therefore, Y is not finitarily Markovian.

For our next example, again let X = {0, 1}Z with measure µ = (p0, p1)
Z, and let

f : X → Y where (f(x))i = (xi + xi+1) mod 2. Now suppose p0 = p1 =
1
2
. In this case,

it is well-known that X = Y . If one follows the proof of Example 2.5, we see that the
pre-images An and Bn still exist, but both converge to the correct distribution.
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3 Distinguishing Labelings of Directed Graphs

3.1 Definition and a conjecture

Suppose you have a key ring with a finite number of seemingly indistinguishable keys.
How can we label the keys so as to distinguish each from all of the others? Surely, la-
beling each key with a unique label is sufficient, but how many distinct labels are nec-
essary? Motivated by this question, Albertson and Collins defined the r-distinguishing
number of an undirected graph as follows [2]. Recall that a graph automorphism is a
permutation of the vertices that preserves edge-connectivity.

Definition 3.1. A labeling of the vertices of a graph G, f : V (G) → {1, 2, . . . , r}, is r-
distinguishing if the only automorphism of the graph that preserves all of the vertex labels is
the identity. The distinguishing number of a graph G, denoted by D(G), is the minimum r
such that G has an r-distinguishing labeling.

While Albertson and Collins were primarily interested in undirected graphs, their
definition applies to directed graphs (digraphs) as well. This was done in [11], for
example. We will take our digraphs G to be defined by a finite set of vertices V (G) and
a finite set of directed edges E(G). For a vertex v ∈ V (G), we allow for (v, v) ∈ E(G)
(self-loops). For u, v ∈ V (G), we allow for at most one edge (u, v) ∈ E(G). We will
assume our graph to be irreducible (i.e. for any u and v in V (G) there exists a walk in
G from u to v). For a more thorough introduction to the theory of graphs and directed
graphs, we recommend [5].

In the first section we claim that the k-block factor of a process X can be defined by
a labeling of the digraph Gk associated with X(k). To make the definition of Gk more
formal, let X be a Bernoulli scheme on two symbols 0 and 1. For each k ∈ Z+, let Gk be
the directed graph where V (G) is the state space of X(k), and (u, v) ∈ E(G) if and only
if p[X(k)

1 = v|X(k)
0 = u] > 0. So, for k = 1 we have the graph in Figure 1. G2 is the graph

in Figure 2.
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Let f be a labeling on some Gk. Then f defines a 1-block factor of X(k) (or a k-block
factor of X). We will refer to the finite factor map defined by f with f as well, writing
f : X → Y . Then Y has measure f(µ) (where µ is the measure on X). We conjecture
the following.

Conjecture 3.2. Let X = {0, 1}Z with measure µ = (p0, p1)
Z where p0 6= p1. Let k ∈ Z+, and

let f be a labeling of Gk. Let f : X → Y denote the finite factor map defined by f . Then Y is
finitarily Markovian if and only if f is r-distinguishing.
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3.2 The automorphism group of Gk

To understand when a labeling of Gk is distinguishing, we must first understand the
automorphism group of Gk.

The adjacency matrix of a graph G with V (G) = {1, 2, . . . , n} is an n × n matrix A
where entry Aij = 1 if (i, j) ∈ E(G) and Aij = 0 otherwise. If p is a permutation of
V (G), the permutation matrix P corresponding to p is an n× n matrix where the entry
Pij = 1 if p(i) = j and Pij = 0 otherwise.

We will always list the vertices of Gk in numeric order when constructing A. For
example, the adjacency matrix of G3 is the following where vertex 1 is 000, vertex 2 is
001, etc. Note that vertex i is the binary representation of i− 1.

000 001 010 011 100 101 110 111
000 1 1 0 0 0 0 0 0
001 0 0 1 1 0 0 0 0
010 0 0 0 0 1 1 0 0
011 0 0 0 0 0 0 1 1
100 1 1 0 0 0 0 0 0
101 0 0 1 1 0 0 0 0
110 0 0 0 0 1 1 0 0
111 0 0 0 0 0 0 1 1

In this section we determine the automorphisms of Gk. For ease of exposition we
split the proof into smaller lemmas. We begin with the following well-known result
[12].

Lemma 3.3. Let G be an irreducible digraph. Let p be a permutation of V (G). Let P be the
permutation matrix of p. Let A be the adjacency matrix of G. Then p is an automorphism of G
if and only if PA = AP .

Each symbol in X(k) (vertex of Gk) is a word of length k in X . Let a = a1a2 . . . ak
be a word in X . We define the dual of a, denoted â = â1â2 . . . âk to be the word in X
such that ai 6= âi for 1 6 i 6 k. For example, the dual of 001 is 110. We will call the
permutation p where p(a) = â for all a ∈ Gk, the dual permutation.

Lemma 3.4. Let A be the adjacency matrix of Gk. For all i where 1 6 i 6 2k, vertex i is the
dual of vertex 2k + 1− i.

Proof. Recall that i is the binary representation of i − 1. Then 2k + 1 − i is the binary
representation of 2k − i. We will use induction.

When i = 1, i = 0k and 2k + 1− i = 1k. These are duals. We now have to show that
if (in binary) a = a1a2 . . . ak is the dual of â = â1â2 . . . âk, that a1a2 . . . ak + 1 is the dual
of â1â2 . . . âk − 1.

Let L = {l′|1 6 l′ 6 k and al′ = 0}. Let l = max{l′ ∈ L}. Then a + 1 =
a1a2 . . . al−1âlâl+1 . . . âk. Let M = {m′|1 6 m′ 6 k and âm′ = 1}. Since a is the dual of â,
l = max{m′ ∈M}. Then â− 1 = â1â2 . . . âl−1alal+1 . . . ak. Thus, a+1 is the dual of â− 1.

By induction, î = 2k + 1− i for 1 6 i 6 n.
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The counteridentity matrix is 1 on the antidiagonal, and 0 elsewhere.

Lemma 3.5. Let A be the adjacency matrix of Gk. Let Q be the permutation matrix of the
identity permutation. Let Q′ be the permutation matrix of the dual permutation. Then Q is the
identity matrix and Q′ is the counteridentity matrix.

Proof. Clearly, Q is the identity matrix. Note that Q′ij = 1 if and only if j = î. The
graph Gk has 2k vertices. If C is the counteridentity matrix, then Cij = 1 if and only if
j = 2k + 1− i. Then C = Q′ if and only if î = 2k + 1− i. This follows from Lemma 3.4.
Therefore, Q′ is the counteridentity.

Lemma 3.6. Let A be the adjacency matrix of Gk. Let I be the identity matrix, and let C be
the counteridentity. Then I and C commute with A.

Proof. Clearly I commutes. Note that C is its own inverse. Then AC = CA if and
only if A = CAC−1 = CAC. For each i and j where 1 6 i 6 2k and 1 6 j 6 2k, let
l = 2k + 1− i and let m = 2k + 1− j. It follows that A = CAC if and only if Aij = Alm

for all i and j. This is because CAC swaps columns i and 2k + 1 − i and rows j and
2k + 1− j in A.

We need to show (i, j) ∈ E(Gk) if and only if (2k+1− i, 2k+1− j) ∈ E(G). Suppose
(i, j) ∈ E(Gk). Let i = a = a1a2 . . . ak and j = b = b1b2 . . . bk. Since (i, j) ∈ E(Gk),
at+1 = bt for 1 6 t 6 k− 1. So, j = a2a3 . . . akbk. By Lemma 3.4, i is the dual of 2k +1− i
and j is the dual of 2k + 1− j. So, 2k + 1− i = â1â2 . . . âk and 2k + 1− j = â2â3 . . . âkb̂k.
Therefore, (2k + 1 − i, 2k + 1 − j) ∈ E(Gk). A similar argument works to show that if
(2k + 1− i, 2k + 1− j) ∈ E(Gk), then (i, j) ∈ E(Gk).

A walk in a directed graphG between distinct vertices u and v that traverses l edges
is minimal if there does not exist a walk in G from u to v that traverses with less than l
edges.

Lemma 3.7. Let u and v be distinct vertices in Gk. There exists a unique minimal walk in Gk

from u to v.

Proof. Let u = u1u2 . . . uk and let v = v1v2 . . . vk. We begin with the “no overlap” case,
meaning there is no word at the end of u that begins v. That is, there does not exist an
i′ ∈ [1, k − 1] such that ui′+j = vj for all 1 6 j 6 k − i′. Then (using parenthesis for
readability)

u = (u1u2 . . . uk), (u2u3 . . . ukv1), . . .
(ukv1v2 . . . vk−1), (v1v2 . . . vk) = v

is the unique minimal walk. Otherwise, let I = {i′ ∈ [1, k − 1]|ui′+j = vj for all 1 6 j 6
k − i′} and let i =min{i′ ∈ I}. Then (using parenthesis for readability)

u = (u1u2 . . . uk), (u2u3 . . . ukvi+1), . . .
(uiui+1 . . . ukvi+1vi+2 . . . vk−1), (ui+1ui+2 . . . ukvi+1vi+2 . . . vk) = v
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is the unique minimal walk.

Lemma 3.8. Let p be an automorphism of Gk. Let u and v be distinct vertices of Gk. Let
w = u, a1, a2, . . . , an, v be the unique minimal walk from u to v. If p(u) = u and p(v) = v,
then p(ai) = ai for all i where 1 6 i 6 n.

Proof. Since p preserves edges in Gk, p must preserve walks in Gk. If p fixes u and
v, then any walk from u to v on l edges must be mapped to a walk from u to v on l
edges. Suppose w is a walk on l edges. Since w is the only walk from u to v on l edges,
p(w) = w.

Lemma 3.9. Let p be an automorphism of Gk. Let u and v be distinct vertices of Gk. Let
w = u, a1, a2, . . . , an, v be the unique minimal walk from u to v. If p(u) = û and p(v) = v̂,
then p(ai) = âi for all i where 1 6 i 6 n.

Proof. By Lemma 3.7, there exists a unique minimal walk from u to v and a unique
walk from û to v̂.

Let w = u, a1, a2, . . . , an, v be the unique minimal walk from u to v. The dual of w
is ŵ = û, â1, â2, . . . , ân, v̂. This is a walk from û to v̂. Suppose there exists a walk from
û to v̂ on less than n + 1 edges. Then for some n′ where n′ < n, there exists a walk
w′ = û, b1, b2, . . . , bn′ , v̂. The dual of w′ is u, b̂1, b̂2, . . . , b̂n′ , v. This walk from u to v is on
less than n+ 1 edges. This contradicts the minimality of w. Therefore, w and ŵ are the
unique minimal walks from u to v and û to v̂ respectively, and they are both on n + 1
edges.

Since p preserves walks in Gk, p must map w to a walk on n + 1 edges from û to v̂.
Since ŵ is the unique minimal walk on n + 1 edges from û to v̂, p(w) = ŵ. Since ŵ is
the dual of w, p(ai) = âi for all i where 1 6 i 6 n.

Lemma 3.10. If p is an automorphism of Gk such that p(0k) = 0k and p(1k) = 1k, then p is
the identity.

Proof. Suppose p(0k) = 0k and p(1k) = 1k. By Lemma 3.7, there exists a unique minimal
walk from 0k to 1k and from 1k to 0k. By Lemma 3.8, p(a) = a for all vertices a on these
two walks.

Let W1 = {v = v1v2 . . . vk ∈ V (Gk)|v1 = 1}. For each v ∈ V (Gk), let t(v) = card{i, i+
1|1 6 i 6 k − 1 and vivi+1 = 01 or vivi+1 = 10}. Here “card” means cardinality. We will
prove by induction on t, that p fixes all vertices v ∈ W1.

Let v ∈ W1 such that t(v) = 1. Then v = 1m00m1 where m0 > 1, m1 > 1, and
m0 + m1 = k. Then v is on the unique minimal walk from 1k to 0k. By Lemma 3.8,
p(v) = v.

Now let n be an integer such that 1 6 n 6 k − 1. Suppose for all v ∈ W1 where
t(v) = n, p(v) = v. Now let v ∈ W1 where t(v) = n + 1. We consider two cases, when
n+ 1 is even and when n+ 1 is odd.

Suppose n + 1 is even. Then v = 1m00m11m2 . . . 0mn1mn+1 where
∑n+1

i=0 mi = k. Let
v′ = 1mn+11m00m11m2 . . . 0mn . Then t(v′) = n. By the induction hypothesis, p(v′) = v′.
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We know that p(1k) = (1k). By Lemma 3.7, there exists a unique minimal walk in Gk

from v′ to 1k. By Lemma 3.8, p(a) = a for all vertices a on this walk. Since v is on this
walk, p(v) = v.

Suppose n+ 1 is odd. Then v = 1m00m11m20m3 . . . 1mn0mn+1 where
∑n+1

i=0 mi = k. Let
v′ = 1mn+11m00m11m20m3 . . . 1mn . Then t(v′) = n. By the induction hypothesis, p(v′) = v′.
We know that p(0k) = (0k). By Lemma 3.7, there exists a unique minimal walk in Gk

from v′ to 0k. By Lemma 3.8, p(a) = a for all vertices a on this walk. Since v is on this
walk, p(v) = v.

By induction, p(v) = v for all vertices v ∈ W1.
Let W0 = {v = v1v2 . . . vk ∈ V (Gk)|v1 = 0}. An analogous argument shows that

p(v) = v for all v ∈ W0.

Lemma 3.11. If p is an automorphism of Gk such that p(0k) = 1k and p(1k) = 0k, then p is
the dual permutation.

Proof. The proof of this lemma is similar to the proof of Lemma 3.10, except that we
will use Lemma 3.9 in place of Lemma 3.8.

Let p be an automorphism of Gk such that p(0k) = 1k and p(1k) = 0k. By Lemma
3.7, there exists a unique minimal walk from 0k to 1k and from 1k to 0k. By Lemma 3.9,
p(a) = â for all vertices a on these two walks.

Let W1 and t(v) be as defined in the proof of Lemma 3.10. We will prove by induc-
tion on t, that p(v) = v̂ for all vertices v ∈ W1.

Let v ∈ W1 such that t(v) = 1. Then v = 1m00m1 where m0 > 1, m1 > 1, and
m0 + m1 = k. Then v is on the unique minimal walk from 1k to 0k. By Lemma 3.9,
p(v) = v̂.

Now let n be an integer such that 1 6 n 6 k − 1. Suppose for all v ∈ W1 where
t(v) = n, p(v) = v̂. Now let v ∈ W1 where t(v) = n + 1. We consider two cases, when
n+ 1 is even and when n+ 1 is odd.

Suppose n + 1 is even. Then v = 1m00m11m2 . . . 0mn1mn+1 where
∑n+1

i=0 mi = k. Let
v′ = 1mn+11m00m11m2 . . . 0mn . Then t(v′) = n. By the induction hypothesis, p(v′) = v̂′.
We know that p(1k) = (0k). By Lemma 3.7, there exists a unique minimal walk in Gk

from v′ to 1k. By Lemma 3.9, p(a) = â for all vertices a on this walk. Since v is on this
walk, p(v) = v̂.

Suppose n+ 1 is odd. Then v = 1m00m11m20m3 . . . 1mn0mn+1 where
∑n+1

i=0 mi = k. Let
v′ = 1mn+11m00m11m20m3 . . . 1mn . Then t(v′) = n. By the induction hypothesis, p(v′) = v̂′.
We know that p(0k) = (1k). By Lemma 3.7, there exists a unique minimal walk in Gk

from v′ to 0k. By Lemma 3.9, p(a) = â for all vertices a on this walk. Since v is on this
walk, p(v) = v̂.

By induction, p(v) = v̂ for all vertices v ∈ W1.
Let W0 = {v = v1v2 . . . vk ∈ V (Gk)|v1 = 0}. An analogous argument shows that

p(v) = v̂ for all v ∈ W0.
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Theorem 3.12. A permutation p of V (Gk) is an automorphism of Gk if and only if p is the
identity or p is the dual permutation.

Proof. The identity is always an automorphism. Let p be the dual permutation. Let Q′

be the permutation matrix of p. Let A be the adjacency matrix of Gk. By Lemma 3.3, p
is an automorphism of Gk if and only if Q′A = AQ′. By Lemma 3.5, Q′ = C where C is
the counteridentity matrix. By Lemma 3.6, C commutes with A. Therefore, by Lemma
3.3, p is an automorphism of Gk.

Since 0k and 1k are the only vertices in Gk with self-loops, any automorphism p
of Gk must fix 0k and 1k or swap them. If an automorphism p fixes 0k and 1k, then
by Lemma 3.10, p is the identity. If an automorphism p is such that p(0k) = 1k and
p(1k) = 0k, then, by Lemma 3.11, p is the dual permutation.

Therefore, p is an automorphism of Gk if and only if p is the identity or p is the dual
permutation.

We say a labeling f of Gk pairs duals if f(a) = f(â) for all a ∈ V (Gk).

Corollary 3.13. A labeling f of Gk is r-distinguishing if and only if f does not pair duals.

Proof. A labeling of f of Gk is r-distinguishing if and only if the only automorphism of
Gk that preserves the labeling is the identity. By Theorem 3.12, the only automorphisms
of Gk are the identity and the dual permutation. So, a labeling f is r-distinguishing if
and only if the dual permutation does not preserve the labeling. The dual permutation
preserves the labeling if and only if f(a) = f(â) for all a ∈ V (Gk). Therefore, a labeling
f of Gk is r-distinguishing if and only if f does not pair duals.

4 Finitarily Markovian Factors

The k-block presentation of a Bernoulli scheme is a Markov process, but of course,
not all Markov processes are k-block presentations of a Bernoulli scheme. We will
begin with a definition and a lemma that apply to the more general case. Let X be
a Markov process defined by some irreducible directed graph G and measure µ. Let
f : V (G)→ {1, 2, . . . , r} be a labeling of the vertices of G. The labeling f then describes
a factor map on X . Let f denote this factor map as well. Let f : X → Y . A word in X
is a finite length walk on the vertices of G. We will use the shorthand x[1, k] to mean
x1x2 . . . xk.

Definition 4.1. If there exists a word w = w1, w2, . . . , wk in Y and a symbol a in the alphabet
of X such that for any x ∈ X where f(x)[1, k] = w, there exists an i in [1, k] where xi = a,
then we say f is r-demarcating.

The importance of this definition is demonstrated by the following lemma.

Lemma 4.2. If f is r-demarcating, then Y is finitarily Markovian.
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Proof. Let Y have σ-algebra V and X have σ-algebra U . If Y [1, k] = w, then Xi = a.
SinceX is Markov, U(. . . X−1, X0) and U(Xk+1, Xk+2, . . .) are independent givenXi = a.
The σ-algebras f−1V(. . . Y−1, Y0) and f−1V(Yk+1, Yk+2, . . . ) are sub-algebras of, respec-
tively, U(. . . X−1, X0) and U(Xk+1, Xk+2, . . . ). Then, V(. . . Y−1, Y0) and V(Yk+1, Yk+2, . . . )
are independent given Y [1, k] = w. So, w is a renewal state in Y (k). This implies Y (k) is
a renewal process. Therefore, Y is finitarily Markovian.

With Lemma 4.2, one may find examples of labelings that define finitarily Marko-
vian factors. Let X be a Bernoulli scheme. Let G be the digraph associated with
X(k). Let f be a labeling of the vertices of G such that there exists a v ∈ V (G) where
f(v) 6= f(u) for all u ∈ V (G) where u 6= v. In other words, let f be a labeling so that one
symbol in the image has a unique pre-image. In this case f(v) is the w and v is the a in
Definition 4.1. The labeling f is clearly r-demarcating. If we let f : X(k) → Y , then by
Lemma 4.2, Y is finitarily Markovian. In Section 6, we will show that most labelings of
X(k) have a symbol in the image that has a unique pre-image. Thus, most finite factors
of a Bernoulli scheme are finitarily Markovian.

5 r-demarcating Implies r-distinguishing

Lemma 4.2 implies that if a labeling of a k-block presentation of a Bernoulli scheme de-
fines a factor that is not finitarily Markovian, that labeling must not be r-demarcating.

Lemma 5.1. Let X = {0, 1}Z be a Bernoulli scheme, let k ∈ Z+, and let Gk be the digraph
associated to X(k). If a labeling f of Gk pairs duals then f is not r-demarcating.

Proof. For every x ∈ X , there exists a x̂ ∈ X such that xi 6= x̂i for all i ∈ Z. Let f be a
labeling of Gk that pairs duals. If f : X → Y also denotes the finite factor map defined
by f , then f(x) = f(x̂). If there existed a word w = w1, w2, . . . , wk in Y and a symbol
a in the alphabet of X such that for any x ∈ X where f(x)[1, k] = w, there exists an
i in [1, k] where xi = a, then f(x̂) 6= f(x). Thus, by this contradiction, f must not be
r-demarcating.

Theorem 5.2. If a labeling f of Gk is r-demarcating, then f is r-distinguishing.

Proof. Suppose f is r-demarcating. Then by Lemma 5.1, f does not pair duals. By
Corollary 3.13, f is r-distinguishing.

We do not know if the converse holds in this case. The converse does not always
hold in the more general setting where X(k) is replaced by any Markov process. Con-
sider the directed graph in Figure 4. Since 5 is the only vertex in our graph with three
incoming edges, any automorphism of this graph must fix 5. Then 0, 2, and 4 must
be fixed. Finally, this implies 1 and 3 must be fixed. Thus, the only automorphism
of this graph is the identity. In this instance, any labeling of the vertices would be
r-distinguishing. In particular, we could label the graph as was done in Figure 5. It
is clear that this labeling is not r-demarcating. We do not yet know for what class of
digraphs, a labeling is r-demarcating if and only if it is r-distinguishing.
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6 Counting Cases with the Bell Numbers

If X is an m-state Bernoulli scheme, then the number of k-block factors of X is always
Bmk − 1 where Bn is the nth Bell number. For a thorough introduction to the Bell
numbers, see [6]. A Bell numberBn can be described as the number of ways to partition
n numbers. We find that B0 = 0, B1 = 1, B2 = 2, and B3 = 5. There is the following
recurrence relation for the Bell numbers.

Bn =
∑

k

(
n−1
k

)
Bk

In addition, Bn is described as the number of ways to put n labeled balls in n indis-
tinguishable urns. Here, our balls are k blocks in X . Since X has m states, there are mk

k-blocks in X . The urns are the states in the factor. They are indistinguishable since we
want to consider two factors that are 1-block codings of each other as the same factor.
We take Bmk − 1 because we are not interested in the factor that equates to putting all
of our balls in the same urn.

In summary, we have the following simple lemma.

Lemma 6.1. There are Bmk − 1 distinct k-block factors of X .

For example, the number of distinct 3-block factors of a 2-state Bernoulli scheme is
B23 − 1 = 4139. The number of distinct 4-block factors of a 2-state Bernoulli scheme
is B24 − 1 = 10480142147. The following theorem shows that most finite factors are
finitarily Markovian.

Theorem 6.2. Let X be a Bernoulli scheme with m > 2 states. For each k ∈ Z+, define N(k)
to be the number of distinct k-block factors of X , and define R(k) be the number of distinct
k-block factors of X that are finitarily Markovian. Then,

lim
k→∞

R(k)

N(k)
= 1.

Proof. For each k ∈ Z+, let R′(k) be the number of k-block factors of X such that one
state in the factor has a unique pre-image. Then, by Lemma 4.2, R′(k) 6 R(k). So to
show

lim
k→∞

R(k)

N(k)
= 1.
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it suffices to show
lim
k→∞

R′(k)

N(k)
= 1.

We know that N(k) = Bmk − 1. Let Cn be the number of ways to put n labeled balls
in n indistinguishable bins such that every bin has > 1 or 0 balls. Then Bn = Cn+Cn+1.
If Dn = Bn − Cn = Cn+1, then Dn = Bn − Dn−1. The number of ways to factor so
that one symbol in the image has a unique pre-image is the total number of ways to
factor minus the number of factors where every symbol in the image has at least 2
pre-images. So, Dmk = R′(k). Then,

lim
k→∞

R′(k)

N(k)
= lim

k→∞

Dmk

Bmk − 1
= lim

k→∞

Bmk −Dmk−1

Bmk

.

Since Dn 6 Bn for all n,

lim
k→∞

Bmk −Dmk−1

Bmk

> 1− lim
k→∞

Bmk−1

Bmk

.

All that is left to show is that

lim
k→∞

Bmk−1

Bmk

= 0.

We thank [13] for providing us with the following simple argument. Dobinski’s
formula tells us thatBn is the nth moment of a Posson distribution with expected value
1 [18]. Then for any real number r, there exists n ∈ Z+ such that rn 6 Bn. By Jensen’s

inequality, B
n+1
n

n 6 Bn+1. Then we have

1 6 Bn+1

n
√

Bn+1
n

which implies n
√
Bn 6 Bn+1

Bn
.

So for any r ∈ R, there exists an n ∈ Z+ such that r 6 n
√
Bn 6 Bn+1

Bn
. Therefore,

lim
k→∞

Bmk−1

Bmk

= 0.

Let X = {0, 1}Z with measure µ = (p0, p1)
Z where p0 6= p1. Let k ∈ Z and let f be a

labeling of Gk (the digraph associated with X(k)). We conjecture that f(X) is finitarily
Markovian if and only if f is r-distinguishing. By our work in Section 3, we know that
f is r-distinguishing if and only if f does not pair duals. So, we conjecture that the
number of finite factors that are not finitarily Markovian is the number of factors that
pair duals. We can use the Bell numbers to count these factors as well. There are 2k−1

pairs of duals in X . So, there are B2(k−1)−1 distinct k-block factors of X that pair duals.
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7 Remarks and Future Directions

7.1 Summary of implications

Let X = {0, 1}Z with measure µ = (p0, p1)
Z where p0 6= p1. Let k ∈ Z+, and let f be a

labeling of Gk. Let f : X → Y denote the finite factor map defined by f . In Section 3,
we conjectured that Y is finitarily Markovian if and only if f is r-distinguishing.

Let r − dem (resp. r − dis) mean f is r-demarcating (resp. r-distinguishing). Let
DNPD mean f does not pairs duals, and let FM mean Y is finitarily Markovian. We
can summarize the main results of this paper with the following implications:

r − dis ⇐⇒ DNPD ⇐= r − dem =⇒ FM.

7.2 Hidden Markov models

Hidden Markov models (or probabilistic functions of Markov chains) [3] are 1-block
factors of Markov processes. Let X be a Markov process and let f : X → Y be a 1-
block factor. The question of whether or not Y is Markovian has been well-studied
(see [20], for example). However, not much has been written on whether or not a given
hidden Markov model is finitarily Markovian. Some of our work here was done in this
more general setting. Specifically, in Lemma 4.2, we have shown that r-demarcating is
always sufficient for the factor to be finitarily Markovian.
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