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Abstract

The flag f -vectors of three-colored complexes are characterized. This also char-
acterizes the flag h-vectors of balanced Cohen-Macaulay complexes of dimension
two, as well as the flag h-vectors of balanced shellable complexes of dimension two.

1 Introduction

In the late 1970s, Stanley [6] showed that characterizing the flag f -vectors of colored
simplicial complexes is equivalent to characterizing the flag h-vectors of a different class of
complexes. Several years later, Björner, Frankl, and Stanley [1] showed that two additional
classes of simplicial complexes shared this same characterization. Unfortunately, no one
has a characterization for any of these classes of simplicial complexes, but we only know
that characterizing one would suffice for all four. There are some known cases that are
trivial. In this paper, we solve one of the simplest non-trivial cases by characterizing the
flag f -vectors of 3-colored simplicial complexes.

Recall that a simplicial complex ∆ on a vertex set W is a collection of subsets of W
such that (i) for every v ∈ W , {v} ∈ ∆ and (ii) for every B ∈ ∆, if A ⊆ B, then A ∈ ∆.
The elements of ∆ are called faces. A face on i vertices is said to have dimension i − 1,
while the dimension of a complex is the maximum dimension of a face of the complex.

The i-th f -number of a simplicial complex ∆, f i−1(∆), is the number of faces of ∆ on
i vertices. The f -vector of ∆ lists the f -numbers of ∆. One interesting question to ask is
which integer vectors can arise as f -vectors of simplicial complexes. Much work has been
done toward answering this for various classes of simplicial complexes. For example, the
Kruskal-Katona theorem [5, 4] characterizes the f -vectors of all simplicial complexes.

In this paper, we wish to deal with colored complexes, where the coloring provides
additional data. A coloring of a simplicial complex is a labeling of the vertices of the
complex with colors such that no two vertices in the same face receive the same color.
Because any two vertices in a face are connected by an edge, this is equivalent to requiring
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that any two adjacent vertices be assigned different colors. If there are n colors, we refer
them as 1, 2, . . . , n and the set of colors is denoted by [n] = {1, 2, . . . , n}. The color set
of a face is the subset of [n] consisting of the colors of the vertices of the face.

If an (uncolored) complex can be colored with n colors, we call it n-colorable. This
is equivalent to its 1-skeleton taken as a graph having chromatic number at most n. The
Frankl-Füredi-Kalai [2] theorem characterizes the f -vectors of n-colorable complexes. If
an n-colorable complex has dimension n− 1, we say that ∆ is balanced, following Stanley
[6].

We wish to use a refinement of the usual notion of f -vectors. Let ∆ be an n-colored
simplicial complex. For any S ⊆ [n], the flag f -number fS(∆) counts the number of faces
of ∆ with color set S. The flag f -vector of ∆, f(∆), is the collection of the flag f -numbers
of ∆ for all subsets S ⊆ [n].

For simplicity, we sometimes refer to colors by their numbers and drop the brackets
when we do so. For example, f3(∆) is the number of vertices of ∆ of color 3. Similarly,
f12(∆) is the number of edges of ∆ with one vertex of color 1 and one vertex of color 2.

The relation between the f -numbers and the flag f -numbers is that the former ignores
the colors. The f -numbers can be computed from the flag f -numbers by

f i−1(∆) =
∑
|S|=i

fS(∆).

The f -numbers of a complex are usually written with the number as a subscript, not a
superscript. We do not do this because this paper is mainly interested in flag f -numbers,
and we wish to be able to drop the brackets and write, for example, f12(∆) rather than
f{1,2}(∆) without it being mistaken for the number of twelve-dimensional faces of ∆.

One can ask which nonnegative integer vectors can arise as the flag f -vectors of colored
simplicial complexes. It can help to define the flag h-vector of a complex by

hS(∆) =
∑
T⊆S

fT (∆)(−1)|S|−|T |.

The flag h-vector of a complex contains the same information as the flag f -vector, and it
is sometimes more convenient to work with the flag h-vector. If given the flag h-vector of
a colored complex ∆, we can recover its flag f -vector by

fS(∆) =
∑
T⊆S

hT (∆).

A simplicial complex of dimension d−1 is balanced if it is d-colorable. For a simplicial
complex to be shellable or Cohen-Macaulay are technical conditions that appear in the
following theorem, but we do not need them directly, so we do not define them in this
paper. For our purposes, we only need that all shellable complexes are Cohen-Macaulay.

Theorem 1.1 (Stanley [6], Björner-Frankl-Stanley [1]) Let n be a fixed positive in-
teger. The following are equivalent for a vector ~x = (xS)S⊆[n].
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1. ~x is the flag f -vector of an n-colored simplicial complex,

2. ~x is the flag h-vector of a balanced Cohen-Macaulay complex of dimension n− 1,

3. ~x is the flag h-vector of a balanced shellable complex of dimension n− 1,

4. ~x is the flag f -vector of an n-colored, color-shifted complex.

Stanley [6] showed that the first two conditions are equivalent. Björner, Frankl, and
Stanley [1] showed that the last two conditions are also equivalent to the first two. The
problem here is that while four different classes of complexes have equivalent characteri-
zations, none of them have a known characterization.

One might hope that stronger local restrictions than what Björner, Frankl, and Stanley
found could be placed upon the complexes without changing the characterization of the
flag f -vectors, and work toward a solution that way. For example, the Kruskal-Katona
theorem says that to characterize the f -vectors of simplicial complexes, we can restrict to
family of the shifted complexes. As there is only one possible shifted complex for a given
f -vector, this effectively solves the problem. Frankl, Füredi, and Kalai [2] did something
similar to characterize the f -vectors of colored complexes.

Indeed, the paper of Björner, Frankl, and Stanley already did impose stronger restric-
tions to some extent. Every color-shifted colored complex is, in particular, a colored com-
plex, so they showed that in order to characterize the flag f -vectors of colored complexes,
it sufficed to consider only color-shifted complexes. Likewise, every shellable complex
is Cohen-Macaulay, so they showed that to characterize the flag h-vectors of balanced
Cohen-Macaulay complexes, it suffices to consider only the balanced shellable complexes.
However, another paper of the author [3] showed that one cannot impose stronger local
conditions than color-shifting in a certain sense.

Another approach is to try to impose some bounds. Walker [7] showed that the only
linear inequalities on the flag f -numbers of simplicial complexes are the trivial ones,
namely, that all flag f -numbers are non-negative. In the same paper, he computed all
linear inequalities on the logarithms of the flag f -numbers of a simplicial complex. These
give inequalities on the products of flag f -numbers. For example, the most trivial case
is that f1(∆)f2(∆) > f12(∆), as any edge whose color set is {1, 2} must use a vertex of
color 1 and a vertex of color 2, and the ways to pick these vertices are f1(∆) and f2(∆),
respectively. While an interesting result, Walker’s result is shy of a full characterization
of the flag f -vectors of simplicial complexes in multiple ways.

First, it avoids dealing with discreteness issues. For example, if f12(∆) = f13(∆) =
f23(∆) = 3 and f1(∆) = f2(∆) = f3(∆) = 2, then the only possible way to arrange the
edges in a color-shifted manner is for two vertices of distinct colors to be adjacent unless
both are the second vertex of their color. This arrangement forces f123(∆) 6 4. However,
the smallest of Walker’s bounds gives f123(∆) 6 3

√
3 ≈ 5.2. Since flag f -numbers must

be integers, this immediately gives that f123(∆) 6 5. But Walker’s bounds are unable to
produce the real upper bound of f123(∆) 6 4.
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What happens here is that discreteness gets in the way to make Walker’s bounds not
sharp. Otherwise, we could take a complete tripartite graph on

√
3 vertices of each color

and hit his bound exactly.
Another issue is that sharp bounds on flag f -numbers of certain color sets in terms

of their flag f -numbers on proper subsets can sometimes conflict with each other. For
example, suppose that f12(∆) = 1, f13(∆) = 2, f23(∆) = 2, f24(∆) = 2, and f34(∆) = 1.
Walker’s bounds give that f123(∆) 6 2 and f234(∆) 6 2. It is possible to obtain either
one of these. The former is a complete tripartite graph on two vertices of color 3 and one
vertex each of colors 1 and 2. The latter is a complete tripartite graph on two vertices of
color 2 and one vertex each of colors 3 and 4.

It is not possible to make f123(∆) = 2 and f234(∆) = 2 simultaneously, however. The
former requires that the edges with color set {2, 3} have a common vertex of color 2, while
the latter requires that the edges have a common vertex of color 3.

Walker’s bounds are enough to settle the case of two colors. A proposed nonnegative
integer flag f -vector corresponds to a non-empty two-colored simplical complex if and
only if f∅(∆) = 1 and f1(∆)f2(∆) > f12(∆). The problem remains open for more colors,
however.

In this paper, we give a characterization of the flag f -vectors of 3-colored complexes in
Theorem 3.17 in a way that accounts for discreteness issues. Given any prospective flag
f -vector for a 3-colored complex, we can either give a complex that has the desired flag
f -vector or show that no such complex exists. The problem of different higher dimensional
flag f -numbers forcing different configurations on lower dimensional faces only appears
when there are at least four colors.

We begin by dispensing with some trivial cases. We can assume that f∅(∆) = 1, as
this is true for every non-empty complex. We also assume that fi(∆)fj(∆) > fij(∆), as
if not, then it does not correspond to any complex. Finally, we assume that fS(∆) > 0
for all S ⊆ [3], as if not, the problem is trivial. This allows us to refer to two-dimensional
faces as facets, if we follow the convention that facets are faces of the same dimension as
the complex, rather than the convention that facets are all faces that are maximal under
inclusion.

For simplicity, we refer to an edge of color set {1, 2} as being an edge of color 12, and
similarly for edges of color 13 or 23. With only three colors, this cannot lead to ambiguity
about the color set intended.

Our approach to the problem is to find the maximum number of facets possible, given
the rest of the flag f -vector. Throughout this paper, we define complexes by specifying
the edges. The facets are assumed to be all possible facets for which all three edges are
present in the complex. This means that the complexes are flag complexes. If we wish
to have fewer facets than the maximum number allowed, we can take a construction with
more facets and discard some facets.

Doing the computations to determine the maximum number of facets allowed by the
rest of the flag f -vector is practical. For an arbitrary integer k, if the number of edges of
each color set is chosen independently and uniformly at randomly from [k] = {1, 2, . . . , k},
then the expected number of complexes we must check to find the one that maximizes the

the electronic journal of combinatorics 19 (2012), #P13 4



number of facets is less than 15, independent of k and regardless of how many vertices of
each color are allowed. In the worst possible case, we check on the order of k

1
4 complexes.

In Section 2, we give a construction with five parameters and show that it suffices
to consider only this construction. In Section 3, we give our characterization of the flag
f -vectors of 3-colored complexes. In Section 4 we explain how to give an explicit complex
for any of the equivalent conditions of Theorem 1.1 with a specified flag f -vector or flag h-
vector, if such a complex exists. In Section 5, we give proofs of the lemmas stated and used
in Section 3. In Section 6, we give some examples of computations to characterize the flag
f -vectors of 3-colored complexes. These computations demonstrate why there shouldn’t
be a much nicer characterization. In Section 7, we discuss the analogous problem for more
than three colors.

2 Some parameters

We start this section by giving our construction in Definition 2.1. The key results of this
section are Propositions 2.3 and 2.4, which ensure that there is a complex as defined in
Definition 2.1 that maximizes the number of facets.

We can place an arbitrary order on the vertices of each color. We label the j-th vertex
of color i as vij, so that the vertices of color i are vi1, v

i
2, . . . , v

i
fi(∆).

Definition 2.1 Let ∆ be a 3-colored complex. LetA(∆) be the set of 3-colored complexes
constructed as follows. Choose nonnegative integers g1, g2, and g3 such that gi 6 fi(∆)
and gigj 6 fij(∆) for all i, j ∈ [3] with i 6= j. Also choose distinct p, q ∈ [3]. Define
r = 6− p− q; this means that p and q are two of the numbers in [3], and r is the third.

Start with a complete tripartite graph Γ1 on g1 vertices of color 1, g2 vertices of color
2, and g3 vertices of color 3. Next, define a new complex Γ2. The vertices of Γ2 are
the same as those of Γ1, except that if fp(∆) > gp, Γ2 has an extra vertex v of color p.
The edges of Γ2 not including v are the same as those of Γ1. The vertex v should be
adjacent to precisely the first min{fpq(∆) − fpq(Γ1), fq(Γ1)} vertices of color q and the
first min{fpr(∆)− fpr(Γ1), fr(Γ1)} vertices of color r.

After this, define a new complex Γ3. The vertices of Γ3 are the same as those of Γ2,
except that if fq(∆) > gq, then Γ3 has an extra vertex w of color q. The edges of Γ3 not
including w are the same as those of Γ2. The vertex w should be adjacent to precisely
the first min{fpq(∆) − fpq(Γ2), fp(Γ1)} vertices of color q and the first min{fqr(∆) −
fqr(Γ1), fr(Γ1)} vertices of color r. A complex is in A(∆) exactly if it can be obtained as
Γ3 from suitable constants g1, g2, g3, p, and q.

By construction, for every Γ ∈ A(∆), fS(Γ) 6 fS(∆) for all S 6= [3].

Definition 2.2 Let ∆ be a 3-colored complex. We define

m(∆) = max{f123(Γ) | Γ ∈ A(∆)},
B(∆) = {Γ ∈ A(∆) | f123(Γ) = m(∆)},
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n(∆) = max{f12(Γ) + f13(Γ) + f23(Γ) | Γ ∈ B(∆)}, and

C(∆) = {Γ ∈ B(∆) | f12(Γ) + f13(Γ) + f23(Γ) = n(∆)}.

It is immediate from the definition that A(∆) ⊇ B(∆) ⊇ C(∆).
The goal of this section is to prove the following propositions, which greatly restrict

the arrangements of edges that we must consider.

Proposition 2.3 For every 3-colored complex ∆, there is a Γ ∈ C(∆) such that f123(Γ) >
f123(∆).

Proposition 2.4 Let Θ and ∆ be simplicial complexes such that fS(Θ) 6 fS(∆) for every
proper subset S ⊂ [3]. Then f123(Θ) 6 m(∆). Furthermore, if Σ is a complex such that
f123(Σ) < f123(Θ), then Σ 6∈ B(∆).

The consequence of these propositions is that in order to maximize f123(∆) given the
rest of the flag f -vector, it suffices to consider only the complexes in C(∆). The reason
for this is that if we have a 3-colored complex Θ with fS(Θ) = fS(∆) for all proper
subsets S ⊂ [3], then we are guaranteed that there is a complex Γ ∈ C(∆) such that
f123(Γ) = m(∆) > f123(Θ). While the complex Γ may have fewer vertices and edges than
∆, adding more vertices and edges to a flag complex does not decrease the number of
facets.

This reduces the problem to finding the values of g1, g2, g3, p, and q that maximize
the number of facets of the construction in Definition 2.1. Furthermore, we only need to
consider values that produce a complex in C(∆). As all complexes in C(∆) have m(∆)
facets, the problem of maximizing the number of facets is equivalent to finding m(∆).

The proof of these propositions is delayed until the end of this section, as we need
some other results first.

Definition 2.5 Let ∆ be an n-colored simplicial complex. We say that ∆ is color-shifted
if, for all b1 6 a1, b2 6 a2, . . . , bj 6 aj, {vi1a1

, vi2a2
, . . . v

ij
aj} ∈ ∆ implies {vi1b1 , v

i2
b2
, . . . v

ij
bj
} ∈ ∆.

Theorem 2.6 (Björner-Frankl-Stanley [1]) Let ∆ be an n-colored simplicial complex.
Then there is an n-colored, color-shifted simplicial complex Γ such that fS(∆) = fS(Γ)
for all S ⊆ [n].

This is the portion of Theorem 1.1 that we need to use. Björner, Frankl, and Stan-
ley called the concept “compressed” rather than color-shifted. Furthermore, their proof
allowed for a more general notion of coloring where, for example, one could have three
colors, but allow a face to have up to 3 vertices of color 1, up to 5 vertices of color 2, and
up to 2 vertices of color 3. In this paper, we focus on the case where only one vertex of
each color is allowed in a face.

Lemma 2.7 Let ∆ be a 3-colored simplicial complex. Then there is a simplicial complex
Γ, together with positive integers c1, c2, c3, c4, c5, and c6 such that
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1. Γ is 3-colored,

2. Γ is color-shifted,

3. fS(Γ) = fS(∆) for all S ⊂ [3] with S 6= [3],

4. f123(Γ) > f123(∆),

5. {v1
a1
, v2

a2
} ∈ Γ for all a1 6 c1 and a2 6 c2,

6. Γ has at most one vertex other than {v1
1, . . . , v

1
c1
, v2

1, . . . , v
2
c2
} contained in an edge

of Γ of color 12.

7. {v1
a3
, v3

a4
} ∈ Γ for all a3 6 c3 and a4 6 c4,

8. Γ has at most one vertex other than {v1
1, . . . , v

1
c3
, v3

1, . . . , v
3
c4
} contained in an edge

of Γ of color 13.

9. {v2
a5
, v3

a6
} ∈ Γ for all a5 6 c5 and a6 6 c6, and

10. Γ has at most one vertex other than {v2
1, . . . , v

2
c5
, v3

1, . . . , v
3
c6
} contained in an edge

of Γ of color 23.

Proof: Theorem 2.6 ensures that there is a complex ∆0 that satisfies properties (1)
through (4), though it could fail the rest. We start with this complex and rearrange
edges of one color at a time such that after each rearrangement, the complex satisfies
the two properties relevant to that color, while retaining any numbered properties that
it held before the rearrangement. After rearranging edges of all three colors, we have the
complex Γ.

Suppose that it is not possible to choose c1 and c2 and create a complex ∆1 satisfying
properties (1) through (6) with the edges of ∆1 exactly the same as the edges of ∆0 except
for those of color 12. Taking ∆1 = ∆0 and c1 = c2 = 1 would leave the necessary faces
unchanged and satisfy properties (1) through (5), so the only obstruction here is property
(6).

Let Σ be a complex that minimizes the number of vertices contained in an edge
of color 12 among all rearrangements of the edges of ∆0 of color 12 that satisfy con-
ditions (1) through (5). Let the vertices of Σ contained in an edge of color 12 be
{v1

1, . . . , v
1
d1
, v2

1, . . . , v
2
d2
}. Let the number of vertices of color 1 adjacent to the vertex v3

i

be pi and the number of vertices of color 2 adjacent to v3
i be qi. Since Σ is color-shifted,

we must have p1 > p2 > . . . > pf3(∆) and q1 > q2 > . . . > qf3(∆).
Suppose first that pf3(∆) > d1 and qf3(∆) > d2. In this case, every edge of color 12

together with a vertex of color 3 forms a facet of Σ. Furthermore, rearranging edges of
Σ of color 12 does not change the number of facets provided that all edges only use the
vertices {v1

1, . . . , v
1
d1
, v2

1, . . . , v
2
d2
}. Let w = f12(∆)

d2
. Rearrange the edges of Σ of color 12

such that the vertices {v1
1, . . . , v

1
bwc} are each adjacent to all of {v2

1, . . . , v
2
d2
} and the vertex
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v1
bwc+1 is adjacent to {v2

1, . . . , v
2
d2(w−bwc)}. Take c1 = bwc and c2 = d2. It is easy to check

that this new Σ satisfies all of the conditions necessary for ∆1.
Otherwise, let m = min{i | either pi < d1 or qi < d2}. Suppose without loss of

generality that pm < d1; exactly the same argument applies if qm < d2. If f12(∆) 6
(d1 − 1)d2, then we can move the edges of Σ of color 12 that contain v1

d1
to instead use

one vertex in {v1
1, . . . , v

1
d1−1} (without v1

d1
) and one vertex in {v2

1, . . . , v
2
d2
}, with the new

edges chosen so as to keep the new complex color-shifted. For i < m, this does not change
the number of facets of Σ containing v3

i because every edge of Σ of color 12 together with
v3
i forms a facet of Σ both before and after the rearrangement. It also cannot decrease

the number of facets of Σ containing v3
i for i > m, as v3

i together with the vertices of
a removed edge did not form a facet as {v3

i , v
1
d1
} 6∈ Σ. As such, the new Σ satisfies

conditions (1) through (5) while having one vertex fewer contained in an edge of color 12.
This contradicts the choice of Σ.

The other possibility is that f12(∆) > (d1 − 1)d2. In this case, rearrange the edges
of Σ of color 12 such that the edges are every possible combination of one vertex in
{v1

1, . . . , v
1
d1−1} (without v1

d1
) and one vertex in {v2

1, . . . , v
2
d2
}, as well as that v1

d1
forms

an edge with each vertex of {v2
1, . . . , v

2
f12(∆)−(d1−1)d2

}. As in the previous paragraph, this

cannot decrease the number of facets of Σ containing vertex v3
i with i < m because v3

i

would form a facet with the edge both before and after it is moved. It cannot decrease
the number of facets of Σ containing v3

i for i > m, as v3
i together with the vertices of a

removed edge did not form a facet as {v3
i , v

1
d1
} 6∈ Σ. We can take c1 = d1 − 1, c2 = d2,

and ∆1 = Σ and satisfy conditions (1) through (6), as v1
d1

is the only extra vertex.
Now we repeat the process by rearranging the edges of other colors. We can create

∆2 from ∆1 by rearranging the edges with color 13 in the same manner as how ∆1 was
created. This retains properties (1) through (4) for the same reasons that ∆1 did and
makes properties (7) and (8) hold if Γ = ∆2 for the same reasons that properties (5) and
(6) hold if Γ = ∆1. Since the edges of color 12 are unchanged, properties (5) and (6) hold
for ∆2 because they hold for ∆1.

Finally, we create ∆3 from ∆2 by rearranging edges of color 23. This inherits properties
(5) through (8) from ∆2. It retains properties (1) through (4) and adds properties (9)
and (10) for the same reasons as happened analogously with ∆1 and ∆2. Taking Γ = ∆3

completes the proof. �

Lemma 2.8 Let ∆ be a 3-colored simplicial complex. There is a Γ ∈ A(∆) with f123(Γ) >
f123(∆).

Proof: Let ∆1 be a simplicial complex satisfying the conditions of Lemma 2.7. Suppose
first that the extra vertices of conditions (6), (8), and (10) from Lemma 2.7 are of at most
two different colors.

We construct Γ from ∆1 as follows. Let g1 = min{c1, c3}, g2 = min{c2, c5}, and
g3 = min{c4, c6}. If there are no extra vertices, then choose p and q arbitrarily. If there
is only one color with an extra vertex, then let that color be p, and choose q arbitrarily.
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If there are two colors with an extra vertex, then let them be p and q. To choose
which color is p and which is q, consult the following table. The first column gives the
possibilities for the set {p, q}. There is only one extra vertex in condition (6), (8), or
(10) corresponding to this color set. The second column gives the possibilities of the
color of this extra vertex. If there isn’t an extra vertex for the corresponding condition in
Lemma 2.7, then we can choose p and q arbitrarily. The third column gives the conditions
for which we choose p to be less than q. For example, if {p, q} = {1, 2} and the condition
is satisfied, then we pick p = 1 and q = 2; if not, we pick p = 2 and q = 1.

{p, q} extra condition
{1, 2} 1 c2 6 c5

{1, 2} 2 c1 > c3

{1, 3} 1 c4 6 c6

{1, 3} 3 c3 > c1

{2, 3} 2 c6 6 c4

{2, 3} 3 c5 > c2

With these constants, construct Γ as described in Definition 2.1. The complex Γ of
the definition is a subcomplex of ∆1, so it has few enough edges that the construction
works, and Γ ∈ A(∆). Furthermore, all facets of ∆1 are also in Γ, so f123(Γ) > f123(∆1) >
f123(∆).

Otherwise, the extra vertices are forced upon us by ∆1 and one extra vertex is of each
color. One possibility is that the extra vertex for an edge of color set {i, i+1} (modulo 3)
is of color i for all i ∈ [3]; the other possibility is that the extra vertex is always of color
i + 1. By symmetry, it suffices to consider only the former case.

Suppose that c1 > c3. The extra vertex of color 1 is then not adjacent to any vertices
of color 3. As such, if we remove all edges containing it, we do not lose any facets. This
means that there is no longer an extra vertex corresponding to condition (6) of Lemma 2.7,
so we are back in a previous case. The same analysis applies if c5 > c2 or c4 > c6. This
leaves only the case where c1 < c3, c5 < c2, and c4 < c6. These conditions imply that no
two of the extra vertices are adjacent.

Construct a simplicial complex ∆2 from ∆1 by discarding all vertices and edges not
contained in a facet of ∆1. In the new complex ∆2, let v1

g1+1 be adjacent to d12 vertices
of color 2 and d13 vertices of color 3, let v2

g2+1 be adjacent to d21 vertices of color 1 and
d23 vertices of color 3, and let v3

g3+1 be adjacent to d31 vertices of color 1 and d32 vertices
of color 2. Because no two extra vertices are adjacent, any two vertices of distinct colors
adjacent to one of these extra vertices must be adjacent to each other. As such, v1

g1+1 is
contained in d12d13 facets, v2

g2+1 is contained in d21d23 facets, and v3
g3+1 is contained in

d31d32 facets. Our construction gives that d21 = g1, d32 = g2, and d13 = g3. No two of the
extra vertices are adjacent to each other, so if we add the facets not containing any of the
extra vertices, we can compute

f123(∆2) = g1g2g3 + d12d13 + d21d23 + d31d32 = g1g2g3 + d12g3 + d23g1 + d31g2.
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Suppose that g1 > g2. We wish to compute f12(∆2). There are g1g2 edges containing
neither of the extra vertices. There are d12 edges containing the extra vertex of color 1.
There are d21 = g1 edges containing the extra vertex of color 2. Add the edges containing
neither of the extra vertices and we get

f12(∆2) = g1g2 + d12 + d21 = g1g2 + d12 + g1.

We create Γ from ∆2 by rearranging the edges of color 12 as follows. Remove the
edges containing v1

g1+1 or v2
g2+1. In their place, make v1

g1+1 adjacent to the first g2 vertices
of color 2. Use the remaining edges to make v2

g2+1 adjacent to the first g1 + d12− g2 edges
of color 1. We can do this because g1 > g2 gives that g1 + d12− g2 > d12 > 0 and d12 6 g2

gives that g1 + d12 − g2 6 g1, so there are enough vertices of color 1. This keeps all flag
f -numbers of Γ the same as of ∆2 except possibly the number of facets. If we plug the
new values of d12 and d21 into the above formula, we get

f123(Γ) = g1g2g3 + g2g3 + d23(g1 + d12 − g2) + d31g2.

Now we can compute

f123(Γ)− f123(∆2) = g1g2g3 + g2g3 + d23(g1 + d12 − g2) + d31g2

−(g1g2g3 + d12g3 + d23g1 + d31g2)

= (g2 − d12)g3 + d23(d12 − g2)

= (g2 − d12)(g3 − d23) > 0

The last line follows because both factors are nonnegative by construction.
We must check that Γ satisfies all of the needed conditions. First, for every proper

subset S ⊂ [3], we have fS(Γ) = fS(∆2) 6 fS(∆1) = fS(∆). For condition 2, we have just
shown f123(Γ) > f123(∆2) = f123(∆1) > f123(∆). For condition 4, the vertex v1

g1+1 is now
adjacent to the first g2 vertices of color 2 and the first g3 vertices of color 3. As such, we
it is no longer an extra vertex, and we can increase g1 by 1. This leaves only the other
two vertices as extra vertices. Condition 3 is clear. Finally, Γ comes from the specified
construction with the new value of g1, p = 3, and q = 2.

If g2 > g3, we can do the same procedure as before, this time rearranging edges of
color 23 to make v2

g2+1 no longer an extra vertex. Likewise, if g3 > g1, we rearrange edges
of color 13 to make v3

g3+1 no longer an extra vertex. This leaves only the case where
g1 < g2 < g3 < g1, which is impossible. �

Proof of Proposition 2.3: By Lemma 2.8, there is a Γ1 ∈ A(∆) with f123(Γ1) > f123(∆).
It is immediate from the definitions that there is a Γ2 ∈ C(∆). Furthermore, because
Γ2 ∈ C(∆), we get f123(Γ2) = m(∆) > f123(Γ1) > f123(∆). �

Proof of Proposition 2.4: Let Γ ∈ C(Θ). By Proposition 2.3, f123(Γ) > f123(Θ).
By construction, fS(Γ) 6 fS(Θ) 6 fS(∆) for all proper subsets S ⊂ [3], and so Γ ∈
A(∆). Therefore, m(∆) > f123(Γ) > f123(Θ). The second claim follows immediately from
f123(Σ) < f123(Θ) 6 m(∆). �
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3 Determining the optimal constants

In this section, we characterize the flag f -vectors of three-colored complexes. Proposi-
tion 2.3 reduced the problem to finding the choices of g1, g2, g3, p and q that maximize the
number of facets when we construct a complex using the method of Definition 2.1. In this
section, we give a series of lemmas that greatly restrict which choices of these constants
it is necessary to check. Theorem 3.17 assembles the lemmas into an algorithm that is
guaranteed to find the maximum number of facets, and usually does so very quickly.

Some of the lemmas have proofs that are rather lengthy and unenlightening. As such,
the proofs are deferred until the next section.

If the number of vertices of each color is a meaningful restriction, then Lemma 3.2
usually solves the problem. The more difficult case is when the numbers of edges are the
only important restrictions.

The intuition behind the characterization is to start by ignoring discreteness. One
might guess that the complex that maximizes the number of facets is the complete
tripartite complex on c1 vertices of color 1, c2 vertices of color 2, and c3 vertices of
color 3, for suitable constants c1, c2, and c3. The relevant equations are f12(∆) = c1c2,

f13(∆) = c1c3, and f23(∆) = c2c3. We can solve for the constants to get c1 =
√

f12(∆)f13(∆)
f23(∆)

,

c2 =
√

f12(∆)f23(∆)
f13(∆)

, and c3 =
√

f13(∆)f23(∆)
f12(∆)

.

This would give a complex Γ with f123(Γ) = c1c2c3 =
√

f12(∆)f13(∆)f23(∆). This is
one of Walker’s [7] upper bounds. One might expect that when we impose the discreteness
of flag complexes, the complex that maximizes the number of facets still looks similar to
the answer in the non-discrete case. With this in mind, we make the following definition.

Definition 3.1 Let ∆ be a 3-colored simplicial complex with flag f -vector f(∆). Define

b1(∆) =

⌊√
f12(∆)f13(∆)

f23(∆)

⌋
,

b2(∆) =

⌊√
f12(∆)f23(∆)

f13(∆)

⌋
, and

b3(∆) =

⌊√
f13(∆)f23(∆)

f12(∆)

⌋
.

In subsequent lemmas, we sometimes have more than one complex constructed as Γ
was in Definition 2.1, except using different constants. To avoid confusion, we refer to the
constants associated to a particular complex as g1(Γ), p(Γ), and so forth.

The next lemma solves the problem in certain special cases.

Lemma 3.2 Let ∆ be a 3-colored simplicial complex and let Γ ∈ C(∆).

1. f123(Γ) = f1(∆)f23(∆) if and only if
⌊
f12(∆)
f1(∆)

⌋⌊
f13(∆)
f1(∆)

⌋
> f23(∆).
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2. f123(Γ) = f2(∆)f13(∆) if and only if
⌊
f12(∆)
f2(∆)

⌋⌊
f23(∆)
f2(∆)

⌋
> f13(∆).

3. f123(Γ) = f3(∆)f12(∆) if and only if
⌊
f13(∆)
f3(∆)

⌋⌊
f23(∆)
f3(∆)

⌋
> f12(∆).

Walker’s bounds in [7] include f123(Γ) 6 f1(∆)f23(∆), f123(Γ) 6 f2(∆)f13(∆), and
f123(Γ) 6 f3(∆)f12(∆).

If Lemma 3.2 gives m(∆) by asserting that f123(Γ) = f1(∆)f23(∆), then the facets
of Γ consist of all ways to choose a vertex of color 1 together with an edge of color 23.
Something analogous happens with the other parts of the lemma.

If Lemma 3.2 does not solve the problem, then this next lemma allows some far stronger
restrictions on the complexes that we must consider, as it means that the fourth condition
must hold.

Lemma 3.3 Let ∆ be a 3-colored simplicial complex. At least one of the following holds
for every Γ ∈ C(∆).

1. f123(Γ) = f1(∆)f23(∆);

2. f123(Γ) = f2(∆)f13(∆);

3. f123(Γ) = f3(∆)f12(∆); or

4. f12(Γ) = f12(∆), f13(Γ) = f13(∆), and f23(Γ) = f23(∆).

We define some notation to describe complexes that must satisfy the fourth condition
of Lemma 3.3.

Definition 3.4 Let ∆ be a 3-colored simplicial complex. Define

D(∆) = {Γ ∈ C(∆) | f123(Γ) < min{f1(∆)f23(∆), f2(∆)f13(∆), f3(∆)f12(∆)}}.

If Lemma 3.2 gives m(∆), then D(∆) = ∅. Otherwise, D(∆) = C(∆). Either way, we
now have A(∆) ⊇ B(∆) ⊇ C(∆) ⊇ D(∆).

Definition 3.5 Let ∆ be a 3-colored simplicial complex and let Γ ∈ A(∆). Define

j1(Γ) = f23(∆)− g2(Γ)g3(Γ)

j2(Γ) = f13(∆)− g1(Γ)g3(Γ)

j3(Γ) = f12(∆)− g1(Γ)g2(Γ).

The j′s are the number of edges left over of a given color set before adding the addi-
tional vertices for p(Γ) and q(Γ).

This next lemma solves an easy case, and is used mainly to avoid division by zero in
some later proofs.
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Lemma 3.6 If ∆ is a 3-colored simplicial complex such that b1(∆) = 0 and D(∆) 6= ∅,
then m(∆) = f12(∆)f13(∆).

If we know r and gr(Γ), this next proposition gives us an explicit construction that
maximizes the number of facets. This reduces the problem to finding r and gr(Γ), rather
than needing to know all of the parameters. This works for other choices of p and q as
well by relabeling the colors.

Proposition 3.7 Let ∆ be a 3-colored simplicial complex. Suppose that Γ ∈ D(∆),
p(Γ) = 1, and q(Γ) = 2. Define Γ1 by g3(Γ1) = g3(Γ),

g1(Γ1) =


⌊
f13(∆)
g3(Γ)

⌋
if f13(∆)

g3(Γ)
6∈ Z

f13(∆)
g3(Γ)

− 1 if f13(∆)
g3(Γ)

∈ Z and f13(∆)
g3(Γ)

⌈
f23(∆)
g3(Γ)

− 1
⌉
> f12(∆)

f13(∆)
g3(Γ)

if f13(∆)
g3(Γ)

∈ Z and f13(∆)
g3(Γ)

⌈
f23(∆)
g3(Γ)

− 1
⌉
6 f12(∆)

,

g2(Γ1) =


⌊
f23(∆)
g3(Γ)

⌋
if f23(∆)

g3(Γ)
6∈ Z

f23(∆)
g3(Γ)

− 1 if f23(∆)
g3(Γ)

∈ Z and f23(∆)
g3(Γ)

g1(Γ1) > f12(∆)
f23(∆)
g3(Γ)

if f23(∆)
g3(Γ)

∈ Z and f23(∆)
g3(Γ)

g1(Γ1) 6 f12(∆)

,

p(Γ1) =

{
1 if j2(Γ1) > j1(Γ1)
2 if j2(Γ1) < j1(Γ1)

, and

q(Γ1) = 3− p(Γ1).

Then Γ1 ∈ D(∆).

Proposition 3.7 gives the main way that we construct complexes in the more difficult
cases. Unlike Lemmas 3.2 and 3.6, this one doesn’t give an easy formula for the number
of facets. Rather, it is easier to give the constants used in Definition 2.1, construct the
complex, and then count the facets.

It is convenient to assume without loss of generality that f12(∆) 6 f13(∆) 6 f23(∆).
When constructing complexes as in Proposition 3.7, this typically allows g3(Γ) to vary
more than g1(Γ) or g2(Γ) and still give a complex that we would have to check. Thus, it
would be convenient to mostly avoid having to consider the case when r(Γ) = 3, as this
will greatly reduce the number of complexes that we need to check.

Definition 3.8 Define E(∆) by Γ ∈ E(∆) exactly if Γ ∈ D(∆) and gi(Γ) = bi(∆) for
some i ∈ [3].

It is immediate from this definition that E(∆) ⊆ D(∆). Thus, A(∆) ⊇ B(∆) ⊇
C(∆) ⊇ D(∆) ⊇ E(∆).

This next lemma means that either we know one value of gi(Γ) immediately, which
greatly restricts the rest of the complex, or else we can find a complex Γ ∈ E(∆) with
r(Γ) 6= 3.
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Lemma 3.9 Let ∆ be a 3-colored simplicial complex. Either D(∆) = E(∆) or else there
are two complexes Γ1,Γ2 ∈ E(∆) with r(Γ1) 6= r(Γ2).

In particular, Lemma 3.9 asserts that E(∆) 6= ∅ unless Lemma 3.3 settled the problem.
With Lemma 3.9, the basic idea is to find a complex Γ ∈ E(∆) by breaking the problem
into nine cases, defined by three choices for the value of i for which gi(Γ) = bi(∆) and
three choices for the value of r(Γ). Proposition 3.7 settles three of these nine cases, and
this next lemma settles three more.

Lemma 3.10 Let ∆ be a 3-colored simplicial complex and let Γ ∈ E(∆). If gi(Γ) =

bi(∆) > br(Γ)(∆) and r(Γ) 6= i, then
⌈
fir(Γ)(∆)

bi(∆)+1

⌉
6
⌊
fir(Γ)(∆)

bi(∆)

⌋
. Furthermore, either

gr(Γ)(Γ) =
⌈
fir(Γ)(∆)

bi(∆)+1

⌉
or else gr(Γ)(Γ) =

⌊
fir(Γ)(∆)

bi(∆)

⌋
.

Definition 3.11 Let ∆ be a 3-colored simplicial complex. Define F(∆) by Γ ∈ F(∆)
exactly if

1. Γ ∈ A(∆),

2. Γ has exactly as many edges as ∆,

3. D(∆) 6= ∅, and

4. gi(Γ) = bi(∆) for some i ∈ [3].

It follows from the definition that E(∆) ⊆ F(∆) ⊆ A(∆). However, F(∆) does not
have to be a subset or superset of the other sets of complexes that we have defined. In
particular, there can be complexes in F(∆) with relatively few facets.

This next lemma says that to check the cases where r(Γ) = 3, it suffices to check only
the complexes where g3(Γ) = f3(∆).

Lemma 3.12 Let ∆ be a 3-colored simplicial complex such that f12(∆) 6 f23(∆) and
f13(∆) 6 f23(∆). If Γ0 ∈ F(∆), r(Γ0) = 3, and f3(∆) > g3(Γ0), then at least one of the
following holds:

1. there is some Γ ∈ F(∆) with r(Γ) 6= 3 and f123(Γ) > f123(Γ0);

2. there is some Γ ∈ A(∆) with f123(Γ) > f123(Γ0); or

3. there is some Γ ∈ F(∆) with r(Γ) = 3, f123(Γ) > f123(Γ0), and g3(Γ) = f3(∆).

While we now have three lemmas that each handle three of the nine cases, the case
where g3(Γ) = b3(∆) and r(Γ) = 3 has been covered twice. The one remaining case is
when r(Γ) = 2 and g1(Γ) = b1(∆). This next lemma restricts the values of g2(Γ) for which
constructing Γ as in Proposition 3.7 will give a well-defined complex.
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Lemma 3.13 Let ∆ be a 3-colored simplicial complex with f12(∆) 6 f13(∆) 6 f23(∆).
Suppose further that D(∆) 6= ∅ and that there is a complex Γ ∈ F(∆) such that g1(Γ) =
b1(∆) and r(Γ) = 2. This guarantees that f1(∆) > b1(∆). Furthermore, if f1(∆) = b1(∆),

then g2(Γ) = f12(∆)
f1(∆)

. If f1(∆) > b1(∆), then

1. f13(∆) 6 f3(∆)(b1(∆) + 1),

2. g2(Γ) > f12(∆)
f1(∆)

,

3. g2(Γ) > f12(∆)
b1(∆)+1

,

4. g2(Γ) > f23(∆)

b f13(∆)
b1(∆)
c+1

,

5. g2(Γ) > f23(∆)
f3(∆)

,

6. g2(Γ) 6 f12(∆)
b1(∆)

,

7. g2(Γ) 6 f23(∆)

d f13(∆)
b1(∆)+1

e−1
, and

8. g2(Γ) 6 f2(∆).

It is possible to prove more in the above lemma, but it isn’t necessary for our purposes,
as we are mainly interested in restricting how many cases there are to check. More
precisely, if f1(∆) = b1(∆), then there is a complex Γ ∈ F(∆) such that g1(Γ) = b1(∆)

and r(Γ) = 2 if and only if g2(Γ) = f12(∆)
f1(∆)

, g2(Γ) 6 f2(∆), max
{

f23(∆)
z

, f13(∆)
f1(∆)

}
6 f3(∆),

and

max
{⌈f23(∆)

z

⌉
− 1,

⌈f13(∆)

f1(∆)

⌉
− 1
}
6 min

{⌊f23(∆)

z

⌋
,
⌊f13(∆)

f1(∆)

⌋}
.

In addition, if f1(∆) > b1(∆), then the converse of the above lemma holds as well. That
is, if z is an integer that satisfies all eight of the listed conditions for g2(Γ), then there is
a complex Γ ∈ F(∆) such that g1(Γ) = b1(∆), r(Γ) = 2, and g2(Γ) = z.

There could still be many different values of g2(Γ) that give a well-defined complex.
Next, we want to get an upper bound on f123(Γ) as a function of g2(Γ).

Definition 3.14 Let ∆ be a 3-colored simplicial complex. Define

v(∆, t) = b1(∆)f23(∆) + (f12(∆)− b1(∆)t)
(
f13(∆)− b1(∆)f23(∆)

t

)
and

s(∆) =

√
f12(∆)f23(∆)

f13(∆)
.

Note that it is immediate from the definition that b2(∆) = bs(∆)c.
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Lemma 3.15 Let ∆ be a 3-colored simplicial complex and let Γ ∈ F(∆) with g1(Γ) =
b1(∆). If r(Γ) = 2, then f123(Γ) 6 v(∆, g2(Γ)).

Any complex that we can construct gives us a lower bound on m(∆). It suffices to
consider the values of g2(Γ) for which the upper bound of Lemma 3.15 is greater than the
number of facets in any other complex that we have already constructed.

The bound of Lemma 3.15 depends only on g2(Γ) and the flag f -vector of ∆. If we
multiply out the bound, the coefficients on the g2(Γ) and 1

g2(Γ)
terms are both negative.

Thus, for sufficiently large or small g2(Γ), the bound is small. This restricts the values of
g2(Γ) that we must check to an interval, and often a much smaller interval than that of
Lemma 3.13. This next lemma says that there usually are not very many possible values
of g2(Γ) in that interval.

Lemma 3.16 Let ∆ be a 3-colored simplicial complex with f12(∆) 6 f13(∆) 6 f23(∆)
and b1(∆) > 1. Suppose that there is some Γ0 ∈ D(∆) with g1(Γ0) = b1(∆) and r(Γ0) = 2.

Then we can find some Γ ∈ D(∆) by checking fewer than 6 + 2
√

2

√
f12(∆)f23(∆)

f13(∆)
potential

values of g2(Γ) and applying Proposition 3.7 to each potential value of g2(Γ) and r(Γ) = 2.

Finally, we reach the main theorem. This basically summarizes the lemmas of this
section, and gives a method guaranteed to produce a complex with the maximal number
of facets subject to the restrictions on the number of vertices and edges of various color
sets.

Theorem 3.17 Given positive integers f1(∆), f2(∆), f3(∆), f12(∆), f13(∆), and f23(∆),
the following procedure will suffice to compute m(∆).

1. Check whether the inequalities f1(∆)f2(∆) > f12(∆), f1(∆)f3(∆) > f13(∆), and
f2(∆)f3(∆) > f23(∆) all hold. If not, then there is no ∆ with the desired flag
f -numbers, so stop.

2. Check the inequalities of Lemma 3.2. If any of them hold, then the lemma gives
m(∆), so stop.

3. Relabel the colors if necessary to ensure that f12(∆) 6 f13(∆) 6 f23(∆).

4. Compute b1(∆), b2(∆), and b3(∆). If b1(∆) = 0, then Lemma 3.6 gives m(∆), so
stop.

5. Attempt to construct complexes such that gr(Γ)(Γ) = br(Γ)(∆) for each of r(Γ) = 1
and r(Γ) = 2 as described in Proposition 3.7. Compute f123(Γ) for each such complex
that is well-defined.

6. Attempt to construct complexes such that g3(Γ) = b3(∆) and r(Γ) = 2 as explained
in Lemma 3.10. Compute f123(Γ) for each such complex that is well-defined.

7. Repeat the previous step using r(Γ) = 1.
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8. Repeat the previous step using g2(Γ) = b2(∆) (and r(Γ) = 1).

9. Attempt to construct a complex Γ with r(Γ) = 3 and g3(Γ) = f3(∆) as explained in
Proposition 3.7. Compute f123(Γ) if the complex is well-defined.

10. Use Lemma 3.13 to compute the maximum and minimum possible values of g2(Γ) if
g1(Γ) = b1(∆) and r(Γ) 6= 1.

11. If it is possible to have g2(Γ) = b2(∆), then construct such a complex as explained in
Lemma 3.16. Decrease g2(Γ) by 1 and construct the complexes again repeatedly until
either it is not possible to construct complexes or Lemma 3.15 says that decreasing
g2(Γ) further will necessarily give no more facets than an already known complex.
Likewise, try g2(Γ) = b2(∆) + 1 and increase g2(Γ) by 1 and construct complexes
repeatedly until they are not defined or the lemma says that increasing g2(Γ) further
will necessarily give no more facets than an already known complex.

12. If Lemma 3.13 gives a lower bound on g2(Γ) that is greater than b2(∆), then try set-
ting g2(Γ) to this lower bound and construct a complex as explained in Lemma 3.16.
Increase g2(Γ) by 1 and construct complexes again repeatedly until we stop as in the
previous step.

13. If Lemma 3.13 gives a upper bound on g2(Γ) that is less than b2(∆), then try setting
g2(Γ) to this upper bound and construct a complex as explained in Lemma 3.16.
Decrease g2(Γ) by 1 and construct complexes again repeatedly until we stop as in the
previous step.

14. Compare the values of f123(Γ) for the various complexes constructed. The largest
such value is m(∆).

Furthermore, this process requires computing the number of facets of fewer than 15 +

2
√

2

√
f12(∆)f23(∆)

f13(∆)
complexes.

Proof: If the inequalities in point (1) hold, then we can easily construct ∆ by picking
arbitrary subsets of the appropriate sizes of the possible edges of each color set. In this
case, it is clear from the definitions that C(∆) 6= ∅. By Lemma 3.3, either D(∆) 6= ∅ or
else Lemma 3.2 completes the problem in step (2). In the former case, Lemma 3.9 gives
that E(∆) 6= ∅.

There are three ways to pick a value of i such that gi(Γ) = bi(∆) and three ways to
pick a value of r(Γ), for nine possibilities in all. Part five handles two of these nine cases,
and parts six through eight each handle one. If b1(∆) = 0, then Lemma 3.6 solves the
problem. Otherwise, parts (10) through (13) handle a sixth case.

If D(∆) = E(∆), then Lemma 3.12 says that either step (9) finds a complex in E(∆)
or else one of the other six cases has such a complex. If E(∆) is a proper subset of D(∆),
then Lemma 3.9 ensures that one of the other six cases produces a complex in E(∆).
Therefore, we are guaranteed to find a complex in E(∆) by this procedure if there is one.
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The following table summarizes the nine cases and says which lemmas give the upper
bounds on how many complexes it could be necessary to construct for that particular
case.

g1(Γ) = b1(∆) r(Γ) = 1 Proposition 3.7 1

g1(Γ) = b1(∆) r(Γ) = 2 Lemma 3.16 < 6 + 2
√

2

√
f12(∆)f23(∆)

f13(∆)

g2(Γ) = b2(∆) r(Γ) = 1 Lemma 3.10 2
g2(Γ) = b2(∆) r(Γ) = 2 Proposition 3.7 1
g3(Γ) = b3(∆) r(Γ) = 1 Lemma 3.10 2
g3(Γ) = b3(∆) r(Γ) = 2 Lemma 3.10 2

r(Γ) = 3 Lemma 3.12 1

Add up all of the cases to get fewer than 15 + 2
√

2

√
f12(∆)f23(∆)

f13(∆)
complexes to check in

total. �

The bound on how many complexes we have to check is a worst-case scenario, and the
number we must actually construct by this procedure can be much smaller than the given
bound. We give some examples of this in Section 5. Even so, this bound is good enough
to guarantee that a computer program to determine whether or not there is a 3-colored
complex with a specified flag f -vector can give an answer almost instantly unless the
number of edges is very large. In contrast, a naive brute force search of trying all possible
ways to arrange the vertices and edges is completely impractical for merely hundreds of
edges.

It is also worthwhile to note that the quantity

√
f12(∆)f23(∆)

f13(∆)
is rarely large. For a large

integer k, if one picks f12(∆), f13(∆), and f23(∆) uniformly at random from [k] and then
sorts them to make f12(∆) 6 f13(∆) 6 f23(∆), an easy triple integral approximation finds

that the expected value of

√
f12(∆)f23(∆)

f13(∆)
is essentially 8

9
. Therefore, the expected number

of complexes that one must check by the method of Theorem 3.17 is less than 18.

We can actually do better than that. If we use the line
√

24 + 8f12(∆)f23(∆)
f13(∆)2 from the

proof of Lemma 3.16, this has an average value of 4
√

2 < 6. If we use this rather than 9
as the approximation for the average upper bound on the number of complexes to check
in steps (10) through (13), then on average, we have to check fewer than 15 complexes.

Furthermore, even in the most pathological cases, the number of edges must be very
large to make the use of Theorem 3.17 impractical. The algorithm is simple to apply if
b1(∆) = 0, as we stop at step (4). Otherwise, we must have b1(∆) > 1, which means that
f12(∆)f13(∆) > f23(∆). Because we have sorted to get f23(∆) > f13(∆) > f12(∆), we get
f13(∆)2 > f12(∆)f13(∆) > f23(∆), from which√

f12(∆)f23(∆)

f13(∆)
6

√
f13(∆)f23(∆)

f13(∆)
=

√
f23(∆)

f13(∆)
6

√
f23(∆)√
f23(∆)

= 4
√

f23(∆).

As f23(∆) is at least one third of the total number of edges, this means that at worst, the
number of complexes to check is on the order of the fourth root of the number of edges.
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4 Explicit constructions

Theorem 1.1 says that four problems are equivalent. If there is no three-colorable complex
of the relevant class corresponding to the proposed flag f -vector or flag h-vector, then
Theorem 3.17 will tell us this. If such a complex does exist, then this section explains
how to find an explicit complex.

If we have a proposed flag f -vector f(∆), then Theorem 3.17 usually explains how to
construct a 3-colored complex Γ with f123(Γ) > f123(∆) and fS(Γ) 6 fS(∆) for all proper
subsets S ⊂ [3]. The exceptions are if step (2) or (4) gives m(∆).

If step (2) solves the problem, then suppose that condition (1) of Lemma 3.2 is the

one that gives m(∆). We define a complex Γ by g1(Γ) = f1(∆), g2(Γ) =
⌊
f12(∆)
f1(∆)

⌋
,

g3(Γ) =
⌊
f23(∆)
f2(∆)

⌋
, p(Γ) = 3, and q(Γ) = 2. That this complex is well-defined and has the

desired flag f -numbers is shown in the proof of Lemma 3.2. If a different condition of the
lemma gives m(∆), we can permute the colors of this construction to get the corresponding
Γ.

If step (4) solves the problem, then define Γ by g1(Γ) = 1, g2(Γ) = f12(∆), g3(Γ) =
f13(∆). The colors of the extra vertices do not matter, as they cannot add any additional
facets. The proof of Lemma 3.6 shows that this complex is well-defined and has the
desired flag f -numbers.

In order to construct Σ with f(Σ) = f(∆), we start with Γ and then delete some
facets and add some vertices and edges arbitrarily, in order to have exactly the right flag
f -vector. This is easy to do, and gives us an explicit construction for statement (1) of
Theorem 1.1.

Next, we observe that a complex obtained from Definition 2.1 is color-shifted by def-
inition. Since all constructions in Theorem 3.17 come from this construction, Γ is color-
shifted. If we want Σ to be color-shifted, then rather than deleting facets and adding
edges arbitrarily, we must choose them in a manner to make Σ color-shifted. This is easy
to do. Such a Σ is an explicit construction for statement (4) of Theorem 1.1.

In order to construct a shellable complex with a desired flag h-vector, we start by
constructing a complex Σ with the desired flag f -vector. We then construct Θ from Σ
by adding one vertex of each color. A set of vertices in Θ forms a face in Θ exactly if
they are of distinct colors and the restriction of the set to the vertices in Σ forms a face
in Σ. Björner, Frankl, and Stanley [1, Section 5] showed that h(Θ) = f(Σ) and that Θ
is shellable. They proved this in a more general context, but this is their construction in
the case dealt with in this paper. This gives an explicit construction for statement (3) of
Theorem 1.1.

Recall that all shellable complexes are Cohen-Macaulay. Therefore, the construction
that works for statement (3) of the theorem also works for statement (2).
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5 Some proofs

In this section, we prove the lemmas that we stated without proof in the previous section.
We also add some additional lemmas that are useful to prove the lemmas that were stated
in Section 3.

Proof of Lemma 3.3: Let Γ ∈ C(∆).
Case I: All three of the equalities in condition (4) of the lemma fail.
This means we can add an extra edge of each color set and still have fS(Γ) 6 fS(∆)

for all S ⊂ [3].
Case I A: Some pair of vertices of distinct colors is not adjacent.
We can add an edge to connect this pair of vertices, and make both vertices adjacent

to some vertex of the third color by adding an edge if necessary. This adds another facet,
so by Proposition 2.4, Γ 6∈ B(∆) ⊇ C(∆), a contradiction.

Case I B: Every pair of vertices of distinct colors is adjacent.
Because f1(∆)f2(∆) > f12(∆) > f12(Γ) = f1(Γ)f2(Γ), either f1(∆) > f1(Γ) or f2(∆) >

f2(Γ). Assume without loss of generality that f1(∆) > f1(Γ). Add another vertex of color
1 and make it adjacent to a vertex of each other color to add a facet. Hence, Proposition 2.4
gives Γ 6∈ B(∆) ⊇ C(∆), a contradiction.

Case II: Exactly two of the equalities in condition (4) of the lemma fail.
Assume without loss of generality that f12(Γ) < f12(∆) and f13(Γ) < f13(∆).
Case II A: f1(Γ) < f1(∆)
We can construct a new complex Γ1 from Γ by adding another vertex of color 1 to Γ

and making it adjacent to at least one vertex of each of the other colors. This increases the
number of facets, so f123(Γ1) > f123(Γ). By Proposition 2.4, m(∆) > f123(Γ1) > f123(Γ),
so Γ 6∈ B(∆) ⊇ C(∆), a contradiction.

Case II B: f1(Γ) = f1(∆)
An edge of color 23 can be contained in at most f1(∆) facets of Γ, as a facet is uniquely

determined by the choice of an edge of color 23 and a vertex of color 1.
Case II B 1: Every edge of color 23 is contained in exactly f1(∆) facets.
That only two of the equalities of condition (4) fail means that f23(Γ) = f23(∆). Since

f123(Γ) = f1(∆)f23(∆), option (1) in the lemma holds.
Case II B 2: There is some edge of color 23 contained in fewer than f1(∆) facets of

Γ.
Let the edge in question be {v2

i , v
3
j}. Since Γ is color-shifted, these two vertices together

with v1
f1(∆) do not form a facet of Γ. Add edges as necessary to make v2

i and v3
j adjacent

to v1
f1(∆). This adds an extra facet, and we had a spare edge available of both of the

relevant color sets. Thus, by Proposition 2.4, Γ 6∈ B(∆) ⊇ C(∆), a contradiction.
Case III: Exactly one of the equalities in condition (4) of the lemma fails.
Assume without loss of generality that f12(Γ) < f12(∆).
Case III A: q(Γ) = 3
Assume without loss of generality that p(Γ) = 1.
Case III A 1: g1(Γ) = f1(∆)
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This means that applying the p(Γ) = 1 step doesn’t add any faces, as a vertex can’t
be added. Since f1(∆)f2(∆) > f12(∆) > f12(Γ) = f1(Γ)f2(Γ), we have f2(Γ) < f2(∆).
Define Γ1 by gi(Γ1) = gi(Γ) for all i ∈ [3], p(Γ1) = 3, and q(Γ1) = 2. After adding the first
extra vertex, we have Γ exactly. The second extra vertex uses at least one additional edge
of color 12, so f12(Γ) + f13(Γ) + f23(Γ) < f12(Γ1) + f13(Γ1) + f23(Γ1) 6 n(∆). Therefore,
Γ 6∈ C(∆), a contradiction.

Case III A 2: g1(Γ) < f1(∆)
Case III A 2 a: f13(Γ) > (g1(Γ) + 1)g3(Γ)
The extra vertex of color 1 is adjacent to all g2(Γ) vertices of color 2 (since we must

have leftover edges of color 12) and at least g3(Γ) vertices of color 3, as the construction
requires making v1

g1(Γ)+1 adjacent to as many other vertices as the restrictions on edges
allow.

Case III A 2 a i: g1(Γ) + 1 < f1(∆)
We can create a new complex Γ1 as in the construction of Lemma 2.8 using g1(Γ1) =

g1(Γ)+1, g2(Γ1) = g2(Γ), g3(Γ1) = g3(Γ), p(Γ1) = 3, and q(Γ1) = 1. After adding the first
extra vertex, we have the complex Γ exactly. Adding the second extra vertex uses at least
one additional edge of color 12, while f123(Γ1) = f123(Γ). Thus, f12(Γ)+f13(Γ)+f23(Γ) <
f12(Γ1) + f13(Γ1) + f23(Γ1) 6 n(∆), so Γ 6∈ C(∆), a contradiction.

Case III A 2 a ii: g1(Γ) + 1 = f1(∆)
We can create a new complex Γ1 as in the construction of Lemma 2.8 using g1(Γ1) =

g1(Γ) + 1, g2(Γ1) = g2(Γ), g3(Γ1) = g3(Γ), p(Γ1) = 3, and q(Γ1) = 2. After adding the
first extra vertex, we have the complex Γ exactly. Since f1(∆)f2(∆) > f12(∆) > f12(Γ) =
f1(Γ)f2(Γ) and f1(Γ) = g1(Γ) + 1 = f1(∆), we have f2(Γ) < f2(∆). Adding the second
extra vertex uses at least one additional edge of color 12, while f123(Γ1) = f123(Γ). Thus,
f12(Γ)+f13(Γ)+f23(Γ) < f12(Γ1)+f13(Γ1)+f23(Γ1) 6 n(∆), so Γ 6∈ C(∆), a contradiction.

Case III A 2 b: f13(Γ) < (g1(Γ) + 1)g3(Γ)
Adding the vertex v1

g1(Γ)+1 because p(Γ) = 1 uses up all of the remaining edges of color

13. Hence, v3
g3(Γ)+1, which is added because q(Γ) = 3, cannot be adjacent to any vertices

of color 1, and therefore is not in any facets.
Case III A 2 b i: f2(∆) = g2(Γ)
All edges of color 13 are of the form {v1

i , v
3
j} with i 6 g1(Γ) + 1 and j 6 g3(Γ). Every

vertex of color 2 is adjacent to all of the vertices in {v1
1, . . . , v

1
g1(Γ)+1, v

3
1, . . . , v

3
g3(Γ)}. Thus,

every choice of an edge of color 13 and a vertex of color 2 forms a facet. Therefore,
f123(Γ) = f2(Γ)f13(Γ) = f2(∆)f13(∆), which is option (2) in the lemma.

Case III A 2 b ii: f2(∆) > g2(Γ)
Define a complex Γ1 by gi(Γ1) = gi(Γ) for all i ∈ [3], p(Γ1) = 1, and q(Γ1) = 2.
Case III A 2 b ii (1): f23(∆) > g2(Γ)g3(Γ)
The difference in facets between Γ and Γ1 is the number added by the second extra

vertex. This vertex is not contained in any facets of Γ. The new vertex v2
g2(Γ)+1 is adjacent

in Γ1 to vertices of both color 1 and color 3, and is thus contained in at least one facet.
Therefore, by Proposition 2.4, Γ 6∈ B(∆) ⊇ C(∆).

Case III A 2 b ii (2): f23(∆) = g2(Γ)g3(Γ)
All edges of color 23 were in Γ before adding either extra vertex. All edges of color 13
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were in Γ after adding the first extra vertex (for p(Γ) = 1) and before adding the second.
As such, adding the extra vertex of color 3 in Γ does not use any more edges, nor does it add
any facets. The second extra vertex of Γ1 does at least use some additional edges of color
12. As such, f123(Γ) = f123(Γ1) and f12(Γ)+f13(Γ)+f23(Γ) < f12(Γ1)+f13(Γ1)+f23(Γ1) 6
n(∆), so Γ 6∈ C(∆).

Case III B: p(Γ) = 3
Assume without loss of generality that q(Γ) = 1.
Case III B 1: g1(Γ) = f1(∆)
Making the second extra vertex of color 2 rather than color 1 increases the number of

edges used by the same argument as in Case III A 1, so Γ 6∈ C(∆).
Case III B 2: g1(Γ) < f1(∆)
Define Γ1 by gi(Γ1) = gi(Γ) for all i ∈ [3], p(Γ1) = 1, and q(Γ1) = 3. The only edges

that can differ between Γ and Γ1 are that Γ has some extra edges containing v3
g3(Γ)+1

but not v1
g1(Γ)+1, while Γ1 has the same number of extra edges containing v1

g1(Γ)+1 but

not v3
g3(Γ)+1. The only vertex that may not be adjacent to all g2(Γ) vertices of color 2 is

v3
g3(Γ)+1. Thus, any edge in Γ1 but not Γ is in at least as many facets as each edge in Γ

but not Γ1. Therefore, f123(Γ1) > f123(Γ). Since the rest of their flag f -vectors are the
same, if Γ ∈ C(∆), then Γ1 ∈ C(∆). We now apply Case III A to Γ1.

Case III C: r(Γ) = 3
Because f12(∆) > f12(Γ), all vertices of color 1 are adjacent to all vertices of color 2,

including the extra vertex of each color. Thus, Γ is exactly the same complex regardless
of whether p(Γ) = 1 and q(Γ) = 2 or vice versa.

Note that using all edges of colors 13 and 23 means that f13(Γ) 6 (g1(Γ) + 1)g3(Γ)
and f23(Γ) 6 (g2(Γ) + 1)g3(Γ).

Case III C 1: f1(∆) = g1(Γ) or f2(∆) = g2(Γ)
Assume without loss of generality that f1(∆) = g1(Γ). Since f13(∆) = f13(Γ) >

g1(Γ)g3(Γ) and there are leftover edges of color 12, every vertex of color 1 is adjacent to
every vertex of color 2 or 3. Therefore, f123(Γ) = f1(Γ)f23(Γ) = f1(∆)f23(∆), which is
option (1) of the lemma.

Case III C 2: f1(∆) > g1(Γ) and f2(∆) > g2(Γ)
Case III C 2 a: f13(Γ) = (g1(Γ) + 1)g3(Γ) or f23(Γ) = (g2(Γ) + 1)g3(Γ)
Assume without loss of generality that f13(Γ) = (g1(Γ) + 1)g3(Γ). As noted above, we

can assume that p(Γ) = 1.
Case III C 2 a i: f1(Γ) = f1(∆)
Every vertex of color 1 is adjacent to every vertex of color 2 or 3, so it forms a facet

together with every edge of color 23. Therefore, f123(Γ) = f1(Γ)f23(Γ) = f1(∆)f23(∆),
which is option (1) of the lemma.

Case III C 2 a ii: f1(Γ) < f1(∆)
Define Γ1 by g1(Γ1) = g1(Γ) + 1, g2(Γ1) = g2(Γ), g3(Γ1) = g3(Γ), p(Γ1) = 2, and

q(Γ1) = 1. In this case, Γ1 is obtained from Γ by adding an extra vertex of color 1 and
some edges of color 12. Thus, Γ1 has all of the facets of Γ and more edges, so Γ 6∈ C(∆).

Case III C 2 b: f13(Γ) < (g1(Γ) + 1)g3(Γ), f23(Γ) < (g2(Γ) + 1)g3(Γ), and either
f13(Γ) > (g1(Γ) + 1)(g3(Γ)− 1) or f23(Γ) > (g2(Γ) + 1)(g3(Γ)− 1)
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Assume without loss of generality that f13(Γ) > (g1(Γ) + 1)(g3(Γ)− 1). Again, we can
assume that p(Γ) = 1. Define Γ1 by g1(Γ1) = g1(Γ)+1, g2(Γ1) = g2(Γ), g3(Γ1) = g3(Γ)−1,
p(Γ1) = 3, and q(Γ1) = 2. It is easy to check that Γ1 has exactly the same edges of colors
12 and 23 as Γ. The only possible difference in edges is that Γ1 may have some extra
edges containing v1

g1(Γ)+1 but not v3
g3(Γ), while Γ may have some extra edges containing

v3
g3(Γ) but not v1

g1(Γ)+1. An edge of the former type is contained in at least g2(Γ) facets, as

the first g2(Γ) vertices of color 2 are adjacent to all vertices of other colors. An edge of
the latter type is contained in at most g2(Γ) facets because v3

g3(Γ) is adjacent to only g2(Γ)

vertices of color 2, as f23(Γ) < (g2(Γ) + 1)g3(Γ). Therefore f123(Γ1) > f123(Γ). Since Γ1

has the same number of edges as Γ, we get Γ1 ∈ C(∆). We now apply Case III B to Γ1.
Case III C 2 c: f13(Γ) < (g1(Γ) + 1)(g3(Γ)− 1) and f23(Γ) < (g2(Γ) + 1)(g3(Γ)− 1)
Define Γ1 by g1(Γ1) = g1(Γ), g2(Γ1) = g2(Γ), g3(Γ1) = g3(Γ) − 1, p(Γ1) = 1, and

q(Γ1) = 2. The facets of Γ not in Γ1 are those containing v3
g3(Γ). There are g1(Γ)g2(Γ)

such facets. The facets of Γ1 not in Γ are those containing the edges of Γ1 but not Γ.
Both of the vertices of each such edge of color 13 are adjacent to at least the first g2(Γ)
vertices of color 2. Each of the g1(Γ) such edges adds at least g2(Γ) facets. Likewise, the
vertices of a new edge of color 23 are adjacent to at least the first g1(Γ) vertices of color
1, so the edge is contained in at least g1(Γ) facets. Thus, Γ1 contains at least 2g1(Γ)g2(Γ)
facets that Γ2 does not. Therefore, f123(Γ1) > f123(Γ), so Γ 6∈ B(∆) ⊇ C(∆).

Case IV: All of the equalities of condition (4) of the lemma hold.
This makes condition (4) of the lemma true. �

Proof of Lemma 3.2: It suffices to prove one of the statements, as the others follow by

relabeling the colors. Suppose first that
⌊
f12(∆)
f1(∆)

⌋⌊
f13(∆)
f1(∆)

⌋
> f23(∆). Let Γ1 be defined by

g1(Γ1) = f1(∆), g2(Γ1) =
⌊
f12(∆)
f1(∆)

⌋
, g3(Γ1) =

⌊
f23(∆)
g2(Γ1)

⌋
, p(Γ1) = 3, and q(Γ1) = 2. It follows

that g3(Γ1) > f23(∆)
g2(Γ1)

− 1, from which (g3(Γ1) + 1)g2(Γ1) > f23(∆). Thus, all edges of color

23 have their vertices in the set {v2
1, . . . , v

2
g2(Γ1), v

3
1, . . . , v

3
g3(Γ1)+1}.

Since
⌊
f12(∆)
f1(∆)

⌋⌊
f13(∆)
f1(∆)

⌋
> f23(∆), we get g2(Γ1)

⌊
f13(∆)
f1(∆)

⌋
> f23(∆), and so

⌊
f13(∆)
f1(∆)

⌋
>

f23(∆)
g2(Γ1)

. If the right side is not an integer, then
⌊
f13(∆)
f1(∆)

⌋
>
⌊
f23(∆)
g2(Γ1)

⌋
+ 1 = g3(Γ1) + 1, so all

vertices contained in edges of color 23 are adjacent to all vertices of color 1. If f23(∆)
g2(Γ1)

is

an integer, then v3
g3(Γ1)+1 is not contained in any edges of color 23, and again, all vertices

contained in edges of color 23 are adjacent to all vertices of color 1. Either way, every edge
of color 23 forms a facet together with each vertex of color 1, so f123(Γ1) = f1(Γ1)f23(Γ1) =
f1(∆)f23(∆). By Proposition 2.4, for any Γ ∈ C(∆), f123(Γ) > f123(Γ1) = f1(∆)f23(∆).
Since we also have f123(Γ) 6 f1(Γ)f23(Γ) 6 f1(∆)f23(∆), the result follows.

Conversely, suppose that f123(Γ) = f1(∆)f23(∆). We must have f23(Γ) = f23(∆),
and every edge of Γ of color 23 must form a facet with each of the f1(∆) vertices of
color 1. Thus, every vertex of an edge of color 23 must be adjacent to every vertex of
color 1. If there are d2 such vertices of color 2 and d3 such vertices of color 3, then the
number of required edges is f1(∆)d2 of color 12 and f1(∆)d3 of color 13. Since we are only
allowed so many edges of each color set, we have f1(∆)d2 6 f12(∆) and f1(∆)d3 6 f13(∆).
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These yield d2 6
f12(∆)
f1(∆)

and d3 6
f12(∆)
f1(∆)

, respectively. Since d2 and d3 must be integers, the

inequality still holds if we take the integer parts of the right sides. This yields d2 6
⌊
f12(∆)
f1(∆)

⌋
and d3 6

⌊
f12(∆)
f1(∆)

⌋
, respectively. The number of edges of color 23 on d2 vertices of color 2

and d3 vertices of color 3 is at most d2d3, so we have f23(∆) 6 d2d3 6
⌊
f12(∆)
f1(∆)

⌋⌊
f12(∆)
f1(∆)

⌋
,

as desired. �

This next lemma tells us when swapping p(Γ) with q(Γ) is beneficial. Intuitively, this
means switching the order in which the two extra vertices are added.

Lemma 5.1 Let ∆ be a 3-colored simplicial complex and let Γ ∈ A(∆) with jp(Γ)(Γ) >
jq(Γ)(Γ). Define Γ1 by gi(Γ1) = gi(Γ) for all i ∈ [3], p(Γ1) = q(Γ), and q(Γ1) = p(Γ).
Then Γ1 ∈ A(∆) and f123(Γ1) > f123(Γ). Furthermore, if Γ ∈ D(∆), then Γ1 ∈ D(∆).

Proof: All of the edges that g1(Γ1), g2(Γ1), and g3(Γ1) require Γ1 to have are in Γ, so ∆
has enough edges available for Γ1 to be well-defined. That Γ1 ∈ A(∆) is immediate from
the construction. If f123(Γ1) > f123(Γ), then f123(Γ1) > f123(Γ) = m(∆), so Γ1 ∈ B(∆).
Because Γ1 has the same number of vertices of each color as Γ, it uses just as many edges
of each color set as Γ. If Γ ∈ D(∆), then Γ ∈ C(∆), so we have Γ1 ∈ C(∆). If Γ ∈ D(∆),
then D(∆) 6= ∅, and so D(∆) = C(∆). Thus, Γ1 ∈ D(∆). Therefore, it suffices to show
that f123(Γ1) > f123(Γ).

It is immediate from the construction that both complexes have exactly the same
edges of color sets {p(Γ), r(Γ)} and {q(Γ), r(Γ)}. All that can differ is the edges of color
set {p(Γ), q(Γ)}. Among these, all that can differ is that Γ may have some extra edges

containing v
p(Γ)
gp(Γ)+1 but not v

q(Γ)
gq(Γ)+1 while Γ1 may have some extra edges containing v

q(Γ)
gq(Γ)+1

but not v
p(Γ)
gp(Γ)+1. Any vertex of color p(Γ) or q(Γ) other than the two extra vertices is

adjacent to exactly gr(Γ)(Γ) vertices of color r(Γ) in both Γ and Γ1. The vertex v
p(Γ)
gp(Γ)+1

is adjacent to jq(Γ)(Γ) 6 gr(Γ)(Γ) vertices of color r(Γ). The vertex v
q(Γ)
gq(Γ)+1 is adjacent to

jp(Γ)(Γ) 6 gr(Γ)(Γ) vertices of color r(Γ). Hence, an extra edge of Γ is contained in jq(Γ)(Γ)
facets, while an extra edge of Γ1 is contained in jp(Γ)(Γ) facets. Since jp(Γ)(Γ) > jq(Γ)(Γ),
we have f123(Γ1) > f123(Γ). �

Proof of Proposition 3.7: We have that g3(Γ1) = g3(Γ). If g1(Γ1) = g1(Γ) and g2(Γ1) =
g2(Γ), then Lemma 5.1 promises that Γ1 ∈ D(∆). Thus, for the lemma to be false, we
must have either g1(Γ1) 6= g1(Γ) or g2(Γ1) 6= g2(Γ).

Since Γ does not have an extra vertex of color 3, we must have f1(Γ) > f13(Γ)
f3(Γ)

= f13(∆)
g3(Γ)

and f2(Γ) > f23(Γ)
f3(Γ)

= f23(∆)
g3(Γ)

. One can check the various cases in the definition to easily

see that g1(Γ1) 6 f1(Γ) 6 f1(∆) and g2(Γ1) 6 f2(Γ) 6 f2(∆). We also have that
g3(Γ1) = g3(Γ) 6 f3(∆), so there are enough vertices for Γ1 to be well-defined.

Because Γ uses at least f13(∆)
g3(Γ)

− 1 vertices of color 1 and at least f23(∆)
g3(Γ)

− 1 vertices
of color 2 before adding extra vertices, there are enough edges of color 12 to do this.
From the definition, Γ1 does not require more vertices than this of either color unless
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there are enough edges. Thus, Γ1 is well-defined. It is immediate from the definition that
Γ1 ∈ A(∆).

As the only extra vertex of color 13 that can contain edges is of color 1, we have
j2(Γ) 6 g3(Γ). Since Γ ∈ D(∆), it must use all edges of this color set, so we have
g3(Γ)g1(Γ) 6 f13(Γ) 6 g3(Γ)g1(Γ) + g3(Γ) = g3(Γ)(g1(Γ) + 1). Divide by g3(Γ) and we

have g1(Γ) 6 f13(∆)
g3(Γ)

6 g1(Γ) + 1. This can be rearranged as f13(∆)
g3(Γ)

− 1 6 g1(Γ) 6 f13(∆)
g3(Γ)

.

If f13(∆)
g3(Γ)

6∈ Z, then this forces g1(Γ) =
⌊
f13(∆)
g3(Γ)

⌋
= g1(Γ1). Similarly, if f23(∆)

g3(Γ)
6∈ Z, we get

g2(Γ) = g2(Γ1).

Case I: f13(∆)
g3(Γ)

6∈ Z
As seen above, we have g1(Γ) = g1(Γ1).

Case I A: f23(∆)
g3(Γ)

6∈ Z
This case has g1(Γ1) = g1(Γ) and g2(Γ1) = g2(Γ).

Case I B: f23(∆)
g3(Γ)

∈ Z
That Γ is well-defined and uses all edges of color 13 corresponds to the inequalities

g3(Γ)g2(Γ) 6 f23(Γ) 6 g3(Γ)(g2(Γ) + 1), which force either g2(Γ) = f23(∆)
g3(Γ)

or g2(Γ) =
f23(∆)
g3(Γ)

− 1.

Case I B 1: f12(∆) < f23(∆)
g3(Γ)

g1(Γ1)

There are not enough edges of color 12 to have g2(Γ) = f23(∆)
g3(Γ)

or g2(Γ1) = f23(∆)
g3(Γ)

. This

means that g2(Γ) = f23(∆)
g3(Γ)

− 1 = g2(Γ1), and we are done.

Case I B 2: f12(∆) > f23(∆)
g3(Γ)

g1(Γ1)

The definition of Γ1 gives g2(Γ1) = f23(∆)
g3(Γ)

. If we also have g2(Γ) = f23(∆)
g3(Γ)

, then we are

done. Otherwise, g2(Γ) = f23(∆)
g3(Γ)

− 1. If this happens, we can compute j1(Γ) = g3(Γ) >

j2(Γ) = j2(Γ1) > 0 = j1(Γ1) (with the strict inequalities because f13(∆)
g3(Γ)

6∈ Z). This means

that p(Γ1) = 1. From this, Lemma 5.1 asserts that if we define Γ2 and by gi(Γ2) = gi(Γ)
for all i ∈ [3], p(Γ2) = 2, and q(Γ2) = 1, then f123(Γ2) > f123(Γ) and Γ2 ∈ D(∆).

Note that Γ1 is merely Γ2 with possibly an extra isolated vertex added. Thus,
f123(Γ1) > f123(Γ2), so Γ1 ∈ B(∆). Furthermore, since Γ2 uses all available edges, so
does Γ1, and so Γ1 ∈ C(∆). Since Γ2 ∈ D(∆), we get D(∆) = C(∆), and so Γ1 ∈ D(∆).

Case II: f13(∆)
g3(Γ)

∈ Z
That Γ is well-defined and uses all edges of color 13 corresponds to the inequalities

g3(Γ)g1(Γ) 6 f13(Γ) 6 g3(Γ)(g1(Γ) + 1), which force either g1(Γ) = f13(∆)
g3(Γ)

or g1(Γ) =
f13(∆)
g3(Γ)

− 1.

Case II A: f23(∆)
g3(Γ)

6∈ Z

As we have seen, this gives g2(Γ) = g2(Γ1) =
⌊
f23(∆)
g3(Γ)

⌋
.

Case II A 1: f12(∆) < f13(∆)
g3(Γ)

g2(Γ)

This gives g1(Γ1) = f13(∆)
g3(Γ)

− 1. Since there are not enough edges for Γ1 to have

g1(Γ) = f13(∆)
g3(Γ)

, we must have g1(Γ) = f13(∆)
g3(Γ)

− 1 = g1(Γ1).
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Case II A 2: f12(∆) > f13(∆)
g3(Γ)

g2(Γ)

This time, the definition gives g1(Γ1) = f13(∆)
g3(Γ)

. In order to have g1(Γ1) 6= g1(Γ),

we must have g1(Γ) = f13(∆)
g3(Γ)

− 1. This only swaps colors 1 and 2 from Case I B 2, so

Γ1 ∈ D(∆) by the same argument as there.

Case II B: f23(∆)
g3(Γ)

∈ Z
Case II B 1: f12(∆) 6 f13(∆)

g3(Γ)
f23(∆)
g3(Γ)

From the definition, it is clear that once the extra vertices are added, Γ1 has at least
f13(∆)
g3(Γ)

vertices of color 1 and f23(∆)
g3(Γ)

vertices of color 2. Furthermore, the order of the
extra vertices dictates that Γ1 must have at least this many of each color before any more
vertices of either color are added. Thus, the f12(∆) edges of color 12 in Γ1 all have both

vertices among the first f13(∆)
g3(Γ)

vertices of color 1 and the first f23(∆)
g3(Γ)

of color 2. All of these
vertices are adjacent to all vertices of color 3, so every edge of color 12 in Γ1 is contained
in g3(Γ) facets. Therefore,

f123(Γ1) = g3(Γ)f12(∆) = f3(Γ)f12(Γ) > f123(Γ).

As such, since Γ ∈ B(∆), we have Γ1 ∈ B(∆). Since Γ1 has at least f13(∆)
g3(Γ)

vertices of color

1 and f23(∆)
g3(Γ)

vertices of color 2, it uses all available edges, and so Γ1 ∈ C(∆) = D(∆).

Case II B 2: f12(∆) > f13(∆)
g3(Γ)

f23(∆)
g3(Γ)

We get g1(Γ1) = f13(∆)
g3(Γ)

and g2(Γ1) = f23(∆)
g3(Γ)

. As Γ has only f13(∆)
g3(Γ)

vertices of color 1 and
f23(∆)
g3(Γ)

vertices of color 2 adjacent to any vertices of color 3, any edge of color 12 contained

in any facets must have its vertices among the first f13(∆)
g3(Γ)

of color 1 and the first f23(∆)
g3(Γ)

of color 2. There are f13(∆)
g3(Γ)

f23(∆)
g3(Γ)

such edges possible, each of which is contained in g3(Γ)

facets, so we have f123(Γ) 6 f13(∆)
g3(Γ)

f23(∆)
g3(Γ)

g3(Γ) = g1(Γ1)g2(Γ1)g3(Γ1) 6 f123(Γ1). Since Γ1

has at least as many edges of each color set as Γ and Γ ∈ D(∆), we get Γ1 ∈ D(∆). �

Proof of Lemma 3.9: In order for the first option of the lemma not to hold, there must
be some Γ ∈ D(∆) with Γ 6∈ E(∆). We must either have gi(Γ) > bi(∆) for at least two
values of i ∈ [3] or else gi(Γ) < bi(∆) for at least two values of i ∈ [3]. Suppose that it
is the former. Assume without loss of generality that g1(Γ) > b1(∆) and g2(Γ) > b2(∆).
Since these are all integers, g1(Γ) > b1(∆) + 1 and g2(Γ) > b2(∆) + 1. We can compute

f12(Γ) > g1(Γ)g2(Γ)

> (b1(∆) + 1)(b2(∆) + 1)

=

(⌊√
f12(∆)f13(∆)

f23(∆)

⌋
+ 1

)(⌊√
f12(∆)f23(∆)

f13(∆)

⌋
+ 1

)

>

√
f12(∆)f13(∆)

f23(∆)

√
f12(∆)f23(∆)

f13(∆)

= f12(∆)

= f12(Γ).
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This is obviously impossible.
Otherwise, we must have gi(Γ) < bi(∆) for at least two values of i ∈ [3]. Assume

without loss of generality that g1(Γ) < b1(∆) and g2(Γ) < b2(∆). Since these are all
integers, g1(Γ) 6 b1(∆)− 1 and g2(Γ) 6 b2(∆)− 1. We compute

f12(Γ) 6 (g1(Γ) + 1)(g2(Γ) + 1)

6 b1(∆)b2(∆)

=

⌊√
f12(∆)f13(∆)

f23(∆)

⌋⌊√
f12(∆)f23(∆)

f13(∆)

⌋

6

√
f12(∆)f13(∆)

f23(∆)

√
f12(∆)f23(∆)

f13(∆)

= f12(∆)

= f12(Γ).

Because the opposite ends of the chain of inequalities are equal, equality must hold
throughout. For the first inequality to be an equality, we must have {p(Γ), q(Γ)} = {1, 2}.
We can assume without loss of generality that p(Γ) = 1 and q(Γ) = 2. The second in-
equality means that b1(∆) = g1(Γ) + 1 and b2(∆) = g2(Γ) + 1. The third gives that√

f12(∆)f13(∆)
f23(∆)

and
√

f12(∆)f23(∆)
f13(∆)

are integers, so taking their floors does not change them.

If g3(Γ) = b3(∆), then Γ ∈ E(∆), which contradicts the choice of Γ. If g3(Γ) < b3(∆),
then by an argument analogous to the previous paragraph, we get

f13(Γ) 6 (g1(Γ) + 1)(g3(Γ) + 1) 6 f13(Γ),

from which {p(Γ), q(Γ)} = {1, 3}. This contradicts {p(Γ), q(Γ)} = {1, 2}.
The only other possibility is if g3(Γ) > b3(∆). In this case, we compute

f13(∆) =

√
f12(∆)f13(∆)

f23(∆)

√
f13(∆)f23(∆)

f12(∆)

<

√
f12(∆)f13(∆)

f23(∆)

(⌊√f13(∆)f23(∆)

f12(∆)

⌋
+ 1
)

= b1(∆)(b3(∆) + 1).

Likewise, we can compute that f23(∆) < b2(∆)(b3(∆) + 1).
Suppose that g3(Γ) > b3(∆) + 2. We get that

j2(Γ) = f13(∆)− g1(Γ)g3(Γ)

< b1(∆)(b3(∆) + 1)− (b1(∆)− 1)(b3(∆) + 2)

= b1(∆)b3(∆) + b1(∆)− b1(∆)b3(∆) + b3(∆)− 2b1(∆) + 2

= b3(∆)− b1(∆) + 2.
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This gives g3(Γ) − 1 > b3(∆) + 1 > b1(∆) + j2(Γ). By the same argument, g3(Γ) − 1 >
b2(∆) + j1(Γ). Thus, we can define Γ1 by p(Γ1) = 1, q(Γ1) = 2, g3(Γ1) = g3(Γ) − 1,
g1(Γ1) = g1(Γ), and g2(Γ1) = g2(Γ) and have Γ1 use all available edges.

We can compute that Γ has g1(Γ)g2(Γ)g3(Γ) facets containing neither extra vertex,
g2(Γ)j2(Γ) facets containing v1

b1(∆) but not v2
b2(∆), g1(Γ)j1(Γ) facets containing v2

b2(∆)

but not v1
b1(∆), and min{j1(Γ), j2(Γ)} facets containing both extra vertices. Similarly,

we compute that Γ1 has g1(Γ)g2(Γ)(g3(Γ) − 1) facets containing neither extra vertex,
g2(Γ)(j2(Γ) + g1(Γ)) facets containing v1

b1(∆) but not v2
b2(∆), g1(Γ)(j1(Γ) + g2(Γ)) facets

containing v2
b2(∆) but not v1

b1(∆), and min{j1(Γ) + g2(Γ), j2(Γ) + g1(Γ)} facets containing
both extra vertices. Thus,

f123(Γ1) = g1(Γ)g2(Γ)(g3(Γ)− 1) + g2(Γ)(j2(Γ) + g1(Γ))

+g1(Γ)(j1(Γ) + g2(Γ)) + min{j1(Γ) + g2(Γ), j2(Γ) + g1(Γ)}
= g1(Γ)g2(Γ)g3(Γ) + g1(Γ)j1(Γ) + g2(Γ)j2(Γ)

+g1(Γ)g2(Γ) + min{j1(Γ) + g2(Γ), j2(Γ) + g1(Γ)}
> g1(Γ)g2(Γ)g3(Γ) + g1(Γ)j1(Γ) + g2(Γ)j2(Γ) + min{j1(Γ), j2(Γ)}
= f123(Γ).

Therefore, by Proposition 2.4, Γ 6∈ B(∆) ⊃ D(∆), a contradiction.
Otherwise, g3(Γ) = b3(∆) + 1. In this case, we define Γ1 by p(Γ1) = 3, q(Γ1) = 1, and

gi(Γ1) = bi(Γ) for all i ∈ [3]. Since f13(∆) < b1(∆)(b3(∆)+1) and f23(∆) < b1(∆)(b3(∆)+
1), the first extra vertex of Γ1 uses up all remaining edges, and the second extra vertex is
not contained in an edge, so it doesn’t matter if there is another vertex of color 1 available.
We also find that f13(∆) = (b1(∆)−1)(b3(∆)+1)+ j2(Γ) < b1(∆)(b3(∆)+1), from which
j2(Γ) < b3(∆) + 1, and so j2(Γ) 6 b3(∆). Similarly, j1(Γ) 6 b3(∆).

We compute j2(Γ1) = j2(Γ)+b1(∆)−1−b3(∆) and j1(Γ1) = j1(Γ)+b2(∆)−1−b3(∆).
The first extra vertex of Γ1 contains (j2(Γ)+b1(∆)−1−b3(∆))(j1(Γ)+b2(∆)−1−b3(∆))
facets. We get that

f123(Γ1) = b1(∆)b2(∆)b3(∆)

+(j2(Γ) + b1(∆)− 1− b3(∆))(j1(Γ) + b2(∆)− 1− b3(∆))

= b1(∆)b2(∆)b3(∆) + (b1(∆)− 1)(b2(∆)− 1)− (b1(∆)− 1)b3(∆)

−(b2(∆)− 1)b3(∆) + (b1(∆)− 1)j1(Γ) + (b2(∆)− 1)j2(Γ)

+(j1(Γ)− b3(∆))(j2(Γ)− b3(∆))

= (b1(∆)− 1)(b2(∆)− 1)(b3(∆) + 1) + (b1(∆)− 1)j1(Γ)

+(b2(∆)− 1)j2(Γ) + (b3(∆)− j1(Γ))(b3(∆)− j2(Γ)) + b3(∆)

> (b1(∆)− 1)(b2(∆)− 1)(b3(∆) + 1) + (b1(∆)− 1)j1(Γ)

+(b2(∆)− 1)j2(Γ) + min{j1(Γ), j2(Γ)}
= f123(Γ).

The inequality comes because j1(Γ) 6 b3(∆) and j2(Γ) 6 b3(∆).
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Since Γ ∈ B(∆), we get Γ1 ∈ B(∆). As we have already seen that Γ1 uses all available
edges, Γ1 ∈ C(∆). Since Γ ∈ D(∆), we know that D(∆) 6= ∅. The alternative is
D(∆) = C(∆), and so Γ1 ∈ D(∆). Since b3(∆) = g3(Γ1), we get Γ1 ∈ E(∆).

There was nothing special about choosing q(Γ1) = 1, as the second extra vertex was
not used at all. If we defined Γ2 in exactly the same way as Γ1 except that q(Γ2) = 2,
then Γ2 ∈ E(∆) by the same argument as Γ1. This completes the proof because r(Γ2) =
1 6= 2 = r(Γ1), which is the second option of the lemma. �

Proof of Lemma 3.12: We have that {p(Γ0), q(Γ0)} = {1, 2}. Assume without loss of
generality that p(Γ0) = 1.

We break the proof into several cases. Each time that we construct a complex Γ, we
need to check that it is well-defined, in A(∆), and if we might have f123(Γ) = f123(Γ0),
also that Γ ∈ F(∆). To show that Γ is well-defined, it suffices to show that there are
enough edges and vertices available to construct the complex. That Γ ∈ A(∆) follows
from the definition. To check that Γ ∈ F(∆), the first and fourth conditions are true by
construction and the third part holds because it is a property of ∆ and must hold to get
Γ0 ∈ F(∆). It thus suffices to check the second condition.

In constructions where gi(Γ) 6 gi(Γ0) for all i ∈ [3], there are enough vertices because
Γ uses at most as many vertices of each color as Γ0, except that Γ could use one additional
vertex of color 3, which is available because f3(∆) > g3(Γ0). This extra vertex does not
force Γ to contain any additional edges, so Γ is well-defined because Γ0 is.

Suppose that f1(∆) = g1(Γ0). This means that Γ0 does not have an extra vertex of
color 1. Thus, we can set p(Γ) = 2 and q(Γ) = 3, and we have Γ0 ⊆ Γ. Therefore,
we can assume that f1(∆) > g1(Γ0). By an analogous argument, we can assume that
f2(∆) > g2(Γ0). We can also assume that g3(Γ0) < f3(∆), as otherwise, we can take
Γ = Γ0 and meet the third option of the lemma.

We note that j1(Γ0) 6 g3(Γ0) and j2(Γ0) 6 g3(Γ0), as this is necessary for Γ0 to use
all edges of colors 23 and 13, respectively, as it does not have an extra vertex of color 3.

Case I: j1(Γ0) 6 j2(Γ0)
Case I A: j3(Γ0) 6 g2(Γ0)
This case means that the first extra vertex of Γ0 uses all available edges of color 12.

In particular, this means that the second extra vertex does not add any additional facets.
We can compute that the first extra vertex of Γ0 adds j3(Γ0)j2(Γ0) facets, so

f123(Γ0) = g1(Γ0)g2(Γ0)g3(Γ0) + j3(Γ0)j2(Γ0).

Case I A 1: j1(Γ0) 6 g2(Γ0)
Define Γ by p(Γ) = 1, q(Γ) = 3, and gi(Γ) = gi(Γ0) for all i ∈ [3]. Because the second

extra vertex of Γ0 does not add any additional facets, every facet of Γ0 is also in Γ, so
f123(Γ) > f123(Γ0). The first extra vertex of Γ uses all edges of colors 12 and 13 because it
also does so in Γ0. Finally, because j1(Γ0) 6 g2(Γ0), the second extra vertex of Γ uses all
remaining edges of color 23. Hence, Γ ∈ F(∆), and we have shown that the first option
of the lemma holds.

Case I A 2: j1(Γ0) > g2(Γ0)
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Case I A 2 a: j2(Γ0) < g1(Γ0)
Define Γ by q(Γ) = 2, p(Γ) = 3, and gi(Γ) = gi(Γ0) for all i ∈ [3]. We can chain the

inequalities of this case to get

g1(Γ0) > j2(Γ0) > j1(Γ0) > g2(Γ0) > j3(Γ0).

In particular, g1(Γ0) > j3(Γ0), so the second extra vertex of Γ uses all available edges of
color 12. That j2(Γ0) < g1(Γ0) means that the first extra vertex of Γ uses all available
edges of color 13. The second extra vertex of Γ uses any leftover edges of color 23 because
it does in Γ0. Thus, Γ ∈ F(∆).

We can compute that the first extra vertex of Γ adds j2(Γ0)g2(Γ0) facets, and the
second one adds j3(Γ0)(j1(Γ0)− g2(Γ0)) facets. This allows us to compute

f123(Γ) = g1(Γ0)g2(Γ0)g3(Γ0) + j2(Γ0)g2(Γ0) + j3(Γ0)(j1(Γ0)− g2(Γ0))

> g1(Γ0)g2(Γ0)g3(Γ0) + j2(Γ0)g2(Γ0)

> g1(Γ0)g2(Γ0)g3(Γ0) + j2(Γ0)j3(Γ0)

= f123(Γ0),

which yields the first option in the lemma.
Case I A 2 b: j2(Γ0) > g1(Γ0)

Let w = min {b j2(Γ0)
g1(Γ0)

c, b j1(Γ0)
g2(Γ0)

c, f3(∆) − g3(Γ0)}. Note that w > 1 because j2(Γ0) >
g1(Γ0), j1(Γ0) > g2(Γ0), and f3(∆) > g3(Γ0). Define Γ1 by p(Γ1) = 1, q(Γ1) = 2,
g1(Γ1) = g1(Γ0), g2(Γ1) = g2(Γ0), and g3(Γ1) = g3(Γ0) +w. There are enough edges to do
this because the first two terms assert that w is small enough not to use more edges than
allowed of color sets 13 or 23, respectively. The third term of w ensures that there are
enough vertices of color 3 available. Thus, Γ1 is well-defined. Because the extra vertices
in Γ1 are able to use at least as many edges of each color set as those of Γ0 and have at
most as many such edges available to use, Γ1 ∈ F(∆).

The first extra vertex of Γ1 uses all edges of color 12, so the second extra vertex does
not add any additional facets. Meanwhile, the first extra vertex of Γ1 adds j2(Γ1)j3(Γ1) =
j3(Γ0)(j2(Γ0)− wg1(Γ0)) facets. This yields

f123(Γ1) = g1(Γ0)g2(Γ0)(g3(Γ0) + w) + j3(Γ0)(j2(Γ0)− wg1(Γ0))

= g1(Γ0)g2(Γ0)g3(Γ0) + j3(Γ0)j2(Γ0) + wg1(Γ0)(g2(Γ0)− j3(Γ0))

> g1(Γ0)g2(Γ0)g3(Γ0) + j3(Γ0)j2(Γ0)

= f123(Γ0).

Case I A 2 b i: j3(Γ0) < g2(Γ0)
This ensures that the inequality above is strict, so we can take Γ = Γ1 and have the

second option of the lemma.
Case I A 2 b ii: w = f3(∆)− g3(Γ0)
This ensures that g3(Γ1) = f3(∆), so we can take Γ = Γ1 and have the third option of

the lemma.
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Case I A 2 b iii: j3(Γ0) = g2(Γ0) and w < f3(∆)− g3(Γ0)
Case I A 2 b iii (a): j1(Γ1) 6 g2(Γ1)
Define Γ by gi(Γ) = gi(Γ1) for all i ∈ [3], p(Γ) = 1 and q(Γ) = 3. We have that Γ is

well-defined because Γ1 is. The first extra vertex of Γ uses all available edges of colors 12
and 13 because the first extra vertex of Γ1 does also. Because j1(Γ1) 6 g2(Γ1), the second
extra vertex of Γ uses all remaining edges of color 23. Hence, Γ ∈ F(∆). Furthermore,
since the only differing edges between Γ and Γ1 are the ones containing the second extra
vertex, none of which are contained in a facet, we have f123(Γ) = f123(Γ1) > f123(Γ0), so
we satisfy the first option of the lemma.

Case I A 2 b iii (b): j1(Γ1) > g2(Γ1)

This means that w 6= b j1(Γ0)
g2(Γ0)

c. Since w < f3(∆)− g3(Γ0), we must have w = b j2(Γ0)
g1(Γ0)

c.
Hence, j2(Γ1) = j2(Γ0) − wg1(Γ0) < g1(Γ0). That w 6= b j1(Γ0)

g2(Γ0)
c means that w + 1 6

b j1(Γ0)
g2(Γ0)

c 6 j1(Γ0)
g2(Γ0)

. This yields j2(Γ0)
g1(Γ0)

< w+1 6 j1(Γ0)
g2(Γ0)

, so j2(Γ0)g2(Γ0) < j1(Γ0)g1(Γ0). Since

j2(Γ0) > j1(Γ0), we must have g2(Γ0) < g1(Γ0).
Case I A 2 b iii (b) (i): j1(Γ1) > j2(Γ1)
Define Γ by gi(Γ) = gi(Γ1) for all i ∈ [3], p(Γ) = 2 and q(Γ) = 1. Then Γ is well-

defined because Γ1 is. We can compute that Γ has g1(Γ)g2(Γ)g3(Γ) facets before adding
extra vertices. The first extra vertex of Γ uses up all remaining edges of color 12 because
j3(Γ) = j3(Γ0) = g2(Γ0) < g1(Γ0). Furthermore, Γ uses all remaining edges of color 23
because j1(Γ) < j1(Γ0) 6 g3(Γ0) < g3(Γ). Thus, we can compute

f123(Γ) = g1(Γ)g2(Γ)g3(Γ) + j3(Γ)j1(Γ)

= g1(Γ)g2(Γ)g3(Γ) + j3(Γ1)j1(Γ1)

> g1(Γ)g2(Γ)g3(Γ) + j3(Γ1)j2(Γ1)

= f123(Γ1)

> f123(Γ0),

which yields the second option of the lemma because Γ ∈ A(∆) by construction.
Case I A 2 b iii (b) (ii): j1(Γ1) 6 j2(Γ1)

Define Γ2 by g1(Γ2) = g1(Γ0), g2(Γ2) = g2(Γ0), g3(Γ2) = d f13(∆)
g1(Γ0)+1

e, p(Γ2) = 1, and

q(Γ2) = 2. Let y = g3(Γ0)− g3(Γ2). Since

f13(∆) = g1(Γ0)g3(Γ0) + j2(Γ0) 6 g1(Γ0)g3(Γ0) + g3(Γ0) = (g1(Γ0) + 1)g3(Γ0),

we have g3(Γ2) = d f13(∆)
g1(Γ0)+1

e 6 dg3(Γ0)e = g3(Γ0), and so y > 0. Hence, Γ2 is well-
defined because Γ0 is. It uses all edges of color 12 because Γ0 does. It uses all edges
of color 13 because g1(Γ0) + 1 vertices of color 1 and g3(Γ2) of color 3 can use up to

(g1(Γ0) + 1)g3(Γ2) = (g1(Γ0) + 1)d f13(∆)
g1(Γ0)+1

e > f13(∆) edges of color 13. Finally, Γ2 uses all
edges of color 23 because

j1(Γ2) = j1(Γ0) + yg2(Γ0) 6 j2(Γ0) + yg1(Γ0) = j2(Γ2) 6 g3(Γ2),

as Γ2 also uses all edges of color 13. Therefore, Γ2 ∈ F(∆).
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Before adding any extra vertices, Γ2 has g1(Γ0)g2(Γ0)(g3(Γ0) − y) facets. The first
extra vertex adds g2(Γ0)(j2(Γ0) + yg1(Γ0)) facets. This uses all edges of color 12, so the
second extra vertex does not add any additional facets. Thus, we compute

f123(Γ2) = g1(Γ0)g2(Γ0)(g3(Γ0)− y) + g2(Γ0)(j2(Γ0) + yg1(Γ0))

= g1(Γ0)g2(Γ0)g3(Γ0) + g2(Γ0)j2(Γ0)

= g1(Γ0)g2(Γ0)g3(Γ0) + j3(Γ0)j2(Γ0)

= f123(Γ0).

Define Γ by g1(Γ) = g1(Γ2) + 1, g2(Γ) = g2(Γ2), g3(Γ) = g3(Γ2) − 1, p(Γ) = 3, and
q(Γ) = 2. There are enough edges of color 23 to do this because Γ2 is well-defined. There
are enough edges of color 12 because

f12(∆) = g1(Γ0)g2(Γ0) + j3(Γ0) = g1(Γ0)g2(Γ0) + g2(Γ0) = g1(Γ)g2(Γ).

There are enough edges of color 13 because

g1(Γ)g3(Γ) = (g1(Γ0) + 1)
(⌈ f13(∆)

g1(Γ0) + 1

⌉
− 1
)

< (g1(Γ0) + 1)
( f13(∆)

g1(Γ0) + 1

)
= f13(∆).

Therefore, Γ is well-defined.
It is easy to check that Γ and Γ2 use exactly the same edges of colors 12 and 23.

They have exactly the same vertices of all colors, so Γ uses all available edges because Γ2

does. Hence, Γ ∈ F(∆). The only possible difference is that Γ could include some edges
containing v1

g1(Γ2)+1 but not v3
g3(Γ2), while Γ2 contains exactly the same number of edges

containing v3
g3(Γ2) but not v1

g1(Γ2)+1. Both of these vertices are adjacent to exactly g2(Γ0)
vertices of color 2, so every edge that is in either Γ or Γ2 but not both is contained in
exactly g2(Γ0) facets. Therefore, f123(Γ) = f123(Γ2) > f123(Γ0), which gives us the first
option of the lemma.

Case I B: j3(Γ0) > g2(Γ0)
The first extra vertex of Γ0 adds g2(Γ0)j2(Γ0) facets, while the second extra vertex

adds j1(Γ0)(j3(Γ0)− g2(Γ0)). Thus,

f123(Γ0) = g1(Γ0)g2(Γ0)g3(Γ0) + g2(Γ0)j2(Γ0) + j1(Γ0)(j3(Γ0)− g2(Γ0)).

Case I B 1: j2(Γ0) + g1(Γ0) < g3(Γ0)
Define Γ by p(Γ) = 1, q(Γ) = 2, g1(Γ) = g1(Γ0), g2(Γ) = g2(Γ0), and g3(Γ) = g3(Γ0)−1.

We have already seen that this is well-defined, and it is immediate from the definition
that Γ ∈ A(∆). The first extra vertex of Γ adds g2(Γ0)(j2(Γ0) + g1(Γ0)) facets.

Case I B 1 a: j1(Γ0) + g2(Γ0) < g3(Γ0)

the electronic journal of combinatorics 19 (2012), #P13 32



This allows the second extra vertex of Γ to use all remaining edges of color 23, so it
adds (j1(Γ0) + g2(Γ0))(j3(Γ0)− g2(Γ0)) facets. Thus, we have

f123(Γ) = g1(Γ0)g2(Γ0)(g3(Γ0)− 1) + g2(Γ0)(j2(Γ0) + g1(Γ0))

+(j1(Γ0) + g2(Γ0))(j3(Γ0)− g2(Γ0))

> g1(Γ0)g2(Γ0)g3(Γ0) + g2(Γ0)j2(Γ0) + j1(Γ0)(j3(Γ0)− g2(Γ0))

= f123(Γ0),

giving us the second option of the lemma.
Case I B 1 b: j1(Γ0) + g2(Γ0) > g3(Γ0)
The second extra vertex of Γ can only use g3(Γ) = g3(Γ0) − 1 edges of color 23, so it

only adds (g3(Γ0)− 1)(j3(Γ0)− g2(Γ0)) facets. Still, we have

g3(Γ0)− 1 > j2(Γ0) + g1(Γ0) > j2(Γ0) > j1(Γ0),

from which we can compute

f123(Γ) = g1(Γ0)g2(Γ0)(g3(Γ0)− 1) + g2(Γ0)(j2(Γ0) + g1(Γ0))

+(g3(Γ0)− 1)(j3(Γ0)− g2(Γ0))

> g1(Γ0)g2(Γ0)g3(Γ0) + g2(Γ0)j2(Γ0) + j1(Γ0)(j3(Γ0)− g2(Γ0))

= f123(Γ0),

which is the second option in the lemma.
Case I B 2: j2(Γ0) + g1(Γ0) > g3(Γ0)
Case I B 2 a: j2(Γ0) = g3(Γ0)
Define Γ by g1(Γ) = g1(Γ0)+1, g2(Γ) = g2(Γ0), g3(Γ) = g3(Γ0), p(Γ) = 2, and q(Γ) = 3.

The first extra vertex of Γ0 is adjacent to all vertices of color 3 because j2(Γ0) = g3(Γ0)
and the first g2(Γ0) vertices of color 2 because j3(Γ0) > g2(Γ0). The difference between Γ0

and Γ is that the extra vertex of Γ0 of color 1 is still in Γ but no longer an extra vertex,
and Γ tacks on an extra isolated vertex of color 3 that Γ0 lacks. Hence, Γ0 ⊆ Γ, so Γ must
use at least as many edges and facets as Γ0. This means that Γ ∈ F(∆) and satisfies the
first option of the lemma.

Case I B 2 b: j2(Γ0) < g3(Γ0)
Define Γ by g1(Γ) = g1(Γ0) + 1, g2(Γ) = g2(Γ0), g3(Γ) = g3(Γ0) − 1, p(Γ) = 3, and

q(Γ) = 2. We know that there are enough edges of color 23 for Γ because there are enough
for Γ0, which needs more. There are enough edges of color 12 because Γ only needs g2(Γ0)
more edges than Γ0 and j3(Γ0) > g2(Γ0). There are enough edges of color 13 because

f13(∆) = g1(Γ0)g3(Γ0) + j2(Γ0)

> g1(Γ0)g3(Γ0) + g3(Γ0)− g1(Γ0)

> (g1(Γ0) + 1)(g3(Γ0)− 1)

= g1(Γ)g3(Γ).
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The vertices of Γ are precisely the vertices of Γ0 (with the last vertex of color 1 coming
because g1(Γ0) < f1(∆)), so Γ is well-defined. Furthermore, because Γ and Γ0 have the
same vertices, they can each use the same number of edges of each color set. Therefore,
Γ ∈ F(∆) because Γ0 is also.

One can easily check that Γ and Γ0 have exactly the same edges of colors 12 and
23. The edges of color 13 can only differ in that Γ may have some edges that Γ0 lacks
containing v1

g1(Γ0)+1 but not v3
g3(Γ0), while Γ0 could have some edges that are missing from

Γ and contain v3
g3(Γ0) but not v1

g1(Γ0)+1. Any edge that is contained only in Γ has at least

g2(Γ0) facets, as both of its vertices are present before adding any extra vertices. Any
edge that is contained only in Γ0 is contained in at most g2(Γ0) facets, as v3

g3(Γ0) is not

adjacent to v2
g2(Γ0)+1 because j2(Γ0) < g3(Γ). Therefore, each differing edge of Γ has at

least as many facets as each one of Γ0, so f123(Γ) > f123(Γ0), which gives us the first
option in the lemma.

Case II: j1(Γ0) > j2(Γ0)
Define Γ1 by p(Γ1) = 2, q(Γ1) = 1, and gi(Γ1) = gi(Γ0) for all i ∈ [3]. We have that

f123(Γ1) > f123(Γ0) by Lemma 5.1. Because Γ0 and Γ1 have the same vertices, including
the same extra vertices, Γ1 ∈ F(∆). Applying Case I to Γ1 gives that the lemma holds
for Γ0. �

Proof of Lemma 3.10: Because Γ ∈ E(∆) ⊆ D(∆), it must use all available edges.
Let k = 6 − r(Γ) − i. Since there is not an extra vertex of color r(Γ), we have jk(Γ) 6
gr(Γ)(Γ). We trivially must have jk(Γ) > 0, so we have gr(Γ)(Γ)bi(∆) 6 gr(Γ)(Γ)bi(∆) +
jk(Γ) 6 gr(Γ)(Γ)bi(∆) +gr(Γ)(Γ). The middle term is fir(Γ)(∆), so we have gr(Γ)(Γ)bi(∆) 6
fir(Γ)(∆) 6 gr(Γ)(Γ)(bi(∆) + 1). Dividing the two inequalities as appropriate, we get

gr(Γ)(Γ) 6
fir(Γ)(∆)

bi(∆)
and gr(Γ)(Γ) >

fir(Γ)(∆)

bi(∆)+1
, respectively. Chain these together to get

fir(Γ)(∆)

bi(∆)+1
6 gr(Γ)(Γ) 6

fir(Γ)(∆)

bi(∆)
. Since gr(Γ)(Γ) is an integer, we have

⌈
fir(Γ)(∆)

bi(∆)+1

⌉
6 gr(Γ)(Γ) 6⌊

fir(Γ)(∆)

bi(∆)

⌋
, which gives one inequality of the lemma.

Next, we compute

fir(Γ)(∆)

bi(∆)
−

fir(Γ)(∆)

bi(∆) + 1
= fir(Γ)(∆)

( 1

bi(∆)
− 1

bi(∆) + 1

)
=

fir(Γ)(∆)

bi(∆)(bi(∆) + 1)

<
(bi(∆) + 1)(br(Γ)(∆) + 1)

bi(∆)(bi(∆) + 1)

=
br(Γ)(∆) + 1

bi(∆)

6
bi(∆) + 1

bi(∆)
6 2.

Thus, gr(Γ)(Γ) is an integer contained in an interval of length less than two. There can
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be at most two such integers. We have seen that
⌈
fir(Γ)(∆)

bi(∆)+1

⌉
is the smallest possible such

integer and
⌊
fir(Γ)(∆)

bi(∆)

⌋
is the largest, so if gr(Γ)(Γ) has two possible values, these must be

both of them. If gr(Γ)(Γ) has only one possible value, then these expressions both give
that one value. �

Proof of Lemma 3.15: The lemma is stated as it is to make it clear that the upper
bound depends only on the choice of g2(Γ), but it is easier to prove an alternate form.
We can compute

v(∆, g2(Γ)) = b1(∆)f23(∆) + (f12(∆)− b1(∆)g2(Γ))
(
f13(∆)− b1(∆)f23(∆)

g2(Γ)

)
= b1(∆)f23(∆) + j3(Γ)

(
f13(∆)− b1(∆)(g2(Γ)g3(Γ) + j1(Γ))

g2(Γ)

)
= b1(∆)f23(∆) + j3(Γ)

(
f13(∆)− b1(∆)g3(Γ)− b1(∆)j1(Γ)

g2(Γ)

)
= b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ)j3(Γ)

g2(Γ)
.

Case I: p(Γ) = 3
Case I A: j2(Γ) 6 b1(∆)
The first extra vertex uses all remaining edges of both of its color sets. This does not

leave any remaining edges of color 13 for use by the second extra vertex, so the second
extra vertex does not add any additional facets. Therefore,

f123(Γ) = b1(∆)g2(Γ)g3(Γ) + j1(Γ)j2(Γ).

Case I A 1: j1(Γ) 6 j3(Γ)

f123(Γ) = b1(∆)g2(Γ)g3(Γ) + j1(Γ)j2(Γ)

= b1(∆)(f23(∆)− j1(Γ)) + j2(Γ)j3(Γ) + j2(Γ)(j1(Γ)− j3(Γ))

6 b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ)j3(Γ)

g2(Γ)
.

The last line comes because j3(Γ) > j1(Γ) and j3(Γ) 6 g2(Γ), as there is not an extra
vertex of color 2.

Case I A 2: j3(Γ) < j1(Γ)

f123(Γ) = b1(∆)g2(Γ)g3(Γ) + j1(Γ)j2(Γ)

= b1(∆)(f23(∆)− j1(Γ)) + j2(Γ)j3(Γ) + j2(Γ)(j1(Γ)− j3(Γ))

6 b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ) + b1(∆)(j1(Γ)− j3(Γ))

= b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j3(Γ)

6 b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ)j3(Γ)

g2(Γ)
.
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As in the previous case, the last line comes because j1(Γ) 6 g2(Γ).
Case I B: j2(Γ) > b1(∆)
The first extra vertex is adjacent to all previous vertices of color 1, so it adds j1(Γ)b1(∆)

facets. The second extra vertex adds j3(Γ)(j2(Γ)− b1(∆)) facets. Thus, we have

f123(Γ) = b1(∆)g2(Γ)g3(Γ) + j1(Γ)b1(∆) + j3(Γ)(j2(Γ)− b1(∆))

= b1(∆)(f23(∆)− j1(Γ)) + j1(Γ)b1(∆) + j3(Γ)(j2(Γ)− b1(∆))

= b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j3(Γ)

6 b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ)j3(Γ)

g2(Γ)
.

Case II: p(Γ) = 1
Case II A: j2(Γ) 6 g3(Γ)
The first extra vertex uses all available edges of color 13 and adds j2(Γ)j3(Γ) facets.

This does not leave any edges of this color set to be used by the second available vertex,
so the other vertex does not add any more facets. This gives us

f123(Γ) = b1(∆)g2(Γ)g3(Γ) + j2(Γ)j3(Γ)

= b1(∆)(f23(∆)− j1(Γ)) + j2(Γ)j3(Γ)

= b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ)

6 b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ)j3(Γ)

g2(Γ)
.

Case II B: j2(Γ) > g3(Γ)
Case II B 1: j3(Γ) > j1(Γ)
There are enough spare edges of color 13 to make the first extra vertex adjacent to

all previous vertices of color 3. Thus, the first extra vertex adds g3(Γ)j3(Γ) facets. The
second extra vertex brings an additional j1(Γ)(j2(Γ)− g3(Γ)) facets. We can use these to
compute

f123(Γ) = b1(∆)g2(Γ)g3(Γ) + g3(Γ)j3(Γ) + j1(Γ)(j2(Γ)− g3(Γ))

6 b1(∆)(f23(∆)− j1(Γ)) + g3(Γ)j3(Γ) + j3(Γ)(j2(Γ)− g3(Γ))

= b1(∆)f23(∆)− b1(∆)j1(Γ) + j2(Γ)j3(Γ)

6 b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ)j3(Γ)

g2(Γ)
.

Case II B 2: j3(Γ) < j1(Γ)
Define Γ1 by gi(Γ1) = gi(Γ) for all i ∈ [3], p(Γ1) = 3, and q(Γ1) = 1. By Lemma 5.1,

f123(Γ) 6 f123(Γ1). Furthermore, Γ1 satisfies the bound of this lemma by Case I. �

The next lemma says that we can get close to the bound of Lemma 3.15. While it is
not a useful lemma for finding the maximum number of facets in practice, it does give us
a worst case approximation that will allow a bound on the number of values of g2(Γ) we
could potentially need to check.
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Lemma 5.2 Let ∆ be a 3-colored simplicial complex with f12(∆) 6 f13(∆) and f12(∆) 6
f23(∆). Suppose that there is a Γ0 ∈ F(∆) with g1(Γ0) = b1(∆) and r(Γ0) = 2. Then
there is a Γ ∈ F(∆) such that f123(Γ) > v(∆, g2(Γ0))− f12(∆).

Proof: Define Γ by gi(Γ) = gi(Γ0) for all i ∈ [3]. If j2(Γ0) > b1(∆), then let p(Γ) = 3
and q(Γ) = 1. Otherwise, let p(Γ) = 1 and q(Γ) = 3. Either Γ is the same complex as
Γ0 or else it swaps p(Γ0) with q(Γ0). This does not affect any of the criteria for F(∆), so
Γ ∈ F(∆).

We can compute b1(∆) =
⌊
f12(∆)f13(∆)

f23(∆)

⌋
6
⌊
f13(∆)f23(∆)

f12(∆)

⌋
= b3(∆) because f12(∆) 6

f23(∆). Suppose first that g3(Γ) 6 b1(∆)− 2. In this case, we have

f13(∆) 6 (g1(Γ) + 1)(g3(Γ) + 1)

6 (b1(∆) + 1)(b1(∆)− 1)

= b1(∆)2 − 1

< b1(∆)2

6 b1(∆)b3(∆)

6 f13(∆),

a contradiction. Therefore, g3(Γ) > b1(∆)−1. Thus, if j2(Γ) < b1(∆), then j2(Γ) 6 g3(Γ).
As such, in the proof of Lemma 3.15, we are either in case I B or case II A.

As with the previous lemma, it is more convenient to prove the alternative form

f123(Γ) > b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ)j3(Γ)

g2(Γ)
− f12(∆).

For simplicity, let

z(Γ) = b1(∆)f23(∆) + j2(Γ)j3(Γ)− b1(∆)j1(Γ)j3(Γ)

g2(Γ)
− f12(∆),

so that we are trying to prove that f123(Γ) > z(Γ). We break this into the same cases as
before and do not repeat the computations, but only check how far from inequality we
are.

If j2(Γ) > b1(∆), then from the arithmetic of Case I B of Lemma 3.15, we have

f123(Γ)− z(Γ) = b1(∆)j3(Γ)
( j1(Γ)

g2(Γ)
− 1
)

+ f12(∆)

> −b1(∆)j3(Γ) + f12(∆)

> f12(∆)− g1(Γ)g2(Γ) > 0.

Similarly, if j2(Γ) < b1(∆), then the arithmetic of Case II A yields

f123(Γ)− z(Γ) = b1(∆)j1(Γ)
( j3(Γ)

g2(Γ)
− 1
)

+ f12(∆)

> −b1(∆)j1(Γ) + f12(∆)

> f12(∆)− g1(Γ)g2(Γ) > 0. �
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Proof of Lemma 3.6: As b1(∆) = 0, we have
√

f12(∆)f13(∆)
f23(∆)

< 1, or equivalently,

f12(∆)f13(∆) < f23(∆). If f2(∆) < f12(∆), then we have f12(∆)
f2(∆)

> 1, so
⌊
f12(∆)
f2(∆)

⌋
> 1. Fur-

thermore, f23(∆)
f2(∆)

> f23(∆)
f12(∆)

> f13(∆), so
⌊
f23(∆)
f2(∆)

⌋
> f13(∆). Thus,

⌊
f12(∆)
f2(∆)

⌋⌊
f23(∆)
f2(∆)

⌋
>

f13(∆), so by Lemma 3.2, D(∆) = ∅, a contradiction. By the same argument, if
f3(∆) < f13(∆), then D(∆) = ∅.

Otherwise, define Γ by g1(Γ) = 1, g2(Γ) = f12(∆), g3(Γ) = f13(∆). Do not give Γ any
extra vertices. We have seen that there are enough vertices of each color to do this. There
are clearly enough edges of colors 12 and 13. Since f23(Γ) = f12(∆)f13(∆) < f23(∆), there
are also enough edges of color 23. Hence, Γ is well-defined. Since f123(Γ) = f12(∆)f13(∆),
we get m(∆) > f12(∆)f13(∆).

Conversely, each choice of an edge of color 12 and edge of color 13 specifies at least one
vertex of each color, so there can be at most one facet containing these two edges. Each
facet must use an edge of each color set, so any Γ1 ∈ A(∆) can have at most f12(∆)f13(∆)
facets. Therefore, m(∆) 6 f12(∆)f13(∆), and so the statement of the lemma follows. �

This next lemma is useful in a worst case approximation of the number of values of
g2(Γ) we may need to check.

Lemma 5.3 Let ∆ be a 3-colored simplicial complex with f12(∆) 6 f13(∆) 6 f23(∆) and
let Γ1,Γ2 ∈ F(∆) such that g1(Γ1) = g1(Γ2) = b1(∆) and r(Γ1) = r(Γ2) = 2. If x ∈ Z
such that g2(Γ1) < x < g2(Γ2), then there is a complex Γ3 ∈ F(∆) such that g2(Γ3) = x,
g1(Γ3) = b1(∆) and r(Γ3) = 2.

Proof: Try to define Γ3 by g2(Γ3) = x, g1(Γ3) = bf12(∆)
x
c, g3(Γ3) = bf23(∆)

x
c, p(Γ3) = 1,

and q(Γ3) = 3. It follows from the definition that there are enough edges of colors 12
and 23 for Γ3 to be well-defined, and that Γ3 uses all edges of these two color sets if
f1(∆) > g1(Γ3) and f3(∆) > g3(Γ3). Since Γ1 ∈ F(∆), we must have D(∆) 6= ∅, so Γ3

satisfies this condition for F(∆).
Because Γ1,Γ2 ∈ F(∆), we must have b1(∆)g2(Γ1) < b1(∆)g2(Γ2) 6 f12(∆) and

f12(∆) 6 (b1(∆) + 1)g2(Γ1). If f1(∆) 6 b1(∆), we would have f12(Γ1) 6 b1(∆)g2(Γ1) <
f12(∆), a contradiction. Hence, f1(∆) > b1(∆). Furthermore,

b1(∆)x < b1(∆)g2(Γ2) 6 f12(∆) 6 (b1(∆) + 1)g2(Γ1) < (b1(∆) + 1)x.

That b1(∆) < f12(∆)
x

< b1(∆) + 1 guarantees that g1(Γ3) = b1(∆) < f1(∆). Similarly, we
have

g3(Γ2)x < g3(Γ2)g2(Γ2) 6 f23(∆) 6 (g3(Γ1) + 1)g2(Γ1) < (g3(Γ1) + 1)x.

This means g3(Γ2) < f23(∆)
x

< g3(Γ1) + 1, from which g3(Γ2) 6 g3(Γ3) < g3(Γ1). Since Γ1

is well-defined, f3(∆) > g3(Γ1) > g3(Γ3).
Next, we can compute

g1(Γ3)g3(Γ3) < g1(Γ1)g3(Γ1) 6 f13(∆) 6 (g1(Γ2) + 1)(g3(Γ2) + 1)
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6 (g1(Γ3) + 1)(g3(Γ3) + 1).

This ensures that Γ3 has enough edges of color 13 to be well-defined because Γ1 is and
enough vertices to use all of the edges because Γ2 does.

Because Γ3 uses at most as many vertices of color 2 as Γ2 and at most as many of
colors 1 and 3 as Γ1, Γ3 is well-defined. We immediately have Γ3 ∈ A(∆) by construction.
We have seen that Γ3 uses all available edges of each color set, so Γ3 ∈ F(∆). �

Proof of Lemma 3.16: We start with some preliminary computations. We wish to
find the value of t > 0 that maximizes v(∆, t). One can readily compute ∂

∂t
v(∆, t) =

−b1(∆)f13(∆)+ 1
t2
b1(∆)f12(∆)f23(∆). Setting the derivative equal to zero and solving for

t gives t = s(∆). Furthermore, ∂2

∂t2
v(∆, t) = − 1

t3
b1(∆)f12(∆)f23(∆), which is negative for

all t > 0, so this is a maximum.
Next, we compute how far from maximizing v(∆, t) a given value of t is. For the

former, if we define z by t = s(∆) + z, we compute

v(∆, s(∆))− v(∆, s(∆) + z)

= b1(∆)f23(∆) + f12(∆)f13(∆) + b1(∆)2f23(∆)− b1(∆)f13(∆)s(∆)

−b1(∆)f12(∆)f23(∆)

s(∆)
− b1(∆)f23(∆)− f12(∆)f13(∆)− b1(∆)2f23(∆)

+b1(∆)f13(∆)(s(∆) + z) +
b1(∆)f12(∆)f23(∆)

s(∆) + z

= b1(∆)
(
f13(∆)z − f12(∆)f23(∆)z

s(∆)(s(∆) + z)

)
= b1(∆)

(
f13(∆)z − f13(∆)s(∆)z

(s(∆) + z)

)
= b1(∆)f13(∆)z

(
1− s(∆)

(s(∆) + z)

)
=

b1(∆)f13(∆)z2

(s(∆) + z)
.

Suppose that there is a complex Γ0 ∈ F(∆) with g1(Γ0) = b1(∆), g2(Γ0) = b2(∆), and
r(Γ0) = 2. For this complex, we get s(∆) + z = b2(∆). Since b2(∆) = bs(∆)c, we get

|z| < 1. As such, we get v(∆, s(∆) + z) = v(∆, s(∆))− b1(∆)f13(∆)z2

b2(∆)
. Applying Lemma 5.2

yields

f123(Γ0) > v(∆, s(∆))− b1(∆)f13(∆)z2

b2(∆)
− f12(∆)

> v(∆, s(∆))− b1(∆)f13(∆)

b2(∆)
− f12(∆).

For simplicity, let x(∆) = b1(∆)f12(∆)
b2(∆)

+ f12(∆). It thus suffices to check the values

of g2(Γ) where v(∆, g2(Γ)) > f123(Γ0). We set g2(Γ) = s(∆) + z and use Lemma 3.15
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compute

0 < v(∆, g2(Γ))− f123(Γ0)

6 v(∆, s(∆) + z)− v(∆, s(∆)) + x(∆)

= v(∆, s(∆))− b1(∆)f13(∆)z2

(s(∆) + z)
− v(∆, s(∆)) + x(∆)

= x(∆)− b1(∆)f13(∆)z2

(s(∆) + z)
.

The inequality x(∆) − b1(∆)f13(∆)z2

(s(∆)+z)
> 0 clearly holds if z = 0 and fails if z gets far

enough away from zero. Thus, to find the values of z that make it true, it suffices to
find the values that give equality and take the interval between them. We compute
b1(∆)f13(∆)z2 − zx(∆)− s(∆)x(∆) = 0. The quadratic formula gives

z =
x(∆)±

√
x(∆)2 + 4b1(∆)f13(∆)s(∆)x(∆)

2b1(∆)f13(∆)
.

The difference between the two roots is√
x(∆)2 + 4b1(∆)f13(∆)s(∆)x(∆)

b1(∆)f13(∆)

=

√( x(∆)

b1(∆)f13(∆)

)2

+
4b1(∆)f13(∆)s(∆)x(∆)

b1(∆)2f13(∆)2

=

√( x(∆)

b1(∆)f13(∆)

)2

+
4s(∆)x(∆)

b1(∆)f13(∆)

=

√( x(∆)

b1(∆)f13(∆)

)(
4s(∆) +

x(∆)

b1(∆)f13(∆)

)
=

√( 1

b2(∆)
+

f12(∆)

b1(∆)f13(∆)

)(
4s(∆) +

1

b2(∆)
+

f12(∆)

b1(∆)f13(∆)

)
<

√
2
√

f13(∆)√
f12(∆)f23(∆)

+
2f12(∆)

√
f23(∆)

f13(∆)
√
f12(∆)f13(∆)

∗

√
4
√

f12(∆)f23(∆)√
f13(∆)

+
2
√
f13(∆)√

f12(∆)f23(∆)
+

2f12(∆)
√

f23(∆)

f13(∆)
√

f12(∆)f13(∆)

=

√
8 + 8

f12(∆)f23(∆)

f13(∆)2
+

4f13(∆)

f12(∆)f23(∆)
+

8

f13(∆)
+

4f12(∆)f23(∆)

f13(∆)3

<

√
24 + 8

f12(∆)f23(∆)

f13(∆)2

< 5 + 2
√

2

√
f12(∆)f23(∆)

f13(∆)
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Above, we used that f23(∆) 6 f12(∆)f13(∆) (because b1(∆) > 1) and b2(∆) > 1
2
s2(∆)

(because b2(∆) > b1(∆) > 1 and s2(∆) − b2(∆) < 1). Hence, there are fewer than

6 + 2
√

2

√
f12(∆)f23(∆)

f13(∆)
integers in the interval, and so fewer than 6 + 2

√
2

√
f12(∆)f23(∆)

f13(∆)

possible values of g2(Γ) to check.
Above, we assumed that one could take g2(Γ0) = b2(∆) and g1(Γ0) = b1(∆). If

this is not the case, then by Lemma 5.3, either all Γ ∈ F(∆) with g1(Γ) = b1(∆) have
g2(Γ) > b2(∆) or else all have g2(Γ) < b2(∆). Since g2(Γ) is an integer, all such Γ have
g2(Γ) on the same side of s(∆).

We have seen that v(∆, t) attains its maximum at t = s(∆) and that ∂2

∂t2
v(∆, t) < 0

for all t > 0. Let

m2(∆) = max{v(∆, g2(Γ))− f12(∆) | Γ ∈ F(∆), r(Γ) = 2, g1(Γ) = b1(∆)},
c1(∆) = min{g2(Γ) | Γ ∈ F(∆), r(Γ) = 2, g1(Γ) = b1(∆),

v(∆, g2(Γ)) > m2(∆)}, and

c2(∆) = max{g2(Γ) | Γ ∈ F(∆), r(Γ) = 2, g1(Γ) = b1(∆),

v(∆, g2(Γ)) > m2(∆)}.

Suppose that c1(∆) > b2(∆). If c2(∆)− c1(∆) > 5 + 2
√

2

√
f12(∆)f23(∆)

f13(∆)
, then

v(∆, c1(∆))− v(∆, c2(∆))

> v(∆, s(∆))− v(∆, s(∆) + c2(∆)− c1(∆)) (because ∂2

∂t2
v(∆, t) < 0)

> v(∆, s(∆))− v

(
∆, s(∆) + 5 + 2

√
2

√
f12(∆)f23(∆)

f13(∆)

)
> v(∆, s(∆))− v

(
∆, s(∆) +

x(∆) +
√

x(∆)2 + 4b1(∆)f13(∆)s(∆)x(∆)

2b1(∆)f13(∆)

)
= f12(∆).

This gives that m2(∆) > v(∆, c1(∆)) − f12(∆) > v(∆, c2(∆)), a contradiction. Simi-

larly, if c2(∆) < b2(∆) and c2(∆) − c1(∆) > 5 + 2
√

2

√
f12(∆)f23(∆)

f13(∆)
, we get v(∆, c2(∆)) −

v(∆, c1(∆)) > f12(∆), which gives that m2(∆) > v(∆, c2(∆)) − f12(∆) > v(∆, c1(∆)),
a contradiction. Therefore, if either c1(∆) > b2(∆) or c2(∆) < b2(∆), the lemma holds.
It is clear from the definitions that c1(∆) 6 c2(∆), so the only other possibility is that
c1(∆) 6 b2(∆) 6 c2(∆). In this case, by Lemma 5.3, there is such a complex Γ0, and so
we have already seen that the lemma holds. �

Proof of Lemma 3.13: We must have f1(∆) > g1(Γ), and so if there is a Γ with
b1(∆) = g1(Γ), then we must have f1(∆) > b1(∆).

Suppose that f1(∆) = b1(∆). Note that this means that Γ cannot have an extra
vertex of color 1. Additionally, since r(Γ) = 2, Γ does not have an extra vertex of
color 2. There are few enough edges of color 12 for Γ to use them all if and only if
f1(∆)g2(Γ) > f12(∆). There are enough edges of color 12 for Γ to be well-defined if and

only if b1(∆)g2(Γ) 6 f12(∆). Hence, equality must hold, and so we get g2(Γ) = f12(∆)
f1(∆)

.
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Otherwise, we have f1(∆) > b1(∆). There are enough vertices of color 2 to define the
complex if and only if g2(Γ) 6 f2(∆), which is condition (8). There are enough vertices of
color 1 to handle the edges of color 12 if and only if f1(∆)g2(Γ) > f12(∆), or equivalently,

g2(Γ) > f12(∆)
f1(∆)

, which is condition (2). There are enough vertices of color 3 to deal with

the edges of color 23 if and only if f3(∆)g2(Γ) > f23(∆), or equivalently, g2(Γ) > f23(∆)
f3(∆)

,

which is condition (5).
There are enough edges of color 12 for the complex to be well-defined if and only if

b1(∆)g2(Γ) 6 f12(∆), or equivalently, g2(Γ) 6 f12(∆)
b1(∆)

, which is condition (6). There are

enough edges of color 23 for the complex to be well-defined if and only if g2(Γ)g3(Γ) 6
f23(∆), or equivalently, g3(Γ) 6 f23(∆)

g2(Γ)
. There are enough edges of color 13 for the complex

to be well-defined if and only if b1(∆)g3(Γ) 6 f13(∆), or equivalently, g3(Γ) 6 f13(∆)
b1(∆)

. Since

g3(Γ) is an integer, we can take floors of its upper bounds to get g3(Γ) 6
⌊
f23(∆)
g2(Γ)

⌋
and

g3(Γ) 6
⌊
f13(∆)
b1(∆)

⌋
.

There are few enough edges of color 12 for Γ to use them all if and only if f12(∆) 6
(b1(∆) + 1)g2(Γ), or equivalently, g2(Γ) > f12(∆)

b1(∆)+1
, which is condition (3). There are few

enough edges of color 23 for the complex to use them all if and only if g2(∆)(g3(Γ) + 1) >
f23(∆), or equivalently, g2(Γ) > f23(∆)

g3(∆)+1
.

There are few enough edges of color 13 for Γ to use them all if and only if both
f13(∆) 6 f3(∆)(b1(∆) + 1) and (b1(∆) + 1)(g3(Γ) + 1) > f13(∆). The former is condition

(1), and the latter is equivalent to g3(Γ) > f13(∆)
b1(∆)+1

− 1. Since g3(Γ) is an integer, we can

take the ceiling and get g3(Γ) >
⌈

f13(∆)
b1(∆)+1

⌉
− 1.

Thus, we have that in order to make g3(Γ) compatible with the choice of g1(Γ) = b1(∆)

and not use more vertices of color 3 than are available, our bounds are g3(Γ) >
⌈

f13(∆)
b1(∆)+1

⌉
−

1, g3(Γ) 6
⌊
f13(∆)
b1(∆)

⌋
, and g3(Γ) 6 f3(∆). In order to then make g2(Γ) compatible with

g3(Γ), our bounds are g2(Γ) > f23(∆)
g3(Γ)+1

and g2(Γ)g3(Γ) 6 f23(∆), from which g2(Γ) 6 f23(∆)
g3(Γ)

.

We plug in our bounds on g3(Γ) to get g2(Γ) 6 f23(∆)

d f13(∆)
b1(∆)+1

e−1
and g2(Γ) > f23(∆)

b f13(∆)
b1(∆)
c+1

, which

are conditions (7) and (4), respectively. �

6 Some examples

Theorem 3.17 explained how to compute m(∆), and thereby characterize the flag f -vectors
of three-colored complexes. In this section, we give some examples of how the procedure
works, with both some typical cases and some extremal ones to argue that it would likely
be impractical to greatly improve upon Theorem 3.17, so it a satisfactory solution to the
problem. We start with a few trivial examples.

Example 6.1 Let f1(∆) = 3, f2(∆) = 5, f3(∆) = 7, f12(∆) = 23, f13(∆) = 14, and
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f23(∆) = 18. We compute f12(∆) = 23 > 15 = f1(∆)f2(∆), so there is no 3-colored
complex ∆ having the given face numbers, and we stop.

Example 6.2 Let f1(∆) = 3, f2(∆) = 5, f3(∆) = 7, f12(∆) = 13, f13(∆) = 16, and
f23(∆) = 18. The inequalities of part (1) of Theorem 3.17 hold, so we move on. In part
(2), we compute ⌊f12(∆)

f1(∆)

⌋⌊f13(∆)

f1(∆)

⌋
=
⌊13

3

⌋⌊16

3

⌋
= 20 > 18 = f23(∆).

Thus, Lemma 3.2 asserts that m(∆) = f1(∆)f23(∆) = (3)(18) = 54.
The proof of the Lemma 3.2 also explains how to find a complex Γ with the desired

flag f -numbers and 54 facets. We start with 3 vertices of color 1, 4 vertices of color 2,
and 5 vertices of color 3, and fill in all edges connecting two of these vertices of distinct
colors, except that there are two edges that would connect a vertex of color 2 to one of
color 3 that are missing. This gives us exactly 54 facets. We then add the remaining
vertices and edges to have the desired complex.

In this case, we are able to attain Walker’s bound of f123(∆) 6 f1(∆)f23(∆) = 54.

Example 6.3 Let f1(∆) = 17, f2(∆) = 31, f3(∆) = 25, f12(∆) = 15, f13(∆) = 12, and
f23(∆) = 279. The inequalities of point (1) hold and those of point (2) fail, so neither
settles the problem and we move on. Step (3) advises us to ensure that f12(∆) 6 f13(∆) 6
f23(∆). This does not hold with the numbers as given, as 15 > 12. We want to rearrange
the colors such that f12(∆) = 12, f13(∆) = 15, and f23(∆) = 279. This can be done by
swapping colors 2 and 3, which also gives us f2(∆) = 25 and f3(∆) = 31.

Step (4) starts by computing

b1(∆) =

⌊√
f12(∆)f13(∆)

f23(∆)

⌋
=

⌊√
(12)(15)

279

⌋
≈ b.803c = 0.

Since b1(∆) = 0, Lemma 3.6 tells us that

m(∆) = f12(∆)f13(∆) = (12)(15) = 180.

We can build a complex with exactly 180 facets by starting with a complete tripartite
graph on one vertex of color 1, 12 vertices of color 2, and 15 vertices of color 3, and then
adding the remaining vertices and edges any way you like. For comparison, the smallest
of Walker’s bounds is f123(∆) 6

√
f12(∆)f13(∆)f23(∆) ≈ 224.

Example 6.4 Let f12(∆) = f13(∆) = f23(∆) = 3 and f1(∆) = f2(∆) = f3(∆) = 2.
Steps (1) and (2) do not solve the problem. The number of edges are sorted as in step
(3). For part (4), we compute b1(∆) = b2(∆) = b3(∆) = 1. Next, we construct complexes
as in the other steps.
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step g1(Γ) g2(Γ) g3(Γ) r(Γ) f123(Γ)
5 1 2 2 1 undefined
5 2 1 2 2 undefined
6 1 2 1 2 4
6 1 3 1 2 undefined
7 2 1 1 1 4
7 3 1 1 1 undefined
8 2 1 1 1 previous
8 3 1 1 1 undefined
9 1 1 2 3 4
12 1 2 1 2 previous

In this example, we found a valid simplicial complex at five steps. In two of the five
cases, we had exactly the same constants as at a previous step, so there was no need
to construct the complex again. In the three cases where we did construct the complex,
we ended up getting exactly the same complex all three times, but with the vertices and
edges merely added in a different order. This happened because in this example, there
is only one color-shifted complex with the given flag f -numbers. This phenomenon of
constructing the same complex in multiple ways can easily happen if gi(Γ) ≈ bi(∆) for all
i ∈ [3]. We clearly have m(∆) = 4. For comparison, the smallest of Walker’s bounds is
f123(∆) 6 3

√
3 ≈ 5.2.

The next example is a typical use of the full Theorem 3.17. It has few enough complexes
in F(∆) that it is easy to compute them all, so that Lemma 3.16 doesn’t particularly
matter.

Example 6.5 Let f1(∆) = 533, f2(∆) = 471, f3(∆) = 818, f12(∆) = 4972, f13(∆) =
5311, and f23(∆) = 5630. We can quickly compute that steps (1) and (2) do not solve
the problem, and the numbers of edges are already sorted as step (3) dictates. Step (4)
asks us to compute b1(∆) = 68, b2(∆) = 72, and b3(∆) = 77.

The remaining steps essentially ask us to brute force the various complexes in F(∆).
We list the step at which we construct each complex, the parameters of the complex, and
the number of facets. When we hit on parameters used earlier, we note it and do not
reconstruct a complex that we have already used.

step g1(Γ) g2(Γ) g3(Γ) r(Γ) f123(Γ)
5 68 73 78 1 undefined
5 69 72 78 2 undefined
6 68 73 77 2 382896
8 69 72 76 1 382736
9 6 6 818 3 not in F(∆)
11 68 73 77 2 previous

There is no complex for step (7) because the condition of Lemma 3.10 is violated. We
could have quickly discarded the two undefined complexes of step (5) on the basis that
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it has gi(Γ) > bi(∆) for two values of i. We do not bother to invoke Lemma 3.16 for
steps (11)-(13), as there are few enough complexes that we can find them all by brute
force. By inspection, m(∆) = 382896. For comparison, the tightest of Walker’s bounds
is approximately f123(∆) 6 385574.

The next example gives a typical demonstration of the power of Lemma 3.16. The
class F(∆) is huge, but this lemma lets us compute few enough complexes that we can
list them all here.

Example 6.6 Let f1(∆) = 13, f2(∆) = 5471, f3(∆) = 3818, f12(∆) = 1843, f13(∆) =
2157, and f23(∆) = 3150248. We can quickly compute that steps (1) and (2) do not solve
the problem, and the numbers of edges are already sorted as step (3) dictates. Step (4)
asks us to compute b1(∆) = 1, b2(∆) = 1640, and b3(∆) = 1920.

This time, there aren’t very many possible complexes outside of steps (11)-(13), but in
these final steps, we get complexes in F(∆) with g2(Γ) ranging from 1460 to 1843. A direct
brute force approach would require checking several hundred complexes. Fortunately,
Lemma 3.15 immediately allows us to limit the computations to values of g2(∆) ranging
from 1637 to 1644.

step g1(Γ) g2(Γ) g3(Γ) r(Γ) f123(Γ)
5 1 1842 2156 1 undefined
5 1 1640 1920 2 3198156
6 1 1640 1920 2 previous
9 0 825 3818 3 not in F(∆)
11 1 1640 1920 2 previous
11 1 1641 1919 2 3198122
11 1 1642 1918 2 3198086
11 1 1643 1917 2 3198048
11 1 1644 1916 2 3198008
11 1 1639 1922 2 3198098
11 1 1638 1923 2 3198013
11 1 1637 1924 2 3198040

By inspection, m(∆) = 3198156. For comparison, the tightest of Walker’s bounds is
approximately f123(∆) 6 3538833.

If one of the complexes computed later had more facets than the ones we computed
before reaching step (11), that could have further restricted how many complexes we
would have to compute in step (11). Regardless, this is still far more efficient than having
to compute the number of facets of every single complex in F(∆). Note that it was
sufficient to try 8 complexes. For comparison, Theorem 3.17 said that we would need to
do the computations for at most 114 complexes.

Finally, we wish to note that finding the complex with the maximal number of vertices
can force g2(∆) to be arbitrarily far away from b2(∆). More precisely, the difference can
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be on the order of

√
f12(∆)f23(∆)

f13(∆)
even as this quantity becomes arbitrarily large. Thus, the

bound of Theorem 3.17 on how many complexes we need to check is off by at worst a
constant factor.

Example 6.7 Pick any real number t and let f1(∆) = 2, f2(∆) = b100tc, f3(∆) = b100tc,
f12(∆) = b100tc, f13(∆) = b100t + 2(10)tc, and f23(∆) =

⌊
b2

3
f12(∆)c(b2

3
f13(∆)c + .45)

⌋
.

We can compute b1(∆) = 1, b2(∆) ≈ 2
3
f12(∆), and b3(∆) ≈ 2

3
f13(∆). If we apply

Theorem 3.17 compute the value of g2(∆) that maximizes the number of facets, we usually

get b2(∆)− g2(∆) ≈ .35

√
f12(∆)f23(∆)

f13(∆)
.

In the previous example, f12(∆) was close to f13(∆), which means that

√
f12(∆)f23(∆)

f13(∆)
≈√

f23(∆)
f13(∆)

. The next example sets generalizes the previous example and shows that the

number of complexes required can still be on the order of

√
f12(∆)f23(∆)

f13(∆)
even as f13(∆)

f12(∆)
is

arbitrarily large.

Example 6.8 Pick any positive real number t and any integer w and let f1(∆) = 2,
f2(∆) = b100tc, f3(∆) = bw100tc, f12(∆) = b100tc, f13(∆) = bw100t + 2

√
w(10)tc, and

f23(∆) =
⌊
b2

3
f12(∆)c(b2

3
f13(∆)c + .45)

⌋
. We can compute b1(∆) = 1, b2(∆) ≈ 2

3
f12(∆),

and b3(∆) ≈ 2
3
f13(∆). Furthermore, if t is large enough that f13(∆)

f12(∆)
≈ w, the complex that

maximizes f123(Γ) has

g2(Γ) ≈ b2(Γ)− .23
10t

√
w
≈ b2(Γ)− .35

√
f12(∆)f23(∆)

f13(∆)
.

In these examples, in order for the complex Γ that maximizes the number of facets
to have g2(Γ) far away from b2(∆), it is necessary that many consecutive possible values
of g2(Γ) have j1(Γ) much larger than 0 and much smaller than g2(Γ). If this happens,
then decreasing g2(Γ) by 1 increases g3(Γ) by the same amount (w in the above example)
many consecutive times. This additional structure makes it easy to get a formula for
f123(Γ) as a function of g2(Γ) that holds for many consecutive values of g2(Γ), which can
greatly reduce the computations needed to find m(∆) in the particularly bad cases where
Theorem 3.17 calls for constructing a large number of simplicial complexes. Thus, even
the worst cases are not nearly so bad as they seem.

Of course, one could still hope for a quick and clever solution to this problem as has
happened with some previous characterizations of f -vectors of various classes of com-
plexes. The next example explains why an easy characterization is improbable, as adding
one extra vertex or edge can dramatically change the complex that maximizes the number
of facets.

Example 6.9 Let f1(∆) = 2, f2(∆) = 6683, f3(∆) = 7000, f12(∆) = 10000, f13(∆) =
10200, and f23(∆) = 45331745. We can compute that m(∆) = 56664978. Furthermore,
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there is only one complex Γ ∈ F(∆) such that f123(Γ) = 56664978, and it has p(Γ) = 1,
q(Γ) = 3, g1(Γ) = 1, g2(Γ) = 6683, and g3(Γ) = 6783.

If we set f2(∆) = 6682 and leave the rest of the flag f -numbers unchanged, this
obviously excludes the previously optimal complex. This time, we get m(∆) = 56664977,
which corresponds to two complexes Γ1,Γ2 ∈ F(∆). The two complexes are defined by
p(Γ1) = 3, q(Γ1) = 1, g1(Γ1) = 1, g2(Γ1) = 6643, g3(Γ1) = 6823, p(Γ2) = 2, q(Γ2) = 1,
g1(Γ2) = 1, g2(Γ2) = 6642, and g3(Γ2) = 6824. What happened in this example is that
g2(Γ) for the unique Γ ∈ D(∆) was quite far to one side of b2(∆) = 6666, and changing
the number of allowed vertices of one color by 1 made it so that there were two complexes
Γ1,Γ2 ∈ D(∆), both of which g2(Γ1) and g2(Γ2) quite far on the other side of b2(∆).

Furthermore, we can get similar results by adding one edge. Let f13(∆) = 10201
and leave the rest of the flag f -numbers the same as in the original example. This time,
we get m(∆) = 56668334, and there are again two complexes Γ1,Γ2 ∈ F(∆) such that
f123(Γ1) = f123(Γ2) = 56668334. These two complexes are defined by exactly the same
parameters as Γ1 and Γ2 had in the previous paragraph; the extra edge merely adds some
extra facets. This time, the big change in the structure of the complex is not due to a cap
on the number of vertices; the same complexes would still be the only ones in D(∆) even
if f2(∆) were greatly increased. One can still define Γ by the same parameters as before,
but this time, f123(Γ) = 56668295 < m(∆).

This same behavior also occurs with smaller numbers, but if g2(Γ) differs from b2(∆)
by only 1 or 2, it is much less clear what happened.

7 More colors

Having characterized the flag f -vectors of 3-colored complexes, it is natural to ask whether
the characterization carries over to more colors. Unfortunately, even the case of four colors
is dramatically more complicated than that of three.

The basic approach of the three color case does carry over, however. Recall that we
started by ignoring the discreteness of faces and allowing non-integer numbers of vertices.
The same scheme can be done with more colors, and is along the lines of what Walker
did in [7].

If given a proposed flag f -vector on n colors {fS}S⊆[n], one can propose that the faces
of color set S be a complete |S|-partite complex on some vertices of each color of S. That
is, if S = {i1, i2, . . . , in}, we can suppose that the faces of color set S consist of all ways
to choose one vertex out of f i1

S of color set i1, one vertex out of f i2
S of color set i2, and

so forth, with the restriction that fS = f i1
S f i2

S . . . f in
S . The simplicial complex restriction

that any subface of a face must itself be a face corresponds to the requirement f i
T > f i

S

for every i ∈ T and T ⊂ S.
As Walker did, we can take the logarithms of both sides and get log(fS) = log(f i1

S ) +
log(f i2

S ) + . . . + log(f in
S ). This turns the problem into a linear programming problem of

maximizing log(f[n]) subject to the known values of log(fS) and the inequalities f i
T > f i

S.
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If one can find the optimal solution in the continuous case, one could hope that the
optimal solution in the discrete case would be nearby.

Unfortunately, not only is it unclear how to find an efficient solution in the discrete
case, but with four or more colors, having a solution in the continuous case doesn’t even
guarantee that there is a solution in the discrete case. As we saw earlier, if we set f12(∆) =
f13(∆) = f23(∆) = 3, the optimal solution in the continuous case is f123 = 3

√
3 > 5, but

the discrete case only allows 4 facets. If we use these same numbers as part of a flag
f -vector for a four-colored complex and try to require f123(∆) = 5, we may well find
solutions in the continuous case, but there will be no solution in the discrete case. Unlike
the case of three colors, faces of dimension two are no longer facets, and cannot be ignored
simply by posing the problem as one of maximizing the number of facets.

Regardless of whether this method can be extended to higher dimensions, it does
provide a non-trivial class of examples where the exact characterization is known. Any
proposed theorem toward characterizing the flag f -vectors of colored complexes or the
flag h-vectors of balanced Cohen-Macaulay complexes or balanced shellable complexes
can now be checked against the known, exact result in the case of three colors.
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