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Abstract

In this note we investigate a special form of degree games defined by D. Hefetz,
M. Krivelevich, M. Stojaković and T. Szabó [4]. Usually the board of a graph game
is the edge set of Kn, the complete graph on n vertices. Maker and Breaker alter-
nately claim an edge, and Maker wins if his edges form a subgraph with prescribed
properties; here a certain minimum degree. In the special form the board is no
longer the whole edge set of Kn, Maker first selects as few edges of Kn as possible
in order to win, and our goal is to compute the necessary size of that board. Solving
a question of [4], we show, using the discharging method, that the sharp bound is
around 10n/7 for the positive minimum degree game.

1 Introduction

We briefly recall the necessary definitions about positional games, for a deeper intro-
duction see J. Beck [3] or specifically D. Hefetz, M. Krivelevich, M. Stojaković and
T. Szabó [4]. The game H = (V (H), E(H)) is played by two players, called Maker
and Breaker, on the hypergraph H = (V (H), E(H)). The players take turns in claiming
one previously unclaimed vertex of V (H); here we assume Breaker starts the game and
the game ends if all vertices are taken. Maker wins by taking every element of some
A ∈ E(H), while Breaker wins if he can take at least one vertex of every edge in E(H).
Clearly, exactly one of the players wins this game.

We consider graph games ; in those V (H) ⊂ E(Kn), and E(H) ⊂ 2E(Kn). The set E(H)
is a global property if for all A ∈ E(H) the subgraph spanned by A has Ω(n) vertices. A
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well-known example for this is the Shannon’s switching game, in which E(H) consists of
the edge sets of the spanning trees in V (H), [5]. Here Maker wins if and only if V (H)
hosts two edge-disjoint spanning trees. That is 2n−2 appropriately selected edges results
in a Maker’s win, while Breaker wins if V (H) has fewer than 2n− 2 edges. In general, for
a property P = E(H), we look for m̂(P), the smallest size of V (H) that is sufficient to
guarantee Maker’s win.

In this note we investigate a global property, achieving in a graph a given minimum
degree. A possible way to define degree games is to say Dk := Dk(n) consist of the
subgraphs of Kn having minimum degree k. For other degree games see [1, 2, 3, 7].
D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó [4] showed that 11n/8 ≤ m̂(D1) ≤
10n/7 + 4, and m̂(D1) ≤ 10n/7 if n = 7`.

Our main result is the exact determination of m̂(D1).

Theorem 1 For n ≥ 4 ⌈
10

7
n

⌉
= m̂(D1), for n 6≡ 2 (mod 7),

and ⌈
10

7
n

⌉
+ 1 = m̂(D1), for n ≡ 2 (mod 7).

It means that there exists graphs with
⌈
10
7
n
⌉

(or
⌈
10
7
n
⌉

+ 1, if n = 7` + 2) edges on
n vertices on which Maker wins, and on graphs with fewer edges always Breaker wins.
Similar, but much weaker results might be spelled out for m̂(D2) and m̂(Dk).

Proposition 2 For all k ∈ N, m̂(D2) ≤ 20n
7

for n = 14k, and m̂(Dk) ≤ 10
7
kn for n = 7k.

L. Székely [7] and J. Beck [2] studied degree games on the edges of Kn,n, but their
methods also apply to Kn. Briefly Maker wins if k < n/2−

√
n log n, and Breaker wins if

k > n/2−
√
n/12. To put it differently, if k is about n/2−

√
n log n, then D̂k = (k+f(k))n,

where f(k) = O(
√
k log k). It would be interesting to know if the function f behaves

similarly for smaller values, too. A quick calculation shows that adding copies of K`,` and
using a weight function strategy on each K`,` gives a better bound on m̂(Dk) than 10kn/7,
provided k > 32.

2 Proofs

Proof of Theorem 1. Observe that for n ≤ 3 Breaker always wins, so we may assume
that n ≥ 4. First we construct graphs on which Maker can win, establishing the upper
bounds. It is easy to check that Maker wins on K4, K3,3, and D7, where D7 is a “double
diamond”, that is we take two copies of K4 \ v1v4, and identify the two vertices called
“v4.” (Note that this was observed already in [4].)
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The graph D7. Here v4 = v′4.

For n = 7k, Maker wins on k vertex disjoint copies of D7. For n = 7k+ 4, Maker wins
on k vertex disjoint copies of D7 and one copy of K4. Similarly, for n = 7k + 6, Maker
wins on k vertex disjoint copies of D7 and one copy of K3,3. For the rest of the cases, the
following observation is sufficient: Assume that Maker wins on G. Form G′ by adding
a vertex to G, with edges to arbitrarily chosen two other vertices. Then by playing the
winning strategy on the edges of G and a simple pairing on the two newly selected edges,
Maker wins on G′ as well. For n = 7k + 1 Maker wins on (k · D7)

′, for n = 7k + 2 on
((k ·D7)

′)′, for n = 7k+ 3 on (k−1) ·D7 +K4 +K3,3, and for n = 7k+ 5 on (k ·D7 +K4)
′.

Now we prove the lower bounds. Let G be such a graph on n vertices with as few
edges as possible, that Maker, as a second player, can achieve degree at least one at every
vertex. We first observe some properties of G.

A path xz1 . . . zmy is a (k, `)-(x, y)-path, if d(x) = k, d(z1) = . . . = d(zm) = 3 and
d(y) = `. Note that m can be 0, that is the path consisting of the edge xy.

Lemma 3 The graph G has the following properties.
(i) For every x ∈ V (G) we have d(x) ≥ 2.
(ii) There is no (2, 2)-(x, y)-path in G.
(iii) For any k ≥ 3, there are no vertices x, y1, . . . , yk−1 with a (k, 2)-(x, yi)-path for
every i.
(iv) There is a vertex x ∈ V (G) with d(x) = 2.
(v) In a component of G if there is a vertex x ∈ V (G) with d(x) = 2 then either there is
a vertex y ∈ V (G) with d(y) ≥ 4 or the component consists of at least 7 vertices.

Proof of Lemma 3. If (i) was false then Breaker would trivially win instantly.
To prove (ii), assume for a contradiction that G contains a (2, 2)-(x, y)-path xz1 . . . zmy,

where m is chosen to be minimum possible. The minimality of m implies that this path is
an induced path. Now Breaker easily wins, claiming edges xz1, z1z2, . . . , zmy. In order to
avoid instant loss, Maker has to claim the last unclaimed edge at x, z1, . . . , zm, and finally
Breaker could claim the last unclaimed edge at y.

For (iii), assume that for some k ≥ 3 such a path system exists. We might choose one,
with minimum number of vertices. Then using (ii) and the minimality, any edge spanned
by the vertex set of this path system is also an edge of some of those paths. Now as in
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the proof of part (ii), Breaker can claim all path edges, starting from the vertices yi, and
then could claim the last edge at x.

Part (iv) follows from that if G was a counterexample for Theorem 1, then its density
was smaller than 3/2.

For (v) assume that G is a counterexample. Then by (ii), each component of G
contains at most one vertex of degree 2. Each such component should have odd number
of vertices. There is one possible graph with 5 vertices, and it is easy to see that Breaker
wins on it. �

We now apply the discharging method, see e. g. [6]:
In the charging phase a vertex v ∈ V (G) is assigned a weight or charge w(v) := d(v).
In the discharging phase the vertices send some of their charges to other, not necessarily

neighboring vertices. The rules of the discharging are as follows:

1. A vertex of degree 2 sends no charge.

2. Only vertices of degree 2 receive any charge.

3. A 3-degree vertex x sends charge 1/7 to a 2-degree vertex y if there is a (3, 2)-(x, y)-
path.

4. If for a k > 3 there is a (k, 2)-(x, y)-path, then x sends a charge of 4/7 to y.

In the beginning the sum of the charges is the sum of the degrees. The sum of the
charges does not change during the discharging phase, so the following claim completes
the proof for the case when n 6= 7` + 2.

Claim 1 After the discharging phase every vertex has charge at least 20/7.

Proof of Claim 1. Observe that charges are staying within components. If every vertex
of a component is of degree at least 3, then the charges do not change, and the claim is
trivially true. If a component has a degree-2 vertex but has no vertex of degree at least 4,
then by Lemma 3 (v) it consists of at least 7 vertices. By Lemma 3 (ii) such a component
contains exactly one vertex of degree 2. Each vertex of degree 3 sends a charge of 1/7
to the 2-degree vertex, which will have charge at least 2 + 6 · 1/7 = 20/7. The 3-degree
vertices will have charge 3− 1/7 = 20/7.

Now consider a component, which contains vertices both of degree 2 and at least 4.
By Lemma 3 (iii), a vertex x with d(x) = 3 sends to at most one 2-vertex a charge of 1/7,
so it will have charge at least 3− 1/7 = 20/7. For any k > 3, by Lemma 3 (iii), a vertex
x with d(x) = k will have charge at least

k − 4(k − 2)/7 = 3k/7 + 8/7 ≥ 20/7. (1)

Now assume that d(x) = 2. For some k > 3 there is a (2, k)-(x, y) path for some k-vertex
y. So x will receive from y a charge of 4/7. If xy 6∈ E(G) then x has two neighbors
of degree 3, and receives charges of 1/7 from both. So the charge of x will be at least
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2 + 4/7 + 1/7 + 1/7 = 20/7. Otherwise, let z be the other neighbor of x. Observe, that
d(z) ≥ 3, because of Lemma 3 (ii), and z should send a charge of at least 1/7 to x.
Observe also that the vertex z must have a neighbor w that differs both from x and y,
and, by Lemma 3 (ii) the degree of w is at least 3. But then w sends a charge at least
1/7 to x, which is sufficient to achieve charge of at least 20/7 at x. �

The proof of Theorem 1 is completed when n 6≡ 2 (mod 7).
Assume that n = 7k + 2 for some positive integer k. Then the sum of the charges in

G is at least (7k + 2) · 20/7 = 20k + 40/7, yielding that e(G) ≥ 10k + 3. If we were able
to find extra 3/7 charges, then this would be sufficient to imply e(G) ≥ 10k+ 4, and then
the proof of Theorem 1 would have been completed.

Trivially, each component contains at least four vertices. If there is a component, with
each of its vertices having degree at least 3, then each will have extra charge 1/7 and the
proof is completed. Now we can assume that each component contains a degree-2 vertex.
If there is a vertex of degree at least 5, then (1) implies that this vertex will have at least
extra 3k/7 + 8/8 ≥ 20/7 + 3/7 charge. So now we can assume that the maximum degree
is at most 4. If there is a component which contains only vertices of degree 2 and 3, then
Lemma 3 (iii) implies that it contains only one degree-2 vertex, and by parity reasons 2s
degree-3 vertices for some s. One can check (we omit the details) that Breaker wins if
s ≤ 4. On the other hand, if s ≥ 5 then we have extra charge at least 2s/7− 6/7 ≥ 4/7.
So now we can assume that each component contains vertices of both degree 2 and 4.

Since n ≡ 2 (mod 7), G must have a component C, such that |C| 6≡ 0 (mod 7).
Assume now that in such a component C there are ` ≥ 1 vertices of degree 4. Then

there should be exactly 2` vertices of degree 2. It cannot be fewer, otherwise either a
degree-4 vertex retains charge 4/7 or at least two degree-2 vertices overcharged by 2/7,
or a degree-2 vertex is overcharged by 6/7 and we are done. It cannot be more, as now
every degree-2 vertex receives charge from a degree-4 vertex, and a degree-4 vertex can
send charges to at most two degree-2 vertices.

The proof of Claim 1 implies that each degree-2 vertex receives charges from one
degree-4 vertex and at least two degree-3 vertices. So the number of degree-3 vertices is
at least 4`. Because |C| 6≡ 0 (mod 7), it is more than 4`, but it must be less than 4` + 4,
otherwise there would be 4/7 extra charge, So the number of degree-3 vertices is 4` + 2.

Denote {x1, . . . , x`} the set of degree-4 vertices in C. Observe that C − {x1, . . . , x`}
has at least 2` components, and 2` of them contain a degree-2 vertex and at least two
degree-3 vertices. Assume that 2` − i components contain exactly two degree-3 vertices
among those, where i ≤ 2. There are at least 4` − i edges between these 2` components
and the vertex set {x1, . . . , x`}, and because C is connected, the number of additional
edge endpoints of vertices in {x1, . . . , x`} is at least `, yielding 4`− i + ` ≤ 4`, i.e. ` ≤ 2.
Note that when there is a cut-edge, then Breaker in his first step can claim it, and can
easily win in the component in which Maker does not occupy an edge. One can check
that when ` = 2 then there is always a cut-edge. When ` = 1, then C has nine vertices,
with degree sequence 2, 2, 3, 3, 3, 3, 3, 3, 4, and the degree-4 vertex is a cut-vertex. It can
be checked that Breaker has a winning strategy, we omit the details. �
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Sketch of the proof of Proposition 2.
We use the graph D7 that was shown to be a Maker’s win in the positive minimum

degree game in [4]. From two copies of D7 one can make a graph D14 such that v(D14) =
14, e(D14) = 40 and Maker wins the game (E(D14),D2). The construction is made in two
steps.

First we take two copies of D7, and glue them together in three vertices. The degree
two and degree four vertices are associated to the same vertices in the other copy, one
to each other. The resulting graph H has 11 vertices and 20 edges. Note that playing
Maker’s winning strategy for the positive minimum degree game separately on the edges
of the D7’s, Maker gets degrees at least two at the “glued” vertices, and at least one at
the others.

In the second step we glue together two copies of H, this time at the degree three
vertices, taking care not creating parallel edges, this we call D14. (Simply the vertices
of a diamond should be glued to vertices that are not in a diamond in the other copy.)
Again, playing separately on the edges of the two copies of H, Maker gets at least two
degrees at all vertices of D14.
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The graph D14.

Let D2
7 = D7�D7 be the Cartesian product of D7 with itself, and Dk

7 := D7�Dk−1
7 be

kth power of D7. To play the (E(Dk
7),Dk)-game, let Maker play the winning strategy for

a (E(D7),D1)-game in the same projection in that Breaker has just played. This clearly
gives a winning strategy for the (E(Dk

7),Dk)-game, and e(D7)/v(D7) = 10(7)k−1k/7k =
10k/7. �

Remarks. The discharging method also gives lower bound on m̂(D2), alas, it is not
matching with m̂(D2) ≤ 20n/7, the upper bound of Proposition 2. In fact, we think the
upper bound on m̂(D2) is not tight, but we cannot improve on it.
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