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Abstract

The paper concerns the automorphism groups of Cayley graphs over cyclic
groups which have a rational spectrum (rational circulant graphs for short). With
the aid of the techniques of Schur rings it is shown that the problem is equiva-
lent to consider the automorphism groups of orthogonal group block structures of
cyclic groups. Using this observation, the required groups are expressed in terms of
generalized wreath products of symmetric groups.

1 Introduction

A circulant graph with n vertices is a Cayley graph over the cyclic group Zn, i.e., a graph
having an automorphism which permutes all the vertices into a full cycle. There is a vast
literature investigating various properties of this class of graphs. In this paper we focus
on their automorphisms. By the definition, the automorphism groups contain a regular
cyclic subgroup. The study of permutation groups with a regular cyclic subgroup goes
back to the work of Burnside and Schur. Schur proved that if the group is primitive
of composite degree, then it is doubly transitive (see [109]). The complete list of such
primitive groups was given recently by the use of the classification of finite simple groups,
see [54, 83].

One might expect transparent descriptions of the automorphism groups of circulant
graphs by restricting to a suitably chosen family. A natural restriction can be done with
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respect to the order n of the graph. For instance, we refer to the papers [32, 68, 76]
dealing with the case when n is a square-free number, n = pe (p is an odd prime), and
n = 2e, respectively. In the present paper we choose another natural family by requiring
the graphs to have a rational spectrum, i.e., the family of rational circulant graphs.

To formulate our main result some notation is in order. For n ∈ N, we let [n] denote the
set {1, . . . , n}, and Sn the group of all permutations of [n]. Let ([r],�) be a poset on [r].
We say that ([r],�) is increasing if i � j implies i ≤ j for all i, j ∈ [r]. Below

∏
([r],�) Sni

denotes the generalized wreath product, defined by ([r],�) and the groups Sn1 , . . . , Snr ,
acting on the set [n1]× · · · × [nr]. For the precise formulation, see Definition 9.3.

Our main result is the following theorem.

Theorem 1.1. Let G be a permutation group acting on the cyclic group Zn, n ≥ 2. The
following are equivalent:

(i) G = Aut(Cay(Zn, Q)) for some rational circulant graph Cay(Zn, Q).

(ii) G is a permutation group, which is permutation isomorphic to a generalized wreath
product

∏
([r],�) Sni

, where ([r],�) is an increasing poset, and n1, . . . , nr are in N
satisfying

(a) n = n1 · · ·nr,

(b) ni ≥ 2 for all i ∈ {1, . . . , r},

(c) (ni, nj) = 1 for all i, j ∈ {1, . . . , r} with i 6� j.

To the number ni in (ii) we shall also refer to as the weight of node i in the poset
([r],�). The following examples serve as illustrations of Theorem 1.1.

Example 1.2. Here n = 6. Up to complement, there are four rational circulant graphs:

K6, K2 ×K3, K3,3, K2,2,2.

The corresponding automorphism groups: S6, S2 × S3, S2 o S3, and S3 o S2.
In part (ii) we get G = S6 for r = 1. If r = 2, then any choice n1, n2 ∈ {2, 3} with

n1n2 = 6 gives weights of an increasing poset on {1, 2}. For instance, if n1 = 2, n2 = 3,
and ([2],�) is an anti-chain, then G = S2 × S3, and the same group is obtained if we
switch the values of weights. Changing the poset ([2],�) to a chain we get the wreath
products S2 o S3 and S3 o S2.

Example 1.3. Here n = 12. In this example we consider the groups that can be derived
from part (ii). We have G = S12 if r = 1. If r = 2, then similarly to the previous example
we deduce that G is one of the groups: S3 × S4, Sa o Sn/a, a ∈ {2, 3, 4, 6}.

Let r = 3. The three nodes of ([3],�) get weights 2, 2, 3 by (a)-(b), and because of (c)
the two nodes with weight 2 must be related. The possible increasing posets are depicted
in Figure 1.
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Figure 1: Increasing posets on {1, 2, 3}.

The weights are unique for posets (i)-(iii). In poset (iv) the only restriction is that n3 = 2,
in poset (v) the only restriction is that n1 = 2, and weights are arbitrarily distributed for
poset (vi). By Definition 9.3, we obtain the following groups:

• S3 × (S2 o S2) corresponding to posets (i)-(iii),

• S2 o (S2 × S3) corresponding to poset (iv),

• (S2 × S3) o S2 corresponding to poset (v),

• S3 o S2 o S2, S2 o S3 o S2 and S2 o S2 o S3 corresponding to poset (vi) (here the group
depends also on the weights).

Finally, altogether we obtain exactly 12 possible distinct groups (including the largest
S12 and the smallest of order 48). Each such group appears exactly ones. (Attribution of
the same group of order 48 to three posets is an artifice, which results from the way of
the presentation.) Observe that, each of these groups is obtained using iteratively direct
or wreath product of symmetric groups.

For larger values of n it is not true that generalized wreath product of symmetric
groups may be obtained by an iterative use of direct and wreath products of symmetric
groups. An example of such a situation appears for n = 36, and it will be discussed later
on in the text.

In deriving Theorem 1.1 we follow an approach suggested by Klin and Pöshcel in [67],
which is to explore the Galois correspondence between overgroups of the right regular
representation (Zn)R in Sym(Zn), and Schur rings (S-rings for short) over Zn. It turns
out that each circulant graph Γ generates a suitable S-ring A, such that Aut(Γ) coincides
with Aut(A). If in addition Γ is a rational circulant graph, then the corresponding S-ring
A is also rational.

Rational S-rings over cyclic groups were classified by Muzychuk in [88]. Therefore, in
principle, knowledge of [88] is enough in order to deduce our main results. Nevertheless,
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it is helpful and natural to interpret groups of rational circulant graphs as the automor-
phism groups of orthogonal group block structures on Zn. This implies interest to results
of Bailey et al. about such groups (see [6, 13, 9]). Consideration of orthogonal group
block structures as well as of crested products (see [12]) makes it possible to describe gen-
eralized wreath products as formulas over the alphabet with words “crested”, “direct”,
“wreath”, and “symmetric group”. Finally, the reader will be hopefully convinced that
the simultaneous use of a few relatively independent languages, like S-rings, lattices, as-
sociation schemes, posets, orthogonal block structures in conjunction with suitable group
theoretical concepts leads naturally to the understanding of the entire picture as well as
to a rigorous proof of the main results.

The rest of the paper is organized as follows. Section 3 serves as a brief introduction
to S-rings, while in sections 4 and 5 we pay attention to the particular case of rational
S-rings over Zn. We conclude these sections by crucial Corollary 5.4, which reduces the
problem to the consideration of the automorphism groups of rational S-rings over Zn.
In Section 6 an equivalent language of block structures on Zn is introduced. Section 7
provides the reader an opportunity to comprehend all main ideas on a level of simple
examples. In Section 8 crested products are introduced and it is shown that their use is,
in principle, enough for the recursive description of all required groups. In Section 9 poset
block structures are linked with generalized wreath products, while Section 10 provides a
relatively self-contained detailed proof of the main Theorem 1.1.

A number of interesting by-product results, which follow almost immediately from the
consideration are presented in Section 11. Finally, in Section 12 we enter to a discussion
of diverse historical links between all introduced languages and techniques, though not
aiming to give a comprehensive picture of all details.

2 Preliminaries

In this section we collect all basic definitions and facts needed in this paper.

2.1 Permutation groups

The group of all permutations of a set X is denoted by Sym(X). We let g ∈ Sym(X)
act on the right, i.e., xg is written for the image of x under action of g, and further we
have xg1g2 = (xg1)g2 . For a group K, let KR denote the right regular representation of K
acting on itself, i.e., xk = xk for all x, k ∈ K. Two permutation groups K1 ≤ Sym(X1)
and K2 ≤ Sym(X2) are permutation isomorphic if there is a bijection f : X1 → X2, and
an isomorphism ϕ : K1 → K2 such that, f(xk11 ) = f(x1)ϕ(k1) for all x1 ∈ X1, k1 ∈ K1.

Two operations over permutations groups will play a basic role in the sequel. The
permutation direct product K1×K2 of groups Ki ≤ Sym(Xi), i = 1, 2, is the permutation
representation of K1 ×K2 on X1 ×X2 acting as:

(x1, x2)(k1,k2) = (xk11 , x
k2
2 ), (x1, x2) ∈ X1 ×X2, (k1, k2) ∈ K1 ×K2.

Note that the direct product is commutative and associative.
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Let A ≤ Sym(X1) and C ≤ Sym(X2) be two permutation groups. The wreath product
A o C is the subgroup of Sym(X1 × X2) generated by the following two groups: the top
group T , which is a faithful permutation representation of A on X1 ×X2, acting as:

(x1, x2)a = (xa1, x2) for (x1, x2) ∈ X1 ×X2, a ∈ A,

and the base group B, which is the representation of the group CX1 on X1 ×X2, acting
as:

(x1, x2)f = (x1, x
f(x1)
2 ), (x1, x2) ∈ X1 ×X2, f ∈ CX1 ,

where f(x1) is the component (belonging to C) of f , corresponding to x1 ∈ X1. (Here
CX1 denotes the group of all functions from X1 to C, with group operation (fg)(x1) =
f(x1) · g(x1) for x1 ∈ X, f, g ∈ CX1 .) The group T normalizes B, |B ∩ T | = 1, therefore
〈B, T 〉 = B o T . Clearly, the group A o C has order |A o C| = |T | · |B| = |A| · |C||X1|.
Each element w ∈ A o C admits a unique decomposition w = tb, where t ∈ T and b ∈ B.
Also element w may be denoted as w = [a, f(x1)], called the table form of w (note that

here x1 is a symbol for a variable). By definition, (x1, x2)w = (xa1, x
f(x1)
2 ). Note that,

sometimes in wreath product A o C the group A is called active, while C passive groups.
The wreath product is associative, but not commutative. We remark that our notation
for wreath product follows, e.g., [40], and it has opposite direction in comparison with
traditions accepted in modern group theory.

A permutation group K ≤ Sym(X) acts canonically on X ×X by letting (x1, x2)k =
(xk1, x

k
2). The corresponding orbits are called the 2-orbits of K, the set of which we denote

by 2-Orb(K). The 2-closure K(2) of K is the unique maximal subgroup of Sym(X) that
has the same 2-orbits as K. Clearly, K ≤ K(2), and we say that K is 2-closed if K(2) = K.

2.2 Cayley graphs and circulant graphs

By a (directed) graph we mean a pair Γ = (X,R), where X is a nonempty set, and R is
a binary relation on X. In the particular case when (x, y) ∈ R if and only if (y, x) ∈ R
for all (x, y) ∈ X × X, Γ is also called an undirected graph, and then {x, y} is said to
be an (undirected) edge of Γ, which substitutes {(x, y), (y, x)}. The automorphism group
Aut(Γ) = Aut((X,R)) is the group of all permutations g in Sym(X) that preserve R, i.e.,
(xg, yg) ∈ R if and only if (x, y) ∈ R for all x, y ∈ X.

The adjacency matrix A(Γ) of the graph Γ = (X,R) is the X-by-X complex matrix
defined by

A(Γ)x,y =

{
1 if (x, y) ∈ R
0 otherwise.

The eigenvalues of Γ are defined to be the eigenvalues of A(Γ), and Γ is called rational
if all its eigenvalues are rational. Note that, since the characteristic polynomial of A(Γ)
has integer coefficients and leading coefficient ±1, if its eigenvalues are rational numbers,
then these are in fact integers.
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For a subset Q ⊆ K, the Cayley graph Cay(K,Q) over K with connection set Q is the
graph (X,R) defined by

X = K, and R =
{

(x, qx) | x ∈ K, q ∈ Q}.

Two immediate observations: the graph Cay(K,Q) is undirected if and only if Q = Q−1 =
{q−1 | q ∈ Q}; and the right regular representation KR is a group of automorphisms of
Cay(K,Q). Cayley graphs over cyclic groups are briefly called circulant graphs.

2.3 Schur rings

Let H be a group written with multiplicative notation and with identity e. Denote
QH the group algebra of H over the field Q of rational numbers. The group algebra
QH consists of the formal sums

∑
x∈H axx, ax ∈ Q, equipped with entry-wise addition∑

x∈H axx+
∑

x∈H bxx =
∑

x∈H(ax + bx)x, and multiplication∑
x∈H

axx ·
∑
x∈H

bxx =
∑
x,y∈H

(ayby−1x)x.

Given QH-elements η1, . . . , ηr, the subspace generated by them is denoted by 〈η1, . . . , ηr〉.
For a subset Q ⊆ H the simple quantity Q is the QH-element

∑
x∈H axx with ax = 1

if x ∈ Q, and ax = 0 otherwise (see [123]). We shall also write q1, . . . , qk for the simple

quantity {q1, . . . , qk}. The transposed of η =
∑

x∈H axx is defined as η> =
∑

x∈H axx
−1.

A subalgebra A of QH is called a Schur ring (for short S-ring) of rank r over H if the
following axioms hold:

(SR1) A (as a vector space) has a linear basis of simple quantities: A = 〈T1, . . . , Tr〉,
Ti ⊆ H for all i ∈ {1, . . . , r}.

(SR2) T1 = {e}, and
∑r

i=1 Ti = H.

(SR3) For every i ∈ {1, . . . , r} there exists j ∈ {1, . . . , r} such that Ti
> = Tj.

The simple quantities T1, . . . , Tr are called the basic quantities of A, the corresponding
sets T1, . . . , Tr the basic sets of A. We set the notation Basic(A) = {T1, . . . , Tr}.

2.4 Posets and partitions

A partially ordered set (for short a poset) is a pair (X,�), where X is a nonempty set, and
� is a relation on X which is reflexive, antisymmetric and transitive. We write x ≺ y if
x � y but x 6= y. For a subset L ⊆ X we say an element m ∈ L is maximal in L if m � l
implies l = m for all l ∈ L. Similarly, m ∈ L is minimal in L if l � m implies l = m for
all l ∈ L. Further, we say that i ∈ X is the infimum of L if i � l for all l ∈ L, and if
for some i′ ∈ X we have i′ � l for all l ∈ L, then i′ � i. Similarly, we say that s ∈ X is
the supremum of L if l � s for all l ∈ L, and if for some s′ ∈ X we have l � s′ for all
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l ∈ L, then s � s′. We set the notations: i =
∧
L and s =

∨
L. The infimum (supremum,

respectively) does not always exist, but if this is the case, it is determined uniquely.
The poset (X,�) is called a lattice if each pair of elements in X has infimum and

supremum. Then we have binary operations x ∧ y = ∧{x, y} and x ∨ y = ∨{x, y}. The
lattice (X,�) is distributive if for all x, y, z in X,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

If (X,�) is a lattice, and a subset X ′ ⊂ X is closed under both ∧ and ∨, then (X ′,�) is
also a lattice, it is called a sublattice of (X,�).

Let F be a partition of a set X. We denote by RF the equivalence relation corre-
sponding to F , and by A(F ) the adjacency matrix A(RF ). We say that two partitions E
and F of X are orthogonal if for their adjacency matrices A(E)A(F ) = A(F )A(E) (see
[10, Section 6.2] for a nice discussion of this concept). The set of all partitions of X is
partially ordered by the relation v, where E v F (E is a refinement of F ) if any class
of E is contained in a class of F . The resulting poset is a lattice, where E ∧ F is the
partition whose classes are the intersection of E-classes with F -classes; and E ∨ F is the
partition whose classes are the minimal subsets being union of E-classes and F -classes.
The smallest element in this lattice is the equality partition EX , the classes of which are
the singletons; the largest is the universal partition UX consisting of only the whole set
X.

3 More about S-rings

Let H be a finite group written with multiplicative notation and with identity e. The
Schur-Hadamard product ◦ on the group algebra QH is defined by∑

x∈H

ax x ◦
∑
x∈H

bx x :=
∑
x∈H

axbx x.

The following alternative characterization of S-rings over H is a folklore (cf. [96, Theorem
3.1]): a subalgebra A of QH is an S-ring if and only if e,H ∈ A, and A is closed with
respect to ◦ and >. By this it is easy to see that the intersection of two S-rings is also an
S-ring, in particular, given a subset A′ of QH, denote by 〈〈A′〉〉 the S-ring defined as the
intersection of all S-rings A that A′ ⊆ A. For Q ⊆ H we shall also write 〈〈Q〉〉 instead of
〈〈Q〉〉, calling 〈〈Q〉〉 the S-ring generated by Q. For two S-rings A and B over H, we say
that B is an S-subring of A if B ⊆ A. It can be seen that this happens exactly when every
basic set of B is written as the union of some basic sets of A.

Let A be an S-ring over H. A subset Q ⊆ H (subgroup K ≤ H, respectively) is
an A-subset (A-subgroup, respectively) if Q ∈ A (K ∈ A, respectively). If Q ⊆ H is
an A-subset, then 〈Q〉 is an A-subgroup (see [123, Proposition 23.6]). By definition, the
trivial subgroups {e} and H are A-subgroups, and for two A-subgroups E and F , also
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E ∩ F and 〈E,F 〉 are A-subgroups. In other words, the A-subgroups form a sublattice
of the subgroup lattice of H. Let K be an A-subgroup. Define AK = A∩QK. It is easy
to check that AK is an S-ring over K and

Basic(AK) = {T ∈ Basic(A) | T ⊆ K}.

We shall call AK an induced S-subring of A.
Following [67], by an automorphism of an S-ring A = 〈T 1, . . . , T r〉 over H we mean a

permutation f ∈ Sym(H) which is an automorphism of all basic graphs Cay(H,Ti). Thus
the automorphism group of A is

Aut(A) =
r⋂
i=1

Aut(Cay(H,Ti)).

The simplest examples of an S-ring are the whole group algebra QH, and the subspace
〈e,H \ {e}〉. The latter is called the trivial S-ring over H. Further examples are provided
by permutation groups G which are overgroups of HR in Sym(H) (i.e., HR ≤ G ≤
Sym(H)). Namely, letting T1 = {e}, T2, . . . , Tr be the orbits of the stabilizer Ge of e in G,
it follows that the subspace 〈T 1, . . . , T r〉 is an S-ring over H (see [123, Theorem 24.1]).
This fact was proved by Schur, and the resulting S-ring is also called the transitivity module
over H induced by the group Ge, notation V (H,Ge). It turns out that not every S-ring
over H arises in this way, and we call therefore an S-ring A Schurian if A = V (H,Ge) for
a suitable overgroup G of HR in Sym(H). The connection between permutation groups
and S-rings is reflected in the following proposition (see [96, Theorem 3.13]).

Proposition 3.1. Let A and B be arbitrary S-rings over H, and let G and K be arbitrary
overgroups of HR in Sym(H). Then

(i) A ⊆ B ⇒ Aut(A) ≥ Aut(B).

(ii) G ≤ K ⇒ V (H,Ge) ⊇ V (H,Ke).

(iii) A ⊆ V (H,Aut(A)e).

(iv) G ≤ Aut(V (H,Ge)).

The above proposition describes a Galois correspondence between S-rings over H and
overgroups of HR in Sym(H). We remark that it is a particular case of a Galois corre-
spondence between coherent configurations and permutation groups (cf. [121, 38]).

The starting point of our approach toward Theorem 1.1 is the following consequence
of the Galois correspondence, which is formulated implicitly in [121].

Theorem 3.2. Let H be a finite group and Q ⊆ H. Then

Aut(Cay(H,Q)) = Aut(〈〈Q〉〉).
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4 Rational S-rings over cyclic groups

In this section we turn to S-rings over cyclic groups. Our goal is to provide a description
of those S-rings A that A = 〈〈Q〉〉 for some rational circulant graph Cay(Zn, Q).

Throughout the paper the cyclic group of order n is given by the additive cyclic group
Zn, written as Zn = {0, 1, . . . , n− 1}. Note that, we have switched from multiplicative to
additive notation. For a positive divisor d of n, Zd denotes the unique subgroup of Zn of
order d, i.e.,

Zd = 〈m〉 =
{
xm | x ∈ {0, . . . , d− 1}

}
, where n = dm.

Let Z∗n = {i ∈ Zn | gcd(i, n) = 1}, i.e., the multiplicative group of invertible elements in
the ring Zn. (By some abuse of notation Zn stands parallel for both the ring and also its
additive group.) For m ∈ Z∗n, and a subset Q ⊆ Zn, define Q(m) = {mq | q ∈ Q}. Two

subsets R,Q ⊆ Zn are said to be conjugate if Q = R(m) for some m ∈ Z∗n. The trace
◦
Q of

Q is the union of all subsets conjugate to Q, i.e.,

◦
Q=

⋃
m∈Z∗n

Q(m).

The elements m in Z∗n act on Zn as automorphisms by sending x to mx. We have
corresponding orbits

(Zn)d =
{
x ∈ Zn | gcd(x, n) = d

}
, (1)

where d runs over the set of positive divisors of n. The complete S-ring of traces is the
transitivity module

V (Zn,Z∗n) = 〈(Zn)d | d | n〉.

By the rational (or trace) S-rings over Zn we mean the S-subrings of V (Zn,Z∗n). For an

S-ring A over Zn its rational closure
◦
A is the S-ring defined as

◦
A= A ∩ V (Zn,Z∗n), and

thus A is rational if and only if A =
◦
A.

Recall that a circulant graph Cay(Zn, Q) is rational if it has a rational spectrum. The
following result describes its connection set Q in terms of the generated S-ring 〈〈Q〉〉 (cf.
[23]).

Theorem 4.1. A circulant graph Γ = Cay(Zn, Q) is rational if and only if the generated
S-ring 〈〈Q〉〉 is a rational S-ring over Zn.

It follows from the theorem that Q is a union of some sets of the form (Zn)d. In
particular, exactly 2τ(n)−1 subsets of Zn define a rational circulant graph without loops
(i.e., 0 /∈ Q). Here τ(n) denotes the number of positive divisors of n. As we shall see in
11.1, the resulting graphs are pairwise non-isomorphic.
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5 Properties of rational S-rings over cyclic groups

Denote L(n) the lattice of positive divisors of n endowed with the relation x | y (x divides
y). For two divisors x and y, we write x ∧ y for their greatest common divisor, and x ∨ y
for their least common multiple. Note that, the lattice L(n) is distributive, and if L is
any set of positive divisors of n, then the poset (L, |) is a sublattice of L(n) if and only
if L is closed with respect to ∧ and ∨. By some abuse of notation we shall denote by L
this sublattice as well.

For a sublattice L of L(n), and m ∈ L, we define the sets

L[m] = {x ∈ L | x | m}, and L[m] = {x ∈ L | m | x}.

It is not hard to see that these are sublattices of L(n).

The following classification of rational S-rings over Zn is due to Muzychuk (see [88,
Main Theorem]).

Theorem 5.1.

(i) Let L be a sublattice of L(n) such that 1, n ∈ L. Then the vector space A =
〈Zl | l ∈ L〉 is an S-ring over Zn, which is rational.

(ii) Let A be a rational S-ring over Zn. Then there exists a sublattice L of L(n), 1, n ∈ L,
such that A = 〈Zl | l ∈ L〉.

We remark that if A = 〈Zl | l ∈ L〉 is the S-ring in part (i) above, then the simple
quantities Zl form a basis of the vector space A, where l runs over the set L. This basis
we shall also call the group basis of A. It is also true that all A-subgroups appear in
this basis, i.e., for any subgroup Zk ≤ Zn, we have Zk ∈ A if and only if k ∈ L. The
basic quantities of the rational S-ring A are easily obtained from its group basis, namely
Basic(A) consists of the sets:

Ẑl = Zl \
⋃

d∈L[l],d<l

Zd, l ∈ L. (2)

In the rest of this section we are going to prove that rational S-rings over Zn are
generated by subsets of Zn. More formally, that every rational S-ring A over Zn satis-
fies A = 〈〈Q〉〉, where Q is a suitable subset Q ⊆ Zn. Notice that, the corresponding
circulant graph Cay(Zn, Q) is rational (see Theorem 4.1), and its automorphism group
Aut(Cay(Zn, Q)) = Aut(A) (see Theorem 3.2).

We start with an auxiliary lemma, for which the authors thank Muzychuk (see [94]).

Lemma 5.2. Let L be a sublattice of L(n), 1, n ∈ L. Let m be a maximal element of the
poset (L \ {n}, |), and s be the smallest number in the set L \ L[m]. Then

L \ L[m] =
{
x

s

m ∧ s
| x ∈ (L[m])

[m∧s]
}
.
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Proof. Define the mapping

f : L \ L[m] → L[m], l 7→ m ∧ l.

Let l ∈ L \L[m]. As m is maximal, l ∨m = s∨m = n. By distributive law, (l ∧ s)∨m =
(l ∨m)∧ (s∨m) = n. Thus l ∧ s ∈ L \L[m], and by the choice of s, s ≤ l ∧ s, hence s | l,
(m ∧ s) | f(l), and f(l) ∈ (L[m])

[m∧s].
On the other hand, choose x ∈ (L[m])

[m∧s]. Then l = s ∨ x is in L \ L[m], and we find
f(l) = m ∧ l = (m ∧ s) ∨ (m ∧ x) = (m ∧ s) ∨ x = x. Also, f(L \ L[m]) = (L[m])

[m∧s].
For each l ∈ L \ L[m],

s ∨ f(l) = s ∨ (m ∧ l) = (s ∨m) ∧ (s ∨ l) = n ∧ l = l. (3)

The lemma follows as

L \ L[m] =
{
s ∨ f(l) | l ∈ L \ L[m]

}
=
{
s ∨ x =

s

m ∧ s
x | x ∈ (L[m])

[m∧s]
}
,

here we use the property x ∧ s = m ∧ s.

Proposition 5.3. Let A be a rational S-ring over Zn. Then there exists a subset Q ⊆ Zn
such that A = 〈〈Q〉〉.

Proof. We proceed by induction on n. The case n = 1 is trivially true. Let n > 1. By
(ii) of Theorem 5.1,

A = 〈Zl | l ∈ L〉, (4)

where L is a sublattice of L(n), 1, n ∈ L. Let m be a maximal element in the poset
(L \ {n}, |), and s be the smallest number in the set L \ L[m]. Apply the induction
hypothesis to the induced S-subring A|Zm = A ∩QZm. This results in a subset R ⊆ Zm
such that A|Zm = 〈〈R〉〉. Pick the basic set Ẑs ∈ Basic(A), see (2). By the choice of s we
get

Ẑs = Zs \
⋃

d∈L[s],d<s

Zd = Zs \ Zm∧s.

Let
Q = R ∪ Ẑs, and A′ = 〈〈Q〉〉.

It is clear that Q equals its trace
◦
Q, so A′ is a rational S-ring. We complete the proof by

showing that in fact A = A′.
As Ẑs ∈ A, Q ∈ A, hence A′ ⊆ A. By (4), to have A ⊆ A′ it is enough to show that,

for any positive divisor l of n,
l ∈ L =⇒ Zl ∈ A′. (5)

We show first that Zs ∈ A′. Let T ∈ Basic(A′) such that (Zn)n/s ⊆ T . Consider the
subgroup 〈T 〉, and let 〈T 〉 = Zt. As A′ ⊆ A, T ∈ A, and therefore Zt is in A. This
gives t ∈ L. Clearly, t ∈ L \ L[m], and hence t = s ∨ (m ∩ t), see (3). It follows from the
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description of basic sets in (2) that T contains a generator of 〈T 〉 = Zt. Thus if t 6= s,
then T ∩ (Zn \ Zm \ Zs) 6= ∅. But, T ⊆ Q and Q ⊆ Zm ∪ Zs, implying that t = s, and so
Zs is in A′.

Thus Q \ Zs = R \ Zs ∈ A′. Let s < n. We may further assume that R∩ (Zn)n/m 6= ∅,
otherwise replace R with its complement in Zm \ {0}. Thus we find Zm = 〈R \ Zs〉 ∈ A′.
If s = n and m > 1 then we may assume that (Zm \ R) ∩ (Zn)n/m 6= ∅. From this
Zm = 〈Zn \Q〉 ∈ A′. Then

A|Zm = 〈〈R〉〉 ⊆ A′|Zm ⊆ A|Zm ,

from which A|Zm = A′|Zm . We conclude that (5) holds if l ∈ L[m].
Let l ∈ L \ L[m]. By (3) we can write l = s ∨ l′, where l′ = m ∧ l is in L[m]. Then

Zl = 〈Zl′ , Zs〉. As both Zl′ ∈ A′ and Zs ∈ A′, Zl ∈ A′ follows, and this completes the
proof of (5).

By Theorems 3.2, 4.1 and Proposition 5.3, we obtain the following equivalence.

Corollary 5.4. Let G be a permutation group acting on the cyclic group Zn. The following
are equivalent:

(i) G = Aut(Cay(Zn, Q)) for a suitable rational circulant graph Cay(Zn, Q).

(ii) G = Aut(A) for some rational S-ring A over Zn.

6 From rational S-rings to block (partition) struc-

tures

A block structure F on a set X is simply a collection of partitions of X. A partition F of
X is uniform if all classes of F are of the same cardinality. Block structure F is called
orthogonal (see e.g. [10]) if the following axioms hold:

(OBS1) EX , UX ∈ F .

(OBS2) Every F ∈ F is uniform.

(OBS3) Every two E,F ∈ F are orthogonal.

(OBS4) For every two E,F ∈ F , both E ∧ F ∈ F and E ∨ F ∈ F .

Note that, if F is orthogonal, then the poset (F ,v) is a lattice, where v is the refinement
relation defined on the set of partitions of X. Below we say that F is distributive if the
lattice (F ,v) is distributive.

The following example of a block structure is crucial in the sequel.
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Example 6.1. (Group block structure.) Let H be an arbitrary group, and K be a
subgroup of H. Denote by FK the partition of H into right cosets of K. A group block
structure on H is a block structure (H, {FK | K ∈ K}) where K is a set of subgroups of
H satisfying the following axioms:

(GBS1) The trivial subgroup {e} is in K.

(GBS2) For every two K1, K2 ∈ K, K1K2 = K2K1, and K1K2 ∈ K.

It follows that the group block structure (H, {FK | K ∈ K}) is orthogonal if and only if
H ∈ K, and (K,≤) is a sublattice of the subgroup lattice of H.

In this context Theorem 5.1 can be rephrased as follows.

Theorem 6.2.

(i) Let F be an orthogonal group block structure on Zn. Then the vector space A =
〈Zl | FZl

∈ F〉 is an S-ring over Zn.

(ii) Let A be a rational S-ring over Zn. Then there exists an orthogonal group block
structure F on Zn such that A = 〈Zl | FZl

∈ F〉 (here again equality means equality
of vector spaces).

For i = 1, 2, let Fi be a block structure on Xi. Following [9], a weak isomorphism from
F1 to F2 is a bijection f : X1 → X2 such that there exists an induced bijection g : F1 → F2

for which (x1, y1) ∈ RF if and only if (xf1 , y
f
1 ) ∈ RF g for all x1, y1 ∈ X1, and F ∈ F1. The

mapping f is also called a strong isomorphism with respect to a prescribed g, or simply
a strong isomorphism if g is understood. In particular, a weak automorphism of F is a
weak isomorphism of F onto itself, and a strong automorphism (or an automorphism) is
a weak automorphism which is strong with respect to the identity. The automorphism
group Aut(F) of F is therefore the permutation group (see also [6])

Aut(F) =
⋂
F∈F

Aut((X,RF )).

Proposition 6.3. Let A be a rational S-ring over Zn, and F be the orthogonal group
block structure on Zn such that A = 〈Zl | FZl

∈ F〉. Then Aut(A) = Aut(F).

Proof. Let L be the sublattice of L(n) corresponding to F . To ease notation, we write

Rl for the relation RFZl
, where l ∈ L. Then A has basic sets Ẑl, l ∈ L, see (2). Let R̂l be

the relation on Zn that is given by the arc set of Cay(Zn, Ẑl), i. e., Cay(Zn, Ẑl) = (Zn, R̂l).
Thus for l ∈ L,

R̂l = Rl \
⋃

d∈L[l],d<l

Rd, and Rl =
⋃
d∈L[l]

R̂d.
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Thus for g ∈ Aut(A), Rg
l = ∪d∈L[l]

R̂ g
d = ∪d∈L[l]

R̂d = Rl, and so g ∈ Aut(F). Similarly, if

g ∈ Aut(F), then R̂ g
l = Rg

l \ ∪d∈L[l],d<lR
g
d = Rl \ ∪d∈L[l],d<lRd = R̂l, implying g ∈ Aut(A).

Therefore Aut(A) = Aut(F).

We remark that the above correspondence in Theorem 6.2 is a particular case of a corre-
spondence between orthogonal block structures and association schemes, see the discussion
in 11.2.

By Corollary 5.4, Theorem 6.2, and Proposition 6.3, we obtain the following equiva-
lence.

Corollary 6.4. Let G be a permutation group acting on the cyclic group Zn. The following
are equivalent:

(i) G = Aut(Cay(Zn, Q)) for some rational circulant graph Cay(Zn, Q).

(ii) G = Aut(F) for some orthogonal group block structure F on Zn.

7 Simple examples

We interrupt the main line of the presentation, exposing a few simple examples. The goal
is to provide the reader additional helpful context. Recall that according to the previous
propositions each rational S-ring over Zn is uniquely determined by a suitable sublattice
of the lattice L(n), or in equivalent terms, by a suitable block structure on Zn. Moreover,
for each rational S-ring a Cayley graph may be found which generates the S-ring in certain
prescribed sense. Nevertheless, in many cases consideration of several Cayley graphs in
role of generators allows to better comprehend the considered S-ring. Each time in this
section we intentionally abuse notation, identifying lattices with their S-rings as well as
the automorphism group Aut(L) of a lattice L with the group Aut(A), where A is the
rational S-ring defined by L.

Our first example refines Example 1.2.

Example 7.1. Here n = 6, we first depict lattice L = L(6). Clearly L has 3 sublattices
containing 1 and 6 as shown in Figure 2. Aut(L0) = S6. The sublattice L1 is generated by
the point 3, which may be regarded as partition {{0, 2, 4}, {1, 3, 5}}. Aut(L1) is recognized
as the wreath product S2 o S3 of order 2! · (3!)2 = 72. Similarly, Aut(L2) is the wreath
product of order 3! · (2!)3 = 48. A significant message is that, for lattice L we have
Aut(L) = Aut(L1) ∩Aut(L2) = S3 × S2, a transitive group of order 12, containing (Z6)R
as a subgroup.

Next two rules appear as natural generalization of the observations learned from Ex-
ample 7.1. Recall that a partition E is a refinement of partition F if each class of E is a
part of some class of F .
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1

L = L(6) L0 L1 L2

Figure 2: Sublattices of L(6).

1

k

kl

(i)

1

l

kl

k

(ii)

Figure 3: Rules 1 and 2.

Rule 1. The partition defined by node k is a refinement of the partition defined by node
kl, see part (i) of Figure 3. This is also called nesting of partitions (see [12]). In this case
Aut(L) = Sl o Sk.

Rule 2. Let gcd(k, l) = 1. Each class of the partition defined by node kl is union of
classes defined by nodes k and l, respectively, such that the latter partitions have classes
intersecting in at most one element, see part (ii) of Figure 3. This is also called crossing
of partitions (see [12]). In this case Aut(L) = Sk × Sl.

The following simple reductions rules are clear generalizations of the above Rules 1
and 2.

Reduction rule 1. This falls into two cases: either each partition defined by node
i, i 6= lm, is a refinement of the partition defined by node m, see (i) of Figure 4; or the
partition defined by node l is a refinement of each partition defined by node i, i 6= 1,
see (ii) of Figure 4. In the first case Aut(L) = Sl o Aut(L1), and in the second case
Aut(L) = Aut(L1) o Sl.

Reduction rule 2. Here n = ij, gcd(i, j) = 1, and L = L1 × L2 is a direct product
of sublattices L1 of L(i) and L2 of L(j). An essential property of such situation is that
the entire lattice L contains a sublattice, isomorphic to (ii) in Figure 3. (This fact is
conditionally depicted in (iii) of Figure 4. Note that, in fact we mean that both L1 and
L2 contain also 1.) In this case Aut(L) = Aut(L1)× Aut(L2).
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1
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L1 L2

1

ij

i j

(iii)

Figure 4: Reduction rules 1 and 2.

1

p q r

pq pr qr

pqr

Figure 5: Sublattice L of L(pqr).

The created small toolkit of rules proves immediately its efficiency.

Example 7.2. Here n = pe, p is a prime number. In this case each sublattice of L(pe)
forms a chain, hence can be constructed with using only Reduction rule 1. Thus the
automorphism group of each sublattice of L(pe) is an iterated wreath product of symmetric
groups.

Example 7.3. Here n = pqr, p, q, and r are distinct primes. One can case by case describe
possible sublattices of L(pqr) and in each case to express corresponding automorphism
group with the aid of operations of direct and wreath products.

For example, for the sublattice L in Figure 5 we easily obtain Aut(L) = (Sq oSr)×Sp.
(Indeed, here L is a direct product of two chains with 2 and 3 nodes.)

We refer to Section 11.4 for a more rigorous consideration of the reduction rules.

It is not true however that such an easy life is possible for arbitrary value of n. A
simple case of a failure is provided by n = p2q2, where p, q are distinct primes. To make
presentation more clear and visible let us consider a concrete sublattice L of L(36).
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1218
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Figure 6: Sublattice L of L(36).

Example 7.4. Here n = 36, and let L be the sublattice of L(36) given in Figure 6.
At this stage we wish to describe the automorphism group of L, using simple naive

arguments of a computational nature, avoiding however more rigorous justification. We
note that we will return to the lattice L in this example a few times in our further presen-
tation. It may be convenient for us to identify the group Aut(L) with the group Aut(Γ),
for a suitable Cayley graph Γ. Recall that as a rule, one may find several possibilities to
reach such graph (cf. Section 5). We however wish to use first a more dogmatic (in a
sense naive) approach, which is based completely on the paper [89]. Basing on this text,
we easily identify the unique rational S-ring which corresponds to L. (We admit that
our theoretical reasonings were, in addition, confirmed independently with the aid of a
computer via the use of COCO (see [39]).) Thus we reach that the S-ring defined by L
has rank 8 with the basic sets Bk as follows (see also (2)):

Q36, Q2 ∪Q4, Q3, Q6, Q9, Q12, Q18, Q1,

where Qd stands for the set Qd = (Z36)d = {x ∈ L(36) | gcd(x, 36) = d}. Our goal is to
describe

G =
7⋂

k=1

Aut(Cay(Z36, Bk))

as the permutation group preserving each of 7 non-trivial basic Cayley graphs. It turns out
however that we may avoid consideration of all 7 basic graphs. (We refer the reader to the
texts [40, 69, 123] for discussion of corresponding tools, in particular Galois correspondence
between S-rings and permutation groups as well as the Schur-Wielandt principle.)

Thus, acting in such a spirit, we observe that it is possible to disregard basic sets
Q1, Q18, Q12, and Q9. Therefore now we define G as group which preserves three Cayley
graphs Γi, i = 1, 2, 3, over Z36 defined by basic sets Q2∪Q4, Q6 and Q3, respectively. These
three graphs are conditionally depicted on the three diagrams below (see also discussion
of the rules of the game accepted in these figures). We admit that ad hoc reasonings are
playing a significant role in the ongoing exposition.
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6, 18, 30

4, 16, 28

2, 14, 26

0, 12, 24

8, 20, 32

10, 26, 34

7, 19, 31

5, 17, 29

3, 15, 27

1, 13, 25

9, 21, 33

11, 27, 35

Figure 7: Γ1 = Cay(Z36, Q2 ∪Q4).

18 6 30

4 16 28

2 14 26

0 24 12

34 10 22

32 8 20

19 7 31

5 29 17

3 15 27

1 25 13

35 11 23

33 9 21

Figure 8: Γ2 = Cay(Z36, Q6).

Graph Γ1 is nothing else but a regular graph of valency 12, which has a quotient graph
Γ̃1 on 12 metavertices, see Figure 7. Each metavertex consists of subsets {i, 12+ i, 24+ i},
where i ∈ Z12. Each metaedge substitutes 9 edges in complete bipartite graphs K3,3.

The graphs Γ1 and Γ̃1 have two connectivity components corresponding to even and odd
elements of Z36. An easy way to describe isomorphism type of the components of Γ̃1 is
3 ◦K2, the complement of a 1-factor on 6 points.

Graph Γ2 is a disconnected graph of the form 6 ◦ C6, see Figure 8. Each cycle C6 is
defined on two metavertices from Γ1. Correspondence is observed from diagram.

Graph Γ3 has a more sophisticated nature. It has three connectivity components
defined by the value of x ∈ Z36 modulo 3, one of them is depicted in Figure 9. Each
connectivity component is a bipartite graph with bipartition to odd and even elements.
In addition, each component is 3-partite with the parts visible on the picture. Thus finally
it may be convenient to regard edge set of a connectivity component as union of edges
from 6 disjoint quadrangles.
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Figure 9: A connectivity component of Γ3 = Cay(Z36, Q3).

Now we are prepared to claim that the desired group G has the following structure:

G = Z6
2 �
(

(S3 o S3) � Z2

)
,

and thus it has order 26 · 64 · 2 = 211 · 34. To justify this claim, we will present concrete
automorphisms from G, will comment their action on the basic graphs, and will count
the order of the group, generated by these permutations. First we wish to describe
64 permutations from G, which preserve each metavertex of Γ1 and each connectivity
component of Γ2. (Of course, in addition, they preserve the remaining graph, this time
Γ3.) In fact, we restrict ourselves by list of 3 permutations which are corresponding to
the connectivity component of Γ3 given in Figure 9.

g
(1)
1 = (3, 15)(6, 30)(12, 24)(21, 33),

g
(1)
2 = (0, 12)(18, 30)(9, 21)(3, 27),

g
(1)
3 = (0, 24)(6, 18)(9, 33)(15, 27).

Similarly, two more sets of permutations g
(i)
1 , g

(i)
2 , g

(i)
3 , i = 2, 3, are defined with the aid

of the remaining two components of Γ3. Altogether, involutions from three groups, iso-
morphic to (Z2)2 are listed. Direct product of these three groups provides group (Z2)6,
forming first factor in description of G.

Now we wish to justify part of the formula S3 o S3. It is helpful to think about the
group acting faithfully on the set of 9 anti-cliques of size 4 visible from the diagram of
Γ3. First, consider permutations on Z36 defined as

g4 : x 7→ x+ 4, and

g5 = (0)(1, 35)(2, 34)(3, 33) · · · (17, 19)(18).

Clearly, these permutations generate a subgroup, which acts as S3 on the connected
components of Γ3 and preserves odd and even parts. On next step, consider

g
(1)
6 = (0, 6, 12, 18, 24, 30)(3, 9, 15, 21, 27, 33), and

g
(1)
7 = g

(1)
1 = (3, 15)(6, 30)(12, 24)(21, 33).
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Check that 〈g(1)
6 , g

(1)
7 〉 acts as S3 on the connected component of Γ3 given in Figure 9, it

preserves other components, and of course it is an automorphism group of two remaining
basic graphs. Similarly, two more sets of permutations 〈g(i)

6 , g
(i)
7 〉, i = 2, 3, are defined.

Notice that, all permutations, presented till this moment, preserve the sets of odd and
even vertices. Last natural permutation on Z36 is defined as g8 : x 7→ x+ 1, which clearly
interchanges odd and even vertices, thus justifying last ingredient Z2 in our formula for
the group G.

We suggest the reader to check that the permutations g
(i)
1 , g

(i)
2 , . . . , g8 exposed above

(which belong to G indeed) generate the group of the desired order 211 ·34. It is a standard
(and helpful) exercise in computational algebraic graph theory to confirm that we already
encountered the entire group G.

In next sections group G will appear again, though in different incarnations, thus
helping the reader again and again to build a bridge between our theoretical reasonings
and practical ad hoc computations.

8 Crested products

In this section (in order to make our presentation as self-contained as possible) we provide
a short digest of the paper [12], which is adopted essentially for the purposes of the current
presentation. We refer to [12] for accurate proofs of the claims presented below, while
ongoing level of rigor follows the intuitive style of the previous section.

Recall that our foremost goal is to investigate and to extend the possibility to build
arbitrary sublattice L of L(n) from trivial lattices using only simple reduction rules. The
trivial sublattice of L(n) consists of only the elements 1 and n, and it will be denoted by
Tn. We may prove that such an “easy life” (cf. Section 7) is possible if and only if n = pe

or n = peq or n = pqr for distinct primes p, q and r (see Section 11). We wish to define
binary operation ⊗d, d ∈ N, for lattices with the following goals in mind.

• Special cases of ⊗d give back simple reduction rules.

• Every sublattice L of L(n) such that 1, n ∈ L can be built from trivial lattices using
only operations ⊗d.

• If L is built from trivial lattices as

L = Tdk ⊗dk−1

(
Tdk−1

⊗dk−2
(· · · ⊗d2 (Td2 ⊗d1 Td1) · · · )

)
,

then Aut(L) can be nicely described in terms of symmetric groups Aut(Tdi) = Sdi .

In what follows this desired operation ⊗d will be called crested product. The word
“crested”, suggested in [12], is a mixture of “crossed” and “nested”, and is also cognate
with the meaning of “wreath” in “wreath product”. Due to the existence of the bijections
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between S-rings of traces over Zn, sublattices of L(n), rational association schemes (in-
variant with respect to regular cyclic groups) and orthogonal group block structures on
Zn, the desired new operation may be translated in a few corresponding diverse languages.
We prefer to start with orthogonal block structures (see [12, Definition 3]).

For i = 1, 2, let Fi be a partition of Xi. Define F1×F2 to be the partition of X1×X2

whose adjacency matrix A(F1 × F2) is the Kronecker product A(F1)⊗ A(F2) (cf. 2.4).

Definition 8.1. For i = 1, 2, let Fi be an orthogonal block structure on a set Xi, and
let Fi ∈ Fi. The (simple) crested product of F1 and F2 with respect to F1 and F2 is the
following set P of partitions of X1 ×X2:

P =
{
P1 × P2 | P1 ∈ F1, P2 ∈ F2, P1 v F1 or P2 w F2

}
.

It can be proved that the crested product, as just defined, is an orthogonal block
structure. The reader may be easily convinced that indeed, crossing and nesting are
special cases of the crested product. An important subclass of orthogonal block structures
consists of the poset block structures (see, e.g. [10]), for a definition see Section 9. It can
be proved that crested products of poset block structures remain poset block structures.
Moreover, every poset block structure can be attained from trivial block structures by a
repeated use of crested products. Thus it can be proved that the crested products satisfy
the above three goals. (Note that our claim about the fulfillment of the above goals
literally is actual for the poset block structures on Zn. We avoid discussion of difficulties,
which may appear in more general cases.)

The formal definition of crested product ⊗d (adopted for the orthogonal group block
structures on Zn) is as follows.

Definition 8.2. For i = 1, 2, let ni ∈ N, Li be a sublattice of L(ni) such that 1, ni ∈ L(ni),
and d be in L2 such that gcd(n1, n2/d) = 1. Then the sublattice L1 ⊗d L2 of L(n1n2) is
defined as

L1 ⊗d L2 =
{
l1l2 | l1 = 1, l2 ∈ L2, or l1 ∈ L1, l2 ∈ L2 with d | l2

}
.

The fact that the set L1 ⊗d L2 is indeed a sublattice of L(n1n2) is proven below.

Proposition 8.3. For i = 1, 2, let ni ∈ N, Li be a sublattice of L(ni) such that 1, ni ∈
L(ni), and d be in L2 such that gcd(n1, n2/d) = 1. Then the set

L =
{
l1l2 | l1 = 1, l2 ∈ L2, or l1 ∈ L1, l2 ∈ L2 with d | l2

}
is a sublattice of L(n1n2).

Proof. It is clear that each element in L is a divisor of n1n2, and that 1, n1n2 ∈ L. We
have to show that L is closed under the operations ∧ and ∨, i.e., x∧ y ∈ L and x∨ y ∈ L
for all x, y ∈ L. These are clearly true if both x ∈ L2 and y ∈ L2, and hence we may
assume that at least one of them is from L \ L2.
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First, let both x and y be from L \ L2. Then x = x1x2 and y = y1y2 for some
x1, y1 ∈ L1 and x2, y2 ∈ L2; furthermore, x2 = dx′2, y2 = dy′2. Since n1 ∧ n2

d
= 1, we find

x1 ∧ x′2 = x1 ∧ y′2 = y1 ∧ x′2 = y1 ∧ y′2 = 1. Using these,

x ∧ y = x1x2 ∧ y1y2 = d(x1x
′
2 ∧ y1y

′
2) = d(x1 ∧ y1)(x′2 ∧ y′2) = (x1 ∧ y1)(d(x′2 ∧ y′2)),

which is in L. Then

x ∨ y =
xy

x ∧ y
=

x1dx
′
2 · y1dy

′
2

(x1 ∧ y1)d(x′2 ∧ y′2)
= (x1 ∨ y1)(d(x′2 ∨ y′2)) ∈ L \ L2.

Second, let x ∈ L2 and y ∈ L \ L2, y = y1y2 for some y1 ∈ L1 and y2 ∈ L2 with
y2 = dy′2. Then

x ∧ y = x ∧ (y1dy
′
2) = (x ∧ d)

( x

x ∧ d
∧ y1dy

′
2

x ∧ d

)
.

As x
x∧d ∧ y1 = 1, the above is reduced to

(x ∧ d)
( x

x ∧ d
∧ y2

x ∧ d

)
= x ∧ y2 ∈ L2 ⊆ L.

Therefore,

x ∨ y =
xy

x ∧ y
=
xy1y2

x ∧ y2

= y1(x ∨ y2).

As y1 ∈ L, and x∨ y2 = x∨ dy′2 is in L2 which is in addition divisible by d, it follows that
x ∨ y = y1(x ∨ y2) ∈ L. The proposition is proved.

Notice that, operations ⊗d include simple reduction rules 1 and 2 as special cases. Namely,
in case d = n2, and L1 = Tn1 or L2 = Tn2 we get reduction rule 1, and in case d = 1
reduction rule 2.

Consider the orthogonal group block structure on Zn1n2 corresponding to the lattice
L1 ⊗d L2. This is weakly isomorphic to the crested product of the block structure on Zn1

corresponding to L1 and that one on Zn2 corresponding to L2 with respect to partitions
FZ1 and FZd

in the sense of Definition 8.1, justifying the name “crested product” for ⊗d.
(We once more refer to [10, 12] for a justification of all necessary intermediate claims.)

Example 8.4. (Example 7.4 revised.) Let L be the sublattice of L(36) given in Figure 6.
To each of 8 nodes in diagram for L naturally corresponds a partition of Z36. Because L
is a lattice, we get a corresponding orthogonal block structure on Z36. Naive description
of nodes of L looks as follows: consider all nodes in L and take into consideration those
ones which are in L[18] or are multiples of d = 2. Let L1 = {1, 2} on Z2 and L2 = L[18] =
{1, 2, 3, 6, 18} on Z18. Then by Definition 8.2 we obtain

L = {1 · 1, 1 · 2, 1 · 3, 1 · 6, 1 · 18, 2 · 2, 2 · 6, 2 · 18} = L1 ⊗2 L2.

Moreover, using properly notation for the crested product of lattices, the product L1⊗2L2

is depicted in Figure 10.
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Figure 10: Decomposition L = L1 ⊗2 L2.

We now easily interpret L with the aid of Definition 8.1 as crested product. Namely,
consider subgroups Zm ≤ Z36 for m = 2, 4 and 18. We have Z2 = {0, 18}, Z4 =
{0, 9, 18, 27}, and write the quotient group Z4/Z2 as Z4/Z2 = {Z2, Z2 + 9}. As the
Z36-elements 0 and 9 form a complete set of coset representatives of the subgroup Z18 in
Z36, every element x in Z36 can be written uniquely as a sum

x = x1 + x2, where x1 ∈ {0, 9}, x2 ∈ Z18,

and addition is in Z36. Therefore, we can define the bijective mapping

f : Z36 → Z4/Z2 × Z18, x 7→ (Z2 + x1, x2).

Let d be an arbitrary element in L, and let Γ denote the graph defined by the equiv-
alence relation corresponding to the partition of Z36 into its Zd-cosets (here and later
on we freely identify partitions with the graphs defined by the corresponding equivalence
relations). The bijection f maps Γ to a graph Γf on V = Z4/Z2 × Z18. The graph Γf is
described as follows.

If d ∈ L[18], then for any two (x, y), (x′, y′) ∈ V,

(x, y) ∼Γf (x′, y′) ⇐⇒ x = x′ and y ∼Σ y
′,

where Σ is the graph on Z18 corresponding to the partition of Z18 defined by d ∈ L[18]. We
obtain Γf as a direct product Γf = Kc

2 ×Σ, where Kc
2 is the complement of the complete

graph K2.
Suppose next that d ∈ L \ L18. Then for (x, y), (x′, y′) ∈ V,

(x, y) ∼Γf (x′, y′) ⇐⇒ y ∼Σ y
′,

this time Σ denotes the graph on Z18 corresponding to the partition of Z18 defined by
d/2 ∈ L[18]. In this case Γf = K2 × Σ. Notice also that, now d/2 does not run over

the whole lattice L[18], but the sublattice
(
L[18]

)[2]
. Since the direct product of graphs

corresponds to the Kronecker product of partitions, we conclude by Definition 8.1 that the
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partitions, corresponding to the graphs Γf , comprise actually a suitable crested product.
Namely, it is the crested product of the block structure on Z4/Z2 defined by L1 and the
block structure on Z18 defined by L2 with respect to the partition F1 and F2, where F1

is the trivial partition of Z4/Z2, and F2 is the partition of Z18 into Z2-cosets. In other
words, f is a weak isomorphism from L = L1 ⊗2 L2 to the latter crested product.

Eventually, notice that simple reduction rules apply to L2. We obtain that L2 =
T3 ⊗6 (T2 ⊗1 T3), therefore, L actually decomposes as

L = T2 ⊗2 (T3 ⊗6 (T2 ⊗1 T3)).

In the rest of the section we turn to the group Aut(L1 ⊗d L2). It remains to translate
everything to the language of association schemes, and after that the one of permutation
groups, with the goal that finally Aut(L1 ⊗d L2) is described in terms of Aut(L1) and
Aut(L2). We refer again to the paper [12], where such goal is fulfilled to a certain extent.
Namely, it is proved that for the case of poset block structures one gets that crested
product of Aut(L1) and Aut(L2) preserves the crested product of L1 and L2. Instead of a
discussion of corresponding precise definitions and formulations, we prefer to play again
on the level of our striking example.

Example 8.5. (Continuation of Example 8.4.) We again use freely the possibility to
switch at any moment between languages of lattices, S-rings, and association schemes.
In the above notation we get L1 = {1, 2} on Z2, L2 = {1, 2, 3, 6, 18} on Z18} and L =
{1 · 1, 1 · 2, 1 · 3, 1 · 6, 1 · 18, 2 · 1, 2 · 2, 2 · 6, 2 · 18} on Z36.

In our previous attempt it was natural and convenient to consider automorphism
groups of basic graphs (regarded as rational circulant graphs). We proceeded finally with
three such graphs. At the current stage we see G = Aut(L) with the aid of group basis in
the corresponding S-ring (cf. [23, 88]). Clearly, each element of a group basis corresponds
to a partition of Z36 into cosets of a suitable subgroup. Therefore, now we get

G =
⋂
l∈L

Aut(Cay(Z36, Zm)),

where Zm is the unique subgroup of Z36 of order m. Thus we have immediately that in
fact G is the automorphism group of four partitions defined by Zm, namely m = 2, 3, 4
and 18. We again describe this group, using a suitable diagram (see Figure 11) which
exhibits simultaneously all the partitions.

Comments about the diagram. First partition 2 ◦ K18 (due to Z18) is presented by
division to left and right part (even and odd numbers). Horizontal lines represent 9 ◦K4

(due to Z4). Finally, we have 6 connected components of size 6. Columns of all such
components entirely provide 12 ◦K3 (due to Z3), while rows give 18 ◦K2 (due to Z2).

We now describe the automorphism group G as an extension G = G̃ � S2, where G̃ is
the stabilizer of left part of the picture (clearly left and right parts may be exchanged).
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Figure 11: Coset-partitions of Z36 defined by Zm for m = 2, 3, 4, 18.

The stabilizer of the left part is a wreath product of the groups of the three components.
Thus we get G = (S3 o Ĝ) � S2, where Ĝ is the stabilizer of a component. Stabilizer of left
upper component, according to simple rule, is S2 × S3, and in addition, an independent
copy of S2 transposes columns in corresponding right part of the upper component. We
have thus obtained the formula

G = (S3 o ((S3 × S2)× S2)) � S2,

with the order |G| = 2 · 3! · 243 = 211 · 34. We expect that the reader will admit that
the current arguments are more transparent and straightforward, however, we again are
depending on the use of ad hoc tricks of geometrical and combinatorial nature.

It turns out that the above argumentation may be modified into certain nice formal
rule with the aid of the use of crested product, taking into account the decomposition
formula presented for the lattice L in the consideration, that is L = L1 ⊗2 L2.

Regarding as sets, let Z36 = Z2 × Z18. In definition of crested product first ingredient
corresponds to active while second to passive groups. Thus in our case G is regarded as a
subgroup of the wreath product Aut(L1) oAut(L2) = G1 oG2 or more precisely as BoG1,
where B is base group and G1 is top group. Note that at this stage B is just a subgroup
of the base group, corresponding to the usual wreath product. Using our toolkit of simple
rules, we obtain that

G1 = Aut(L1) = S2, and G2 = Aut(L2) = S3 o (S2 × S3).

We have to understand the structure of the base group. Recall that in our case B is
subgroup of group GZ2

2 . To describe B we refer to the partition F2 = FZ2 of Z18, which is
preserved by G2. Clearly, this partition F2 is of the kind 9 ◦K2. Note that we have also
a trivial partition F1 = FZ1 of kind 2 ◦K1 which is preserved by G1. Now we are looking
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Figure 12: “Amalgamation of lattices”.

for the subgroup N of group G2 which fixes each part of the partition F2. Clearly, in our
case N is isomorphic to S3

2 .
It turns out (see [12] for general justification) that the base group B is generated by

NF1 and G2. Here NF1 is embedded in GZ2
2 as the set of functions which are constant on

the classes of F1 and take values diagonally. G2 is embedded diagonally. G2 normalizes
NF1 , therefore their product is a group, while intersection is N . Thus we obtain that

|B| = |N
F1 | · |G2|
|N |

=
|N |2 ·G2

|N |
= |N | · |G2|.

Finally we get the order of the group G = BoG1 as |G1|·|N |·|G2| = 2·8· 3!(2·3)3 = 211 ·34,
as desired. (In fact, again we first obtain that the automorphism group of L has order
at least 211 · 34. After that, exactly like in Example 7.4, we have to check that B o G1

indeed coincides with the entire group G.)

Remark. We wish to use an extra chance to explain the role of index 2 in our notation
for the used version of crested product. Hopefully, the following pictorial explanation (see
Figure 12) may help. Here selected node in L2 is origin of the index. We multiply part
of L1 strictly below the index on L2, after that L1 on the part of L2 above the index and
amalgamate the two products.

In our eyes the formulated goal to create for the reader a context with the aid of an
example is fulfilled. In principle, based on the earned experience, one can go ahead and
prove that the leads formulated above are completely fulfilled with the aid of the crested
product. However, this will not be done in the current paper. Instead, we refer the
reader to the recent papers [36, 37] (cf. Section 12.7). We finish the deviation, developed
in Sections 7-8, and return to the main stream of the presentation, aiming to exploit
another classical generalization of the operation wreath product.
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9 Generalized wreath products

Let (I,�) be a poset. A subset J ⊆ I is called ancestral if i ∈ J and i � j imply that
j ∈ J for all i, j ∈ I. For i ∈ I, we put Ai for the ancestral subset

Ai = {j ∈ I | i ≺ j}.

We denote the set of all ancestral subsets of I by Anc((I,�)). For each i ∈ I, fix a set Xi

of cardinality at least 2, and let X =
∏

i∈I Xi. We write elements x in X as x = (xi)i∈I
or simply as x = (xi). For J ⊆ I, let ∼J be the equivalence relation on X given as

(xi) ∼J (yi) ⇐⇒ xj = yj for all j ∈ J,

and denote by Π(J) the corresponding partition of X. Now, the poset block structure
defined by the poset (I,�) and the sets Xi is the block structure on X consisting of all
partitions Π(J) that J ∈ Anc((I,�)). Denote by F this block structure. Let J, J ′ ∈
Anc((I,�)). Both sets J ∩ J ′ and J ∪ J ′ are ancestral, and we have

Π(J) ∧ Π(J ′) = Π(J ∪ J ′) and Π(J) ∨ Π(J ′) = Π(J ∩ J ′).

Thus the poset block structure F is an orthogonal block structure. Further, the equiv-
alence Π(J) v Π(J ′) ⇐⇒ J ′ ⊆ J holds, and the mapping J 7→ Π(J) is an anti-
isomorphism from the lattice (Anc((I,�)),⊆) to the lattice (F ,v) (thus these have Hasse
diagrams dual to each other). The lattice (Anc((I,�)),⊆) is obviously distributive, and
by the previous remarks so is F . The following converse is due to Bailey and Speed [114]
(see also [6, Theorem 5]).

Theorem 9.1. An orthogonal block structure is distributive if and only if it is weakly
isomorphic to a poset block structure.

Note that, in particular, the orthogonal group block structures on Zn are poset block
structures. We continue consideration of our striking example.

Example 9.2. (Example 7.4 revised.) Let L be the sublattice of L(36) given in Figure 6.
As before, L will simultaneously denote the orthogonal block structure on Z36 consisting
of coset-partitions of Zl, l ∈ L.

In order to obtain L as a poset block structure we start with the poset N = ([4],�)
depicted in part (i) of Figure 13. The dual lattice of ancestral subsets of N has Hasse
diagram shown in part (ii) of Figure 13. This is indeed isomorphic to our lattice L. Next,
let us choose sets X1 = [3], X2 = [2], X3 = [3] and X4 = [2]. We define the mapping
f : X1 ×X2 ×X3 ×X4 → Z36 as

(x1, x2, x3, x4) 7→ 12x1 + 18x2 + 2x3 + 9x4 (mod 36).

The reader is invited to work out that f is a bijection, and that f is a weak isomorphism
from the poset block structure defined by N and the sets Xi to our block structure L.
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Figure 13: Poset N and the dual lattice of its ancestral subsets.

Now we are approaching the group-theoretical concept, crucial for the current presen-
tation. Let F be a poset block structure defined by a poset (I,�) and sets Xi (i ∈ I).
Recall that Ai = {j ∈ I | i ≺ j} is uncestral for all i ∈ I. We set

iH =
∏
j∈Ai

Xj =
∏
i≺j

Xj,

and πi for the projection of X =
∏

i∈I Xi onto iH. The following construction can be
found in [13].

Definition 9.3. Let (I,�) be a poset, Xi be a set (i ∈ I), |Xi| ≥ 2, and Ki be a
permutation group Ki ≤ Sym(Xi). The generalized wreath product

∏
(I,�)Ki defined by

(I,�) and the groups Ki, is the complexus product

P =
∏
i∈I

Pi,

where Pi is the permutation representation of the group K
iH
i on X acting by the rule

(xf )j =

{
x
f(πi(x))
j if i = j

xj if i 6= j
, x = (xj) ∈ X, f ∈ K

iH
i ,

where x
f(πi(x))
j means the image of xj under the action of f(πi(x)).

Clarification of the notation f(πi(x)) follows below. We remark that, the fact that the
above complexus product is indeed a group was proved in [13]. This construction has a
very interesting history, see Section 12.
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Let I = [r] = {1, . . . , r} in Definition 9.3. We write x = (x1, . . . , xr) for x ∈ X =∏r
i=1Xi. Every f ∈ P is presented uniquely as the product f = f1 · · · fr, where each

fi ∈ Pi. Analogously to the ordinary wreath product (see 2.1), we shall also write f in
the table form

f =
[
f1(π1(x)), . . . , fr(π

r(x))
]
.

By definition, (x1, . . . , xr)
f =

(
x
f1(π1(x))
1 , . . . , x

fr(πr(x))
r

)
. It is not hard to see that the group

P =
∏

([r],�) Ki has order ∣∣ ∏
([r],�)

Ki

∣∣ =
r∏
i=1

|Ki|mi , (6)

where mi = 1 if {i} ∈ Anc((I,�)), and mi =
∏

j∈Ai
|Xj| otherwise. The generalized

wreath product gives back the ordinary direct and wreath product. Namely, in case r = 2
and the poset is an anti-chain the group P = K1 ×K2, and if the poset is a chain with
1 ≺ 2, then P = K2 oK1.

The following result about the automorphism group of a poset block structure was
proved by Bailey et al. (see [13, Theorem A]). We say that a poset (I,�) satisfies the
maximal condition if any subset J ⊆ I contains a maximal element.

Theorem 9.4. Let (I,�) be a poset having the maximal condition, Xi be a set of cardi-
nality at least 2 for all i ∈ I, and F be the poset block structure on X defined by (I,�)
and the sets Xi. Then Aut(F) =

∏
(I,�) Sym(Xi).

Of course, if the set I is finite, then (I,�) satisfies the maximal condition. In particu-
lar, the above theorem applies to the orthogonal group block structures on Zn, and hence
we observe that their automorphism groups are certain generalized wreath products. As
an illustration of the above ideas, we determine once more the automorphism group of a
rational circulant graph, corresponding to our lattice L, in terms of generalized wreath
product.

Example 9.5. Let Γ be the rational circulant graph Cay(Z36, Q), where

Q = {2, 3, 4, 6, 8, 10, 14, 15, 16, 20, 21, 22, 26, 28, 30, 32, 33, 34}
= (Z36)2 ∪ (Z36)3 ∪ (Z36)4 ∪ (Z36)6.

Because of Theorem 3.2 the group Aut(Γ) = Aut(〈〈Q〉〉), where 〈〈Q〉〉 is the S-ring over
Z36 generated by Q. S-ring 〈〈Q〉〉 is rational, hence by Theorem 5.1, 〈〈Q〉〉 = 〈Zd | d ∈ L〉
for a sublattice L of L(36). After some simple reasonings we see that L is our sublattice
in Figure 5. Thus

Aut(Γ) = Aut(〈〈Q〉〉) = Aut(L).

As shown in Example 9.2, the orthogonal block structure L is weekly isomorphic to
the poset block structure F defined by the poset N = ([4],�) and sets Xi = [ni], i ∈
{1, . . . , 4}. Therefore, Aut(L) is permutation isomorphic to the group Aut(F). By The-
orem 9.4, the latter group Aut(F) =

∏
N Sni

(we may get order once more using formula
(6) as |

∏
N Sni

| = (3!)3 · (2!)6 · 3! · 2! = 211 · 34.)
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We converge with the consideration of our striking example. Simultaneously, in princi-
ple, the main goals of the paper are fulfilled. Combination of all presented results implies
that the automorphism groups of rational circulant graphs are described by the groups
as they appear in Theorem 9.4. Nevertheless, at this stage we are willing to justify much
more precise formulation, as it is presented in the main Theorem 1.1, as well as to provide
its self-contained proof.

10 Proof of Theorem 1.1

Let P = ([r],�) be a poset, and n1, . . . , nr be in N such that ni ≥ 2 for all i ∈ {1, . . . , r}.
We denote by PBS(P ;n1, . . . , nr) the poset block structure defined by P and the sets [ni].
We recall that P = ([r],�) is increasing if i � j implies i ≤ j for all i, j ∈ [r].

The final step toward Theorem 1.1 is the following statement.

Proposition 10.1.

(i) Let P = ([r],�) be an increasing poset and n1, . . . , nr be in N satisfying

(a) n = n1 · · ·nr,
(b) ni ≥ 2 for all i ∈ {1, . . . , r},
(c) (ni, nj) = 1 for all i, j ∈ {1, . . . , r} with i 6� j.

Then PBS(P ;n1, . . . , nr) is weakly isomorphic to an orthogonal group block structure
on Zn.

(ii) Let F be an orthogonal group block structure on Zn. Then exists an increasing poset
P = ([r],�) and n1, . . . , nr in N satisfying (a)-(c) in (i) such that F is weakly
isomorphic to PBS(P ;n1, . . . , nr).

To settle the proposition we first prove two preparatory lemmas. For J ⊂ [r] we set
the notation J = [r] \ J .

Lemma 10.2. Let P = ([r],�) be an increasing poset and n1, . . . , nr be in N satisfying
(a)-(c) in (i) of Proposition 10.1. Then the set L =

{∏
j∈J nj | J ∈ Anc(P )

}
is a

sublattice of L(n). 1

Proof. We prove the lemma by induction on r. If r = 1 then L = {1, n}. Suppose that
r > 1 and let n′ = n1 · · ·nr−1. Let P ′ = ([r− 1],�) be the poset on [r− 1] induced by �.
The induction hypothesis applies to P ′ and numbers n1, . . . , nr−1. Thus we get sublattice
L2 of L(n′) as

L2 =
{ ∏

j∈J

nj | J ∈ Anc(P ′)
}
.

1If J ∈ Anc(P ) is the whole set [r], then we set
∏

j∈J nj = 1.
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Here by J we mean the complement of J in [r − 1].
Since P is increasing, r is a maximal element in P . Thus for any J ⊆ [r − 1],

J ∈ Anc(P ′) ⇐⇒ J ∪ {r} ∈ Anc(P ). (7)

Let J∗ = {j ∈ [r − 1] | j 6� r}. Then J∗ ∈ Anc(P ). Further, for any J ⊆ [r − 1],

J ∈ Anc(P ) ⇐⇒ J ∈ Anc(P ′) and J ⊆ J∗. (8)

Put d =
∏

j∈J∗ nj. Clearly, d ∈ L2. Let J ∈ Anc(P ′) such that d |
∏

j∈J nj. Suppose

that J is not contained in J∗, and pick an element j ∈ J ∩ J∗. Since d |
∏

j∈J nj, the
weight nj divides the product

∏
i∈J∗\J ni. This implies that there exsits a node j′ ∈ J∗ \J

such that nj′ ∧ nj 6= 1. Thus j � j′ or j′ � j. Since J is ancestral, j ∈ J and j′ /∈ J,
we obtain that j′ � j. But, j /∈ J∗, i.e., j � r, implying that j′ � r, contradicting that
j′ ∈ J∗. We proved the following property.

For any J ∈ Anc(P ′) if d |
∏
j∈J

nj, then J ⊆ J∗. (9)

Now, n′/d =
∏

j∈[r−1],j 6�r nj, hence condition (c) in (i) of Proposition 10.1 implies that

n′/d∧nr = 1. Thus we can use Definition 8.2 to form the crested product L1⊗dL2, where
L1 = {1, nr}. Then

L1 ⊗d L2 =
{
l1l2 | l1 = 1, l2 ∈ L2, or l1 ∈ L1, l2 ∈ L2 with d | l2

}
= L2 ∪

{
nrl2 | l2 ∈ L2 with d | l2

}
.

Now, we use (7), (8) and (9) to find

L =
{∏
j∈J

nj | J ∈ Anc(P ) and r ∈ J
}
∪
{∏
j∈J

nj | J ∈ Anc(P ) and r /∈ J
}

= L2 ∪
{
l2nr | l2 ∈ L2 with d | l2

}
= L1 ⊗d L2.

Thus L is a sublattice of L(n), as required.

We show next the converse to Lemma 10.2.

Lemma 10.3. Let L be a sublattice of L(n), n ≥ 2 such that 1, n ∈ L. Then L ={∏
j∈J nj | J ∈ Anc(P )

}
, where P = ([r],�) is an increasing poset and n1, . . . , nr are in

N satisfying (a)-(c) in (i) of Proposition 10.1.

Proof. We proceed by induction on n. The statement is clear if L = {1, n}. Suppose
L 6= {1, n}, and let m be a maximal element in the poset induced by L \ {n}. Induction
applies to sublattice L[m], and we can write

L[m] =
{ ∏

j∈J

nj | J ∈ Anc(P ′)
}
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with a suitable poset P ′ = ([r − 1],�) and numbers n1, . . . , nr−1 in N. Now, let s be the
smallest number in the set L \ L[m]. Since m ∧ s ∈ L[m], we have a subset J∗ ∈ Anc(P ′)
for which m ∧ s =

∏
j∈J∗ nj. Define the poset P on [r] as the extension of P ′ to [r] by

setting r 6� x for all x ∈ [r − 1], and

x � r ⇐⇒ x /∈ J∗.

We claim that P is the required poset and n1, . . . , nr−1, nr = n/m are the required num-
bers.

First, poset P is obviously increasing, n1 · · ·nr = n, and ni ≥ 2 for all i ∈ [r]. Let
i, j ∈ [r] with i < j and i 6� j. It is clear that ni ∧ nj = 1 if j 6= r. Let j = r. Then

nr =
n

m
=

s

m ∧ s
, and

∏
k 6�r

nk =
∏
k∈J∗

nk =
m

m ∧ s
.

This shows that ni ∧ nr = 1 holds as well, and so n1, . . . , nr satisfy (a)-(c) in (i) of
Proposition 10.1.

By (7), (8) and (9),{ ∏
j∈J

nj | J ∈ Anc(P )
}

=
{ ∏

j∈J

nj | J ∈ Anc(P ) and r ∈ J
}
∪

{ ∏
j∈J

nj | J ∈ Anc(P ) and r /∈ J
}

= L[m] ∪
{
xnr | x ∈ (L[m])

[m∧s] }.
Now, we use Lemma 5.2 to conclude

L[m] ∪
{
x

s

m ∧ s
| x ∈ (L[m])

[m∧s]
}

= L[m] ∪ (L \ L[m]) = L.

Proof of Proposition 10.1. Let P = ([r],�) be an increasing poset and n1, . . . , nr
be in N satisfying (a)-(c) in (i) of Proposition 10.1. Let L =

{∏
j∈J nj | J ∈ Anc(P )

}
be the sublattice of L(n). In view of Lemmas 10.2 and 10.3 it remains to prove that
PBS(P ;n1, . . . , nr) is weakly isomorphic to the orthogonal group block structure on Zn
defined by L.

Let J ∈ Anc(P ), J 6= [n], and xj, yj ∈ [nj] for each j ∈ J . We claim that∑
j∈J

( ∏
i∈[r],i 6�j

ni

)
xj ≡

∑
j∈J

( ∏
i∈[r],i 6�j

ni

)
yi (mod n) =⇒ ∀j ∈ J : xj = yj. (10)

We proceed by induction on r. Let r = 1. Then J = ∅, the assumption in (10) reduces
to x1 ≡ y1 (mod n) for x1, y1 ∈ [n], and from this x1 = y1.
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Let r > 1. Let n′ = n/nr and P ′ be the poset induced by [r− 1]. First, let r ∈ J , and
put J ′ = J \ {r}. By (7), J ′ ∈ Anc(P ′). The assumption in (10) can be rewritten in the
form ∑

j∈J ′

( ∏
i∈[r−1],i 6�j

ni

)
nrxj ≡

∑
j∈J ′

( ∏
i∈[r−1],i 6�j

ni

)
nryi (mod n),

where J ′ is written for [r − 1] \ J ′. From this∑
j∈J ′

( ∏
i∈[r−1],i 6�j

ni

)
xj ≡

∑
j∈J ′

( ∏
i∈[r−1],i 6�j

ni

)
yi (mod n′),

and hence, by induction, xj = yj for each j ∈ J ′, and (10) holds. Second, let r /∈ J .
Put n∗r =

∏
i∈[r],j 6�r nj. Notice that nr ∧ n∗r = 1 (see (c) in (i) of Proposition 10.1). The

assumption in (10) can be rewritten as∑
j∈J,j 6=r

(
nr

∏
i∈[r−1],i 6�j

ni

)
xj + n∗rxr ≡

∑
j∈J,j 6=r

(
nr

∏
i∈[r−1],i 6�j

ni

)
yi + n∗ryr (mod n).

From this n∗r(xr − yr) ≡ 0 (mod nr). And as nr ∧ n∗r = 1, xr = yr. By (8), J ∈ Anc(P ′).
Regarded J as an ancestral subset of P ′, we find∑

j∈J

( ∏
i∈[r−1],i 6�j

ni

)
xj ≡

∑
j∈J

( ∏
i∈[r−1],i 6�j

ni

)
(mod n′).

Thus, by induction, xj = yj for each j ∈ [r − 1] \ J , and so (10) holds.

Let X = [n1]× · · · × [nr]. Define the mapping

f : X → Zn, (xi) 7→
r∑
i=1

( ∏
j∈[r],j 6�i

nj
)
xi (mod n).

We claim that f is a weak isomorphism from PBS(P ;n1, . . . , ns) to L. First, that f is
a bijection can be seen from (10) by substituting J = ∅. Let J ∈ Anc(P ), and fix an
element (xi) = (x1, . . . , xr) ∈ X. The class of Π(J) containing (xi) is the set

C =
{

(yi) ∈ X | xj = yj for all i ∈ J
}
.

Put m =
∑

j∈J
(∏

i∈[r],i 6�j ni
)
xj in Zn. Then f maps the class C to the set

m+
{ ∑

j∈J

( ∏
i∈[r],i 6�j

ni
)
yj | j ∈ J, yj ∈ [nj]

}
.

Observe that i 6� j for any j ∈ J and i ∈ J . Thus the product
∏

j∈J nj divides the
numbers in the above set, and hence

m+
{ ∑

j∈J

( ∏
i∈[r],i 6�j

ni
)
yj | j ∈ J, yj ∈ [nj]

}
⊆ m+

〈 ∏
j∈J

nj
〉

= m+ Zd,
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where d =
∏

j∈J nj, and thus C is mapped into the coset m+ Zd. The number of classes
of Π(J) is equal to

∏
j∈J nj, which is the index of Zd in Zn. This together with the fact

that f is a bijection imply that f maps C onto the coset m + Zd, and so the partition
Π(J) to the coset-partition FZd

. This completes the proof of the proposition.

Proof of Theorem 1.1.

(i)⇒ (ii) Let Cay(Zn, Q) be a rational circulant graph with G = Aut(Cay (Zn, Q)).
By Corollary 6.4, G = Aut(F), where F is an orthogonal group block structure on
Zn. By (ii) of Proposition 10.1, F is weakly isomorphic to the poset block structure
PBS(P ;n1, . . . , nr) for suitable poset P = ([r],�) and numbers n1, . . . , nr. Theorem 9.4
gives that G is permutation isomorphic to ΠPSni

.

(ii) ⇒ (i) Let G = ΠPSni
, where P = ([r],�) is an increasing poset and n1, . . . , nr

are in N satisfying (a)-(c) in (ii) of Proposition 10.1. Because of Theorem 9.4 the group G
equals the automorphism group of the poset block structure PBS(P ;n1, . . . , nr). By (i) of
Proposition 10.1, PBS(P ;n1, . . . , nr) is weakly isomorphic to an orthogonal group block
structure F on Zn, hence G is permutation isomorphic to Aut(F). Finally, Corollary 6.4
shows that there is a rational circulant graph Cay(Zn, Q) such that Aut(Cay(Zn, Q)) =
Aut(F).

11 Miscellany

We conclude the paper by a collection of miscellaneous topics related to rational circulant
graphs and their automorphisms.

11.1 Enumeration of rational circulant graphs

Let Cay(Zn, Q) be a rational graph. By Theorem 4.1, Q follows to be the union of some
of the sets

(Zn)d = {x ∈ Zn | gcd(x, n) = d},

where d is a divisor of n. Conversely, any set in such a form is a connection set of a
rational graph. In particular, up to isomorphism, we have at most 2τ(n)−1 rational Cayley
graphs (without loops) over Zn.

To investigate, which of these graphs are pairwise non-isomorphic, we refer to the
following Zibin’s conjecture for arbitrary circulant graphs, which follows easily from the
results in [89] (see also [95] and [96, Theorem 5.1]).

Theorem 11.1. (Zibin’s conjecture.) Let Cay(Zn, Q) and Cay(Zn, R) be two isomor-
phic circulant graphs. Then for each d | n there exists a multiplier md ∈ Z∗n such that

Q
(md)
d = Rd.

Here for arbitrary subset Q ⊆ Zn, we define Qd = Q ∩ (Zn)d.
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Corollary 11.2. Let Cay(Zn, Q) and Cay(Zn, R) be two rational circulant graphs. Then
these are isomorphic if and only if Qd = Rd for all d | n. Moreover, for each d | n the
common set Qd = Rd is equal to ∅ or to (Zn)d.

Corollary 11.3. The number of non-isomorphic rational circulant graphs (without loops)
of order n is 2τ(n)−1, where τ(n) is the number of positive divisors of n.

We should mention that the above statement was given as a conjecture by So [112,
Conjecture 7.3].

Remark 1. We refer to the sequence A100577 (starting with 1, 2, 2, 4, 2, 8, 2, 8, 4, 8, 2, 32)
in the famous Sloane’s On-Line Encyclopedia of Integer Sequences, see [98], which consists
of the numbers 2τ(n)−1, n ∈ N.

Remark 2. For a given n let X be an arbitrary subset of the set L(n) \ {n}. Let
Q = ∪d∈X(Zn)d, Γ = Cay(Zn, Q). Clearly, Γ is a presentation of an arbitrary rational
circulant with n vertices. According to the presented theory, one may start with the
simple quantity Q to construct the rational S-ring A = 〈〈Q〉〉, and to express A with the
aid of a suitable sublattice L of the lattice L(n). Then Aut(Γ) = Aut(A) = Aut(L). In
Example 9.5 for X presented there the corresponding lattice L coincides with our striking
sublattice.

A question of elaboration of a simple direct procedure to recognize L from an arbitrary
subset X is of a definite independent interest, though it is out of the scope in the current
text.

11.2 Association schemes

Though we have managed to arrange the main line of the presentation without the evident
use of association schemes, it is now time to consider explicitly this concept.

Let X be a nonempty finite set, and let ∆X denote the diagonal relation on X, i.
e., ∆X = {(x, x) | x ∈ X}. For a relation R ⊆ X × X, its transposed Rt is defined
by Rt = {(y, x) | (x, y) ∈ R}. For a set {R0, R1, . . . , Rd} of relations on X the pair
X = (X, {R0, . . . , Rd}) is called an association scheme on X if the following axioms hold
(see [14]):

(AS1) R0 = ∆X , and R0, R1, . . . , Rd form a partition of X ×X.

(AS2) For every i ∈ {0, . . . , d} there exists j ∈ {0, . . . , d} such that Rt
i = Rj.

(AS3) For every triple i, j, k ∈ {0, . . . , d} and for (x, y) ∈ Rk, the number, denoted by
pki,j, of elements z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj does not depend on
the choice of the pair (x, y) ∈ Rk.

The relations Ri are called the basic relations of X , the corresponding graphs (X,Ri) the
basic graphs of X . The automorphism group of X is the permutation group

Aut(X ) :=
r⋂
i=0

Aut((X,Ri)).
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Let F be an orthogonal block structure on X. For F ∈ F , define the color relation
CF on X as

(x, y) ∈ CF ⇐⇒ F =
∧{

E ∈ F | (x, y) ∈ RE

}
.

It is immediately clear that for each F ∈ F , CF is a symmetric relation and the set of
relations {CF , F ∈ F} forms a partition of X ×X. It turns out that we can claim more.

The relational system (X, {CF | F ∈ F}) is a symmetric association scheme on X
(see [9, Theorem 4]). Recall that in a symmetric association scheme Rt

i = Ri for all
i ∈ {0, 1, . . . d}. This we denote by As(F). Observe that, if F is the orthogonal group

block structure on Zn given in Proposition 6.3, then the color relations are R̂l defined in
the proof of Proposition 6.3.

11.3 Schurity of rational S-rings over cyclic groups

Let A be a rational S-ring over Zn, and F be the corresponding orthogonal group block
structure on Zn. Recall that A is Schurian if A = V (Zn,Aut(A)e). It is not hard to see
that this is equivalent to saying that the basic relations of the association scheme As(F)
are the 2-orbits of Aut(A), the latter group is the same as Aut(F) = Aut(As(F))).

The following result is due to Bailey et al. (see [13, Theorem C]), which in particular
also answers the Schurity of rational S-rings over Zn in the positive.

Theorem 11.4. Let (I,�) be a finite poset, Xi be a finite set of cardinality at least
2 for each i ∈ I, X =

∏
i∈I Xi, and F be the poset block structure on X defined by

(I,�) and the sets Xi. Then the association scheme As(F) is Schurian, i. e., As(F) =
(X, 2-Orb(Aut(As(F)))).

Corollary 11.5. Every rational S-ring over Zn is Schurian.

Let us remark that it has been conjectured that all S-rings over the cyclic groups
Zn are Schurian (known also as the Schur-Klin conjecture). The conjecture was denied
recently by Evdokimov and Ponomarenko [35].

11.4 Simple reduction rules

We say that simple reduction rules apply to the group Zn if every sublattice L of L(n)
such that 1, n ∈ L, is obtained from trivial lattices via an iterative use of reduction rules
1 and 2. For instance, simple reduction rules apply to Z12, but not to Z36 (see the striking
example). We already discussed informally which are the orders n that simple reduction
rules apply to Zn.

The question is closely related to simple block structures introduced by Nelder [97].
Next we recall shortly the definition and some properties following [9].

For i = 1, 2, let Fi be a partition of a set Xi. Define the partition (F1, F2) of X1 ×X2

by setting the corresponding equivalence relation R(F1,F2) as(
(x1, x2), (y1, y2)

)
∈ R(F1,F2) ⇐⇒ (x1, y1) ∈ RF1 ∧ (x2, y2) ∈ RF2 .
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Let Fi be a block structure on Xi (i = 1, 2). Their crossing product is the block structure
on X1 ×X2 defined by

F1 ∗ F2 =
{

(F1, F2) | F1 ∈ F1, F2 ∈ F2

}
,

and their nesting product is the block structure on X1 ×X2 defined by

F1/F2 =
{

(F1, U2) | F1 ∈ F1

}
∪
{

(E1, F2) | F2 ∈ F2

}
.

For the automorphism groups we have Aut(F1∗F2) = Aut(F1)×Aut(F2), and Aut(F1/F2)
= Aut(F1) oAut(F2). Note that, if in addition both Fi are orthogonal, then so are F1 ∗F2

and F1/F2. The trivial block structure on a set X is the one formed by the partitions EX
and UX . The simple orthogonal block structures are defined recursively as follows:

• Every trivial block structure is simple of depth 1.

• If for i = 1, 2, Fi is a simple orthogonal block structures of depth si on a set Xi,
|Xi| ≥ 2, then F1 ∗ F2 and F1/F2 are simple orthogonal block structures of depth
s1 + s2.

Clearly, if F is simple, then Aut(F) is obtained using iteratively direct or wreath product
of symmetric groups. The equivalence follows.

Corollary 11.6. Simple reduction rules apply to Zn if and only if every orthogonal group
block structure on Zn is simple.

Corollary 11.7. Simple reduction rules apply to Zn if and only if n = pqr, or n = peq,
or n = pe, where p, q and r are distinct primes.

Proof. In view of the previous corollary we only need to check if there exists an or-
thogonal group block structure F on Zn which is not simple. By Proposition 10.1, F
is weakly isomorphic to PBS(P ;n1, . . . , nr), where P = ([r],�) is a non-increasing poset
with suitable weights ni. Let N be the poset given in part (i) of Figure 13. It is proved
that F is not simple if and only if P contains a subposet isomorphic to N (see [9, pp.
64]). Let mi, 1 ≤ i ≤ 4, be the weights of this subposet. Then m1m2m3m4 | n, and hence
n 6= pqr for distinct primes p, q and r. Let n = peq or n = pe. Then q appears as a factor
in at most one of the numbers mi, and so (m1,m2) > 1 or (m3,m4) > 1. This contradicts
(c) in (ii) of Theorem 1.1. These yield implication ‘⇐’ in the statement.

For implication ‘⇒’ assume that n is none of the numbers pqr, peq, or pe, where p, q
and r are distinct primes. We leave for the reader to check that in this case it is possible
to assign weights ni to N satisfying (a)-(c) in (ii) of Theorem 1.1. The arising orthogonal
group block structure on Zn is therefore not simple, and by this the proof is completed.
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11.5 Style of the paper

This paper is deliberately intended for a quite wide audience: from graduate students to
mature experts on one hand, and to readers working in many diverse areas of mathematics
and its applications on the other hand. The established style of the paper necessarily
implies that different readers may hopefully be satisfied by one facet of the presentation,
while be concerned with other ones. Two concrete examples are mentioned below.

The reduction rules appear in the text in different level of rigor: from very naive
and intuitive consideration of examples in Section 7 to a quite formal presentation in
Section 11.4. Similarly, we believe that a student, having certain background in computa-
tional group theory, will enjoy the striking (in our eyes) exercise outlined in Example 7.4,
while it is difficult to expect the same enthusiasm from a mature expert in abstract alge-
bra.

Last but not least, it is worthy to mention that Section 10 is in a sense a “paper inside
of the entire paper”. The reader with a high level of culture of mathematical formalisms
in group theory may skip in the text a reasonable portion of material, besides Section 10.

12 Historical digest

This paper objectively carries certain interdisciplinary features. Indeed, the main concepts
we discuss may be attributed to such areas as association schemes, S-rings, group theory,
design of statistical experiments, spectral graph theory, lattice theory, etc. While for
the authors there exists an evident natural impact of ideas borrowed from many diverse
areas, it is difficult to expect similar experience from each interested reader. Nevertheless,
at least brief acquaintance with the roots of the many facets of rational circulants, may
create an extra helpful context for the reader. This is why we provide in the final section
a digest of historical comments. We did not try to make it comprehensive, hoping to come
once more in a forthcoming paper to discuss the plethora of all detected lines with more
detail.

12.1 Schur rings

The concept of an S-ring goes back to the seminal paper of Schur [109], the abbreviation
S-ring was coined and used by R. Kochendörfer and H. Wielandt [123]. For a few decades
S-rings were used exclusively in permutation group theory in framework of very restricted
area of interests. Books [110, 30] provide a nice framework, showing evolution in attention
of modern experts to this concept. (Indeed, while S-rings occupy a significant position in
[110], the authors of [30] avoid to use the term itself, though still present the background
of the classical applications of S-rings to so-called B-groups, B stands for Burnside.)

On the dawn of algebraic graph theory, the interest to S-rings was revived due to their
links with graphs and association schemes, admitting a regular group as a subgroup of
the full automorphism group. In this context paper [27] by C. Y. Chao definitely deserves
credit for pioneering contribution. More evident combinatorial applications of S-rings
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stem from [102, 67]. Tendencies of modern trends for attention to the use of S-rings in
graph theory still are not clear enough. On one hand, a number of experts do not even
try to hide their fearful feelings toward S-rings, regarding their ability to avoid “heavy
use of Schur rings” (see [55]) as a definite positive feature of their presentation. On other
hand, S-rings form a solid part of a background for high level monographs, though under
alternative names like translation association scheme [25] or blueprint [10].

12.2 Schur rings over Zn

Practical application of established theory by Schur [109] originally was consideration
of S-rings over finite cyclic groups. As a consequence, he proved that every primitive
overgroup of a regular cyclic group of composite order n in symmetric group Sn is doubly
transitive. Further generalizations of this result are discussed in [123]. Nowadays, the
group theoretical results of such flavor are obtained with the aid of classification of finite
simple groups (CFSG), see e. g. [83]. Schur himself did not try to describe all S-
rings over Zn. First such serious attempt was done by Pöschel [102] on suggestion of
L. A. Kalužnin, disciple of Schur. In [102] all S-rings over cyclic groups of odd prime-
power order were classified. Classification of S-rings over group Z2e was fulfilled by joint
efforts of Ja. Ju. Gol’fand, M. H. Klin, N. L. Naimark and R. Pöschel (1981-1985), see
references in [96, 75]. First attempts of description of automorphism groups of circulants
of order n, their normalizers in Sn and, as a result, a solution of isomorphism problem
for circulants can be traced to [67]. K. H. Leung, S. L. Ma and S. H. Man reached
complete recursive description of S-rings over Zn in [80, 81, 82]. An alternative approach
was established by Muzychuk, see e.g. [89, 90]. The results of Leung and Ma were
rediscovered by S. A. Evdokimov and I. N. Ponomarenko [35]. In fact, in [35] a much
more advanced result was presented: evident description of infinite classes of non-Schurian
S-rings over Zn.

In 1967 A. Ádám [1] posed a conjecture: two circulants of order n are isomorphic if
and only if they are conjugate with the aid of a suitable multiplier from Z∗n. A number
of mathematicians more or less immediately presented diverse counterexamples to this
conjecture. Nevertheless, a more refined question was formulated: for which values of n
the conjecture is true, see [99] and references in it. A complete solution of this problem
was given in [91]. Later on Muzychuk [92] provided a necessary and sufficient condition for
two circulants of order n to be isomorphic. This monumental result (as well as previous
publications) of Muzychuk is based on skillful combination of diverse tools, including
deep use of S-rings. Schur rings were also used for the analytical enumeration of circulant
graphs, see [66, 85]. Current ongoing efforts for the description of the automorphism
groups of circulant graphs are also based on the use of S-rings. For n equal to odd prime-
power and n = 2e the problem is completely solved, see [61, 62, 74, 68, 76]. A polynomial
time algorithm which returns the automorphism group of an arbitrary circulant graph
was recently constructed by Ponomarenko [103].

For about four decades investigation of Schur rings over cyclic groups is serving for gen-
eration of mathematicians as a challenging training polygon in development of algebraic
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graph theory. This supports the author’s enthusiasm to further promote combinatorial
applications of S-rings and to expose this theory to a wider audience.

12.3 Rational S-rings and integral graphs

Original name coined by Schur was S-ring of traces. It seems that Wielandt [123] was the
first who suggested to use adjective rational for this class of S-rings. The complete rational
S-ring An over Zn appears as the transitivity module of the holomorph of Zn, which is
isomorphic to Zn o Z∗n. Its basic quantities are orbits of the multiplicative action of Z∗n
on Zn. It was already Schur who noticed that in a similar way Z∗n acts multiplicatively on
an arbitrary finite abelian group H of exponent n. Thus also in this case it is possible to
consider the transitivity module of H o Z∗n. The resulting S-ring is exactly the complete
rational S-ring over H. W. G. Bridges and R. A. Mena rediscovered in [23] (in a different
context) the algebra An and exposed a lot of its significant properties. Only later on, in
[24], they realized (due to hint of E. Bannai) existence of links of their generalization of
An for arbitrary finite abelian groups with the theory of S-rings. A crucial contribution,
exploited in [23, 24], was the use of the group basis in the complete rational S-ring over
H. Implicitly or explicitly the algebras An and V (H,Z∗n) were investigated later on again
and again, basing on diverse motivation see e.g. [106, 46, 48, 15].

As was mentioned, Muzychuk’s classification of rational S-rings over Zn [88] forms a
cornerstone for the background of the current paper. In turn, solutions for two particular
cases, that is n is a prime-power [102] and n is square-free [48] created a helpful start-
ing context for Muzychuk. Essential tools exploited in [88] are use of group basis and
possibility to work with so-called pseudo-S-rings (those which do not obligatory include
e and H). In fact, pseudo-S-rings were used a long time ago by Wielandt [123]. This,
in conjunction with the classical techniques of Schur ring theory, allows to obtain trans-
parent proofs of main results. For example, Zibin’s conjecture (and its particular case
Toida’s conjecture) were proved in [96] with the aid of S-rings based on earlier results of
Muzychuk. An alternative approach developed in [31] depends on the use of CFSG.

F. Harary and A. J. Schwenk [50] suggested to call a graph Γ integral if every eigenvalue
of Γ is integer. Since their pioneering paper a lot of interesting results about such graphs
were obtained. A very valuable survey appears in [100, Chapter 5]. More fresh results
are discussed in [120]. It was proved in [2] that integral graphs are quite rare, that is,
only a fraction of 2−Ω(n) of the graphs on n vertices have an integral spectrum. Recent
serious applications of integral graphs for designing the network topology of perfect state
transfer networks (see e.g. references in [2]) imply new wave of interest to these graphs.
In the context of the current paper, our interest to integral graphs is strictly restricted
by regular graphs. A significant source of regular integral graphs is provided by basic
graphs of symmetric association schemes and in particular by distance regular and strongly
regular graphs [14, 25, 100]. A serious attempt to establish a more strict approach to
algebraic properties of integral graphs is presented in [118]. Clearly, rational circulants
form an interesting particular case of regular integral graphs. Investigation of these graphs
usually is based on the amalgamation of techniques from number theory, linear algebra
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and combinatorics. Even a brief glance on such recent contributions as [112, 108, 2, 71]
shows a promising potential to use for the same purposes also S-rings.

Let us now consider a very particular infinite series of rational circulants Xn =
Cay(Zn,Z∗n), that is, the basic graph of the complete rational circulant association scheme,
containing edge {0, 1}. As in [29], we will call such graphs unitary circulant graphs. Dif-
ferent facets of interest to the unitary circulants may be traced from [47, 70, 3, 105, 33]. A
problem of description of Aut(Xn) was posed in [70] and solved in [3]. Clearly, the reader
will understand that the answer was in fact known for a few decades in framework of the
approach presented in this paper. Similarly, one sets complete answer on the Problem 2
from [70].

12.4 Designed experiments: a bridge from and to statisticians

I. Schur and R. C. Bose are now commonly regarded as the two most influential for-
runners of the theory of association schemes, a significant part of algebraic combinatorics,
see e.g. [14, 69, 10].

A geometer by initial training, Bose (1901-1987) was in a sense recruited by P. C. Ma-
halanobis to start from the scratch research in the area of statistics at a newly established
statistical laboratory at Calcutta (now the Indian Statistical Institute). Fruitful influence
of R. A. Fischer and F. Levi (during 1938 - 1943 and later on) turned out to become a
great success not only for Bose himself, but also for all growing new area of mathematics,
see [19]. As a result, within about two decades, theory of association schemes was estab-
lished by Bose et al., see [21, 22, 20, 18] for most significant cornerstone contributions on
this long way. Being in a sense a mathematical bilingual, Bose was perfectly feeling in the
two areas which were created and developed via his very essential contributions: design
of statistical experiments and association schemes.

Unfortunately, over the theory of association schemes was recognized as an indepen-
dent area of mathematics, in particular after death of Bose, close links of algebraic com-
binatorics to experimental statistics became less significant, especially in the eyes of pure
mathematicians. Sadly this divergence still continues. Nevertheless, mainly to the efforts
of R. A. Bailey, a hope for the future reunion is becoming during the last years more re-
alistic. The book [10] is the most serious messenger in this relation. Being also bilingual
(Bailey got initial deep training in classical group theory), during last three decades she
systematically promotes better understanding of foundations of association schemes by
statisticians. Referring to [10] for more detail, we wish just to cite here such papers as
[6, 114, 8] and especially [9].

These contributions, became in turn, very significant for pure mathematics. Indeed,
initial ideas of Nelder [97], equivalent in a sense to the use of simple reduction rules, in
hands of Bailey et al. were transformed to the entire theory of orthogonal partitions,
group poset structures and crested products. Note also that our striking example appears
in [10] as Example 9.1 in surprising clothes of designed experiment for bacteria search in
a milk laboratory.
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12.5 Lattices and finite topological spaces

For a square free number n Gol’fand established in [48] bijection between rational S-rings
over Zn and finite topologies on a k-element set, here n has exactly k distinct prime factors.
This is a particular case of a bijection between rational S-rings over Zn and sublattices
of L(n) for arbitrary n. Here we face another impact of diverse techniques from algebraic
combinatorics, general algebra, group theory, experimental designs, etc. Such references
as [116, 49, 17, 34, 73, 107, 101] provide a possibility to make a brief glance of the top
of this iceberg. We pay also a particular attention to the theory of posets in its entire
development, say from [115] to [117], with its own terminology, not obligatorily coinciding
with the one in our paper.

12.6 Generalized wreath products

The operation of wreath product has a long history, which goes back to such names as
A. Cauchy, C. Jordan, E. Netto and Gy. Pólya. E. Specht was one of the first experts
who considered it in a rigorous algebraic context, see [113]. A new wave of interest and
applications of wreath products was initiated by L. A. Kalužnin. The Kalužnin-Krasner
Theorem (see [77]) is nowadays commonly regarded as a classical result in the beginning
course of group theory. Less known is a calculus for iterated wreath product of cyclic
groups, the outline of which was created by Kalužnin during the period 1941-45 (at the
time he was imprisoned in a nazi concentration camp), see [119]. After the war the results,
shaped mathematically, were reported on the Bourbaki seminar, and published in a series
of papers, see e.g. [56]. A few decades later on this calculus was revived, extended and
exploited in hands of L. A. Kalužnin, V. I. Sushchanskii and their disciples, cf. [59]. The
notation, used in current paper is inherited from the texts of Kalužnin et al.

The generalized wreath product, the main tool in the reported project, was created
independently, more or less at the same time by two experts. The approach of V. Fěınberg
(other spelling is Fejnberg) has purely combinatorial origins, first it was presented on the
IX All Union Algebraic Colloquium (Homel, 1968, see [41]). Details are given in a series
of papers [42, 43, 44, 45]. Fěınberg traces roots of his approach to the ideas of Kalužnin
[57]. The book [58] provides a helpful detailed source for the wide scope of diverse ideas,
related to different versions of wreath products, its generalizations and applications. It
seems that as an entity this stream of investigations is overlooked by modern experts.

W. Ch. Holland submitted his influential paper [52] on January 11, 1968. Though his
interests are of a purely algebraic origin and the suggested operation is less general (in
comparison with one considered by Fěınberg), his ideas got much more lucky fate. The
paper [52] is noticed already in [122] and exploited in spirit of group posets in [111] (both
authors cite also [44]). It was Bailey who realized in [6] that the approach of Holland
is well suited for the description of the automorphism groups of poset block structures.
With more detail all necessary main ideas may be detected from [13], while [104, 26] stress
extra helpful information. Our paper is strongly influenced by presentation in [10, 11].
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12.7 Other products

The crucial input in [11] is that the generalized wreath product of permutation groups
is considered in conjunction with the wreath product of association schemes, and lines
between the two concepts are investigated. The crested product is a particular case of
generalized wreath products, which may be alternatively explained in terms of iterated
use of crested product. Note that the crested product for a particular case of S-rings was
considered in [51] under the name star product. As we now are aware, the considered
operations are enough in order to classify rational S-rings over cyclic groups.

A more general product operation, the wedge product of association schemes, was
recently introduced and investigated in [93]. The term goes back to [81, 82], where it was
used for a recursive classification of S-rings over cyclic groups. Muzychuk also investigates
the automorphism groups of his wedge product of association schemes. It should be
mentioned that, as observed in [93], the crested product for association schemes (and
hence for S-rings) is reduced to tensor and wedge products.

In a similar situation Evdokimov and Ponomarenko [35] are speaking about wreath
product of S-rings. The reader should notice that their terminology does not coincide with
the one accepted in our paper. As the authors recently realized from [37], the approach
developed by Evdokimov and Ponomarenko has its independent roots, which go back to
the school of D. K. Faddeev at Leningrad. No doubt that in the future the history of all
the exploited concepts must be investigated more carefully and systematically. Note also
that Theorem 1.2 in [36] in conjunction with some results in [37] provides an independent
background for the understanding of the structure of the automorphism groups of rational
S-rings.

For a particular case of S-rings over cyclic groups of prime-power order these groups
coincide with the subwreath product in a sense of [62, 68, 74, 76]. A few other operations
over association schemes (semi-direct product and exponentiation) are also of a definite
interest, see references in [93], though out of scope in this paper.

12.8 More references

It is a pleasure to admit that S-rings are proving their efficiency in algebraic graph the-
ory. As was mentioned, sometimes they may substitute the use of CFSG. One more such
example is provided by the classification of arc-transitive circulants. This problem was
solved for a particular case in [124], and in general in [84]. Both papers rely on a descrip-
tion of 2-transitive groups (a well known consequence of CSFG). In fact, the entire result
in [84] is a consequence of [89], the proof runs in the same fashion as the one for Zibin’s
conjecture. Note that, in fact the author of [84] does not cite [89], however, relies on a
presentation in [35]. Moreover, the same text [35] was used e.g. in [92].

It is worth to mention that in [54] all doubly transitive groups, containing a regular
cyclic subgroup, are classified, also with the aid of CFSG. We do not know if the same
result may be obtained, avoiding the use of CFSG.

Below is a small sample of other situations when knowledge of S-ring theory turn out
to be quite helpful.
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• Rational circulants, satisfying Am = dI + λJ [78, 86].

• Isomorphisms and automorphisms of circulants [53, 60].

• Classification of distance regular circulants [87].

• Commuting decompositions of complete graphs [4].

For purely presentational purposes we also recall one more old example. Arasu et
al. posed in [5] a question about the existence of a Payley type Cayley strongly regular
graph Γ which does not admit regular elementary abelian subgroups of automorphisms.
Such an example on 81 points was presented in [63] as a simple exercise via the use of
rational S-ring over group Z2

9, it has automorphism group of order 1944. An infinite series
of similar examples, using alternative techniques, was given [28], automorphism groups
were not considered. Complete classification of such strongly regular graphs over Z2

n with
the aid of S-rings, is given in [79] for n = pk. In our eyes the problem of classification of
partial difference sets (that is, Cayley strongly regular graphs) over groups Z2

n, n ∈ N is a
nice training task for innovative applications of S-rings and association schemes.

12.9 Concluding remarks

This project has been started in 1994 at the time of a visit of M. Klin to Freiburg. During
years 1994-96 Klin was discussing with O. H. Kegel diverse aspects of the use of S-rings and
simple reduction rules. These discussions as well as ongoing numerous conversations with
Muzychuk shaped the format of the project. Starting from year 2003, Kovács joined Klin,
and by year 2006, in principle, the full understanding of the automorphism groups of the
rational circulants was achieved, and presented in [64]. At that time we became familiar
with [12, 11] and were convinced that the crested products is a necessary additional brick
which allows to create a clear and transparent vision of the entire subject. Finally, a more
ambitious lead was attacked; the authors were striving to make presentation reasonably
available to a wide mathematical audience. Our goal is not only to solve a concrete
problem but also to promote use of S-rings and to stimulate interdisciplinary dialogue
between the experts from diverse areas, who for many decades were working in a relative
isolation, being not aware of the existence of worlds “parallel” to their efforts.

A preliminary version of this paper was published as preprint in arXiv (August 4,
2010), see [65]. Since that time a few new publications, related to the topic of the current
presentation, became available, in particular [16, 72] and the above cited significant paper
[37].
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[69] M. Klin, Ch. Rücker, G. Rücker and G. Tinhofer, Algebraic combinatorics
in mathematical chemistry. Match. 40 (1999), 7–138.

[70] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electronic.
J. Combin. 14 (2007), R45.

[71] W. Klotz and T. Sander, Integral Cayley graphs over abelian groups, Elec-
tronic. J. Combin. 17 (2010), R81.

[72] W. Klotz and T. Sander, Integral Cayley graphs defined by greatest common
divisors, Electronic. J. Combin. 18 (2011), P94.

[73] Y. Koda, The numbers of finite lattices and finite topologies, Bull. Inst. Combin.
Appl. 10 (1994), 83–89.
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