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Abstract
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(q, t)-version is established, including an instance of a cyclic sieving phenomenon
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1 The q-binomial

The q-binomial coefficient is defined for integers k and n, with 0 ≤ k ≤ n, and an
indeterminate q by [

n
k

]
q

=
(q)n

(q)k(q)n−k
(1.1)
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where (q)n = (1− q1)(1− q2) · · · (1− qn). It is well-known [1, p. 39] that the q-binomial
coefficient is a polynomial in q with non-negative integer coefficients[

n
k

]
q

=
∑

ω∈Ωn,k

qinv(ω), (1.2)

where Ωn,k is the set of words ω = (ω1, . . . , ωn) in {0, 1}n having k ones and n− k zeroes,
and inv(ω) is the number of inversions in ω, that is, pairs (i, j) with 1 ≤ i < j ≤ n and
ωi = 1, ωj = 0; see [1, p. 40]. When q is a prime power, the q-binomial coefficient (1.1) is
an integer counting the number of k-dimensional spaces in the n-dimensional vector space
Fnq over the field Fq.

Section 2 combinatorially interprets the q-binomial coefficient when q is a negative
integer (Theorem 2.1), while Section 3 establishes a positivity theorem for a (q, t)-analogue
when q is negative (Theorem 3.1). Section 4 provides a different interpretation for the
negative q-binomial, counting unitary subspaces, and related to Ennola duality for finite
unitary groups. Section 5 proves a cyclic sieving phenomenon involving the (q, t)-analogue
at negative q and unitary subspaces. Section 6 collects some remarks and remaining
questions suggested by these results.

2 The negative q-binomial

Let q ≥ 2 be an integer and define[
n
k

]′
q

:= (−1)k(n−k)

[
n
k

]
−q
. (2.1)

It is not hard to derive from the the product expression in (1.1) that this primed q-binomial
will be positive, and it follows from (1.2) that it is an integer, with[

n
k

]′
q

≤
[
n
k

]
q

. (2.2)

Our main result Theorem 2.1 is an analogue of (1.2) for the primed q-binomial coefficient
that clearly demonstrates (2.2). It expands the primed q-binomial coefficient as a sum
over words ω in a subset Ω′n,k ⊂ Ωn,k, with weights wt(ω) satisfying 1 ≤ wt(ω) ≤ qinv(ω)

for q ≥ 2. This subset Ω′n,k and weight wt(ω) come from a pairing algorithm explained
next.

Definition. Given ω = (ω1, . . . , ωn) in Ωn,k, pair some of its adjacent entries (ωi, ωi+1),
and leave others unpaired, according to the following recursive rule:

• When n = 1, leave the unique letter ω1 in ω unpaired.

• When n ≥ 2 and k is odd, pair the first two entries ω1, ω2, and recursively pair the
remaining word (ω3, . . . , ωn).
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• When n ≥ 2 and k is even, leave the first entry ω1 unpaired, and recursively pair
the remaining word (ω2, ω3, . . . , ωn).

Two examples of pairings for words, with pairings indicated by underlining, are

ω(1) = 01 1 00 10 1 01

ω(2) = 1 10 0 0 1 00 1.

Define
Ω′n,k := {ω ∈ Ωn,k : ω has no paired 01}.

For example, ω(2) lies in Ω′n,k, but ω(1) does not. For ω ∈ Ω′n,k, define

p(ω) := number of 10 pairs in ω

a(ω) := inv(ω)− p(ω)

wt(ω) := qa(ω)(q − 1)p(ω).

Note that a(ω) ≥ 0 since each pair 10 contributes at least 1 to the value of inv(ω). In fact,
it is helpful to think of a(ω) as a perturbation of the inversion statistic inv(ω) as follows:
each occurrence of 1 in ω would normally contribute to inv(ω) the number of zeroes to
its right, but when this 1 occurs in a pair 10 it contributes one fewer than usual to a(ω).

Note also that 1 ≤ wt(ω) ≤ qinv(ω) for q ≥ 2. This brings us to the main result.

Theorem 2.1. For 0 ≤ k ≤ n, one has[
n
k

]′
q

=
∑

ω∈Ω′n,k

wt(ω) =
∑

ω∈Ω′n,k

qa(ω)(q − 1)p(ω).

For example, if (n, k) = (5, 2), one has this data and calculation:

ω ∈ Ω′5,2 wt(ω)

0 0 0 1 1 1
0 0 1 10 q(q − 1)
0 1 00 1 q2

0 1 10 0 q3(q − 1)
1 00 10 q3(q − 1)
1 10 0 0 q5(q − 1)

1 + q(q − 1) + q2 + q3(q − 1) + q3(q − 1) + q5(q − 1)

= q6 − q5 + 2q4 − 2q3 + 2q2 − q + 1

= (−1)2·(5−2)

[
5
2

]
−q

=

[
5
2

]′
q

.
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Proof of Theorem 2.1. Induct on n, with easily verified base cases n = 0, 1. In the induc-
tive step, we use this q-Pascal recurrence (2.3), and its iterate (2.4)[

n
k

]
q

=

[
n− 1
k

]
q

+ qn−k
[
n− 1
k − 1

]
q

, (2.3)

[
n
k

]
q

=

[
n− 2
k

]
q

+ qn−k−1(q + 1)

[
n− 2
k − 1

]
q

+ q2(n−k)

[
n− 2
k − 2

]
q

. (2.4)

When k is even, replacing q 7→ −q in (2.3) gives[
n
k

]′
q

=

[
n− 1
k

]′
q

+ qn−k
[
n− 1
k − 1

]′
q

. (2.5)

Since k is even, the leading entry ω1 will be either be an unpaired 0 or 1. In either case,
ω1 contributes 0 to p(ω). If ω1 = 0 it contributes 0 to a(ω), and corresponds to the
first summand on the right of (2.5), while if ω1 = 1 it contributes n − k to a(ω), and
corresponds to the second summand on the right of (2.5).

When k is odd, replacing q 7→ −q in (2.4) gives[
n
k

]′
q

= q0(q − 1)0

[
n− 2
k

]′
q

+ qn−k−1(q − 1)1

[
n− 2
k − 1

]′
q

+ q2(n−k)(q − 1)0

[
n− 2
k − 2

]′
q

.

(2.6)

Since k is odd, (ω1, ω2) will be paired, and since ω lies in Ω′n,k, the pair (ω1, ω2) takes one
of the three forms 00, 10, or 11,

• contributing 0, n− k − 1, or 2(n− k), respectively, to a(ω),

• contributing 0, 1, or 0, respectively, to p(ω), and

• leaving k ones, k − 1 ones, or k − 2 ones, respectively, in (ω3, . . . , ωn).

Thus the three forms correspond to the three summands of (2.6)

We note that one can reformulate Theorem 2.1 as an expansion of the q-binomial
coefficient, with no negative signs, as follows.

Corollary 2.2. If 0 ≤ k ≤ n,[
n
k

]
q

=
∑

ω∈Ω′n,k

qa(ω)(q + 1)p(ω).
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Proof. Setting q 7→ −q in Theorem 2.1 and multiplying by (−1)k(n−k) gives[
n
k

]
q

=
∑

ω∈Ω′n,k

(−1)a(ω)+p(ω)+k(n−k)qa(ω)(q + 1)p(ω).

Comparing with the corollary, it suffices to show that for each ω in Ω′n,k one has the
following parity condition:

inv(ω) = a(ω) + p(ω) ≡ k(n− k) (mod 2). (2.7)

This can be checked via induction on n using the recursive definition of Ω′n,k:

Case 1. k is even.
If ω = 0ω′, then inv(ω) = inv(ω′) ≡ k(n− 1− k) ≡ k(n− k) mod 2.
If ω = 1ω′, then inv(ω) = n− k + inv(ω′) ≡ n− k + (k − 1)(n− k) ≡ k(n− k) mod 2.

Case 2. k is odd.
If ω = 00ω′ or ω = 11ω′, then inv(ω) ≡ inv(ω′) ≡ k(n− k − 2) ≡ k(n− k) mod 2.
If ω = 10ω′, then

inv(ω) = n− k + inv(ω′) ≡ n− k + (k − 1)(n− 1− k) ≡ k(n− k) mod 2.

3 The (q, t)-binomial at negative q

In [10, p. 43] the authors consider a certain (q, t)-analogue of the q-binomial: a polynomial
in t with positive integer coefficients, depending upon a positive integer q, and whose
limit as t goes to 1 is the q-binomial [9, Corollary 3.2]. Here we first review the definition
and interpretation of this (q, t)-binomial, and then establishing a positivity result for it
(Theorem 3.1) when q is a negative integer.

This (q, t)-version of the binomial coefficient is defined by (see [9] or [10, p. 43])[
n
k

]
q,t

:=
k∏
i=1

1− tqn−qi−1

1− tqk−qi−1 . (3.1)

When q a positive integer, one can show1 that this turns out to be a polynomial in t with
nonnegative integer coefficients. One can easily check from the above definition that its
degree in t is k(qn − qk), and that

tk(qn−qk)

[
n
k

]
q,t−1

=

[
n
k

]
q,t

(3.2)

so that its coefficient sequence will be symmetric about the power t
1
2
k(qn−qk).

1It follows, e.g., by iterating the (q, t)-Pascal recurrence (3.3) from the proof of Theorem 3.1.
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When q is a prime power, and hence the order of a finite field Fq, these properties of the
(q, t)-binomial follow from its interpretation as the Hilbert series for a certain graded ring,
briefly reviewed here; see [10, §9] or [9] for more detail. One starts with a S := Fq[x, . . . , xn]
a polynomial algebra on which G := GLn(Fq) acts by linear substitutions of variables.
One has nested subalgebras SG ⊂ SP of G-invariant polynomials SG, and P -invariant
polynomials SP , where P is the parabolic subgroup of G that stabilizes a particular k-
dimensional subspace of Fnq . Then the (q, t)-binomial coefficient in (3.1) is the Hilbert
series in the variable t for the quotient ring SP/(SG+), in which (SG+) denotes the ideal of
SP generated by the G-invariant polynomials of strictly positive degree.

Theorem 3.1. When q ≤ −2 is a negative integer, the (q, t)-binomial defined as a rational
function in (3.1) lies in (−1)k(n−k)N[t, t−1], meaning that it is a Laurent polynomial in t
whose nonzero coefficients all have sign (−1)k(n−k).

Furthermore, its coefficient sequence is symmetric about t
1
2
k(qn−qk), with monic coeffi-

cients on its smallest and largest powers of t, which are the following powers:

{ t0 , tk(qn−qk) } if n, k are both even,

{ tk(qn−qk) , t0 } if n, k are both odd,

{ tkq
n− 1−qk

1−q , t−kq
k+ 1−qk

1−q } if n is odd and k is even,

{ t−kq
k+ 1−qk

1−q , tkq
n− 1−qk

1−q } if n is even and k is odd.

Proof. The main issue is proving that this (q, t)-binomial with q ≤ −2 is a Laurent
polynomial of the appropriate sign. Given this, the coefficient symmetry follows from the
validity of (3.2) for any integer value of q. The last assertion of the theorem follows by
symmetry, after examining in each case the beginning of the Laurent expansion of the
product on the right side of (3.1). We omit the details.

The first assertion is proven by induction on n, as in the proof of Theorem 2.1. The
base cases n = 0, 1 are again easily verified. In the inductive step, one proceeds in two
cases, based on the parity of n− k.

Case 1. n− k is even.
We use the analogue [9, Prop. 4.1] of (2.3) with k replaced by n− k:[

n
k

]
q,t

=

[
n− 1
k − 1

]
q,tq

+ tq
k−1

k−1∏
i=0

1− tqk+1−qi+1

1− tqk−qi
[
n− 1
k

]
q,tq

(3.3)

We check that both summands on the right of (3.3) lie in (−1)k(n−k)N[t, t−1] = N[t, t−1].
By induction on n, the first term lies in (−1)(k−1)(n−k)N[t, t−1] = N[t, t−1].

For the second term, again by induction on n, one knows that its (q, t)-binomial factor
lies in (−1)k(n−k−1)N[t, t−1] = (−1)kN[t, t−1]. It then suffices to verify that the product
over i = 0, 1, . . . , k− 1 in the second term has each of its k factors lying in (−1)1N[t, t−1].
To verify this, let m := qk − qi and then this factor can be rewritten

1− tqk+1−qi+1

1− tqk−qi
=

1− tqm

1− tm
= −tqm1− t−qm

1− tm
= −tqm

(
1 + tm + t2m + · · ·+ t(−q−1)m

)
.

(3.4)
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This lies in (−1)1N[t, t−1], hence the second term of (3.3) lies in N[t, t−1].

Case 1. n− k is odd.
We use the analogue of (2.4) with k replaced by n− k:[

n
k

]
q,t

= A+B + C +D (3.5)

where A :=

[
n− 2
k − 2

]
q,tq2

B :=tq
k−q

k−2∏
i=0

1− tqk+1−qi+2

1− tqk−qi+1

[
n− 2
k − 1

]
q,tq2

C :=tq
k−1

k−1∏
i=0

1− tqk+1−qi+1

1− tqk−qi
[
n− 2
k − 1

]
q,tq2

D :=tq
k+1+qk−q−1

k−1∏
i=0

1− tqk+2−qi+2

1− tqk−qi
[
n− 2
k

]
q,tq2

The last term D is easy to deal with alone. By induction on n, its (q, t)-binomial factor
lies in (−1)k(n−2−k)N[t, t−1] = (−1)k(n−k)N[t, t−1]. We claim that each factor for i =
0, 1, . . . , k − 1 within the product inside D lies in N[t, t−1], since it can be expressed

1− tqk+2−qi+2

1− tqk−qi
=

1− tq2m

1− tm
= 1 + tm + t2m + · · ·+ t(q

2−1)m.

where m := qk − qi as before.
The factors in B and C which correspond to qn−k−1(q − 1)1 in (2.6), are no longer

Laurent polynomials in t with non-negative coefficients. Thus more care must be taken
to prove that A + B + C lies in (−1)k(n−k)N[t, t−1] for q ≤ −2. We start by combining
common factors in B and C:

B + C =
k−1∏
i=1

1− tqk+1−qi+1

1− tqk−qi
[
n− 2
k − 1

]
q,tq2

(
tq
k−q + tq

k−1 1− tqk+1−q

1− tqk−1

)
and rewrite this parenthesized factor within B + C as follows:

tq
k−q + tq

k−1 1− tq(qk−1)

1− tqk−1

= tq
k−q − tqk−1

(
t(−1)(qk−1) + t(−2)(qk−1) + · · ·+ tq(q

k−1)
)

= (tq
k−q − 1)− h

where h :=
(
t(−1)(qk−1) + t(−2)(qk−1) + · · ·+ t(q+1)(qk−1)

)
.
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One can also rewrite the other two factors appearing in B + C:

k−1∏
i=1

1− tqk+1−qi+1

1− tqk−qi
[
n− 2
k − 1

]
q,tq2

=
k−1∏
i=1

1− tqk+1−qi+1

1− tqk−qi
k−2∏
i=0

1− tqn−qi+2

1− tqk+1−qi+2

=
k−2∏
i=0

1− tqn−qi+2

1− tqk−qi+1 ( via telescoping )

=
1− tqn−qk

1− tqk−q
k−3∏
i=0

1− tqn−qi+2

1− tqk−qi+2 =
1− tqn−qk

1− tqk−q

[
n− 2
k − 2

]
q,tq2

.

Therefore A+B + C equals[
n− 2
k − 2

]
q,tq2

+
k−1∏
i=1

1− tqk+1−qi+1

1− tqk−qi
[
n− 2
k − 1

]
q,tq2
· ((tqk−q − 1)− h)

=

[
n− 2
k − 2

]
q,tq2

+
1− tqn−qk

1− tqk−q

[
n− 2
k − 2

]
q,tq2

(tq
k−q − 1)

−
k−1∏
i=1

1− tqk+1−qi+1

1− tqk−qi
[
n− 2
k − 1

]
q,tq2
· h

=

[
n− 2
k − 2

]
q,tq2

(
1 +

1− tqn−qk

1− tqk−q
(tq

k−q − 1)

)

−
k−1∏
i=1

1− tqk+1−qi+1

1− tqk−qi
[
n− 2
k − 1

]
q,tq2
· h

= tq
n−qk

[
n− 2
k − 2

]
q,tq2
−

k−1∏
i=1

1− tqk+1−qi+1

1− tqk−qi
[
n− 2
k − 1

]
q,tq2
· h

In this last expression, the first summand tq
n−qk

[
n− 2
k − 2

]
q,tq2

lies in

(−1)(k−2)(n−k)N[t, t−1] = (−1)k(n−k)N[t, t−1].

by induction on n.
The second summand has three factors, of which

• the (q, t)-binomial lies in (−1)(k−1)(n−k−1)N[t, t−1] by induction on n,

• the product over i = 1, 2, . . . , k− 1 has each factor in −N[t, t−1] as observed in (3.4)
within the proof of Case 1, and

• the factor of −h also lies in −N[t, t−1].

Thus, using the fact that n− k is odd, the second summand lies in

(−1)(k−1)(n−k−1) · (−1)k−1 · (−1)1N[t, t−1] = (−1)k(n−k)N[t, t−1].
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4 Nondegenerate unitary subspaces and Ennola du-

ality

The analogy between the binomial coefficients counting subsets and the q-binomials count-
ing subspaces is well-developed, as is the analogy between the symmetric group Sn and
the finite general linear group GLn := GLn(Fq). The authors thank John Shareshian
for pointing out an extension of this analogy to nondegenerate subspaces of (Fq2)n as a
unitary space2, and the unitary group Un := Un(Fq2):(

n
k

)
= #{subsets of cardinality k in {1, 2, . . . , n}}

= [Sn : Sk ×Sn−k][
n
k

]
q

= #{Fq-subspaces of dimension k in (Fq)n}

= q−k(n−k)[GLn : GLk ×GLn−k] = [GLn : Pk,n−k][
n
k

]
−q

= (−q)−k(n−k)#

{
nondegenerate

Fq2-subspaces of dimension k in (Fq2)n
}

= (−q)−k(n−k)[Un : Uk × Un−k].

(4.1)

Here Pk,n−k denotes the parabolic subgroup of GLn that stabilizes one particular choice
of a k-dimensional Fq-subspace, with GLk × GLn−k its Levi subgroup of index [Pk,n−k :
GLk × GLn−k] = qk(n−k). The formulas in (4.1) follow easily from the transitivity of the
actions on subsets, subspaces, nondegenerate subspaces of the groups Sn, GLn, Un, along
with these well-known cardinalities (see, for example, Grove [4, Chapters 1, 10, 11]):

|Sn| = n!

|GLn| = q(
n
2)(q − 1)(q2 − 1)(q3 − 1)(q4 − 1) · · · (qn − 1)

|Un| = q(
n
2)(q + 1)(q2 − 1)(q3 + 1)(q4 − 1) · · · (qn − (−1)n).

Instead, we would like to place (4.1) within the context of Ennola duality, relating unipo-
tent characters of GLn to those of the finite unitary group Un := Un(Fq2). We review a
portion of this material here– see Thiem and Vinroot [15] for a more extensive treatment.

We first review the notion of a unipotent character for GLn or Un. A torus T in a
finite group of Lie type G is an abelian subgroup containing only semisimple elements.
Given any linear character θ : T → C of a maximal torus T , there is a virtual character
RG
T (θ) of G called the Deligne–Lusztig character of the pair (T, θ) (see [3, Chapter 11],

[2, Chapter 7]). A natural C-subspace of the space of class functions of G is

U(G) = C-span{RG
T (1) | T a maximal torus},

2Meaning that one equips (Fq2)n with a nondegenerate Hermitian form (·, ·), sesquilinear with respect
to the conjugation action ᾱ := αq in Gal(Fq2/Fq), such as (x, y) :=

∑n
i=1 xy. See, e.g., Grove [4, Chapter

10] and Section 5 below.
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where 1 is the trivial character of T . In the case where G is GLn or Un, for each partition
λ of n, there is a unique maximal torus Tλ up to conjugacy, and U(G) has a C-basis given
by irreducible characters which we will denote χλGL and χλU ; one calls characters in this
space unipotent characters. We conform here to Macdonald’s convention [6, Chap. IV]

that χ
(1n)
GL is the trivial representation of GLn; this differs from some conventions by the

conjugation operation λ↔ λ′ on partitions, that is, transposing their Ferrers diagrams.
With this convention, if one defines

n(λ) :=
∑
i≥1

(i− 1)λi,

then the degree of the GLn-character χλGL is a polynomial in q, of degree
(
n
2

)
− n(λ),

having the following explicit product expression [6, Chap. IV, (6.7)]:

χλGL(1) = fλ(q) := qn(λ′)(q)n
∏
(i,j)

(
1− qhij

)−1
. (4.2)

Here the product runs over (i, j) with i ≥ 1 and j ≤ λi, that is, over the cells in the
Ferrers diagram for λ, and hij := λi − i+ λ′j − j + 1 is the hooklength at cell (i, j), where
λ′j is the length of the jth column in the diagram. The degrees of χλS and χλU are then
determined by the same polynomial fλ(q): one has χλS(1) = fλ(1), and

χλU(1) = (−1)(
n
2)−n(λ)fλ(−q). (4.3)

The relation (4.3) is what we are calling here Ennola duality. We wish to extend it
to explain (4.1), utilizing the characteristic maps isomorphisms for the three families of
groups Gn = Sn, GLn, Un; for Sn see Macdonald [6, Chap I §7], for GLn see Macdonald
[6, Chap IV §4], and for Un see and Thiem and Vinroot [15, §4]. In each case, these are

C-linear isomorphisms U(Gn)
chG−→ Λn where Λn denotes the space of symmetric functions

with C coefficients which are homogeneous of degree n. The characteristic maps are
defined by

χλS
chS7−→ sλ

χλGL
chGL7−→ sλ

χλU
chU7−→ (−1)b

n
2
c+n(λ)sλ.

where sλ is the Schur function indexed by the partition λ of n; see [6, Chap. I §3]. It is
also worth mentioning that if pλ is the power sum symmetric function corresponding to
the partition λ of n, then

RG
Tλ

(1)
chG7−→ (−1)|λ|−`(λ)pλ for G = GLn or Un.

From the characteristic map one deduces the following extension of (4.3).

the electronic journal of combinatorics 19 (2012), #P36 10



Proposition 4.1. Given three class functions χS, χGL, χU in U(Gn) for the three families
Gn above, whenever they have the same symmetric function image

chS χS = chGL χGL = chU χU .

then the polynomial f(q) giving the degree χGL(1) satisfies χS(1) = f(1) and

χU(1) = ±f(−q).

Proof. Expand the symmetric function as
∑

λ cλsλ for some integers cλ, and apply the
inverse of the characteristic map isomorphism to get these virtual character expansions
and degrees:

χGL =
∑

λ cλχ
λ
GL

f(q) := χGL(1) =
∑

λ cλf
λ(q)

χS =
∑

λ cλχ
λ
S

χS(1) =
∑

λ cλf
λ(1) = f(1)

χU =
∑

λ cλ(−1)b
n
2
c+n(λ)χλU

χU(1) =
∑

λ cλ(−1)b
n
2
c+n(λ) · (−1)(

n
2)−n(λ)fλ(−q)

= (−1)b
n
2
c+(n2)f(−q).

To explain (4.1), we need one further fundamental fact (see [6, Chap. I (7.3), Chap.
IV (4.1)], [15, Cor. 4.1]) about the characteristic maps chG for all n: taken together, they
give a ring (and even Hopf algebra) isomorphism

U(G) :=
⊕
n≥0

U(Gn)
chG−→

⊕
n≥0

Λn =: Λ.

Here the ring of symmetric functions Λ is given its usual product, and the C-vector space
U(G) is endowed with product structure

U(Ga)⊗ U(Gb) −→ Ua+b

χa ⊗ χb 7−→ R
Ga+b
Ga×Gb (χa ⊗ χb)

where R
Ga+b
Ga×Gb(−) is interpreted in the three cases as

• induction of characters from Sa ×Sb to Sa+b,

• Harish-Chandra induction of characters from GLa×GLb to GLa+b, that is, inflation
from GLa × GLb to Pa,b by composing with the quotient map Pa,b → GLa × GLb,
followed by usual induction from Pa,b to GLa+b, and
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• Deligne-Lusztig induction of characters from Ua × Ub to Ua+b; see, for example, [3,
Chapter 11] and [2, Chapter 7] for a precise definition.

A key point is that these three induction operations multiply the character degree (χa ⊗
χb)(1) = χa(1) · χb(1) by a predictable factor, equal to the right side of (4.1):

• Induction from Sa ×Sb to Sa+b multiplies degrees by [Sn : Sa ×Sb].

• Inflation from GLa×GLb to Pa,b does not change degree, while induction from Pa,b
to GLa+b multiplies degrees by [GLa+b : Pa,b].

• Deligne-Lusztig induction from Ua × Ub to Ua+b is known [3, Proposition 12.17] to
multiply degrees by ±q−ab[Ua+b : Ua × Ub].

We now apply Proposition 4.1 to the trivial degree one character 1Gk ⊗ 1Gn−k so that

RGn
Gk×Gn−k

(
1Gk ⊗ 1Gn−k

)
has degree given by the right side of (4.1). On the other hand,

its image under chG is given by

ch 1Gk · ch 1Gn−k = (±s1k) (±s1n−k) = ±s1ks1n−k

for any of the three families, so that (4.1) becomes a special case of Proposition 4.1.

5 A cyclic sieving phenomenon for nondegenerate

subspaces

One original motivation for the (q, t)-binomial in [10] was its role in an instance of
the cyclic sieving phenomenon, which we recall here. The finite Grassmannian of all
k-dimensional Fq-subspaces inside (Fq)n carries an interesting action of a cyclic group
Z/(qn − 1)Z ∼= F×qn : one embeds F×qn ↪→ GLn(Fq) through any choice of an Fq-linear iso-
morphism Fqn ∼= Fnq . One can then prove [10, Theorem 9.4] that for an element c in F×qn
of multiplicative order d, the number of k-dimensional subspaces preserved by c equals
the (q, t)-binomial with t evaluated at any primitive dth root-of-unity.

In light of this result, and the interpretation for the negative q-binomial in terms of
nondegenerate unitary subspaces given in (4.1), one might ask for a similar cyclic sieving
phenomenon involving the (q, t)-binomial at negative q. Our goal in this section is such
a result when n is odd, Theorem 5.5 below. It involves the action of a certain subgroup
C of the cyclic group F×q2n , acting unitarily on V = Fq2n , and permuting nondegenerate
subspaces.

We begin by introducing a compatible family of sesquilinear forms on V = Fq2n for n
odd, that depend upon the choice of scalars Fq2m over which one views V as an Fq2m-vector
space.

Definition 5.1. Let q be a prime power, and n an odd integer with n ≥ 1. For each
positive divisor m of n, consider V = Fq2n as an Fq2m-vector space, and recall that one
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has the surjective trace map

TrFq2n/Fq2m : Fq2n −→ Fq2m
α 7−→ α + αq

2m
+ αq

4m
+ · · ·+ αq

2(n−m)

Use this to define maps

V × V −→ Fq2m
(α, β) 7−→ (α, β)Fq2m := TrFq2n/Fq2m

(
α · βqn

)
Recall also that Fq2m is a degree two Galois extension of Fqm , and hence the nontrivial
element ᾱ := αq

m
of the Galois group defines conjugation α 7→ α on Fq2m .

Proposition 5.2. Fix the prime power q and the odd integer n ≥ 1.
Then for each divisor m of n, the map (·, ·)Fqm is

• Fq2m-Hermitian with respect to the conjugation on Fq2m, and

• nondegenerate as an Fq2m-valued form,

thus endowing V with the structure of an n
m

-dimensional unitary space over Fq2m.

Proof. It is straightforward to check that (·, ·) := (·, ·)Fq2m is an additive function of both
arguments, and an Fq2m-linear function of its first argument, that is,

(α + α′, β) = (α, β) + (α′, β)
(α, β + β′) = (α, β) + (α, β′)

(cα, β) = c(α, β) for c ∈ Fq2m .
In checking the other properties that define a Hermitian form, it is useful to note that
elements of c in Fq2m satisfy (cq

m
)q
m

= c, and since n
m

is odd, one also has

cq
n

=
(
· · ·
((
cq
m)qm) · · ·)qm︸ ︷︷ ︸
n
m

times

= cq
m

.

To check Fq2m-sesquilinearity in the second argument, given c ∈ Fq2m , one has

(α, cβ) = TrFq2n/Fq2m
(
α · (cβ)q

n)
= TrFq2n/Fq2m

(
cq
n · α · βqn

)
= cq

n
TrFq2n/Fq2m

(
α · βqn

)
= cq

m
(α, β)

= c · (α, β)

where the middle equality used the Fq2m-linearity of TrFq2n/Fq2m . One also has

(β, α) =
(

TrFq2n/Fq2m
(
β · αqn

))qm
=
(

TrFq2n/Fq2m
(
β · αqn

))qn
= TrFq2n/Fq2m

(
βq

n ·
(
αq

n)qn)
= TrFq2n/Fq2m

(
α · βqn

)
= (α, β).
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Lastly, one needs to know that (·, ·) is nondegenerate as a pairing on V , or equivalently,
that for any nonzero α in V = Fq2n , the Fq2m-linear functional

V −→ Fq2m
β 7−→ (α, β) = TrFq2n/Fq2m

(
α · βqn

)
is surjective, or equivalently, not identically zero. This follows because a separable field
extension K/k, such as Fq2n/Fq2m , always has nondegenerate k-bilinear pairing 〈α, β〉k :=

TrK/k(α · β), and β 7→ βq
n

is an automorphism of K = Fq2n .

We note here the following compatibility between the the various forms (·, ·)Fq2m , which
will be used in the proof of Theorem 5.5.

Proposition 5.3. Fix the prime power q and odd positive integers `,m, n, with ` dividing
m and m dividing n.

Then an Fq2m-subspace W of Fq2n, when regarded as an Fq2`-subspace, is nondegenerate
with respect to the form (·, ·)Fq2m if and only if it is nondegenerate with respect to the form

(·, ·)F
q2`

.

Proof. As in the previous proof, W is (·, ·)Fq2m -nondegenerate if and only if for every
nonzero α in W , the Fq2m-linear functional fm,α : W → Fq2m given by

fm,α(β) = (α, β)Fq2m

is surjective, or equivalently, not identically zero. As the corresponding functional f`,α :
W → Fq2` can be expressed as the composite f`,α = TrFq2m/Fq2` ◦fm,α, where the trace
map TrFq2m/Fq2` : Fq2m −→ Fq2` is well-known to be surjective, fm,α is nonzero if and only
if f`,α is nonzero.

We next describe the subgroup of the multiplicative group F×q2n which will act unitarily

with respect to our chosen Hermitian forms. Let γ be a generator for F×q2n ∼= Z/(q2n−1)Z
as a cyclic group.

Proposition 5.4. Fix q, n as before, and any divisor m of n.
Then the power γq

n−1 generates a cyclic subgroup C ∼= Z/(qn + 1)Z of F×q2n which acts
on V = Fq2n unitarily with respect to the Fq2m-Hermitian form (·, ·)Fq2m .

Proof. The cardinality of C = 〈γqn−1〉 should be clear. For the rest, calculate

(γq
n−1α, γq

n−1β)Fq2m = TrFq2n/Fq2m
(
γq

n−1α · (γqn−1β)q
n)

= TrFq2n/Fq2m
(
(γq

n−1)q
n+1 · α · βqn

)
= TrFq2n/Fq2m

(
γq

2n−1 · α · βqn
)

= (α, β)Fq2m .
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To state our cyclic sieving phenomenon, fix n odd as above, a prime power q, and a k
in the range 0 ≤ k ≤ n. Consider the set

X :=

{
all (·, ·)Fq2 -nondegenerate k-dimensional

Fq2-subspaces of V = Fq2n

}
.

Since the group
C := 〈γqn−1〉 ∼= Z/(qn + 1)Z

acts unitarily with respect to this form, C permutes the set X.

To define a polynomial X(t) in N[t] we first define a t-version of qk(n−k)

[
n
k

]
q

by

Y (q, t) :=

(
k−1∏
i=0

1− tqn−qn−k+i

1− tqk−qi

)[
n
k

]
q,t

.

We define X(t) as a polynomial version of Y (−q, t), namely

X(t) := tE ·
k−1∏
i=0

1− tqn+(−q)n−k+i

1− tqk−(−1)k(−q)i ·
k−1∏
i=0

1− tqn+(−q)i

1− tqk−(−1)k(−q)i ,

where one defines

E :=

{
0 if k is odd,

2
∑k−1

i=0 (qk − (−q)i) if k is even.

One may show that Theorem 3.1 implies X(t) lies in N[t]. It is also easily checked that,
since n is odd, one has

X(1) = (−q)k(n−k)

[
n
k

]
−q
. (5.1)

Furthermore, whenever q is odd, all powers of t in X(t) occur with even exponents, and
thus one has

X(−1) = X(1) for odd q. (5.2)

Theorem 5.5. This triple (X,X(t), C) exhibits a cyclic sieving phenomenon as in [10]:
for any c in C, the number of elements x in X having c(x) = x is given by evaluating
X(t) with t any complex root-of-unity whose multiplicative order is the same as c.

Proof. Given c in C ⊂ F×q2n , we wish to count how many x in X have c(x) = x. Let Fq2(c)
denote the subfield of Fq2n generated by Fq2 and c, so there exists a unique divisor m of
n for which

Fq2(c) = Fq2m . (5.3)

A k-dimensional Fq2-subspace W ⊂ V = Fq2n is fixed by c if and only if cW ⊂ W , that
is, if and only if W is actually a subspace over Fq2(c). By (5.3), this is equivalent to W
being a k′-dimensional Fq2m-subspace, where k′ := k

m
.
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According to Proposition 5.3, this Fq2-subspace W is in addition nondegenerate for
(·, ·)Fq2 if and only if it is nondegenerate for (·, ·)Fq2m . Therefore the number of x in X with

c(x) = x will be the number of (·, ·)Fq2m -nondegenerate k′-dimensional Fq2m-subspaces of

V = Fq2n ∼= (Fq2m)n
′

where n′ := n
m

. By (4.1), this number is

(−Q)k
′(n′−k′)

[
n′

k′

]
−Q

, where Q := qm. (5.4)

On the other hand, assuming that c has multiplicative order A, one can evaluate X(t)
at t = ω a primitive Ath root-of-unity. This makes heavy use of Proposition 5.6 below,
relating A to the number m defined by (5.3) above, and allowing one to analyze the
locations of zeroes in the numerator and denominators appearing in the explicit formula
for X(t). In particular, it will be shown that X(ω) vanishes unless m divides both n and
k, and then a limiting procedure will yield the predicted value (5.4) for X(ω) in this case.
We proceed in cases based on the value of A.

Case 1. A = 1.
This case follows from equality (5.1) combined with (4.1).

Case 2. A = 2.
If A = 2 then c = −1 6= +1 in Fq2n , forcing q to be odd. In this case, cW = W for all

subspaces W , and (5.1) shows that X(−1) = X(1), so the result follows as in the A = 1
case.

Case 3. A ≥ 3.
Given A, let m be as in (5.3). We first show X(ω) = 0 if m does not divide k. Note

that the first product in the definition of X(t), namely

k−1∏
i=0

1− tqn+(−q)n−k+i

1− tqk−(−1)k(−q)i (5.5)

has each of its factors a polynomial in t, since n being odd implies

qn + (−q)n−k+i = qn−k(qk − (−1)k(−q)i).

Thus (5.5) never has poles. As for the second product in the definition of X(t), namely

k−1∏
i=0

1− tqn+(−q)i

1− tqk−(−1)k(−q)i , (5.6)

it has powers of t with exponents

qn + 1, qn − q, qn − q2, . . . , qn + (−1)k−1qk−1 in the numerator,
qk + 1, qk − q, qk + q2, . . . , qk + qk−1 in the denominator for odd k,
qk − 1, qk + q, qk − q2, . . . , qk + qk−1 in the denominator for even k.
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Since n is an odd multiple of m, Proposition 5.6(iii,iv) implies that the choice t = ω yields
dk/me numerator zeroes, from exponents qn+1, qn−qm, qn+q2m, qn−q3m, . . . , and bk/mc
denominator zeroes, from exponents qk + qk−m, qk − qk−2m, qk + qk−3m, . . . , regardless of
the parity of k. Thus when m does not divide k, the numerator has more zeros than the
denominator, and X(ω) = 0.

When m does divide k, we wish to evaluate X(t) at t = ω a primitive Ath root-of-unity,
using this general L’Hôpital’s rule calculation: if r ≡ ±s mod A then

lim
t→ω

1− tr

1− ts
=


r/s if r ≡ s ≡ 0 mod A

1 if r ≡ s 6≡ 0 mod A

−ω−s if r ≡ −s 6≡ 0 mod A.

(5.7)

Pairing zeroes at t = ω in numerator, denominator of (5.6) and using (5.7) yields

k/m−1∏
i=0

qn − (−qm)i

qk − qk(−q−m)i+1
=

[
n′

k′

]
−Q

.

One can do a similar analysis for the first factor (5.5) evaluated at t = ω. This time
one finds exponents on t of qn + qn−1, qn− qn−2, qn + qn−3, . . . , qn + qn−k in the numerator,
and qk + 1, qk − q, qk + q2, . . . , qk + qk−1 in the denominator. The corresponding zeroes at
t = ω come from exponents qn + qn−m, qn − qn−2m, qn + qn−3m, . . . in the numerator, and
from qk + qk−m, qk − qk−2m, qk + qk−3m, . . . in the denominator, whose limit using (5.7) is

k/m−1∏
i=0

qn − qn(−q−m)i+1

qk − qk(−q−m)i+1
= q(n−k)k/m = Qk′(n′−k′).

It only remains to analyze the nonzero factors at t = ω in the numerator and denom-
inators of the two products comprising X(t). We treat this in two cases based on the
parity of k.

For k odd, we claim that these nonzero numerator and denominator factors in the
second product (5.6) pair off to give 1 using (5.7). To see this claim, note that since A
divides qm + 1, one has ωq

m+1 = 1, and so one needs only check that the difference of the
t-exponents

qn + (−q)i − (qk + (−q)i) = qk(qn−k − 1)

is divisible by qm + 1. But m, which is odd, divides n− k, which is even, so one also has
2m dividing n − k. Thus q2m − 1 divides qn−k − 1, as does qm + 1. We similarly claim
that, for k odd, the nonzero numerator and denominator factors in the first product (5.5)
pair off to give factors of 1 using (5.7), because the difference of the exponents

qn + (−q)n−k+i − (qk + (−q)i) = (qk + (−q)i)(qn−k − 1)

is again divisible by qm + 1.
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For k even, we claim that the nonzero numerator and denominator factors in the
second product (5.6) pair off in such a way that one can apply the third case of (5.7): one
has as sum of numerator and denominator t-exponents(

qn + (−q)i
)

+
(
qk − (−q)i

)
= qk(qn−k + 1) ≡ 0 mod qm + 1

where the congruence follows as m divides n − k and both are odd. Each such factor
contributes −ω−(qk−(−q)i) by (5.7), and there are k− k

m
such factors, an even number since

k is odd and m is even, giving a total contribution of ω−
∑k−1
i=0 (qk−(−q)i). Similarly, when

k is even, we claim that these nonzero numerator and denominator factors in the first
product (5.5) pair off with the sum of the numerator and denominator t-exponents(

qn + (−q)n−k+i
)

+ (qk + (−q)i) = (qk − (−q)i)(qn−k + 1) ≡ 0 mod qm + 1

where the congruence follows for the same reason. Again there are k − k
m

such factors,

giving a total contribution of ω−
∑k−1
i=0 (qk−(−q)i).

Together these contribute ω−2
∑k−1
i=0 (qk−(−q)i), cancelled by tE for k even.

The following proposition collects technical facts used in the preceding proof.

Proposition 5.6. Assume that c in F×q2n has multiplicative order A at least 3, and that
Fq2(c) = Fq2m, where m divides n.

(i) The order A must divide qm + 1.

(ii) The smallest positive integer d such that A divides qd + 1 is m.

(iii) The order A divides qs + qt if and only if s− t is an odd multiple of m.

(iv) The order A divides qs − qt if and only if s− t is an even multiple of m.

Proof. Assertions (i) and (ii). These will be deduced from the stronger

Claim: If d|n and A|qn + 1, then A|q2d − 1 if and only if A|qd + 1.

The “if” direction in the claim is clear, so we must only show that A|q2d − 1 implies
A|qd + 1. If d = n this is the hypothesis on A. So assume that d < n, and since n is odd,
we have 2d < n. Clearly A must divide gcd(qn + 1, q2d− 1), which we now prove is qd + 1.
Expressing

qn + 1 = qn−2d(q2d − 1) + qn−2d + 1

in order to use Euclidean algorithm, one has

gcd(qn + 1, q2d − 1) = gcd(qn−2d + 1, q2d − 1)

Since d divides n, and n is odd we have n ≡ d mod 2d, and therefore

gcd(qn + 1, q2d − 1) = gcd(qd + 1, q2d − 1) = qd + 1.
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Given the claim, assertions (i),(ii) follow, since Fq2(c) = Fq2m means that m is the smallest
positive integer d such that c ∈ Fq2d , i.e., such that A divides q2d − 1.

Assertion (iii). In one direction, if s−t is an odd multiple of m, then qm+1 divides qs−t+1
and also qs + qt, so A also divides qs + qt.

For the converse, suppose that A divides qs+qt, and assume without loss of generality
that s ≥ t. Since gcd(A, q) = 1, one has that A also divides qs−t+1 and qm+1, so A divides
gcd(qs−t + 1, qm + 1). Since A ≥ 3 we can assume that s > t and write s − t = mα + β
with 0 ≤ β < m. Expressing

qs−t + 1 = (qm(α−1)+β − qm(α−2)+β + · · ·+ (−1)α−1qβ)(qm + 1) + (−1)αqβ + 1

and using the Euclidean algorithm, one has that A divides (−1)αqβ + 1.
If α is even, then 0 < β < m contradicts the minimality of m, while β = 0 contradicts

A ≥ 3. Thus α is odd, and A divides qβ − 1.
Now if β = 0, then s− t is an odd multiple of m, so we are done. Otherwise, if β > 0,

then write m = γβ + δ with 0 ≤ δ < β < m. Expressing

qm + 1 = (qβ(γ−1)+δ + qβ(γ−2)+δ + · · ·+ qδ)(qβ − 1) + qδ + 1

and using the Euclidean algorithm, one concludes that A divides qδ + 1. Again by mini-
mality of m this implies that δ = 0, which contradicts A ≥ 3.

Assertion (iv). In one direction, if s − t is an even multiple of m, then qm + 1 divides
q2m − 1, and hence also divides qs−t − 1, and therefore divides qs − qt.

For the converse, suppose that A divides qs−qt, and assume without loss of generality
that s ≥ t. Since gcd(A, q) = 1, one has that A also divides qs−t − 1 and qm + 1, so
A divides gcd(qs−t − 1, qm + 1). Again writing s − t = mα + β with 0 ≤ β < m, and
expressing

qs−t − 1 = (qm(α−1)+β − qm(α−2)+β + · · ·+ (−1)α−1qβ)(qm + 1) + (−1)αqβ − 1

the Euclidean algorithm implies that A divides (−1)αqβ − 1.
If α is odd, this contradicts the minimality m for β > 0, so we can assume α is even.

The argument proceeds as for Assertion (iii), β = 0, and s − t is an even multiple of
m.

6 Remarks and further questions

6.1 Reformulating Theorem 2.1 via partitions

It is well-known (see e.g. [1, p. 40]) that Ωn,k bijects with integer partitions λ whose
Ferrers diagram lie inside an (n−k)×k rectangle. One version of this bijection sends the
word ω = (ω1, . . . , ωn) to the partition λ whose Ferrers diagram (drawn in the plane Z2

in English notation) has its northwest corner at (0, n− k), and whose outer boundary is
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the lattice path from (n− k, k) to (0, 0) having its ith step go one down (resp. leftward)
if ωi = 0 (resp. ωi = 1). One has inv(ω) = |λ| =

∑
i λi, the weight of λ.

We omit the details in verifying the following.

Proposition 6.1. Under the above bijection, one has the following correspondences.

(i) The subset Ω′n,k ⊂ Ωn,k corresponds to those partitions λ inside (n−k)×k for which

(a) if k is even, each odd part has even multiplicity,

(b) if k is odd, each even part has even multiplicity, and moreover the number of
parts has the same parity as n− k.

(ii) The statistic p(ω) counting occurrences of paired 10 in ω corresponds to the statistic
p(λ) counting the corner cells in λ that are special in the following sense: they are
the last cells in rows of λ corresponding to the last occurrences of each part with the
same parity as k.

(iii) Theorem 2.1 becomes [
n
k

]′
q

=
∑
λ

q|λ|−p(λ)(q − 1)p(λ).

where the sum runs over λ ⊂ (n− k)× k satisfying condition (i) above.

Here are three examples of assertion (iii), with the first compared to the example appearing
just after Theorem 2.1:

(n, k) = (5, 2)
ω ∈ Ω′5,2 λ wt(λ)

1 10 0 0 222 q(q − 1)q2q2

0 1 10 0 22 q(q − 1)q2

1 00 10 211 q(q − 1)q2

0 0 1 10 2 q(q − 1)
0 1 00 1 11 q2

0 0 0 1 1 ∅ 1

(n, k) = (5, 3)
λ wt(λ)

33 q2(q − 1)q3

22 q2q2

31 q2(q − 1)(q − 1)
11 (q − 1)q1

∅ 1

(n, k) = (6, 3)
λ wt(λ)

333 q2(q − 1)q3q3

322 q2(q − 1)q2q2

331 q2(q − 1)q3(q − 1)
221 q2q2(q − 1)
311 q2(q − 1)(q − 1)q
3 q2(q − 1)
111 (q − 1)q2

1 q − 1
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6.2 Reformulating Theorem 2.1 via subspaces

When q is a prime power, so the size of the finite field Fq, one can also reformulate
Theorem 2.1 as counting certain k-dimensional Fq-subspaces of Fnq .

Recall that a k-dimensional subspace V is the column-space of a matrix A in Fn×kq in
column-echelon form:

• each column ends with a string of 0’s, preceded by a pivot entry 1,

• with only zeroes in the same row as any pivot, and

• where the row indices of the pivots decreasing from left-to-right.

The map f sending V to the word ω in Ωn,k whose ones are in the same positions as the
row indices of the pivots of A corresponds (see e.g. [7], [12, Chapter 1]) to the Schubert
cell decomposition of the Grassmannian G(k,Fnq ).

If the word ω corresponds as above to the partition λ inside (n − k) × k, then there
are qinv(ω) = qλ elements in the pre-image f−1(ω): deleting the k pivot rows from A gives
an (n− k)× k matrix whose nonzero entries lie in the cells of λ. As an example, consider
matrices A with this column-echelon form for (n, k) = (11, 5):

0 0 0 0 1
0 0 0 1 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
0 0 1 0 0
0 1 0 0 0
∗ 0 0 0 0
∗ 0 0 0 0
1 0 0 0 0


has λ =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗
∗

and ω = 10 0 1 10 0 0 0 1 1.

The special entries in the matrix A, corresponding to the special corner cells of λ from
Proposition 6.1 and corresponding to the paired 10’s in ω, are shown underlined.

One may then analogously reintepret Theorem 2.1 (or Theorem 6.1) as saying that the
primed q-binomial counts those k-dimensional subspaces V whose column-echelon form
has all special entries nonzero.

Using echelon forms, it was shown in [9, §5.3] how to associate to each k-dimensional
subspace V a power of t so that their generating function in t interprets the (q, t)-binomial
coefficient. Similarly, one can use Theorem 3.1 and its proof to associate a power of t to
each such subspace V having special entries nonzero, so as to give a generating function
interpretation to the (q, t)-binomial coefficient when q is a negative integer. We omit this
formulation here.
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6.3 Geometry

Given a field F, let XF denote the Grassmannian of k-dimensional subspaces in Fn. Aside
from its interpretation when q is a prime power as counting the points of the finite
Grassmannian XFq , the q-binomial coefficient has two well-known interpretations as the
Poincaré polynomials ∑

i

rankZH
2i(XC;Z)qi∑

i

dimF2 H
i(XR;F2)qi

See, e.g., [14] for the second interpretation. These lead to the following interpretations
for at least the q = 1 specialization of the primed q-binomial[

n
k

]′
q=1

= #{ω ∈ Ω′ : p(ω) = 0}

• as the signature or index of XC (see [8]), and

• as the Euler characteristic of XR, up to a ± sign.

Question 6.2. Can one generalize either of the above geometric interpretations for its
q = 1 specialization to a geometric interpretation for the full primed q-binomial?

6.4 Lack of monotonicity for (q, t)

As mentioned earlier, Theorem 2.1 makes inequality (2.2) transparent. Thus one might
hope for an analogous inequality involving the (q, t)-binomial and its −q relative, perhaps
via Theorem 3.1.

Unfortunately, a naive guess along these lines fails already in the case of (n, k, q) =

(4, 2, 4): even though

[
n
k

]
q,t

and (−1)k(n−k)

[
n
k

]
−q,t

both lie in N[t] and have the same

degree k(qn − qk) = 480, their difference contains both positive and negative coefficients.

6.5 A conjecture on Schur functions

Conjecture 6.3 below is a generalization of Theorem 3.1 that applies to a (q, t)-analogue
Sλ(1, t, . . . , t

n) of principally specialized Schur functions, discussed in [9, Definition 5.1].
Define for integer partitions λ, the statistic b(λ) :=

∑
i(i− 1)λi.

Conjecture 6.3. If q ≤ −2 is a negative integer, then

(−1)n|λ|−b(λ)Sλ(1, t, . . . , t
n)

is a Laurent polynomial in t, all of whose coefficients are non-negative integers.
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6.6 Generating function for a, p on Ω′n,k

One may find an explicit product representation for the rational generating function

Gk(x, q, z) =
∑
n≥k

xn
∑

ω∈Ω′n,k

qa(ω)zp(ω).

We do not give the result here, but note that one of its specializations

Gk(x, 1, 1) =
∑
n≥k

xn|Ω′n,k| =
xk

(1− x)k+1(1 + x)b(k+1)/2c

can be used to give an expression for |Ω′n,k|.

6.7 Lucasnomials

Sagan and Savage [11] recently introduced analogues of binomial coefficients, dubbed
lucasnomials, defined as follows: for 0 ≤ k ≤ n,{

n
k

}
:=

{n}!
{k}! {n− k}!

where {n}! := {1} {2} · · · {n}, and {n} is defined as polynomials in variables s, t recur-
sively, via {0} := 0, {1} := 1, and

{n} = s {n− 1}+ t {n− 2}

It is not hard to see that after substituting

s = q + 1, t = −q

the lucasnomial is the q-binomial, and therefore after substituting

s = −q + 1 = −(q − 1), t = q (6.1)

the lucasnomial is (up to sign) the primed q-binomial from (2.1). Since their main result
[11, Theorem 3.1] expands the general lucasnomial as a sum of monomials satb, one might
wonder how their expansion compares (after substituting as in (6.1)) with Theorem 2.1.
It turns out that their expansion has more terms satb = (−1)a(q−1)aqb than Theorem 2.1,
and not all terms in their expansion have the same sign (−1)a.
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