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Abstract

The work of C. Bonnafé, M.Geck, L. Iancu and T. Lam [3] shows through two
conjectures that r-domino tableaux have an important role in Kazhdan-Lusztig the-
ory of type B with unequal parameters. In this paper we provide plactic relations on
signed permutations which determine whether two given signed permutations have
the same insertion r-domino tableaux in Garfinkle’s algorithm [4]. Moreover, we
show that a particular extension of these relations can describe Garfinkle’s equiva-
lence relation [4] on r-domino tableaux which is given through the notion of open
cycles. With these results we enunciate the conjectures of [3] and provide necessary
tools for their proofs.

1 Introduction

Let W be a finite Coxeter group and let L : W 7→ Z≥0 be a weight function such that

L(uw) = L(u) + L(w) if and only if l(uw) = l(u) + l(w)

where l : W 7→ Z≥0 is the usual length function on W . As it is described by Lusztig in
[14] every weight function determines an Iwahori-Hecke algebra and three preorders on
W whose equivalence classes are called left, right and two-sided cells. The importance
of these cells lies in the fact that they carry representations of W and its corresponding
Iwahori-Hecke algebra H. Furthermore they have an important role in the representation
theory of reductive algebraic groups over finite or p-adic fields [14] and in the study of
rational Cherednik algebras [8] and the Calogero-Moser spaces [9].

The case L = l is in fact first introduced by Kazhdan and Lusztig in [11] as a purely
combinatorial tool for the theory of primitive ideals in the universal enveloping algebras of
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semisimple complex Lie algebras. In this case the combinatorial characterizations of cells
are well known, where Knuth (or plactic) relations appear as the mediating tool. Namely,
when W is type A then each right (left) cell corresponds to the plactic (respectively
coplactic) class of some standard Young tableau, whereas each two-sided cell consists of
those permutations which lie in the plactic classes of tableaux of the same shape. This
characterizations depend on Joseph’s classification of primitive ideals in type A, where
Knuth (plactic) relations play a crucial role.

In the types B, C and D, on the other hand the emerging combinatorial objects are
standard domino tableaux. The connection is first revealed in the work of Barbash and
Vogan [1] where they provide necessary conditions for the characterizations of primitive
ideals through an algorithm which uses the palindrome representations of signed permu-
tations in order to assign to every signed permutation α a pair of same shape standard
r-domino tableaux (P r(α), Qr(α)) bijectively, for r = 0 or r = 1. Meanwhile, an analog
of Knuth relations provided by Joseph in [10] established the sufficient conditions. On
the other hand Garfinkle [4, 5, 6] finalized the classification problem for these types by
showing through her two algorithms on domino tableaux that these two sets of relations
are in fact equivalent. Her first algorithm assigns any signed permutation to a pair of
same shape standard r-domino tableaux for r equal to 0 or 1 and the second defines an
equivalence relation between domino tableaux through the notion of open cycles. We
remark that the extension of Garfinkle and Barbash-Vogan algorithm for larger r is given
in [13] and [3] respectively.

The case L 6= l is also known as unequal parameter Kazhdan-Lusztig theory and it
appears for the types Bn, I2(n) and F4, where the classification problem for the latter
two can be dealt with computational methods, see [7]. For type Bn, the weight function
is determined by two integers a, b > 0 such that

L(si) =

{

a if 1 ≤ i ≤ n− 1

b if i = 0

where s0 is the transposition (−1, 1) and {si = (i, i + 1)|1 ≤ i ≤ n − 1} are the type A
generators of Bn. Recently, the role of r-domino tableaux in this theory is revealed in the
work of Bonnafé, Geck, Iancu, and Lam [3] through two main conjectures:

• Conjecture A: If ra < b < (r+ 1)a for some r ≥ 0 then two signed permutations lie
in the same Kazhdan-Lusztig right (left) cell if and only if their insertion (recording)
r-domino tableau are the same.

• Conjecture B: If b = ra for some r ≥ 1 then two signed permutations lie in the same
Kazhdan-Lusztig right (left) cell if and only if their insertion (recording) r − 1-
domino tableau are equivalent through the notion of open cycles.

In order to establish the proofs of these conjecture one definitely needs the plactic
relations between signed permutations which determines when the insertion r-domino
tableaux of two signed permutations are the same or equivalent through the notion of
open cycles. Our aim here is to fill this gap.
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This paper is organized as follows: The descriptions of Barbash-Vogan and Garfinkle’s
algorithms can be found in Section 2 together with some lemmas which are essential in
the following section. In Section 3 the definition of plactic relations are given and they are
shown to be necessary and sufficient for describing plactic classes of r-domino tableaux.

Remark. Recently T. Pietraho [18] has found another set of generators which can be
shown to be equivalent to Dr

1, D
r
2, D

r
3 and Dr−1

3 given in the Definition 13. On the other
hand these relations describes a larger set, namely the set of all permutations whose
insertion r-domino tableaux are equivalent through the notion of open cycles. Finally, by
using his results and an earlier version of the present work, C. Bonnafé provides a partial
result towards the previous conjectures [2].
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2 Related background

A sequence λ = (λ1, . . . , λk) is a partition of n, denoted by λ ⊢ n, if
∑k

i=1 λi = n and λi ≥
λi+1 > 0 where its Ferrers diagram consists of left justified arrows of boxes such that the
i-th row has λi boxes. For example

λ = (2, 2, 1) =

A partition λ = (λ1, . . . , λk) can be also seen as a set of integer pairs (i, j) such that
1 ≤ i ≤ k and 1 ≤ j ≤ λi. Therefore for two partitions λ and µ, we can define usual set
operations such as λ ∪ µ, λ ∩ µ, λ ⊂ µ, λ − µ, but the resulting sets do not necessarily
correspond to any partitions.

Definition 1 For two partitions λ and µ satisfying µ ⊂ λ we define λ/µ = λ − µ to be
the skew partition determined by λ and µ.

Definition 2 Let γ and γ′ be two skew shapes.

1. If γ∩γ′ = ∅ and γ∪γ′ also corresponds a skew shape then we define γ⊕γ′ = γ∪γ′.

2. If γ′ ⊂ γ and γ − γ′ also corresponds a skew shape then we define γ ⊖ γ′ = γ − γ′.

Definition 3 Let λ be a partition and (i, j) ∈ λ.

1. If (i, j) ∈ λ and λ⊖ (i, j) is also a partition then (i, j) is called a corner of λ.
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2. If (i, j) 6∈ λ and λ⊕ (i, j) is also a partition then (i, j) is called an empty corner of
λ.

Definition 4 A skew tableau T of shape λ/µ is obtained by labeling the cells of λ/µ with
non repeating, totally ordered letters such that the letters increase from left to right and
from top to bottom. If µ = ∅ then T is called a Young tableau. We denote by

label(T ) and shape(T )

respectively, the set of letters labeling each box of T and the partition underlying T . For
a set A of letters given with a totally ordering, we denote by SY TA the set of Young
tableaux labeled with A. If A = {1, 2, . . . , n} then T is called a standard skew or standard
Young tableau according to the shape of T . Moreover the set of standard Young tableaux
are denoted by SY Tn.

Let SA (Sn) denote the symmetric group on the totaly ordered set A (respectively on
{1, 2, . . . , n}). When the size of A is n we have an order preserving bijection between A
and {1, 2, . . . , n} and this yields two more bijections between SA and Sn as well as SY TA

and SY Tn. Therefore the following discussions and results can be generalized to any finite
totally ordered set A.

There is an important connection, between Young tableaux SY Tn and the symmetric
group Sn, known as the Robinson-Schensted correspondence (RSK), which was realized by
Robinson and Schensted independently. In this correspondence, every permutation w ∈
Sn is assigned bijectively to a pair of same shape tableaux (P (w), Q(w)) in SY Tn×SY Tn

through insertion and recording algorithms. Let us explain these algorithms briefly. We
denote by (Pi−1, Qi−1) the tableaux obtained by insertion and recording algorithms on
the first i − 1 indices of w = w1 . . . wn. In order to get Pi we proceed as follows: if
wi is greater then the last number on the first row of Pi−1, then wi is concatenated to
the first row of Pi−1 from the right, otherwise wi replaces the smallest number, say a,
among all numbers in the first row which are greater then wi and the insertion algorithm
continues with the insertion of a to the next row. Observe that after finitely many steps
the insertion algorithm terminates with a new appearing cell on some row of Pi−1. The
resulting tableau is then Pi and the recording tableau Qi is found by filling this new cell
in Qi−1 with the number i. We illustrate these algorithms with the following example.

Example 1 Let w = 52413 ∈ S5. Then,

P1 = 5, P2 =
2
5
, P3 =

2 4
5

, P4 =
1 4
2
5

, P5 =
1 3
2 4
5

= P (w)

Q1 = 1, Q2 =
1
2
, Q3 =

1 3
2

, Q4 =
1 3
2
4

, Q5 =
1 3
2 5
4

= Q(w)

The following result of Schützenberger [20] reveals an important property of the RSK.
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Theorem 2.1 If w ∈ Sn, then P (w−1) = Q(w) and Q(w−1) = P (w).

There are two equivalence relations and a related result given by Knuth [12] which
are fundamental in the combinatorics of tableaux. In the following we provide them in a
more general setting:

Definition 5 Let A be a totally ordered set of letters and u = u1 . . . un ∈ SA. If either
ui < ui+2 < ui+1 or ui < ui−1 < ui+1 for some i then

u = u1 . . . ui−1(ui ui+1) ui+2 . . . un ∼ u1 . . . ui−1(ui+1 ui) ui+2 . . . un = u′.

We say u, w ∈ SA are Knuth equivalent, u
K
∼ w, if w can be obtained from u by

applying a sequence of ∼ relations. On the other hand if u−1 K
∼ w−1 then u and w are

called dual Knuth equivalent, u
K∗

∼ w.

Theorem 2.2 (Knuth [12]) Let u, w ∈ SA. Then

i) u
K
∼= w ⇐⇒ P (u) = P (w)

ii) u
K∗

∼= w ⇐⇒ Q(u) = Q(w).

We next illustrate the forward and backward slides of Schützenberger’s jeu de taquin
[21] without the definition. We remark that jeu de taquin slides can be used to give
alternative descriptions of both the Robinson-Schensted algorithm and Knuth relations.
The following theorem provided by Schützenberger in [21] reveal this connection.

Example 2 Below we illustrate a forward slide on the tableau S through cell c12 and
backward slide on the tableau T through cell c32.

S = • 4

2 5

1 3

→ 2 4
• 5

1 3

→ 2 4

3 5

1 •

T = 2 4

3 5

1 •

→ 2 4
• 5

1 3

→ • 4

2 5

1 3

Theorem 2.3 If P is a skew tableau that is brought to a Young tableau P ′ by slides, then
P ′ is unique. In fact, P ′ is the insertion tableau for the row word of P .

Definition 6 The set of two adjacent cells A = {(i, j), (i, j+1)} (or A = {(i, j), (i+1, j)})
is called a horizontal (or respectively vertical) domino cell. Now

min(A) and max(A)

denotes the minimum and respectively maximum cell of A in the lexicographic order.
Let A = {(r1, c1), (r

′
1, c

′
1)} and B = {(r2, c2), (r

′
2, c

′
2)} be two domino cells in T where

max(A) = (r′1, c
′
1) and min(B) = (r2, c2). Then we say
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i) B lies below A if min(B) lies below max(A), equivalently r2 > r′1.

ii) B lies to the right of A if min(B) lies to the right of max(A), equivalently c2 > c′1.

Let λ be a partition and A be a domino cell. If λ⊕A is a partition then A is called an
empty domino corner of λ whereas if λ⊖ A is also a partition then A is called a domino
corner of λ. Clearly, if a partition has no domino corner then it must be a r-staircase
shape (r, . . . , 2, 1) for some r > 0. On the other hand it is easy to see that any partition λ
can be reduced uniquely to a r-staircase shape (r, . . . , 2, 1) for some r ≥ 0, by subsequent
removal of existing domino corners one at a time. In this case we say λ has a 2-core
equivalent to (r, . . . , 2, 1). For r ≥ 0 we denote by P (2n, r) the set of all such partitions
of size 2n+ r(r + 1)/2.

Definition 7 By a labeling of domino cell A we mean a pair of positive numbers (a, a′)
which label the boxes of A such that a ≤ a′ and a labels min(A) and a′ labels max(A). If
the label of A is (a, a) then we say A is double labeled by a. When we want to indicate
the domino cell A with its labeling, we use the notation

[A, (a, a′)]

so that shape([A, (a, a′)]) = A and label([A, (a, a′)]) = (a, a′).
A r-domino tableau T of shape λ ∈ P (2n, r) is obtained by tiling the skew parti-

tion λ/(r, . . . , 2, 1) with double labeled horizontal or vertical domino cells {[A1, (a1, a1)],
. . . [An, (an, an)]} such that ai > 0 for all i = 1, . . . , n, ai 6= aj for i 6= j and the labels
increase from left to right and from top to bottom. In this case we have

label(T ) = {a1, a2, . . . , an}.

A standard r-domino tableau T is a r-domino tableau which has label(T ) = {1, . . . , n}.
We denote by SDT r(n) the set of all standard r-domino tableaux of n dominos.

Definition 8 Let T be a r-domino tableau and λ = shape(T ). For A is a domino cell in
λ and b ∈ label(T ) we define,

1. label(T,A) to be the pair of integers (a, a′) which label the domino cell A in T , where
a ≤ a′.

2. Dom(T, b) = [B, (b, b)] if B is a domino cell double labeled by b in T .

Example 3 For example the following is a 2-domino tableau in SDT 2(5).

T = 1 1 5

3 4 4 5

2 3

2

Here T has two domino corners: A1 = {(1, 5), (2, 5)} and A2 = {(2, 4), (2, 5)}, whereas
label(T,A1) = (5, 5) and label(T,A2) = (4, 5). On the other hand Dom(T, 5) = [A1, (5, 5)].
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Definition 9 For two r-domino tableau S and T satisfying S ⊂ T we define T/S = T−S
to be the skew r-domino tableau determined by S and T .

Definition 10 Let R and R′ be two skew r-domino tableaux and let shape(R) = γ and
shape(R′) = γ′.

1. If γ⊕ γ′ is defined and R∪R′ corresponds to a skew r-domino tableau as a set then
we define R⊕R′ = R ∪R′

2. If γ ⊖ γ′ is defined and if R − R′ corresponds to a skew r-domino tableau as a set
then we define R⊖R′ = R−R′

Definition 11 Let T be a (skew) r-domino tableau and a ∈ label(T ). Then we define

1. T<a (T≤a) to be the r-domino tableau obtained by restricting T to its double labeled
domino cells whose labels are less than (and equal to) a.

2. T>a (T≥a) to be the skew r-domino tableau obtained by restricting T to its double
labeled domino cells whose labels are greater than (and equal to) a.

2.1 Garfinkle’s algorithm

Recall that a signed permutation α ∈ Bn is a bijection of [−n,+n] such that α(−i) =
−α(i). The usual presentation of α ∈ Bn is denoted as α = α1α2 . . . αn where αi = α(i)
for 1 ≤ i ≤ n and {|α1|, |α2| . . . , |αn|} = {1, 2, . . . , n}. In the following we set the following
representation for all integers:

ā =

{

−a if a > 0

|a| if a < 0

Garfinkle [4, Theorem 1.2.13] provides an algorithm by which any signed permuta-
tion α ∈ Bn is assigned bijectively to a pair of same shape standard r-domino tableau
(P r(α), Qr(α)) for r = 0, 1, where P r(α) is called the insertion and Qr(α) is called the
recording tableau of α. Her algorithm is extended by van Leeuwen [13] for larger cores.

In the following we will explain how to insert an integer into a r-domino tableau
according to Garfinkle’s algorithm. Let T be a r-domino tableau such that |a| 6∈ label(T ).
We denote by

T ↓a

the tableau which is obtained by inserting a into T .
Let a0 be the largest label in T which is smaller then |a|. If a > 0 then we first

concatenate a horizontal domino labeled with (a, a) to the first row of T≤a0 from the
right. Otherwise a vertical domino labeled with (|a|, |a|) is concatenated to the first
column of T≤a0 from the bottom. Let I0 denote the resulting tableau. If the skew tableau
T>a0 is empty then we have

T ↓a = I0.
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Otherwise let a1, a2, . . . , as be the increasing sequence of the labels in T>a. In the following
we will find T ↓a through a sequence of tableaux I0, I1 . . . , Is where

T ↓a = Is = Is−1 ← Dom(T, as) = . . . = I0 ← Dom(T, a1)← . . .← Dom(T, as)

and for each i = 1, . . . , s,
Ii = Ii−1 ← Dom(T, ai)

is obtained by sliding Dom(T, ai) to the tableau Ii−1 in the following manner: Let

Bi = shape(Ii−1) ∩ shape(Dom(T, ai))

We first assume that Dom(T, ai) = [{(k, l), (k, l+1)}, (ai, ai)] is horizontal. Then we have
the following possibilities :

H1) Bi = ∅. Then Ii = Ii−1 ← Dom(T, ai) = Ii−1 ⊕Dom(T, ai).

H2) Bi = {(k, l), (k, l+1)}. Then in order to obtain Ii = Ii−1 ← Dom(T, ai), a horizontal
domino cell double labeled by ai is concatenated to the (k + 1)-th row of Ii−1 from
the right.

H3) Bi = {(k, l)}. Then

Ii = Ii−1 ← Dom(T, ai) = Ii−1 ⊕ [{(k, l + 1), (k + 1, l + 1)}, (ai, ai)].

Now we assume that Dom(T, ai) = [{(k, l), (k + 1, l)}, (ai, ai)] is vertical. Then we
have the following possibilities for Bi:

V1) Bi = ∅. Then Ii = Ii−1 ← Dom(T, ai) = Ii−1 ⊕Dom(T, ai).

V2) Bi = {(k, l), (k + 1, l)}. Then in order to find Ii = Ii−1 ← Dom(T, ai), a vertical
domino cell double labeled by ai is concatenated to the (l + 1)-th column of Ii−1

from the bottom.

V3) Bi = {(k, l)}. Then

Ii = Ii−1 ← Dom(T, ai) = Ii−1 ⊕ [{(k + 1, l), (k + 1, l + 1)}, (ai, ai)].

Then insertion and recording r-domino tableaux for any α = α1 . . . αn is found in the
following way: Suppose that P0 and Q0 are the tableaux of shape (r, . . . , 2, 1) whose cells
are all filed with 0. For α = α1 . . . αn ∈ Bn let Pi+1 = P ↓αi

i and let Qi+1 be obtained from
Qi by filing the newly appearing the domino corner of Pi+1 with (i + 1, i + 1) in Qi+1.
Then one can obtain P r(α) and Qr(α) by erasing all zeros of Pn and respectively Qn.

The following lemma directly follows from Garfinkle’s algorithm and it indicates some
of its main features.
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Lemma 2.4 Let n be the largest entry in T and a be an integer satisfying |a| < n and
a 6∈ label(T ). Then

i. T ↓a = ((T t)↓a)t where T t is the transpose of T .

ii. T ↓a = (T<n)
↓a ← Dom(T, n)

Example 4 Find T ↓2 for T = 1 1 3 3

4 5 5

4 6 6

, where T<2 = 1 1 .

I0 = 1 1

2

2

3 3

4 5 5

4 6 6

H1−→ 1 1 3 3

2

2

4 5 5
4 6 6

V2−→ 1 1 3 3

2 4

2 4

5 5

6 6

H3−→ 1 1 3 3

2 4 5

2 4 5 6 6

H2−→ I4 = T ↓2 = 1 1 3 3

2 4 5

2 4 5

6 6

We now explain the reverse-insertion of domino corners from r-domino tableaux which
is the main ingredient of Garfinkle’s bijection. Let T be a r-domino tableau and A be a
domino corner in shape(T ). We denote by

T ↑A and η(T ↑A)

respectively the tableau which is obtained by the reverse-insertion of A, and the number
which is bumped out of T as a result of this operation. Clearly, one has

(T ↑A)↓η(T
↑A) = T.

Direct use of Garfinkle insertion algorithm gives the following result where the bold
letters indicate the domino cell which is pushed back during the reverse insertion algo-
rithm.

Corollary 2.5 Let T be an r-domino tableau and A is a domino corner. Further let A′

be the domino cell which is pushed back by A in the first step of the reverse insertion T ↑A.
Then

i) If A = {(i, j), (i, j + 1)} and label(T,A) = (a, a) then A′ ⊂ {(i− 1, k) | k ≥ j}.

ii) If A = {(i, j), (i, j + 1)} and label(T,A) = (a′, a) for some a′ < a then A′ =
{(i− 1, j), (i, j)}.

∗ ∗ ∗ ∗

a a
−→ ∗ */a*/a ∗ ∗ a

a′ a
−→ */a a

a′
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iii) If A = {(i, j), (i+ 1, j)} and label(T,A) = (a, a) then A′ ⊂ {(k, j − 1) | k ≥ i}.

iv) If A = {(i, j), (i + 1, j)} and label(T,A) = (a′, a) for some a′ < a then A′ =
{(i, j − 1), (i, j)}.

∗ a

∗ a

∗

−→
∗

*/a

*/a

∗ a′

a a

−→
*/aa′

a

Example 5 Let T ∈ SDT 3(5) and B = {(4, 2), (5, 3)} as given below. Then one can
obtain T ↑B in the following manner:

T = 1 1

2 2

3 3 5

4 4 5

→ 1 1

2 2

3 3/5 5

4 4

→ 1 1

2 2

3/43/5 5

4

→ 1 1

2/32/3

4 5 5

4

→ 2 2

3 3

4 5 5

4

= T ↑B

Moreover η(T ↑B) = 1.

2.2 Barbash and Vogan algorithm.

We will now explain the algorithm which is provided by Barbash and Vogan in [1] to
establish the bijection between signed permutations and standard r-domino tableaux for
r = 0, 1 where r = 0 represents type C and r = 1 represents type B signed permutations.
The extension of this algorithm for larger cores is provided in [3]. We also remark that
the equivalence of Barbash-Vogan algorithm to Garfinkle’s algorithm for r = 0, 1, is due
to van Leeuwen [13] .

Recall that for a signed permutation α = α1 α2 . . . αn the palindrome representation
of α is given by α0 = αn . . . α2 α1 α1 α2 . . . αn where αi = −αi. We call α0 as 0-core
representation of α. Clearly 0-core representation defines an injective map from the set
of all signed permutations of size n into S2n.

By following the approach of [3] let us describe how to extend this representation for
larger cores. We first identify {1, 2, . . . , r(r + 1)/2} with {01, 02, . . . , 0r(r+1)/2} together
with the total ordering

n̄ < . . . < 2̄ < 1̄ < 01 < 02 < . . . < 0r(r+1)/2 < 1 < 2 . . . < n.

Let w ∈ Sr(r+1)/2 be a permutation under this identification, whose RSK insertion tableau
is of shape (r, r − 1, . . . , 1). Now for α ∈ Bn let r-core representation of α to be

αr = αn . . . α2 α1 w α1 α2 . . . αn.
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The algorithm introduced by Barbash and Vogan for r = 0 and r = 1 first applies RSK
algorithm on α0 and respectively α1. Then starting from the lowest number n̄, it vacates
the negative integer ī in the tableaux by jeu de taquin slides until it becomes adjacent to
i, where the evacuation is repeated for i− 1 until i = 1. The following example illustrates
this algorithm for r = 1.

Example 6 For α = 3 1̄ 2 ∈ Bn, we have α1 = 2̄ 1 3̄ 0 3 1̄ 2 be its 1-core representation.
Then Barbash-Vogan algorithm yields:

P (α1) = 3̄ 1̄ 2

2̄ 0 3

1

7→ 2̄ 1̄ 2

0 3̄ 3

1

7→ 1̄ 2̄ 2

0 3̄ 3

1

7→ 0 2̄ 2

1̄ 3̄ 3

1

7→ 2 2

1 3 3

1

= P 1(α).

Similarly Q(α1) = 3̄ 2̄ 1

1̄ 0 3

2

7→ 1 1

2 3 3

2

= Q1(α).

On the other hand by the result of [3], one only needs to apply the same algorithm on
αr in order to find r-domino tableaux P r(α) and Qr(α) for larger cores.

Theorem 2.6 ([3], Theorem 3.3) Signed permutations α and β have the same inser-
tion r-domino tableau if and only if αr and βr have the same RSK insertion tableau.

The following two propositions can be deduced by using Definition 5, Theorem 2.1,
Theorem 2.2 and Theorem 2.6.

Proposition 2.7 Let α be a signed permutation. Then

P r(α−1) = Qr(α) and Qr(α−1) = P r(α).

Proposition 2.8 Let α and β be two signed permutations such that αr K
∼ βr. Then

P r(α) = P r(β), in other words α and β have the same insertion r-domino tableau.

2.3 Descents of domino tableaux and Vogan’s map

Recall that Bn carries a Coxeter group structure with the generators S = {s0, s1, . . . , sn−1}
where {si = (i, i+ 1)|1 ≤ i ≤ n− 1} is the set of transpositions which also generates the
symmetric group Sn and s0 corresponds to the transposition (−1, 1). Let l(α) denote the
length of α, which is the minimum number of generators of α and let

DesL(α) := {i | l(siα) < l(α) and 0 ≤ i ≤ n− 1}

= {i | if 1 ≤ i ≤ n− 1 and i+ 1 comes before i in α0}

∪ {0 | if 1 comes before − 1 in α0}

DesR(α) := DesL(α
−1)

the electronic journal of combinatorics 19 (2012), #P38 11



denote respectively the sets of left and right descents of α.
Now we define the descent set of a r-domino tableau T in the following way:

Des(T ) := {i | if Dom(T, i+ 1) lies below Dom(T, i)}

∪ {0 | if Dom(T, 1) is vertical}

It is a well known property of the RSK algorithm that for a permutation w ∈ Sn, we
have

DesL(w) = Des(P (w))

where Des(T ) := {i | i + 1 lies below i in T} is the descent set of a (skew or Young)
tableau T . Now we have:

Proposition 2.9 For α ∈ Bn we have DesL(α) = Des(P r(α)).

Proof. Observe that i ∈ DesL(α) if and only if one of the following

(i+ 1)i, (i+ 1)i, i(i+ 1), ī(i+ 1)

is a subsequence in α. For the first two cases let S denotes the tableau obtained by
inserting all the numbers which comes before i in α, by Garfinkle’s insertion algorithm.
Therefore S has a domino cell double labeled by i+1. Now since i is inserted horizontally
to the first row of S the domino cell labeled by i + 1 lies below the one labeled by i in
S↓i, and moreover it remains to be below until the last letter in α inserted, since i and
i + 1 are consecutive numbers. For the last two cases let T be the tableau obtained by
inserting all numbers which comes before i+1 in α. This time domino cell double labeled
by i lies in T and since i + 1 is inserted vertically to the first column of the tableau of
T , this vertical cell lies below the one labeled by i in T . On the other hand insertion of
subsequent numbers in α does not change this rule and hence i ∈ Des(P r(α)).

For the reverse inclusion observe that i 6∈ DesL(α) if and only if one of the following

i(i+ 1), ī(i+ 1), (i+ 1)̄i, (i+ 1)̄i

is a subsequence in α. In this case a similar argument to the one used above shows that
i 6∈ Des(P r(α)). �

Definition 12 Let T be a r-domino tableau and A be a domino corner of shape(T ) such
that A = {(i, j), (i, j+1)} or A = {(i, j), (i+1, j)}. We denote by (T,A, ne) and (T,A, ne)
the regions of T such that

(T,A, ne) :={(k, l) | k < i and l ≥ j}

(T,A, sw) :={(k, l) | k ≥ i and l < j}

as illustrated in Figure 1.

Now we are ready to give the following lemma which is crucial in the proof of Theo-
rem 3.2.
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Figure 1:

Lemma 2.10 Let T be a r-domino tableau and A be a domino corner of shape(T ).

i) Suppose B is a domino corner of shape(T ↑A) which lies in the portion (T,A, sw).
Then

η(T ↑A↑B) < η(T ↑A).

ii) Suppose B is a domino corner of shape(T ↑A) which lies in the portion (T,A, ne).
Then

η(T ↑A↑B) > η(T ↑A).

Proof. We will just prove the first part of the theorem since the same method applies to
the second part. Let a = η(T ↑A), b = η(T ↑A↑B) and u be a word such that P r(u) = T ↑A↑B.
Then clearly the sign permutation α = uba has

P r(α) = P r(uba) = P r(u)↓b↓a = (T ↑A↑B)↓b↓a = (T ↑A)↓a = T

and
label(Qr(α), A) = (n, n) and label(Qr(α), B) = (n− 1, n− 1).

On the other hand since B ∈ (Qr(α), A, sw) this shows that n− 1 6∈ Des(Qr(α)). Now by
Proposition 2.7 and Proposition 2.9 we have

n− 1 6∈ DesL(α
−1) = DesR(α)

and therefore αn−1 = b can not be bigger than αn = a. Therefore a = η(T ↑A) > b =
η(T ↑A↑B) as desired. �

2.3.1 Vogan’s map

Let α, β ∈ Bn whose usual representations satisfy

α =α1 . . . αi−1(αi αi+1) αi+2 . . . αn

β =α1 . . . αi−1(αi+1 αi) αi+2 . . . αn

where either αi < αi+2 < αi+1 or αi < αi−1 < αi+1. By extending Definition 5, we say

α and β are equivalent through single Knuth relation. We write α
K
∼ β in Bn if one of
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them can be obtained from the other by applying a sequence of Knuth relations. Clearly

α
K
∼ β yields αr K

∼ βr i.e., Knuth relations which are obtained on the usual representation
of signed permutations does not change insertion r-domino tableaux. On the other hand
their effect on recording tableaux for the case r = 0, 1 is studied by Garfinkle [5, 2.1.10–
2.1.19]. Our following analysis is based on her work, including all notations, definitions
and maps. Let r ≥ 0.

For i, j two adjacent integers satisfying 1 ≤ i, j ≤ n− 1, consider the following sets:

Di,j(Bn) :={α ∈ Bn | i ∈ DesL(α) but j 6∈ DesL(α)}

Di,j(SDT r(n)) :={T ∈ SDT r(n) | i ∈ Des(T ) but j 6∈ Des(T )}

together with the map Vi,j : Di,j(Bn) 7→ Dj,i(Bn) where Vi,j(α) = {si ·α, sj ·α}∩Dj,i(Bn).
Also define a map

Vi,j : Di,j(SDT r(n)) 7→ Dj,i(SDT r(n))

in the following manner: Without loss of generality we assume that j > i, i.e., j = i+ 1.
Observe that if i ∈ Des(T ) but i+ 1 6∈ Des(T ) then i + 1 lies below i in T whereas i + 2
lies right to i + 1 in T . On the other hand we have two cases according to the positions
of dominos labeled with (i, i) and (i+ 2, i+ 2) with respect to each other.
Case 1. We first assume that i + 2 lies below i in T . Since the i + 2 lies to the right of
i+1 and i+1 lies below i we have two cases to consider: If the boundaries Dom(T, i+1)
and Dom(T, i) intersect at most at a point then Vi,i+1(T ) is obtained by interchanging the
labels i and i + 1 in T . Otherwise there is only one possibility which satisfies i + 2 lies
below i and it lies to the right of i + 1, in which T has the subtableau U as illustrated
below and Vi,i+1(T ) is obtained by substituting U with U ′ in T .

U = i i

i+1 i+2

i+1 i+2

U ′ = i i+1

i i+1

i+2 i+2

Case 2. Now we assume i + 2 lies strictly right to i in T . Again if the boundaries of
Dom(T, i + 1) and Dom(T, i + 2) intersect at most at a point then Vi,i+1(T ) is obtained
by interchanging the labels i+1 and i+2 in T . Otherwise there is only one possible case
where T has the subtableau U given below and Vi,i+1(T ) is obtained by substituting U
with U ′ in T .

U = i i i+2

i+1 i+1 i+2

U ′ = i i+1 i+1

i i+2 i+2

Example 7 We have T2 = V5,6(T1), T3 = V3,4(T2), and T4 = V4,5(T3) = V6,5(T3) for the
following tableaux.

T1 = 1 2 5

1 2 5

3 3 7

4 6 7

4 6

T2 = 1 2 6

1 2 6

3 3 7

4 5 7

4 5

T3 = 1 2 6

1 2 6

3 4 7

3 4 7

5 5

T4 = 1 2 5

1 2 5

3 4 7

3 4 7

6 6
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Remark. The map Vi,j is first introduced on the symmetric group by Vogan [23], with the
aim of classifying the primitive ideals in the universal enveloping algebra of complex semi
simple Lie algebras.

Lemma 2.11 Let i and j be two consecutive integers such that 1 ≤ i, j ≤ n− 1. Suppose
α ∈ Di,j(Bn). Then P r(α) ∈ Di,j(SDT r(n)) and

P r(Vi,j(α)) = Vi,j(P
r(α)).

Proof. This result is first proven by Garfinkle [5, Theorem 2.1.19] for r = 0, 1. On the
other hand one can check that her proof does not depend on the specific value of r and it
can easily be extended for any value of r. We omit the proof for the sake of space. �

The following result has an important role in the proof of Theorem 3.2.

Corollary 2.12 Let α = α1 . . . αi−1αiαi+1αi+2 . . . αn and β = α1 . . . αi−1αi+1αiαi+2 . . . αn

be two sign permutation which differ by a single Knuth relation. Then one of the following
is satisfied:

1) αi < αi+2 < αi+1 then β−1 = Vi+1,i(α
−1) and Qr(β) = Vi+1,i(Q

r(α)).

2) αi > αi+2 > αi+1 then β−1 = Vi,i+1(α
−1) and Qr(β) = Vi,i+1(Q

r(α)).

3) αi < αi−1 < αi+1 then β−1 = Vi−1,i(α
−1) and Qr(β) = Vi−1,i(Q

r(α)).

4) αi > αi−1 > αi+1 then β−1 = Vi,i−1(α
−1) and Qr(β) = Vi,i−1(Q

r(α)).

Proof. Assumptions on α and β in the first case yields that β−1 = si · α
−1 ∈ Di,i+1(Bn)

and α−1 ∈ Di+1,i(Bn). Therefore β−1 = Vi+1,i(α
−1) and by Lemma 2.11

Qr(β) = P r(β−1) = P r(Vi+1,i(α
−1)) = Vi+1,i(P

r(α−1)) = Vi+1,i(Q
r(α)).

For the other cases the result follows similarly. �

3 Plactic relations for r-domino tableaux

Recall that for any a ∈ Z, ā represents −a if a > 0 and it represents |a| otherwise.

Definition 13 For α and β are two signed permutations in Bm and r ≥ 0, we say α
and β are r-plactic equivalent, α

pr
∼ β, if one of them can be obtained from the other by

applying a sequence of Dr
i relations for i = 1, . . . 5, explained below. Moreover, we say α

and β are r-coplactic equivalent, α
p∗r∼ β, if α−1 pr

∼ β−1.
Let α = α1 . . . αm ∈ Bm.

Dr
1: If αi < αi+2 < αi+1 or αi < αi−1 < αi+1 for some i ≤ m− 1, then

α = α1 . . . αi−1 (αi αi+1) αi+2 . . . αm ∼ α1 . . . αi−1 (αi+1 αi) αi+2 . . . αm
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Dr
2: If r ≥ 1 and if there exists 0 < j ≤ r such that αj and αj+1 have opposite signs then

α = α1 . . . αj−1(αj αj+1) . . . αr+2 . . . αm ∼ α1 . . . (αj+1 αj) . . . αr+2 . . . αm

Dr
3: Suppose that |α1| > |αi| for all 2 ≤ i ≤ r + 2 and α2 . . . αr+2 is obtained by con-

catenating some positive decreasing sequence to the end of some negative increasing
sequence (or vice versa), where at least one of the sequences is nonempty. Then

α = α1 α2 . . . αr+2 . . . αm ∼ α1 α2 . . . αr+2 . . . αm

Dr
4: Let for some k ≥ 1, t = (k + 1)(r + k + 1) ≤ m and α1 . . . αt−1 can be obtained by

concatenating the sequence Ci+1 to the right of Ci, for each 1 ≤ i ≤ k, where

Ci = ai,i+r . . . ai,1bi,i . . . bi,1 of size 2i+ r for 1 ≤ i ≤ k

Ck+1 = ak+1,k+r . . . ak+1,1 of size k + r

and the integers a
i,j

and b
i,j
, if exist in α1 . . . αt−1 = C1 . . .Ck+1, satisfy the following

conditions:

a
i,j

> 0 and b
i,j

< 0 (or vice versa)

|a
i,j−1
| < |a

i,j
| < |a

i+1,j
| and |b

i,j−1
| < |b

i,j
| < |b

i+1,j
|

|b
i,i
| < |a

i+1,r+i+1
| < |b

i+1,i+1
| for all i = 1, . . . , k − 1.

Let n = max{|α1|, . . . , |αt−1|} and suppose that αt = z satisfies one of the followings:

i. |b
k,k
| = n and z is an integer between a

k+1,1
and b

k,1

ii. |a
k+1,r+k

| = n and z is an integer between a
k,1

and b
k,1

iii. |a
k+1,r+k

| = n, z is an integer between a
k,1

and a
k+1,1

and |a
k+1,i
| < |a

k,i+1
| for

some 1 < i ≤ k − 1.

Then we set

α = . . .CkCk+1 z αt+1 . . . αm ∼ . . .CkCk+1 z αt+1 . . . αm

where Ck = b
k,k
a

k,k+r
. . . a

k,1
b
k,k−1

. . . b
k,1
.

Dr
5: Let for some k ≥ 1, t = (k + 1)(r + k + 2) ≤ m and α1 . . . αt−1 can be obtained by

concatenating the sequence Ci+1 to the right of Ci, for each 1 ≤ i ≤ k, where

Ci = ai,i+r . . . ai,1bi,i . . . bi,1 of size 2i+ r for 1 ≤ i ≤ k

Ck+1 = a
k+1,k+1+r

. . . a
k+1,1

b
k+1,k

. . . b
k+1,1

of size 2k + r + 1
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and the integers a
i,j

and b
i,j
, if exist in α1 . . . αt−1 = C1 . . .Ck+1, satisfy the following

conditions:

a
i,j

> 0 and b
i,j

< 0 (or vice versa)

|a
i,j−1
| < |a

i,j
| < |a

i+1,j
| and |b

i,j−1
| < |b

i,j
| < |b

i+1,j
|

|a
i,r+i
| < |b

i,i
| < |a

i+1,r+i+1
| for all i = 1, . . . , k.

Let n = max{|α1|, . . . , |αt−1|} and suppose that αt = z satisfies one of the followings:

i. |a
k+1,r+k+1

| = n and z is an integer between a
k+1,1

and b
k+1,1

ii. |b
k+1,k
| = n and z is an integer between a

k+1,1
and b

k,1

iii. |b
k+1,k
| = n, z is an integer between b

k,1
and b

k+1,1
and |b

k+1,i
| < |b

k,i+1
| for some

1 < i ≤ k − 1.

Then we set

α = . . .CkCk+1 z αt+1 . . . αm ∼ . . .Ck Ck+1 z αt+1 . . . αm

where Ck Ck+1 = a
k,k+r

. . . a
k,1
a

k+1,k+1+r
b
k,k

. . . b
k,1
a

k+1,k+r
. . . a

k+1,1
b
k+1,k

. . . b
k+1,1

.

Following example illustrates Dr
4 for r = 0, where k = 1.

Example 8 Consider

T = 1 1 3 3

2 4

2 4

∈ SDT 0(4)

and its domino corners A = {(3, 1), (3, 2)}, B = {(2, 2), (3, 2)}, C = {(1, 3), (1, 4)} to-
gether with the sets

KA(T ) = {1432̄, 4132̄, 4̄132̄}, KB(T ) = {134̄2̄, 14̄32̄}, KC(T ) = {4̄12̄3, 14̄2̄3, 412̄3}

where K(−)(T ) consist of all signed permutations whose insertion gives T with the rule
that the last opening domino corner cell in the insertion is (−). One can easily see that
permutations in each set above are related by a sequence of D0

1 and D0
3 relations. Therefore

one needs to obtain some relations between the permutations of these distinct sets. Here
4132̄ ∈ KA(T ) and 412̄3 ∈ KC(T ) are related by Dr

1 relations so a relation which connects
either KA(T ) and KB(T ) or KB(T ) and KC(T ) is needed. Now D0

4 relates 14̄32̄ ∈ KB and
4132̄ ∈ KA(T ) under the formulation

14̄32̄ = a11b11
︸ ︷︷ ︸

C1

a21
︸︷︷︸

C2

z and 4132̄ = b11a11
︸ ︷︷ ︸

C1

a21
︸︷︷︸

C2

z

where k = 1 and r = 0.
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The following remark will be much more clear in the proof (Case 3.2.2) of our main
result Theorem 3.2.

Remark. In general consider the tableau T whose shape has the form

(s+ i, s+ i− 1, . . . , s+ 1, s, s− 2, s− 2, s− 4, s− 3, . . . , 2, 1) for some s ≥ 4, i ≥ 0

as Figure 2(a) and (b) illustrates. Observe that such a tableau has exactly three domino
corners namely

A = {(i+3, s−3), (i+3, s−2)}, B = {(i+2, s−2), (i+3, s−2)}, C = {(i+1, s−1), (i+1, s)}

Now if s+ i = r + 2k for some k ≥ 1 then KA(T ) and KB(T ) are related by Dr
4 relations

with a
i,j

> 0 and b
i,j

< 0. On the other hand if s + i = r + 2k + 1 for some k ≥ 1 then
KA(T ) and KB(T ) are related by Dr

5 relations with a
i,j

< 0 and b
i,j

> 0.

Figure 2:

On the other hand if T has shape

(s+ i, s+ i− 1 . . . , s+ 1, s, s, s− 2, s− 2, s− 3, . . . , 2, 1) for some s ≥ 3, i ≥ 0,

as Figure 2(c) and (d) illustrates, then T has exactly three domino corners

A = {(i+2, s− 1), (i+2, s)}, B = {(i+1, s), (i+2, s)}, C = {(i+3, s− 2), (i+3, s− 2)}

Now if s+ i = r + 2k for some k ≥ 1 then KA(T ) and KB(T ) are related by Dr
5 relations

with a
i,j

> 0 and b
i,j

< 0. On the other hand if s + i = r + 2k + 1 for some k ≥ 1 then
KA(T ) and KB(T ) are related by Dr

4 relations with a
i,j

< 0 and b
i,j

> 0.
Here it is natural to ask whether some simpler relations exist for the tableaux presented

above. In fact we know a rule which relates KB(T ) and KC(T ), but its formal description
requires four relations, yet they appear to us not handy when it comes to proving our
main result.

Theorem 3.1 If α
pr
∼ β in Bm then they have the same insertion r-domino tableaux.

Proof. For the proof of the theorem it will be enough to consider the case when α and β
differ by a single Dr

i relation for i = 1, . . . , 5.
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Observe that Dr
1 is just the single Knuth relation defined on the usual representation

of signed permutations and therefore result follows from Proposition 2.8.
For Dr

2, r ≥ 1, let αj and αj+1 have opposite signs in α = α1 . . . αj αj+1 . . . αr+2 . . . αm

for some j ≤ r. Observe that the size of empty corners of r-staircase shape is r+1. Let S
denote the tableau obtained by inserting first j − 1 elements of α in to r-staircase shape.
If r = 1 then α1 . . . αj−1 is empty and one can check easily that insertion of αjαj+1 and
αj+1αj into 1-staircase shape creates the same tableau. For r > 1, observe that since
j + 1 ≤ r + 1, the insertion of α1 . . . αjαj+1 creates two connected union of domino cells,
where one consists of horizontal domino cells labeled by the positive numbers in α1 . . . αj+1,
concatenated to the right of r-staircase shape and the other consists of vertical domino
cells labeled by the absolute value of negative numbers in the same sequence, concatenated
below r-staircase shape. Without loss of generality we assume αj > 0 and αj+1 < 0 and
let A and B denote the horizontal and vertical domino cells appearing after the insertion
of αj and αj+1 respectively as illustrated in Figure 3 for r = 6 and j = 6.

Figure 3:

Now one can easily see that changing the order of αjαj+1 in α still gives the same
tableau, since αj and αj+1 have opposite signs and j + 1 ≤ r + 1.

For Dr
3, let |α1| > |αi| for all 2 ≤ i ≤ r + 2 and suppose that for some k ≥ 0, l ≥ 0

and k + l = r + 1
α2 . . . αr+2 = x1 . . . xky1 . . . yl

where x1 . . . xk is a positive decreasing and y1 . . . yl is a negative increasing sequence (or
vice versa). Here observe that we can not have both k = 0 and l = 0, since then
x1 . . . xk y1 . . . yl is empty but α2 . . . αr+2 is not, even if r = 0. So without loss of generality
we assume that l ≥ 1. If r = 0, we must have k = 0, l = 1 and α2 = y1 and one can easily
check that in this case α1α2 and α1α2 give the same tableau. For r > 0 the insertion of
α1x1 . . . xk y1 . . . yl−1 and α1x1 . . . xk y1 . . . yl−1 yields two tableaux which differ by only
the position of the domino cell {(k+1, l), (k+1, l+1)} and {(k+1, l), (k+2, l)}, labeled
by (|α1|, |α1|), as illustrated in Figure 4 for r = 5. On the other hand the insertion of yl
in both tableaux yields the same tableau.

Figure 4:

In the following we will just deal with the relation Dr
4 since then the same method also

applies to the relation Dr
5.
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It is enough to consider the case where α = . . .CkCk+1z and β = . . .CkCk+1z as
described in Dr

4. Observe that in this case we have m = n. On the other hand, since
the tableau obtained by taking all ai,j’s negative and bi,j positive is the transpose of the
tableau obtained by otherwise, it is enough to consider only one case. So let

u =

C1
︷ ︸︸ ︷

a
1,r+1

. . . a
1,1
b
1,1

. . .

Ck
︷ ︸︸ ︷

a
k,r+k

. . . a
k,1
b
k,k
b
k,k−1

. . . b
k,1

Ck+1

︷ ︸︸ ︷
a

k+1,r+k
. . . a

k+1,1

u′ = a
1,r+1

. . . a
1,1
b
1,1

︸ ︷︷ ︸

C1

. . . b
k,k
a

k,r+k
. . . a

k,1
b
k,k−1

. . . b
k,1

︸ ︷︷ ︸

Ck

a
k+1,r+k

. . . a
k+1,1

︸ ︷︷ ︸

Ck+1

where ai,j > 0 and bi,j < 0 above and let S = P (u) and T = P (u′).

Figure 5:

We first assume that b
k,k

= n and b
k,1

< z < a
k+1,1

. Then S and T differ only by the
domino cell double labeled by n as illustrated in Figure 5 for r = 1 and k = 3 (where the
absolute value on bi,j is removed for the sake of simplicity). In other words S<n = T<n

with shape

(s, s− 1, . . . , s− k, s− k − 4, s− k − 4, s− k − 4, s− k − 5, . . . , 2, 1)

for some s = r + 2k + 2. Therefore S<n = T<n has exactly four empty domino corners:

C1 = {(k + 1, k), (k + 1, k + 1)}

C2 = {(k + 1, k), (k + 2, k)}

C3 = {(1, s+ 1), (1, s+ 2)}

C4 = {(s, 1), (s+ 1, 1)}.

Recall that by Lemma 2.4 one has

S↓z = (S<n)
↓z ← Dom(S, n) and T ↓z = (T<n)

↓z ← Dom(T, n)

where Dom(S, n) = [C2, (n, n)] and Dom(T, n) = [C1, (n, n)]. On the other hand the
assumption

b
k,1

< z < a
k+1,1

yields two choices for the new domino cell appearing in (S<n)
↓z = (T<n)

↓z, which are
C1 and C2. Now one can observe that whether C1 or C2 appears sliding Dom(S, n) and
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Dom(T, n) over (S<n)
↓z = (T<n)

↓z gives the same tableau. Therefore P r(uz) = P r(u′z)
as desired.

Now assume a
k+1,r+k

= n. This time S = P (u) and T = P (u′) differ only by the
domino cell double labeled by |b

k,k
|, as illustrated in Figure 6 (a) and (b) for r = 1 and

k = 3.

Figure 6:

Let A be the set of labels which are greater than or equal to |b
k,k
|. Therefore

A = {|b
k,k
|, a

k+1,i
, . . . , a

k+1,r+k−1
, a

k+1,r+k
= n}

for some 1 ≤ i ≤ r + k. Consider the tableaux S ′ = S<|b
k,k

| and T ′ = T<|b
k,k

| which are
obtained by erasing from S and T respectively the domino cells double labeled by A. Now
S ′ = T ′ and moreover (S ′)↓z = (T ′)↓z. Recall that under the assumption a

k+1,r+k
= n we

have
either b

k,1
< z < a

k,1

or a
k,1

< z < a
k+1,1

and a
k+1,i

< a
k,i+1

for some 1 < i ≤ k − 1.

Observe that in case b
k,1

< z < a
k,1

we have two choices for the new domino cell appearing
in (S ′)↓z = (T ′)↓z which are, as illustrated in Figure 6 (c),

C1 = {(k + 1, k), (k + 1, k + 1)}, C2 = {(k + 1, k), (k + 2, k)}.

On the other hand if a
k,1

< z < a
k+1,1

one would add the domino cell C3 = {(i, r + 2k +
1), (i, r + 2k + 2)} in the above list but existence of C3 requires a

k,1
< z < a

k+1,1
and

a
k+1,i

6< a
k,i+1

for any 1 < i ≤ k − 1. Therefore in both cases C1 and C2 are the only
choices for a new domino cell appearing in (S ′)↓z = (T ′)↓z.

Recall that

S↓z =(S ′)↓z ← Dom(S, |bk,k|)← Dom(S, ak+1,i) . . .← Dom(S, ak+1,r+k−1)← Dom(S, n)

T ↓z =(T ′)↓z ← Dom(T, |bk,k|)← Dom(T, ak+1,i) . . .← Dom(T, ak+1,r+k−1)← Dom(T, n)

where Dom(S, |bk,k|) = [C2, (|bk,k|, |bk,k|)] and Dom(T, |bk,k|) = [C1, (|bk,k|, |bk,k|)]. Now
whichever C1 or C2 appears in (S ′)↓z = (T ′)↓z, sliding the domino cell double labeled by
|bk,k| gives the same tableau, i.e.,

(S ′)↓z ← Dom(S, |bk,k|) = (T ′)↓z ← Dom(T, |bk,k|).

Moreover since Dom(S, ak+1,j) = Dom(T, ak+1,j) for all i ≤ j ≤ r + k we have P r(uz) =
S↓z = T ↓z = P r(u′z) as desired. �
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Theorem 3.2 If α and β have the same insertion r-domino tableaux then α
pr
∼ β in Bn.

Proof. We will proceed by induction. If n = 1 there is nothing to prove, so suppose that
n > 1 and the statement holds for all signed permutations of size n− 1.

Let α = α1 . . . αn−1αn and β = β1 . . . βn−1βn satisfies T = P r(α) = P r(β). Therefore
there exist two domino corners say A and B of T such that

T ↑A = P r(α1 . . . αn−1) and η(T ↑A) = αn

T ↑B = P r(β1 . . . βn−1) and η(T ↑B) = βn.
(3.1)

In the following we suppose that min(A) lies below min(B).

Cases 1: A = B. Then clearly T ↑A = T ↑B and αn = η(T ↑A) = η(T ↑B) = βn. Then since

P (α1 . . . αn−1) = T ↑A = T ↑B = P (β1 . . . βn−1)

α1 . . . αn−1
pr
∼ β1 . . . βn−1 by induction and therefore α = α1 . . . αn−1αn

pr
∼ β1 . . . βn−1βn = β

as desired.

Figure 7: Some illustrations for Case 2

Cases 2: A 6= B and (T,A, ne)∩(T,B, sw) contains a domino corner, say C as illustrated
in Figure 7. Let

b = η(T ↑A↑B)

c = η(T ↑A↑B↑C)

and let ũ be a signed word such that P r(ũ) = T ↑A↑B↑C . Therefore

P r(ũcbαn) = P r(ũ)↓c↓b↓αn = (T ↑A↑B↑C)↓c↓b↓αn = (T ↑A↑B)↓b↓αn = (T ↑A)↓αn = T

and by induction hypothesis ũcb
pr
∼ α1 . . . αn−1 since P r(ũcb) = T ↑A = P r(α1 . . . αn−1) .

Therefore
ũcbαn

pr
∼ α.

Observe that since P r(ũ) = T ↑A↑B↑C , the recording tableau Qr(ũcbαn) has its domino
cells A, B and C labeled with (n, n), (n− 1, n− 1) and (n− 2, n− 2) respectively.

On the other hand having B in (T,A, ne) and C in (T,B, sw) yields by Lemma 2.10
that

b = η(T ↑A↑B) > η(T ↑A) = αn and b = η(T ↑A↑B) > η(T ↑A↑B↑C) = c.

Therefore by Corollary 2.12,

either b > αn > c, and hence u = ũcbαn

Dr
1∼ ũbcαn = w and Vn−1,n−2(Q

r(u)) = Qr(w)

or b > c > αn, and hence u = ũcbαn

Dr
1∼ ũcαnb = w and Vn−1,n−2(Q

r(u)) = Qr(w)
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The last argument implies that in both cases the recording tableau Qr(w) of the signed
permutation w is obtained by interchanging the labels (n, n) of A and (n − 1, n − 1) of
B in Qr(u) which means that Qr(w) has its domino corner B labeled with (n, n). So we
have

P r(w1 . . . wn−1) = T ↑B = P r(β1 . . . βn−1) and wn = βn.

Now by induction, w1 . . . wn−1
pr
∼ β1 . . . βn−1 and therefore w

pr
∼ β. Hence α

pr
∼ u

pr
∼ w

pr
∼ β

as required.

Case 3: A 6= B, (T,A, ne)∩ (T,B, sw) is a staircase shape (s, s− 1, . . . , 1) for s ≥ 1 and
A ∩ B is a single box. The condition A ∩ B is a single box forces that s = 1. There are
several subcases.

Case 3.1: We assume that T has no domino corner beyond A and B. Let λ and λ′ be
respectively the smallest and the largest rectangular box in shape(T ) containing both A
and B, whose east and south boundary coincides with the boundary of shape(T ). Then
clearly λ = (2, 2) and we have either λ ( λ′ or λ = λ′ as illustrated in Figure 8.

Figure 8: Case 3.1: T has no domino corner beyond A and B and the partitions (3, 3),
(2, 2, 2) and (2, 2) determine λ′ in (a),(b) and (c) respectively.

Case 3.1.1: We first suppose that λ ( λ′ as illustrated in Figure 8(a) and (b). Since the
other case can be dealt with in the same manner after taking the transpose of T , below
we just consider the case Figure 8(a), where there exists a vertical domino cell to the left
of λ in λ′.

Figure 9: Case 3.1.1

Now observe through Figure 9 that we have a domino corner A′ of T ↑A and A′′ of
T ↑A↑A′

as given in Figure 9. Let a′ = η(T ↑A↑A′

) and a′′ = η(T ↑A↑A′↑A′′

). Suppose ũ be
a signed word such that P r(ũ) = T ↑A↑A′↑A′′

. Then the signed permutation u = ũa′′a′αn

has P r(u) = T whereas its recording tableau Qr(u) must have the form as it is shown in
Figure 9.
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On the other hand having A′ in (T,A, ne) and A′′ in (T,A′, sw) yields by Lemma 2.10
that

a′ = η(T ↑A↑A′

) > η(T ↑A) = αn and a′ = η(T ↑A↑A′

) > η(T ↑A↑A′↑A′′

) = a′′.

Therefore we have

either a′′ < αn < a′, so u = ũa′′a′αn

Dr
1∼ ũa′a′′αn = w and Qr(w) = Vn−2,n−1(Q

r(u))

or αn < a′′ < a′, so u = ũa′′a′αn

Dr
1∼ ũa′′αna

′ = w and Qr(w) = Vn−2,n−1(Q
r(u)).

In both cases Corollary 2.12 yields that the recording tableau Qr(w) of w has the form in
Figure 9.

Now since P r(ũa′′a′) = T ↑A = P r(α1 . . . αn−1), we have ũa′′a′
pr
∼ α1 . . . αn−1 by induc-

tion. Therefore
u = ũa′′a′αn

pr
∼ α1 . . . αn−1αn = α.

Similarly, P r(w1 . . . wn−1) = T ↑B = P r(β1 . . . βn−1), so w1 . . . wn−1
pr
∼ β1 . . . βn−1 by in-

duction. On the other hand wn = βn and we have w1 . . . wn−1βn
pr
∼ β1 . . . βn−1βn = β.

Hence

α
pr
∼ u

Dr
1∼ w

pr
∼ β.

Case 3.1.2: No we suppose that λ = λ′ as illustrated in Figure 8(c). Observe through
Figure 10 that the grey area in the first tableau has a staircase shape and since there are
no other domino corners of T , we must have either A or B labeled by (n, n).

Figure 10: Case 3.1.2

Suppose that the horizontal domino cell A is labeled by (n, n) (The other case can be
also dealt with taking the transpose of the tableau). So as Figure 10 illustrates, we have
only the horizontal domino cells double labeled by n, x1, . . . , xk and the vertical domino
cells double labeled by y1, . . . , yl where k ≥ 0, l ≥ 0 and k + l = r + 1. Therefore at
least one of k and l must be nonzero. Without loss of generality assume that k ≥ 1. In
this case observe that η(T ↑A) = η(T ↑B) = xk > 0 and this yields αn = βn = xk. Let

ũ = y1 . . . ylx1 . . . xk−1. Then clearly P r(nũxk) = T = P r(nũxk) and nũxk

Dr
3∼ nũxk. On

the other hand P r(nũ) = T ↑A and P r(nũ) = T ↑B and by induction hypothesis we have

nũ
pr
∼ α1 . . . αn−1 and nũ

pr
∼ β1 . . . βn−1. Hence

α = α1 . . . αn−1xk
pr
∼ nũxk

Dr
3∼ nũxk

pr
∼ β1 . . . βn−1xk = β.

the electronic journal of combinatorics 19 (2012), #P38 24



Case 3.2: Suppose that T has another domino corner, say C. Then C must lie either in
(T,B, ne) or (T,A, sw). Below we assume that C lies in (T,B, ne), since the other case
can be dealt with in the same manner by considering the transpose of T .

Case 3.2.1: We first suppose that (T,C, sw) ∩ (T,B, ne) contains a domino corner as
illustrated in Figure 11. Let σ be a permutation such that T ↑C = P r(σ1 . . . σn−1) and

η(T ↑C) = σn. Therefore B and C satisfy Case 2 and so β
pr
∼ σ. On the other hand

(T,C, sw)∩ (T,A, ne) contains a domino corner, i.e., A and C also satisfy Case 2 and this

gives α
pr
∼ σ. Hence β

pr
∼ α.

Figure 11: Case 3.2.1

Case 3.2.2: Now we suppose that C satisfies

(T,C, sw) ∩ (T,B, ne) = (s, s− 1, . . . , 2, 1) for some s ≥ 1.

Further we can assume that C is the only domino corner lying in (T,B, ne), since any
other domino corner in (T,B, ne) must satisfy Case 3.2.1. Below, Figure 12 illustrates the
possible subcases:

Figure 12: Case 3.2.2

We first suppose that (T,C, sw) ∩ (T,B, ne) is a staircase shape (s, s − 1, . . . , 1) for
s > 1 as illustrated in Figure 12(a). Then whether (T,A, sw) contains another domino
corner or not, A and B are contained in a rectangular shape which is strictly larger than
λ = (2, 2). Therefore this case is similar to the one studied in Case 3.1.1., and the same

method applied there gives α
pr
∼ β.

Now suppose that (T,C, sw)∩ (T,B, ne) is a single box and that there exist a domino
corner, say D in (T,A, sw) as illustrated in Figure 12(b). Observe that all (T,C, sw) ∩
(T,A, ne) and (T,D, ne) ∩ (T,B, sw) and (T,C, sw) ∩ (T,D, ne) contain a domino corner
i.e., the pair A and C , the pair B and D and the pair C and D satisfy Case 2. Let σ
and δ be two permutations in Bn satisfying:

T ↑C = P r(σ1 . . . σn−1), η(T ↑C) = σn and T ↑D = P r(δ1 . . . δn−1), η(T ↑D) = δn.
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Therefore α
pr
∼ σ

pr
∼ δ

pr
∼ β as required.

Lastly we suppose that (T,C, sw) ∩ (T,B, ne) is a single box and that there exist no
domino corners in (T,A, sw) as illustrated in Figure 12(c) (See also Figure 2 for possible
other variations, including the transpose of T ). Therefore T has shape

(s+ i, s+ i− 1, . . . , s+ 1, s, s− 2, s− 2, s− 4, s− 3, . . . , 2, 1) for some s ≥ 4, i ≥ 0

and it has three domino corners

A = {(i+3, s−3), (i+3, s−2)}, B = {(i+2, s−2), (i+3, s−2)}, C = {(i+1, s−1), (i+1, s)}

as Figure 12(c) illustrates. First observe that C must be double labeled by some number
c, since otherwise none of the right most horizontal domino cells above C can be double
labeled and this contradicts to the fact that T is a standard r-domino tableau.

Figure 13: Case 3.2.2, continuation to Figure 12 (c)

Now we first suppose that A is double labeled by some number b and consider the
horizontal domino cell D = {(i+2, s−3), (i+2, s−2)} which is indicated by the labeling
(x, y) in Figure 13(a). Observe from Corollary 2.5 that Garfinkle’s reverse insertion algo-
rithm applied on A first pushes back [D, (x, y)] and then labels D by (b, b) as Figure 13(b)
suggests. On the other hand Garfinkle’s reverse insertion algorithm applied on B first
pushes back [D, (x, y)] and then labels the vertical domino cell {(i+2, s−3), (i+3, s−3)}
by (b, b) as Figure 13(c) illustrates. Since the domino cell D of T is to be pushed back in
the first step of both reverse insertion, we have

αn = η(T ↑A) = z = η(T ↑B) = βn

and furthermore the resulting tableaux T ↑A and T ↑B just differ by their domino cells
labeled by (b, b). If B is double labeled by some number b, then one can get the same
result except that, this time the vertical domino cell D′ = {(i + 2, s − 3), (i + 3, s − 3)}
(as Figure 13(a′) indicates by the labeling (x, y)) is to be pushed back in the first step of
Garfinkle’s reverse insertion applied on A and B.

Now we consider T ↑B. Observe that the east most horizontal and the south most
vertical domino cells of T ↑B must be double labeled. We first apply the reverse insertion
on the east most horizontal domino cells from the bottom to the top, starting from C,
so that a sequence of positive increasing numbers is obtained. Next the reverse insertion
applied on the south most vertical domino cells from right to left gives a sequence of
increasing negative numbers. Continuing the reverse insertion of the east most horizontal
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domino cells and the south most vertical domino cells in the remaining tableaux one at a
time, we end up by a staircase shape (r, r − 1, . . . , 0) for some r ≥ 0.

If the shape (r, r − 1, . . . , 0) is obtained by reverse inserting the east most horizontal
domino cells at the end, as Figure 13 and Figure 2(a) illustrate, then last sequence obtained
in this manner must be also positive decreasing as the first sequence. Therefore for some
k ≥ 1 satisfying s+ i = r + 2(k + 1) we have the following word

u =

C1
︷ ︸︸ ︷

a1,r+1 . . . a1,1b1,1 . . .

Ck
︷ ︸︸ ︷

ak,r+k . . . ak,1bk,k . . . bk,1

Ck+1

︷ ︸︸ ︷
ak+1,r+k . . . ak+1,1

where in Ci, ai,r+i . . . a1,1 represents positive decreasing sequence obtained by reverse in-
serting east most horizontal domino cells and bi,i . . . b1,1 represent negative increasing
sequence obtained by reverse inserting south most vertical domino cells and C1 represent
the last sequence. Therefore P (u) = T ↑B and the numbers a

i,j
and b

i,j
in u satisfy the

following conditions.

ai,j > 0, bi,j < 0

ai,j−1 < ai,j < ai+1,j and |bi,j−1| < |bi,j| < |bi+1,j|

|bi,i| < ai+1,r+i+1 < |bi+1,i+1| for all i = 1, . . . , k − 1.

Consider the word u′ which is obtained by taking |bk,k| (Observe that bk,k = b in Figure 2)
in front of ak,r+k in u.

u′ =

C1
︷ ︸︸ ︷

a1,r+1 . . . a1,1b1,1 . . .

Ck
︷ ︸︸ ︷

bk,kak,r+k . . . ak,1bk,k−1 . . . bk,1

Ck+1

︷ ︸︸ ︷
ak+1,r+k . . . ak+1,1.

Therefore P r(u′) = T ↑A whereas P r(u) = T ↑B and since (T ↑B)↓z = T = (T ↑A)↓z we have

P r(uz) = T = P r(u′z).

Now we have the following analysis on z = η(T ↑B) = η(T ↑A): Observe that either b or
c must be equal to n. If b = n then any number z between bk,1 and ak+1,1 satisfies

(T ↑B)↓z = T = (T ↑A)↓z

where |bk,1| and ak+1,1 respectively are the labels of south most vertical and right most
horizontal domino cells in both T ↑B and T ↑A. If c = n then insertion of the number z in
both T ↑B and T ↑A can not bump the domino cell C which is double labeled by n in to
the next row since then resulting tableau is not equal to T . Therefore in this case

either bk,1 < z < ak,1

or ak,1 < z < ak+1,1 and ak,i+1 < ak+1,i for some 1 < i ≤ k − 1.

As a result two words uz and u′z satisfy Dr
4 relation with all a

i,j
> 0 and b

i,j
< 0 and so

uz
pr
∼ u′z.
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Now if the shape (r, r−1, . . . , 0) is obtained by reverse inserting the south most vertical
domino cells at the end (see for example Figure 2(b)) then last sequence obtained in this
manner must be negative increasing as opposed to the first sequence. Therefore for some
k ≥ 1 satisfying s+ i = r + 2(k + 1) + 1, we have the following word

u =

C1
︷ ︸︸ ︷

a
1,r+1

. . . a
1,1
b
1,1

. . .

Ck
︷ ︸︸ ︷

a
k,r+k

. . . a
k,1
b
k,k

. . . b
k,1

Ck+1

︷ ︸︸ ︷

a
k+1,r+k+1

. . . a
k+1,1

b
k+1,k

. . . b
k+1,1

where in Ci, ai,r+i . . . a1,1 represent negative increasing sequence obtained by reverse insert-
ing south most vertical domino cells and bi,i . . . b1,1 represent positive decreasing sequence
obtained by reverse inserting east most horizontal domino cells and C1 represent the last
sequence. Moreover the numbers a

i,j
and b

i,j
in u satisfy the following conditions.

a
i,j

< 0 and b
i,j

> 0

|a
i,j−1
| < |a

i,j
| < |a

i+1,j
| and b

i,j−1
< b

i,j
< b

i+1,j

|a
i,r+i
| < b

i,i
< |a

i+1,r+i+1
| for all i = 1, . . . , k.

Now one can easily check the following word

u′ =

C1
︷ ︸︸ ︷

a
1,r+1

. . . a
1,1
b
1,1

. . .

Ck
︷ ︸︸ ︷

a
k,r+k

. . . a
k,1
a

k+1,r+k+1
b
k,k

. . . b
k,1

Ck+1

︷ ︸︸ ︷

a
k+1,r+k

. . . a
k+1,1

b
k+1,k

. . . b
k+1,1

satisfies P r(u′) = T ↑A whereas P r(u) = T ↑B. Moreover a similar analysis on the number
z shows that z satisfies one of the hypothesis of Dr

5, therefore two words uz and u′z satisfy

Dr
5 relation with all a

i,j
< 0 and b

i,j
> 0 and so uz

pr
∼ u′z.

Note that for the tableaux that Figure 2(c) and (d) illustrates, one needs to apply
the reverse insertion the south most vertical domino cells from left to right starting from
C and in that case a sequence of negative decreasing numbers is obtained. Moreover,
according to the sign of the last sequence obtained in the same manner one get either
Dr

4 relation with all a
i,j

< 0 and b
i,j

> 0 or Dr
5 relation with all a

i,j
> 0 and b

i,j
< 0 as

Figure 2(c)and Figure 2(d) illustrates respectively.
Now recall that P (u) = T ↑A = P (α1 . . . αn−1) and P (u′) = T ↑B = P (β1 . . . βn−1). So

we have
αn = z = βn

and also u
pr
∼ α1 . . . αn−1 and u′ pr

∼ β1 . . . βn−1 by induction. Therefore α
pr
∼ uz

pr
∼ u′z

pr
∼ β

as desired.

Case 4: A 6= B, (T,A, ne)∩ (T,B, sw) is a staircase shape (s, s− 1, . . . , 1) for s ≥ 1 and
A ∩ B is empty. Figure 14 shows several subcases.

Case 4.1: We first assume that there is another domino corner C of T . Without loss of
generality we assume that C lies in (T,B, ne) since the other case can be dealt with in
the same manner after taking the transpose of T .

Case 4.1.1: Suppose that (T,C, sw) ∩ (T,B, ne) contains a domino corner as in Fig-
ure 14(a). Let σ be a permutation in Bn such that T ↑C = P r(σ1 . . . σn−1) and η(T ↑C) = σn.
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Figure 14: Case 4.

Then the pairs of domino corners A and C and similarly B and C satisfy Case 2. Therefore
we have β

pr
∼ σ

pr
∼ α. The case when C lies in (T,A, sw) follows similarly.

Case 4.1.2: Now suppose that (T,C, sw)∩(T,B, ne) is a staircase shape (s, s−1, . . . , 2, 1)
for some s ≥ 1. Observe that the case s > 1 is impossible since B is a horizontal
domino cell. For s = 1 consider Figure 14(b). Let σ be a permutation in Bn such that
T ↑C = P r(σ1 . . . σn−1) and η(T ↑C) = σn. Then as the domino corners B and C satisfy

Case 3.1.1, we have β
pr
∼ σ. On the other hand (T,A, ne) ∩ (T,C, sw) also contains a

domino corner, therefore by Case 2 we have α
pr
∼ σ. Hence α

pr
∼ β. The case when C lies

in (T,A, sw) also follows similarly.

Case 4.2: Now we suppose that there is no domino corner of T beyond A and B as
illustrated in Figure 14(c). One can easily see that after reverse insertion all horizontal
domino cells and then vertical domino cells, only a staircase shape is left. Therefore
n ≤ r + 1 and η(T ↑A) = αn < 0 and η(T ↑B) = βn > 0. Moreover we have

T ↑A↑B = T ↑B↑A, η(T ↑A↑B) = βn and η(T ↑B↑A) = αn.

Let u be a signed word such that P r(u) = T ↑A↑B = T ↑B↑A. Clearly P r(uαnβn) = T =
P r(uβnαn) and the size of u is less than r − 1. Moreover

uαnβn

Dr
2∼ uβnαn.

On the other hand P r(uβn) = T ↑A and P r(uαn) = T ↑B and by induction we have

α1 . . . αn−1
pr
∼ uβn and β1 . . . βn−1

pr
∼ uαn. Hence as desired

α = α1 . . . αn−1αn
pr
∼ uβnαn

Dr
2∼ uαnβn

pr
∼ β1 . . . βn−1βn = β.

�
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sentation du Groupe Symétrique, Lecture Notes in Math. 579, Springer, Berlin
(1977), 59–135.

[22] M. Shimozono, D. White, A color-to-spin domino Schensted algorithm. Electronic J.
Combin. 8, no. 1, (2001), Research Paper 21, 50 pp.

[23] D. Vogan, Ordering of the primitive spectrum of a semisimple Lie algebra, Math.
Ann. 248 (1980), 195–2003.

the electronic journal of combinatorics 19 (2012), #P38 30


