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Abstract

In this paper we get a structural property for a graph having the minimal least
eigenvalue among all graphs of fixed order and given chromatic number, and char-
acterize such graphs under the condition that the chromatic number is not larger
than half the order of the graph. As a result, we obtain a lower bound on the least
eigenvalue in terms of the chromatic number, and an upper bound on the chromatic
number in terms of the least eigenvalue of a graph.

1 Introduction

Let G = (V,E) be a simple graph of order n with vertex set V = V (G) = {v1, v2, . . . , vn}
and edge set E = E(G). The adjacency matrix of G is defined to be a (0, 1) matrix
A(G) = [aij] of order n, where aij = 1 if vi is adjacent to vj, and aij = 0 otherwise. The
eigenvalues of A(G) are called the eigenvalues of the graph G. Since A(G) is symmetric,
its eigenvalues are real and can be arranged as: λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G).

Recall that the chromatic number of a graph G, denoted by χ(G), is the least number
of colors assigned to the vertices of G such that each pair of adjacent vertices have different
colors. There is a lot of work on the connection between eigenvalues and chromatic number
of a graph. Wilf [18] proved that χ(G) ≤ 1 + λ1(G), with equality if and only if G is a

complete graph or an odd cycle. Hoffman [10] shown that χ(G) ≥ 1 + λ1(G)
−λn(G)

. Cvetković

[4] obtained that χ(G) ≥ n
n−λ1(G)

. One can also refer [9, 12] for other lower bounds of the

chromatic number of a graph. In addition, Feng et al. [8] have characterized the unique
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graph whose spectral radius attains the maximum among all graphs of fixed order and
given chromatic number.

Denote by Kn, On a complete graph and an empty graph both of order n, respectively.
Denote by H1 ∨ H2 a graph obtained from two disjoint graphs H1, H2 by joining each
vertex of H1 and each of H2. Let G be a graph of order n. Clearly χ(G) = n if and only if
G = Kn; χ(G) = 1 if and only if G = On. A graph G with χ(G) = 2 is a bipartite graph.
By [3] or [19], Kdn/2e,bn/2c := Odn/2e ∨Obn/2c is the unique graph whose least eigenvalue is
minimum among all graphs (or all bipartite graphs) of order n.

A problem arises naturally what is the graph whose least eigenvalue is minimum among all
graphs of order n with fixed chromatic number χ ≥ 3.

From the previous work, among all graphs of fixed order and fixed parameter, such as
the vertex (edge) independence number or vertex (edge) cover number [14], the number
of cut vertices or cut edges [15, 16, 17], the vertex or edge connectivity [19], the diameter
[20], the graphs with minimum least eigenvalue are all bipartite. So it is necessary to
discuss the non-bipartite graphs with minimum least eigenvalue. This work has been
done in [5].

In this paper we will give a more detailed discussion on the non-bipartite graphs with
minimum least eigenvalue among graphs of order n with fixed chromatic χ (3 ≤ χ ≤ n

2
),

and give a characterization of such graph. Using the result we obtain a lower bound of
the least eigenvalue in terms of chromatic number, and an upper bound of the chromatic
number in terms of the least eigenvalue of a graph.

Other work on the least eigenvalues of graphs can be referred to Bell et.al. [1, 2], Liu
et.al. [11], Petrović et.al. [13], and our workgroup [6, 7]. Through these work we can
not only find the structures of graphs with extremal spectral properties but also establish
some relationships between the graph parameters and the eigenvalues.

2 Preliminaries

Let X = (X1, X2, . . . , Xn)T ∈ Rn, and let G be a graph on vertices v1, v2, . . . , vn. Then
X can be considered as a function defined on V (G), that is, each vertex vi is mapped to
Xi = X(vi); Xi is called a value of the vertex vi given by X. If U ⊆ V (G), denote by
X(U) the subvector of X corresponding to the vertices of U .

The least eigenvalue λn(G) is now denoted by λmin(G), and the corresponding eigen-
vectors are called least vectors of G. One can find that

XTA(G)X = 2
∑

uv∈E(G)

X(u)X(v),

and λ is an eigenvector of G corresponding to an eigenvector X if and only if X 6= 0 and
for each v ∈ V (G)

λX(v) =
∑

u∈N(v)

X(u),
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where N(v) denotes the neighborhood of v in G. In addition, for an arbitrary unit vector
X ∈ Rn,

λmin(G) ≤ XTA(G)X,

with equality if and only if X is a least vector of G.
We introduce a class of graphs. Given positive integer n, χ such that 3 ≤ χ ≤ n− 1,

define a graph G(a, a′) := (Ka + Oa′) ∨ (Kb + Ob′), where 1 ≤ a ≤ χ − 1, b = χ − a,
a′, b′ are nonnegative integers such that a′ + b′ = n − χ. Note that χ(G(a, a′)) = χ, and
λmin(G(a, a′)) < −1 as G(a, a′) is connected and non-complete.

Let X be a least vector of G(a, a′). Then X has constant values, say α on V (Ka),
α′ on V (Oa′), β on V (Kb) and β′ on V (Ob′). Hence λmin(G(a, a′)) is the least root of
following equations:

λα = (a−1)α+bβ+b′β′, λα′ = bβ+b′β′, λβ = aα+a′α′+(b−1)β, λβ′ = aα+a′α′. (2.1)

So λmin(G(a, a′)) is the least root of the polynomial:

f(a, a′, λ) := λ2(λ− a+ 1)(λ− b+ 1)− [(b+ b′)λ− b′(b− 1)][(a+ a′)λ− a′(a− 1)], (2.2)

where b = χ− a, b′ = n−χ− a′, and n, χ are considered fixed numbers. In addition, from
(2.1) we also find that X contains no zero entries.

Lemma 2.1 Among all graphs of order n and with chromatic number χ, where 3 ≤ χ ≤
n− 1, if a graph G is one whose least eigenvalue attains the minimum, then G = G(a, a′)
for some a and a′.

Proof: Let X be a unit least vector of G. Surely x contains both positive and negative
entries. Denote by V+ = {v ∈ G : X(v) ≥ 0} and V− = {v ∈ G : X(v) < 0}. Thus
(V+, V−) forms a partition of the vertex set V (G).

Let χ(G[V+]) = ā, χ(G[V−]) = b̄. Then ā ≥ 1, b̄ ≥ 1 and ā + b̄ ≥ χ. Clearly the set
V+ can be partitioned into ā subsets V 1

+, V
2

+, . . . , V
ā

+ such that each edge of G[V+] joins
two different subsets, and there exists at least one edge joining any two subsets. For each
i = 1, 2, . . . , ā, choose one vertex vi ∈ V i

+ with minimal value among all vertices in V i
+.

Now in the graph G[V+], adding all possible edges within the vertices {v1, v2, . . . , vā}, and
deleting all other edges, we get a graph G1 = Kā + Oā′ with the same order as G[V+],
where ā′ = |V+| − ā. One can find

X(V+)TA(G[V+])X(V+) ≥ X(V+)TA(G1)X(V+).

Similarly, we can get a graph G2 = Kb̄ + Ob̄′ with the same order as G[V−], where
b̄′ = |V−| − b̄, which holds

X(V−)TA(G[V−])X(V−) ≥ X(V−)TA(G2)X(V−).

Let G′ = G1∨G2. Then χ(G′) = ā+ b̄, and XTA(G)X ≥ XTA(G′)X. Now choose two
positive integers a, b such that 1 ≤ a ≤ ā, 1 ≤ b ≤ b̄ and a + b = χ. Arbitrarily choosing
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a complete subgraph Ka of Kā (respectively, Kb of Kb̄) and deleting all other edges in G1

(respectively, G2), we get a graph G′′ = (Ka + Oa′) ∨ (Kb + Ob′), where a + a′, b + b′ are
the orders of G1, G2 respectively. Then χ(G′′) = χ, and

λmin(G) = XTA(G)X ≥ XTA(G′)X ≥ XTA(G′′)X ≥ λmin(G′′).

By the definition of G, λmin(G) = λmin(G′′) and the above inequalities hold as equalities.
Hence X is also a least vector of G′′. Thus X contains no zero entries by the discussion
prior to this lemma. By the equality XTA(G)X = XTA(G′′)X, we get G = (Ka +Oa′)∨
(Kb +Ob′), as desired. �

3 Results

Lemma 2.1 is very useful to establish a lower bound of the least eigenvalue of a graph
in terms of chromatic number, and an upper bound of the chromatic number in terms of
least eigenvalue. Returning to (2.2), we temporarily assume that a, a′ are real variables
of f(a, a′, λ), and will show that for an arbitrary given λ ∈ (−n

2
,−1), and given χ ≤ n

2
,

f(a, a′, λ) ≥ f(
χ

2
,
n− χ

2
, λ),

with equality if and only if a = χ
2

and a′ = n−χ
2

. This implies the least root of f(χ
2
, n−χ

2
, λ)

is not greater than that of f(a, a′, λ).
Assume that λ ∈ (−n

2
,−1) and χ ≤ n

2
in the following. Without loss of generality,

assume a ≥ b. Taking derivative of f with respect to a, a′ respectively, we have

∂f

∂a
= (a− b)[a′b′ − λ(a′ + b′)] + (a′ − b′)λ(λ+ 1).

∂f

∂a′
= (a− b)λ(λ+ 1) + (λ− a+ 1)(λ− b+ 1)(a′ − b′).

If a′ ≥ b′ or equivalently a′ ≥ n−χ
2

, then

∂f

∂a
≥ 0,

∂f

∂a′
≥ 0, (3.1)

and hence f(a, a′, λ) ≥ f(χ
2
, n−χ

2
, λ).

Now assume a′ < b′. If b′ − a′ ≥ a− b, then

∂f

∂a′
≤ 0, (3.2)

and hence f(a, a′, λ) ≥ f(a, a′ + γ, λ), where γ = (b′−a′)−(a−b)
2

.
If b′ − a′ ≤ a− b, then

∂f

∂a
≥ (b′ − a′)[a′b′ − λ(a′ + b′ + 1 + λ)] ≥ 0, (3.3)
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since −n
2
< λ < −1 and a′+b′+1+λ = n−χ+1+λ > n

2
+1− n

2
> 0. Hence f(a, a′, λ) ≥

f(a − η, a′, λ), where η = (a−b)−(b′−a′)
2

. So in both cases we have f(a, a′, λ) ≥ f(ā, ā′, λ)
for some ā and ā′ such that ā+ ā′ = n

2
.

Define
ϕ(δ) := f(a− δ, a′ + δ, λ), (3.4)

where δ ∈ [0, a−b
2

] and a + a′ = n
2
. Then by the derivatives of f with respect of a, a′ and

the chain rule of composite function,

ϕ′(δ) = −(a−b−2δ){(a′+δ)(b′−δ)− n
2
λ−2λ(λ+1)+[λ+1−(a−δ)][λ+1−(b+δ)]} ≤ 0.

So, if a− b > 0, or equivalently a > χ
2
, noting a− b = b′ − a′,

f(a, a′, λ) = ϕ(0) > ϕ(a− a− b
2

, a′ +
a− b

2
) = f(

χ

2
,
n− χ

2
, λ).

Now taking a = b = χ
2
, a′ = b′ = n−χ

2
into (2.2), we get

λ2 + (a′ + 1)λ− a′(a− 1) = 0, (3.5)

and the least root of the equation (3.5) is

ξ := −
n− χ+ 2 +

√
(n− χ− 2)2 + 4χ(n− χ)

4
.

If χ ≥ 2, then ξ = ξ(χ), as a function of χ, is strictly increasing on χ, and hence
−1 = ξ(n) ≥ ξ ≥ ξ(2) = −n

2
. Thus we get a sharper lower bound of the least eigenvalue

of a graph in terms of the chromatic number.

Theorem 3.1 Let G be a graph of order n with chromatic number χ (3 ≤ χ ≤ n
2
). Then

λmin(G) ≥ −
n− χ+ 2 +

√
(n− χ− 2)2 + 4χ(n− χ)

4
,

with equality if and only if n, χ are both even and G = G(χ/2, (n− χ)/2).

Replacing a′ by n
2
− a, λ by ξ, rewrite (3.5) as follows:

a2 −
(n

2
+ 1 + ξ

)
a+ (ξ + 1)

(
ξ +

n

2

)
= 0.

Hence

χ = 2a =
(n

2
+ 1 + ξ

)
+

√(n
2

+ 1 + ξ
)2

− 4(ξ + 1)
(
ξ +

n

2

)
.

Noting that χ = χ(ξ) is also increasing on ξ, 2 = χ(−n
2
) ≤ χ ≤ χ(−1) = n. For a graph

G with chromatic number χ (3 ≤ χ ≤ n
2
), λmin(G) ≥ ξ by Theorem 3.1. So we get an

upper bound of the chromatic number of a graph in terms of the least eigenvalue.
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Theorem 3.2 Let G be a graph of order n with chromatic number χ (3 ≤ χ ≤ n
2
) and

least eigenvalue λ = λmin(G). Then

χ ≤
(n

2
+ 1 + λ

)
+

√(n
2

+ 1 + λ
)2

− 4(λ+ 1)
(
λ+

n

2

)
,

with equality if and only if n, χ are both even and G = G(χ/2, (n− χ)/2).

At the end of this paper, we characterize the unique graph whose least eigenvalue
attains the minimum among all graphs with fixed order and chromatic number not greater
than half of the order.

Theorem 3.3 Among all graphs of order n and with chromatic number χ, where 3 ≤
χ ≤ n

2
, the graph G(dχ/2e, b(n− χ)/2c) is the unique one whose least eigenvalue attains

the minimum.

Proof: By Lemma 2.1, it is enough to consider the graph G(a, a′). Without loss of
generality, we assume a ≥ b or equivalently a ≥ χ

2
. Assume that λ ∈ (−n

2
,−1) in the

following discussion.
Case 1: a′ ≥ b′. By (3.1), the function f defined in (2.2) is strictly increasing on a

and a′ respectively. Note that a, a′ now are integers. To make f attain the minimum,
a = dχ/2e and a′ = d(n− χ)/2e. Hence, if a ≥ b+ 2 or a′ ≥ b′ + 2 then λmin(G(a, a′)) >
λmin(G(dχ/2e, d(n− χ)/2e).

To reach the final result, we need to discuss the case of (n−χ) =: 2m+1 being odd. If χ
is even, thenG(dχ/2e,m+1) is isomorphic toG(dχ/2e,m); otherwise by a little calculation
f(dχ/2e,m + 1, λ) − f(dχ/2e,m, λ) > 0, which implies that λmin(G(dχ/2e,m + 1)) >
λmin(G(dχ/2e,m)).

Case 2: b′ > a′. If a = b, the result follows from Case 1 by considering the graph
G(b, b′). So we assume that a > b in the following.

If b′ − a′ ≥ a − b, then ∂f
∂a′
≤ 0 by (3.2). Hence, if b′ − a′ ≥ (a − b) + 2, then

f(a, a′, λ) > f(a, a′+1, λ). So λmin(G(a, a′)) > λmin(G(a, a′+1)) ≥ · · · ≥ λmin(G(a, a′+l)),
for some positive integer l such that (b′ − l)− (a′ + l) equals a− b or a− b+ 1.

If b′−a′ ≤ a− b, then ∂f
∂a
> 0 by (3.3). Hence, if b′−a′ ≤ (a− b)−2, then f(a, a′, λ) >

f(a− 1, a′, λ), and hence λmin(G(a, a′)) > λmin(G(a− 1, a′)) ≥ λmin(G(a− k, a′)) for some
positive integer k such that b′ − a′ equals (a− k)− (b+ k) or (a− k)− (b+ k)− 1.

By above discussion, we only need to consider the graph G(a, a′) with b′ − a′ equal to
one of the values a − b − 1, a − b, a − b + 1. If b′ − a′ = a − b + 1, by a little calculation
f(a, a′, λ) > f(a, a′ + 1, λ), and hence λmin(G(a, a′) > λmin(G(a, a′ + 1). So it is enough
to deal with the first two types of graphs G(a, a′).

If b′ − a′ = a− b =: ζ ≥ 2, using the function ϕ(δ) defined in (3.4),

f(a, a′, λ) = ϕ(0) > φ(a− bζ/2c, a′ + bζ/2c) = f(a− bζ/2c, a′ + bζ/2c, λ),

and hence λmin(G(a, a′)) > λmin(G(a−bζ/2c, a′+ bζ/2c)) = λmin(G(dχ/2e, b(n−χ)/2c)).
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If b′ − a′ = (a− b)− 1 and a− b ≥ 2, then f(a, a′, λ)− f(a− 1, a′ + 1, λ) =

(−λ2 − 2b′λ+ a′b′) + (a− b− 2)[−λ2 − 2(a′ + a− 1)λ+ a′b′ + (a− 2)b] > 0,

where the first summand is positive as 2b′ > a′ + b′ = n − χ ≥ n
2
, and the second is

nonnegative as 2(a+a′−1) = 2(b+b′) = n−1 > n
2
. So λmin(G(a, a′) > λmin(G(a−1, a′+1)).

The result follows by repeated using this inequality. �
Remark: For the graph G(χ/2, (n − χ)/2), where n, χ (χ ≤ n/2) are both even, the
spectral radius is also the largest root of the f(χ/2, (n− χ)/2, λ), and is given by

λ1(G(χ/2, (n− χ)/2)) =
2a− 1 + a′ +

√
(2a− 1)2 + a′(a′ + 2)

2
> 2a− 1 +

a′

2
,

where a = χ/2, a′ = (n− χ)/2. According to Wilf’s bound,

χ(G(χ/2, (n− χ)/2)) = χ < χ+
n− χ

4
= 1 + λ1(G(χ/2, (n− χ)/2)).

However, our bound in Theorem 3.2 for this graph is tight. For an odd cycle, Wilf’s
bound is tight but our bound is not good.

Theorems 3.1-3.3 deal with the graphs G of order n with 3 ≤ χ(G) ≤ n/2. By a
number of numerical experiments on small graphs, we conjecture that they hold for all
graphs G without limitation on the range of χ(G).
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