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Operations of arbitrary arity expressible via addition modulo 2n and bitwise addition
modulo 2 admit a simple description. The identities connecting these two additions have a
finite basis. Moreover, the universal algebra Z/2nZ with these two operations is rationally
equivalent to a nilpotent ring and, therefore, generates a Specht variety.

0. Introduction

On the set of integers {0, 1, . . . , q−1} = Zq, where q is a power of two, we consider two natural op-
eration: addition modulo q and bitwise addition modulo 2. In computer literature, these operations
are usually denoted by ADD and XOR; they are hardware implemented in all modern computers, as
far as we know.*)

We consider two natural questions.
1. What function Z

k
q → Zq can be expressed via these two operations?

2. What identities connect these two operations?
Theorem 1 gives a complete answer to the first question; we obtain a simple fast algorithm deciding
whether or not an arbitrary given function can be expressed via ADD and XOR. We also calculate
the total number of k-argument functions expressible via these two operation (Corollary 1).

We do not give an explicit answer to the second question, but we prove that, for each q, all
identities connecting ADD and XOR follow from a finite number of such identities (Theorem 2) and
there exists an algorithm writing down such a finite basis of identities for any given q (Corollary
2).

The problem of existence of finite basis of identities was extensively studied for groups, semi-
groups, rings, linear algebras (see, for example, [BaOl88], [Neum69], [Belo99], [VaZe89], [Grish99],
[Zaits78], [Keme87], [Kras90], [Laty73], [Lvov73], [Olsh89], [Shch99], [GuKr03], [Kras09], [Speht52]
and literature cited therein), but the “applied” algebra with operations ADD and XOR has never
been studied from this point of view, as far as we known.

In algebraic term, Theorem 1 is an explicit description of the free algebras of the variety,
generated by the algebra Zq with two binary operations ADD and XOR; Theorem 2 says that this
variety is finitely based (i.e. it has a finite basis of identities). See, for example, [BaOl88] or [GA91]
for necessary information about varieties of universal algebras.
Most of Notation we use is standard. Note only that the addition modulo q (i.e. ADD) is denoted by
+; the bitwise addition modulo 2 (i.e. XOR) is denote by ⊕. The symbol ai denotes the ith bit of a
number a ∈ Zq; the bits with negative numbers are assumed to be zero. The set {0, 1, . . . , q−1} = Zq

when considered as a universal algebra with operations + and ⊕ is denoted by the symbol Aq. The

This work was supported by the Russian Foundation for Basic Research, project no. 11-01-
00945.
*) Usually, the command ADD is simply called addition, because it is used mostly for obtaining

the usual sum of positive integers; however, actually the processor performs the addition modulo
a large number q (for example, q = 232 for 32-bit processors etc.).
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multiplication by integer numbers in Aq is always considered as multiplication modulo q. These
multiplications are obviously expressed in terms of addition +, for example, 3x = x+x+x and −
3x = (−3)x = −(3x) = x+ x+ . . .+ x

︸ ︷︷ ︸

3(q−1) terms

.

The authors thank an anonymous referee for a lot of useful remarks and pointing out a flaw
in the original proof of the main theorem (the easier direction). We also thank A. E. Pankratiev
for useful comments.

1. Definitions and results

A function f :Ak
q → Aq is called algebraic if it can be expressed via operations + and ⊕. More

precisely, the set Fk,q of algebraic k-argument functions is the inclusion-minimal set of functions,
satisfying the following conditions:
1) the functions f(x, y, . . .) = x, f(x, y, . . .) = y, . . . belong to Fk,q;
2) if functions f and g belong to Fk,q, then the functions f + g and f ⊕ g belong to Fk,q.

The set Fk,q of all algebraic k argument functions forms a universal algebra with respect to oper-
ations + and ⊕; this is the free algebra of rank k of the variety generated by the algebra Aq.

Theorem 1. A function f :Ak
q → Aq is algebraic if and only if, for any i, the ith bit of its value

is expressed via bits of the arguments by a formula of the form

(f(x, y, . . .))i = g(xi, yi, . . . ;xi−1, yi−1, . . . ;xi−2, yi−2, . . . ; . . .) (∗)

(the bits with negative numbers are assumed to be zero), where g is an independent of i Zhegalkin
polynomial (over Z2) without free term, whose weight does not exceed 1.

The weight or the reduced degree of a polynomial in variables

xi, yi, . . . , xi−1, yi−1, . . . , xi−2, yi−2, . . .

is the maximal weight of its monomials; the weight of a monomial is the sum of weights of its
variables; the weight of variables xi−l, yi−l, . . . is the number 2−l. (Here, i is a formal parameter.)

Example 1. If q = 8 and k = 1, then there are exactly four Zhegalkin monomials whose weights
does not exceed one: xi (weight 1), xi−1 (weight 1

2 ), xi−2 (weight 1
4 ), and xi−1xi−2 (weight 3

4 ).
(Here, we use that no variable occurs in a Zhegalkin monomial more than once.) Therefore, there
are 24 polynomials of weight not exceeding one. Thus, the algebra F1,8 consists of 16 elements. For
example, the algebraic function corresponding to the Zhegalkin polynomial xi ⊕ xi−1xi−2 has the
form

f(x) = f(x0, x1, x2) = (x0 ⊕ x−1x−2, x1 ⊕ x0x−1, x2 ⊕ x1x0) = (x0, x1, x2 ⊕ x1x0)

(because the bits with negative numbers are zero). In other words,

f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 7, f(4) = 4, f(5) = 5, f(6) = 6, f(7) = 3.

Theorem 1 makes it possible to construct the following simple

ALGORITHM determining whether or not a given function f :Zk
2κ → Z2κ is algebraic (i.e. can

be expressed via ADD and XOR).
1. Write the most significant bit (f(x, y, . . .))κ−1 of the value of the function f as a Zhegalkin

polynomial gκ−1(x0, y0, . . . , x1, y1, . . .) in bits of arguments and verify that the weight of this
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polynomial (for i = κ − 1) does not exceed one and the free term is zero. If the weight is
higher or the free term is nonzero, then exit the program with the answer NO.

2. Make the following substitutions in the polynomial gκ−1:

x0 → 0, x1 → x0, x2 → x1, . . . , xκ−1 → xκ−2,

y0 → 0, y1 → y0, y2 → y1, . . . , yκ−1 → yκ−2, . . .
(∗∗)

and verify that the obtained polynomial gκ−2 coincides with the polynomial giving (κ− 2)-th
bit of the function f . If not, then exit the program with the answer NO; if yes, then continue.

. . . . . . . . .

κ − 1. Make substitutions (∗∗) in the polynomial g2 and verify that the obtained polynomial g1
coincides with the polynomial giving the 1st bit of the function f . If no, then exit the
program with the answer NO; if yes, then continue.

κ. Make substitution (∗∗) in the polynomial g1 and verify that the obtained polynomial g0
coincides with the polynomial giving the least significant bit of the function f . If no, then
exit the program with the answer NO; if yes, then exit the program with the answer YES.

It is clear that this algorithm can be easily made uniform with respect to κ.
For example, the function of multiplication of two numbers modulo q cannot be expressed via

ADD and XOR (the algorithm stops at the first step because of the condition on the weight); this is
not surprising, of course. However, the one-argument function x 7→ xy is algebraic for each given
y ∈ Zq, as was already mentioned.

The proof of Theorem 1 is constructive and gives some algorithm making it possible to express a
given function f via ADD and XOR (if it is expressible), but this algorithm is much more complicated.

Example 1 can be easily generalised. Calculating monomials for any q and k, we obtain the
following assertion.

Corollary 1. The free algebra Fk,q comprises

2
1
k! (

q

2
+1)( q

2
+2)...( q

2
+k)−1 (1)

elements.

Proof. In the case where k = 1, there are precisely q
2 monomials of weight at most one. Indeed, by

virtue of the uniqueness of binary decomposition of an integer, there exists precisely one monomial
of each weight s · 2

q
, where s ∈ {1, 2, . . . , q

2}. Namely, this is the monomial

xi−l1xi−l2 . . . xi−lp , where s = 2κ−1−l1 + 2κ−1−l2 + . . .+ 2κ−1−lp , and 2κ = q.

This implies that, for any integer k, the number of monomials of weight at most one coincides with
the number of nonzero tuples of nonnegative integers (n1, . . . , nk) with sum at most q

2 (here, ni ·
2
q

is the weight with respect to the ith variable). It is well known that the number of such tuples is

( q2 + 1)( q2 + 2) . . . ( q2 + k)

k!
− 1.

Therefore, the total number of polynomials of weight at most one can be found by formula (1).

The following assertion is a reformulation of Theorem 1.
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Theorem 1′. A function f :Ak
q → Aq is algebraic if and only if it can be written in the form

f(x, y, . . .) =
⊕

i

(
(2ki,1x)⊙ (2ki,2x)⊙ . . .⊙ (2li,1y)⊙ (2li,2y)⊙ . . .

)
,

where the inequality 2−ki,1 + 2−ki,2 + . . .+ 2−li,1 + 2−li,2 + . . . 6 1 holds for each i.

Henceforth, the symbol ⊙ denotes the bitwise multiplication modulo 2 (conjunction).

As for identities, we note first that, with respect to each of the operations + and ⊕, the algebra
Aq is an abelian group of exponent q and 2, respectively. Therefore, all identities involving only
one of these two operations follow from the identities

(x+ y) + z = x+ (y + z), x+ qy = x, x+ y = y + x,

(x⊕ y)⊕ z = x⊕ (y ⊕ z), x⊕ (y ⊕ y) = x, x⊕ y = y ⊕ x.

Identities involving the both operations are more complicated. The simplest example of such iden-
tity is qx = x⊕x which expresses the coincidence of the zero elements of these two group structures.
A less trivial example is q

2 (x+y) = q
2 (x⊕y) (this identity expresses the coincidence of the additions

+ and ⊕ at the least significant bit).

Theorem 2. For any integer power of two q, the algebra Aq has a finite basis of identities.
Moreover, the algebra Aq generates a Specht variety.*)

The finiteness of an algebra per se does not implies the finiteness of a basis of its identities.
A finite basis of identities exists for each finite group [OaPo64] (see also [Neum69]), each finite
associative or Lie ring ([Lvov73], [Kruse73], [BaOl75]), but not for each finite semigroup and not
for each finite ring (see [BaOl88]).

To prove Theorem 2, we use well-known nilpotency arguments rather than the finiteness.
It is known that a finite basis of identities exists for any nilpotent ring (i.e. a ring in which all
sufficiently long products vanish) and any nilpotent group (i.e. a group in which all sufficiently
long multiple commutators equal to one) (see [Neum69]). The algebra Aq is neither a group nor a
ring. However, it turns out that this algebra is rationally equivalent (in the sense of Mal’tsev) to a
nilpotent ring, i.e. the algebra Aq can be endowed with a structure of nilpotent ring in such a way
that the addition and multiplication of the ring can be expressed via operations + and ⊕ and vice
versa: the operation + and ⊕ can be expressed via the addition and multiplication of the ring.

Theorem 3. The algebra Aq is rationally equivalent to a nilpotent commutative nonassociative
ring (Zq,⊕, ◦). The addition ⊕ is the usual bitwise addition modulo two, the multiplication ◦
is defined by the formula x ◦ y = 2(x ⊙ y), where ⊙ is the bitwise multiplication modulo two
(conjunction), and the multiplication by two is the multiplication by two modulo q, i.e. the shift
of digits.

In the following section, we prove Theorem 1. In section 3, we prove Theorem 3, which imme-
diately implies Theorem 2, because any nilpotent ring has a finite basis of identities (and generates
a Specht variety).

*) This means that any algebra of signature (+,⊕) satisfying all identities of the algebra Aq has
a finite basis of identities.
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2. Proof of Theorem 1

The element [x, y]
def
= x ⊕ y ⊕ (x + y) is called the commutator of the elements x, y ∈ Aq. The

commutator is the difference between the sum ⊕ and the sum + of two elements; the ith bit of the
commutator [x, y] is the carry to the ith digit during execution of the standard addition algorithm
for x+ y.

The following lemma is well known and widely used in electronic adders.

Proposition 1. The bits of the commutator satisfies the equality

[x, y]i = xi−1yi−1 ⊕ [x, y]i−1(xi−1 ⊕ yi−1). (2)

Proof. The carry ci = [x, y]i to the ith bit is formed as follows:

ci =

{
1, if among three bits xi−1, yi−1, ci−1 the majority (i.e. two or three) is ones;
0, if among three bits xi−1, yi−1, ci−1 the majority is zeros.

The Zhegalkin polynomial for this Boolean function is

ci = xi−1yi−1 ⊕ yi−1ci−1 ⊕ ci−1xi−1 = xi−1yi−1 ⊕ ci−1(xi−1 ⊕ yi−1),

as required.

Formula (2) can be rewritten in the form [x, y] = 2(x ⊙ y ⊕ [x, y] ⊙ (x ⊕ y)) or (applying
distributivity of the multiplication by two with respect to ⊙ and ⊕ and distributivity of ⊙ with
respect to ⊕) in the form

(2x)⊙ (2y) = [x, y]⊕ (2[x, y])⊙ (2x)⊕ (2[x, y])⊙ (2y). (2′)

Using formula (2), it is easy to show that the ith bit of the sum x + y = x ⊕ y ⊕ [x, y] can be
evaluated as

(x+ y)i = xi ⊕ yi ⊕ xi−1yi−1 ⊕ xi−1xi−2yi−2 ⊕ yi−1xi−2yi−2 ⊕ . . .

= the sum of all monomials of weight 1.
(2′′)

Now, we proceed to prove Theorem 1. Let M be the set of all functions Ak
q → Aq of the form

(∗). We have to prove two assertions.
1. Any function from Fk,q belongs to M ;
2. Any function from M belongs to Fk,q.

The first assertion is easy to verify. The functions f(x, y, . . .) = x, f(x, y, . . .) = y, . . . belong to
M , since the corresponding Zhegalkin polynomials xi, yi, . . . have weight one. Suppose that some
functions f(x, y, . . .) and g(x, y, . . .) belong to M , i.e.

(f(x, y, . . .))i = F (xi, yi, . . . ;xi−1, yi−1, . . . ; . . .),

(g(x, y, . . .))i = G(xi, yi, . . . ;xi−1, yi−1, . . . ; . . .),

where F and G are Zhegalkin polynomials of weight at most one and without free term. Then

(f(x, y, . . .)⊕ g(x, y, . . .))i

= F (xi, yi, . . . ;xi−1, yi−1, . . . ; . . .)⊕G(xi, yi, . . . ;xi−1, yi−1, . . . ; . . .)

the electronic journal of combinatorics 19 (2012), #P40 5



and the weight of this Zhegalkin polynomial is at most one, i.e. f ⊕ g ∈ M . According to (2′′), The
ith bit of the function f + g is

(f + g)i = F ⊕G⊕ F ′G′ ⊕ F ′F ′′G′′ ⊕ F ′′G′G′′ ⊕ . . . ,

where the polynomial H ′ is obtained from H = H(xi, yi, . . . ;xi−1, yi−1, . . . ; . . .) by the shift of all
bits:

H ′(xi, yi, . . . ;xi−1, yi−1, . . . ; . . .) = H(xi−1, yi−1, . . . ;xi−2, yi−2, . . . ; . . .).

The weight of H ′ is at most half of the weight of H. Thus, the weight of

F ⊕G⊕ F ′G′ ⊕ F ′F ′′G′′ ⊕ F ′′G′G′′ ⊕ . . .

is at most one and f + g ∈ M .

The remaining part of this section is the proof of the second assertion.
A multiple commutators of complexity n is a formal expression in variables x, y, . . . defined by

induction as the follows:
each variable is a multiple commutator of complexity 1;
an expression [u, v] is a multiple commutator of complexity n if the expressions u and v are
multiple commutators and the sum of their complexities is n.

An obvious induction shows that a multiple commutator vanishes if at least one of the involving
variables vanishes.

The depth d(w) of a multiple commutator w is also defined by induction:
d(x) = 0 if x is a variable;
d([u, v]) = max(d(u), d(v)) + 1.

For instance, the multiple commutator [[x, y], [[z, t], x]] has complexity 5 and depth 3.

Lemma 1. The ith bit of a multiple commutator w vanishes if i < d(w).

Proof. We use induction on depth. For depth 0, the assertion is true. Suppose that d(u) lower bits
of a multiple commutator u and d(v) lower bits of a multiple commutator v vanish. Then formula
(2) implies that max(d(u), d(v)) + 1 lower bits of [u, v] vanish, as required.

Lemma 2. The depth of a multiple commutator of complexity at least 2n is at least n.

Proof. We use the induction on n. A multiple commutator of complexity 1 (i.e. a variable) has
depth 0. A multiple commutator w of complexity > 2n, where n > 1, has the form w = [u, v].
At least one from the multiple commutators u or v has complexity at least 2n−1 (otherwise, the
complexity of w would be less than 2n). By the induction hypothesis, the depth of this multiple
commutator is at least n − 1. This implies that the depth of w is at least n by the definition of
depth.

Lemma 3. In Aq, all multiple commutators of complexity > q vanish.

Proof. By Lemma 2, the depth of such a multiple commutator is at least log2 q and, therefore, all
bits of this multiple commutator vanish by Lemma 1.

Proof of theorem 1′. It is sufficient prove that any expression

(2k1x)⊙ (2k2x)⊙ . . .⊙ (2l1y)⊙ (2l2y)⊙ . . . , where 2−ki,1 + 2−ki,2 + . . .+ 2−li,1 + 2−li,2 + . . . 6 1,

is expressible via ⊕ and +. Let us prove a more strong assertion: any expression of the form

f = (2ku)⊙ (2lv)⊙ (2mw)⊙ . . . ,

where 2−k + 2−l + 2−m + . . . 6 1 and u, v, w, . . . are multiple commutators
(3)
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is expressible via ⊕ and + (and variables).
Suppose the contrary. Then there exists an expression of the form (3) inexpressible via ⊕ and

+ and such that the inequality becomes the equality:

2−k + 2−l + 2−m + . . . = 1, (4)

Indeed, 1−(2−k+2−l+2−m+ . . .) is a fraction of the form s
2k
, where k is the maximum of numbers

k, l,m, . . ., and, hence, the expression

f ⊙ (2ku)⊙ (2ku)⊙ . . .⊙ (2ku)
︸ ︷︷ ︸

s factors

gives the same function as f , but the inequality transforms into the equality. Note that 2x = [x, x]
and, hence, 2ku is a multiple commutator provided u is a multiple commutator.

Let us choose among all nonalgebraic (not expressible via ⊕ and +) expressions (3) satis-
fying the equality (4), all expressions with minimal number of factors. Among all such minimal-
length expressions, we choose an expression with the maximal sum of complexities of commutators
u, v, w, . . .. Such an expression f exists by Lemma 3.

The number of factors in this expression is at least two, because a multiple commutator can
be expressed via ⊕ and + by definition. Equality (4) implies that the two largest among exponents
k, l,m, . . . are equal. Let us assume that k = l.

Using identity (2′), we obtain

(2ku)⊙ (2kv) = (2 · 2k−1u)⊙ (2 · 2k−1v)

= [2k−1u, 2k−1v]⊕ (2[2k−1u, 2k−1v])⊙ (2⊙ 2k−1u)⊕ (2[2k−1u, 2k−1v])⊙ (2 · 2k−1v)

= 2k−1[u, v]⊕ (2k[u, v]) · (2ku)⊕ (2k[u, v])⊙ (2kv)

Therefore, expression (3) is the sum of three terms:

f =
(

(2k−1t)⊙ (2mw)⊙ . . .
)

⊕
(

(2kt)⊙ (2ku)⊙ (2mw)⊙ . . .
)

⊕
(

(2kt)⊙ (2kv)⊙ (2mw)⊙ . . .
)

,

where t = [u, v]. All three terms satisfy equality (4).
The first term is algebraic, because its length (the number of factors) is less than the length of

the initial expression f , whose length is minimal among all nonalgebraic expressions (3) satisfying
equality (4).

The second and third terms have the same length as f , but their total complexity is higher
(because the complexity of t = [u, v] is one higher than the sum of complexities of u and v).
Therefore, they are also algebraic by the choice of f . Thus, the expression f is algebraic as the sum
of three algebraic terms. This contradiction completes the proof of Theorem 1′ (and of Theorem
1).

3. Proof of Theorems 3 and 2

To prove Theorem 3, note that the algebra Zq with the operations ⊕ and ◦ is, indeed, a nilpotent
commutative nonassociative ring. The commutativity of the multiplication ◦ is obvious; the dis-
tributivity of the multiplication with respect to the addition ⊕ is obvious too. The nilpotency also
holds: ((. . . (x ◦ y) ◦ z) ◦ . . . = 0 if the number of factors is at least log2 q. Note that the nilpotency
index is generally large than log2 q, but it is at most q, i.e. any product of q elements (with any

the electronic journal of combinatorics 19 (2012), #P40 7



arrangements of brackets) vanishes. This can be shown similarly to Lemma 2 (the depth is at least
logarithm of the length for any arrangements of brackets).

The multiplication x ◦ y = 2(x⊙ y) = (2x)⊙ (2y) is expressible via + and ⊕ by Theorem 1′.
It remains to prove that the addition + is expressible via the ring operations ⊕ and ◦.

Note that + can be expressed via commutator and ⊕ (by the definition of the commutator):
x+ y = x⊕ y ⊕ [x, y]. Therefore, it is sufficient to express commutator via ⊕ and ◦.

Lemma 4. For any positive integer k, the commutator [x, y] can be written in the form

[x, y] = fk(x, y)⊕ [x, y] ◦ (x⊕ y) ◦ (x⊕ y) ◦ . . . ◦ (x⊕ y)
︸ ︷︷ ︸

k+1 factors

, (5)

where fk is a polynomial (in the sense of multiplication ◦ and addition ⊕). Henceforth, we assume

that, in multiple products, all brackets are shifted to the left, for example, a◦b◦c◦d
def
= ((a◦b)◦c)◦d.

Proof. If k = 1, then the required decomposition follows from the identity (2′):

[x, y] = x ◦ y ⊕ [x, y] ◦ (x⊕ y). (6)

For larger k, we use induction: having identity (5) for some k, we substitute identity (6) in it the
right-hand side of (5) and obtain

[x, y] = fk(x, y)⊕ (x ◦ y ⊕ [x, y] ◦ (x⊕ y)) ◦ (x⊕ y) ◦ (x⊕ y) ◦ . . . ◦ (x⊕ y)

= fk(x, y)⊕ x ◦ y ◦ (x⊕ y) ◦ (x⊕ y) ◦ . . . ◦ (x⊕ y)
︸ ︷︷ ︸

fk+1(x,y)

⊕ [x, y] ◦ (x⊕ y) ◦ (x⊕ y) ◦ (x⊕ y) ◦ . . . ◦ (x⊕ y)
︸ ︷︷ ︸

k+2 factors

,

as required.

Applying Lemma 4 for k = log2 q and using the nilpotency of the ring, we obtain an expression
of the commutator via ⊕ and ◦, namely, [x, y] = flog2 q(x, y) that completes the proof of Theorem
3.

Theorem 2 follows immediately from Theorem 3 and the following well-known fact.

Theorem (see [BaOl88]). Each nilpotent ring has a finite basis of identities.

Remark. The proof of the existence of a finite basis for the identities of nilpotent rings shows
that all identities of such a ring follows from the identities involving at most n variables, where n
is the nilpotency index, i.e. a number such that all products of n elements (with any arrangements
of brackets) vanish. This implies the following fact.

Corollary 2. All identities of the algebra Aq follows from the identities involving at most q
elements. There exists an algorithm that, for any given q = 2κ , write out a finite basis of identities
of Aq.

This basis consists of the addition tables (for + and ⊕) of the free algebra Fq,q.
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