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Abstract

A graph is vertex-transitive if its automorphism group acts transitively on its
vertices. A vertex-transitive graph is a Cayley graph if its automorphism group
contains a subgroup acting regularly on its vertices. In this paper, the cubic vertex-
transitive non-Cayley graphs of order 8p are classified for each prime p. It follows
from this classification that there are two sporadic and two infinite families of such
graphs, of which the sporadic ones have order 56, one infinite family exists for every
prime p > 3 and the other family exists if and only if p ≡ 1 (mod 4). For each
family there is a unique graph for a given order.
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1 Introduction

For a finite, simple and undirected graph X, we use V (X), E(X), A(X) and Aut(X) to
denote its vertex set, edge set, arc set and full automorphism group, respectively. For
u, v ∈ V (X), u ∼ v means that u is adjacent to v and denote by {u, v} the edge incident to
u and v in X. A graph X is said to be vertex-transitive, and arc-transitive (or symmetric)
if Aut(X) acts transitively on V (X) and A(X), respectively. Given a finite group G and
an inverse closed subset S ⊆ G \ {1}, the Cayley graph Cay(G,S) on G with respect to S
is defined to have vertex set G and edge set {{g, sg} | g ∈ G, s ∈ S}.

It is well known that a vertex-transitive graph is a Cayley graph if and only if its
automorphism group contains a subgroup acting regularly on its vertex set (see, for ex-
ample, [25, Lemma 4]). There are vertex-transitive graphs which are not Cayley graphs
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and the smallest one is the well-known Petersen graph. Such a graph will be called a
vertex-transitive non-Cayley graph, or a VNC-graph for short. Many publications have
been put into investigation of VNC-graphs from different perspectives. For example, in
[13], Marušič asked for a determination of the set NC of non-Cayley numbers, that is,
those numbers for which there exists a VNC-graph of order n, and to settle this question,
a lot of VNC-graphs were constructed in [9, 11, 14, 19, 15, 16, 17, 20, 22, 26]. In [6], Feng
considered the question to determine the smallest valency for VNC-graphs of a given or-
der and it was solved for the graphs of odd prime power order. By [19, Table 1], the
total number of vertex-transitive graphs of order n and the number of VNC-graphs of
order n were listed for each n ≤ 26. It seems that, for small orders at least, the great
majority of vertex-transitive graphs are Cayley graphs. This is true particularly for small
valent vertex-transitive graphs (see [21]). This suggests the problem of classifying small
valent VNC-graphs. From [3, 12] all VNC-graphs of order 2p are known for each prime p.
Recently, in [30] all tetravalent VNC-graphs of order 4p were classified, and in [28, 29, 31],
all cubic VNC-graphs of order 2pq were classified, where p and q are primes. In this paper
we shall classify all cubic VNC-graphs of order 8p for each prime p. As a result, there
are two sporadic and two infinite families of such graphs, of which the sporadic ones have
order 56, one infinite family exists for every prime p > 3 and the other family exists if
and only if p ≡ 1 (mod 4). For each family there is a unique graph for a given order.

2 Preliminaries

In this section, we introduce some notations and definitions as well as some preliminary
results which will be used later in the paper.

For a regular graph X, use d(X) to represent the valency of X, and for any subset B
of V (X), the subgraph of X induced by B will be denoted by X[B]. Let X be a connected
vertex-transitive graph, and let G ≤ Aut(X) be vertex-transitive on X. For a G-invariant
partition B of V (X), the quotient graph XB is defined as the graph with vertex set B such
that, for any two vertices B,C ∈ B, B is adjacent to C if and only if there exist u ∈ B
and v ∈ C which are adjacent in X. Let N be a normal subgroup of G. Then the set B
of orbits of N in V (X) is a G-invariant partition of V (X). In this case, the symbol XB
will be replaced by XN .

For a positive integer n, denote by Zn the cyclic group of order n as well as the ring of
integers modulo n, by Z∗n the multiplicative group of Zn consisting of numbers coprime to
n, by D2n the dihedral group of order 2n, and by Cn and Kn the cycle and the complete
graph of order n, respectively. We call Cn a n-cycle.

For two groups M and N , N oM denotes a semidirect product of N by M . For a
subgroup H of a group G, denote by CG(H) the centralizer of H in G and by NG(H) the
normalizer of H in G. Then CG(H) is normal in NG(H).

Proposition 1. [10, Chapter I, Theorem 4.5] The quotient group NG(H)/CG(H) is
isomorphic to a subgroup of the automorphism group Aut(H) of H.
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Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer
of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular
on Ω if Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular. For any
g ∈ G, g is said to be semiregular if 〈g〉 is semiregular. The following proposition gives a
characterization for Cayley graphs in terms of their automorphism groups.

Proposition 2. [25, Lemma 4] A graph X is isomorphic to a Cayley graph on a group
G if and only if its automorphism group has a subgroup isomorphic to G, acting regularly
on the vertex set of X.

3 Double generalized Petersen graphs

In [28, 29, 31], the generalized Petersen graphs (see [27]) were used to construct cubic
VNC-graphs with special orders. Let n ≥ 3 and 1 ≤ t < n/2. The generalized Petersen
graph P (n, t) (GPG for short) is the graph with vertex set {xi, yi | i ∈ Zn} and edge
set the union of the out edges {{xi, xi+1} | i ∈ Zn}, the inner edges {{yi, yi+t} | i ∈ Zn}
and the spokes {{xi, yi} | i ∈ Zn}. Note that the subgraph of P (n, t) induced by the out
edges is an n-cycle. In this section, we modify the generalized Petersen graph construction
slightly so that the subgraph induced by the out edges is a union of two n-cycles.

Definition 3. Let n ≥ 3 and t ∈ Zn − {0}. The double generalized Petersen graph
DP (n, t) (DGPG for short) is defined to have vertex set {xi, yi, ui, vi | i ∈ Zn} and edge
set the union of the out edges {{xi, xi+1}, {yi, yi+1} | i ∈ Zn}, the inner edges {{ui, vi+t},
{vi, ui+t} | i ∈ Zn} and the spokes {{xi, ui}, {yi, vi} | i ∈ Zn} (See Fig. 1 for DP(10,2)).
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Figure 1: The graph DP (10, 2)

Note that the complete classification of the automorphism groups of GPGs has been
worked out in [8], and Nedela and Škoviera [23] have determined all Cayley graphs among
GPGs. It is natural to consider the problem of determining all vertex-transitive graphs
and all VNC-graphs among DGPGs. The complete solution of this problem may be a
topic for our future effort. Here, we just give a sufficient condition for a DGPG being
vertex-transitive non-Cayley. To do this, we introduce some notations.
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In the remainder of this section, we always use p to represent a prime congruent to 1
modulo 4. It is easy to see that λ ∈ Zp is a solution of the equation

x2 ≡ −1 (mod p) (1)

if and only if λ has order 4 in Z∗p. Since p ≡ 1 (mod 4), Z∗p has exactly two elements, say
λ, p − λ, of order 4. So, in Zp, Eq. (1) has exactly two solutions that are λ and p − λ.
Note that every solution of Eq. (1) in Z2p is also a solution of Eq. (1) in Zp. This implies
that in Z2p, Eq. (1) has exactly four pairwise different solutions that are λ, 2p− λ, p− λ
and p+ λ.

Lemma 4. For any λ1, λ2 ∈ {λ, 2p− λ, p− λ, p+ λ}, we have DP (2p, λ1) ∼= DP (2p, λ2).

Proof. By Definition 3, it is easy to see that if either {λ1, λ2} = {λ, 2p−λ} or {λ1, λ2} =
{p− λ, p+ λ}, then DP (2p, λ1) = DP (2p, λ2). To complete the proof, it suffices to show
DP (2p, λ) ∼= DP (2p, p+ λ).

Define a map from V (DP (2p, λ)) to V (DP (2p, p+ λ)) as following:

f : xi 7→ xi, yi 7→ yi+p, ui 7→ ui, vi 7→ vi+p,∀i ∈ Z2p.

It is easy to see that f is a bijection. Furthermore, f maps each of the out edges and
the spokes of DP (2p, λ) to an edge of DP (2p, p + λ). For the inner edges, {ui, vi+λ}f =
{ui, vi+λ+p} ∈ E(DP (2p, λ2)). Similarly, {vi, ui+λ}f = {vi+p, ui+λ} = {vi+p, ui+p+p+λ}
∈ E(DP (2p, λ2)). Thus, f is an isomorphism from DP (2p, λ) to DP (2p, p+ λ).

Theorem 5. Suppose that V NC1
8p := DP (2p, λ), where λ is a solution of Eq. (1) in Z2p.

Then V NC1
8p is a connected cubic VNC-graph of order 8p.

Proof. Let X = V NC1
8p and A = Aut(X). By the definition, it is easy to see that X is

connected and has order 8p. Since p ≡ 1 (mod 4), one has p ≥ 5. If p = 5, with the help
of MAGMA [1], X is a cubic VNC-graph. In what follows, assume p > 5. Remember
that Eq. (1) has exactly four solutions, namely, λ, 2p − λ, p − λ and p + λ, in Z2p. By
Lemma 4, we may assume that λ is even.

One can easily see that the following maps are permutations on the vertex set of X:

α : xi 7→ xi+1, yi 7→ yi+1, ui 7→ ui+1, vi 7→ vi+1, i ∈ Z2p,
β : xi 7→ yi, yi 7→ xi, ui 7→ vi, vi 7→ ui, i ∈ Z2p,
γ : x2i+1 7→ v(2i+1)λ, x2i 7→ u(2i)λ, y2i+1 7→ v(2i+1)λ+p, y2i 7→ u(2i)λ+p,

u2i 7→ x(2i)λ, v2i 7→ x(2i)λ+p, u2i+1 7→ y(2i+1)λ, v2i+1 7→ y(2i+1)λ+p, i ∈ Z2p.

Also, one may easily see that α and β map each edge of X to an edge. So, α, β ∈ Aut(X).
Since λ is an even solution of Eq. (1), one has p+ λ2 + 1 ≡ 0 (mod 2p). For each i ∈ Z2p,
we have

{x2i, x2i+1}γ = {u(2i)λ, v(2i+1)λ}, {y2i, y2i+1}γ = {u(2i)λ+p, v(2i+1)λ+p},
{u2i, v2i+λ}γ = {x(2i)λ, x(2i+λ)λ+p} = {x(2i)λ, x(2i)λ−1},
{v2i, u2i+λ}γ = {x(2i)λ+p, x(2i+λ)λ} = {x(2i)λ+p, x(2i)λ+p−1},
{u2i+1, v2i+1+λ}γ = {y(2i+1)λ, y(2i+1+λ)λ+p} = {y(2i+1)λ, y(2i+1)λ−1},
{v2i+1, u2i+1+λ}γ = {y(2i+1)λ+p, y(2i+1+λ)λ} = {y(2i+1)λ+p, y(2i+1)λ+p−1},
{x2i, u2i}γ = {u(2i)λ, x(2i)λ}, {x2i+1, u2i+1}γ = {v(2i+1)λ, y(2i+1)λ},
{y2i, v2i}γ = {u(2i)λ+p, x(2i)λ+p}, {y2i+1, v2i+1}γ = {v(2i+1)λ+p, y(2i+1)λ+p}.

the electronic journal of combinatorics 19 (2012), #P53 4



This implies that γ ∈ Aut(X). Clearly, {xi, yi | i ∈ Z2p} and {ui, vi | i ∈ Z2p} are two
orbits of 〈α, β〉 on V (X), and γ interchanges these two orbits. Hence, 〈α, β, γ〉 is transitive
on V (X). We shall show that A = 〈α, β, γ〉. Since X has valency 3, the vertex-stabilizer
Av is a {2, 3}-group. So, |A| | 23+i3jp for some integers i, j. As p > 5, the group P = 〈α2〉
is a Sylow p-subgroup of A.

We claim that P is normal in A. By [7, Theorem 5.1 and Corollary 3.8], this is true
for the case when X is symmetric. Suppose X is non-symmetric. Then, 3 - |Av|, and so
A is a {2, p}-group. By Burnside’s {p, q}-theorem [24, 8.5.3], A is solvable. So, we can
take a maximal normal 2-subgroup, say N , of A. Then PN/N EA/N , namely, PN EA.
To show P E A, it suffices to prove P E PN because then P is characteristic in PN and
hence it is normal in A.

Consider the quotient graph XN of X relative to the orbit set of N , and let K be
the kernel of A acting on V (XN). Then N ≤ K and so K = NKv is a 2-group. The
maximality of N gives that K = N . So, A/N ≤ Aut(XN). Clearly, XN has valency 2
or 3, namely, d(XN) = 2 or 3. Let B ∈ V (XN). If either d(XN) = 3 or d(XN) = 2
and d(X[B]) = 1, then the stabilizer Nv of v ∈ V (X) fixes each neighbor of v. By
the connectivity of X, Nv fixes all vertices of X. It follows that Nv = 1, and hence N
is semiregular on V (X). Consequently, |N | | 8. Since p ≥ 13, by Sylow theorem, one
has P E PN , as required. Suppose d(XN) = 2 and d(X[B]) = 0. Let B0 and B1 be
two orbits adjacent to B. Since X is cubic, one may assume that d(X[B ∪ B0]) = 1
and d(X[B ∪ B1]) = 2. Since p is odd, it follows that |B| = 2 or 4. If |B| = 2 then
X[B ∪ B1] ∼= C4. However, since the set of vertices of X at distance 2 from x0 is
N2(x0) = {x2, u1, vλ, v−λ, x2p−2, u2p−1} which has cardinality 6, passing through x0 there
is no cycles of less than 5 in X. This implies that X has girth greater than 4 because it
is vertex-transitive. A contradiction occurs. If |B| = 4, then X[B ∪B1] ∼= C8 since X has
girth greater than 4. So, the subgroup N∗ of N fixing B pointwise also fixes B0 and B1

pointwise. By the connectivity of X, N∗ fixes all vertices of X, forcing N∗ = 1. It follows
that N ≤ Aut(X[B ∪ B1]) ∼= D16. Since p > 5 and p ≡ 1 (mod 4), by Sylow Theorem,
one has P E PN , as required.

Now we know the claim is true, that is, P EA. Consider the quotient graph XP of X
relative to the orbit set of P , and let K be the kernel of A acting on V (XP ). From the
construction of X, XP

∼= C8 and the subgraph of X induced by any two adjacent orbits
of P is either pK2 or C2p. This implies that K acts faithfully on each orbit of P , and
hence K ≤ Aut(C2p) ∼= D4p. Since K fixes each orbit of P , one has K ≤ D2p. Clearly,
A/K is not edge-transitive on XP . It follows that A/K ∼= D8, and hence |A| ≤ 16p. This
implies that A = 〈α, β〉o 〈γ〉 ∼= (Z2p × Z2)o Z4.

Now we are ready to finish the proof. Suppose that X is a Cayley graph. By Proposi-
tion 2, A has a regular subgroup, say G. Clearly, |A : G| = 2, and so G is maximal in A.
Let Q = 〈αp, β, γ〉. Then Q is a Sylow 2-subgroup of A. So, Q  G, and hence A = GQ.

From |A| = |G||Q|
|Q∩G| we get that |Q ∩ G| = 8, and hence Q/(Q ∩ G) ∼= Z2. It follows that

γ2 ∈ Q ∩G. However, since γ2 fixes x0, one has γ2 /∈ G, a contradiction.
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4 Graphs associated with lexicographic products

Let n be a positive integer. The lexicographic product Cn[2K1] is defined as the graph with
vertex set {xi, yi | i ∈ Zn} and edge set {{xi, xi+1}, {yi, yi+1}, {xi, yi+1}, {yi, xi+1} | i ∈
Zn}. In this section, we introduce a class of cubic vertex-transitive graphs which can be
constructed from the lexicographic product Cn[2K1]. Note that these graphs belong to a
large family of graphs constructed in [5, Section 3].

Definition 6. For integer n ≥ 2, let X(n, 2) be the graph of order 4n and valency 3 with
vertex set V0 ∪V1 ∪ . . . V2n−2 ∪V2n−1, where Vi = {x0

i , x
1
i }, and adjacencies xr2i ∼ xr2i+1(i ∈

Zn, r ∈ Z2) and xr2i+1 ∼ xs2i+2(i ∈ Zn; r, s ∈ Z2).

Note that X(n, 2) is obtained from Cn[2K1] by expending each vertex into an edge, in
a natural way, so that each of the two blown-up endvertices inherits half of the neighbors
of the original vertex.

Definition 7. Let EX(n, 2) be the graph obtained from X(n, 2) by blowing up each
vertex xri into two vertices xr,0i and xr,1i . The adjacencies are as the following: xr,s2i ∼ xr,t2i+1

and xr,s2i+1 ∼ xs,r2i+2, where i ∈ Zn and r, s, t ∈ Z2 (see Fig. 2 for EX(5,2)).
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Figure 2: The graph EX(5, 2)

Note that EX(n, 2) is vertex-transitive for each n ≥ 2 (see [5, Proposition 3.3]).
However, EX(n, 2) is not necessarily a Cayley graph. Below, we shall give a sufficient
condition for the graph EX(n, 2) to be vertex-transitive non-Cayley. To do this, we need
a lemma.

Lemma 8. If p > 7 is a prime, then Aut(Cp[2K1]) has no subgroups of order 8p.

Proof. Set A = Aut(Cp[2K1]). It is easily known that A ∼= Zp2oD2p. Recall that Cp[2K1]
has vertex set {xi, yi | i ∈ Zn} and edge set {{xi, xi+1}, {yi, yi+1}, {xi, yi+1}, {yi, xi+1} | i ∈
Zp}. Let K be the maximal normal 2-subgroup of A. Then K = 〈k0〉×〈k1〉× . . .×〈kp−1〉,
where ki = (xi yi) for i ∈ Zp. Let α = (x0 x1 . . . xp−1)(y0 y1 . . . yp−1). It is easy to see
that α is an automorphism of Cp[2K1] of order p. Set P = 〈α〉.

Suppose to the contrary that A has a subgroup, say G, of order 8p. By Sylow Theorem,
one may assume that P ≤ G. Since p > 7, Sylow Theorem gives P E G. Noting that
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GK ≤ A, one has |A : GK| = 1 or 2. Consequently, G ∩ K is isomorphic to Z2
2 or Z3

2

and is normal in G. It follows that G ∩ K ≤ CA(P ). However, it is easy to see that
CA(P ) ∩K = 〈k0k1 . . . kp−1〉 ∼= Z2, a contradiction.

Theorem 9. Let p > 3 be a prime. Then the graph V NC2
8p := EX(p, 2) is a connected

cubic VNC-graph of order 8p.

Proof. Let X = V NC2
8p = EX(p, 2) and A = Aut(X). If p = 5 or 7 then by MAGMA [1],

X is a connected cubic VNC-graph of order 8p. In what follows, assume that p > 7. By
[5, Proposition 3.3], X is vertex-transitive.

Clearly, for each j ∈ Zp, C0
j = (x0,0

2j , x
0,0
2j+1, x

0,1
2j , x

0,1
2j+1) and C1

j = (x1,1
2j , x

1,1
2j+1, x

1,0
2j , x

1,0
2j+1)

are two 4-cycles. Set z = {Ci
j | i ∈ Z2, j ∈ Zp}. From the construction of X, it is

easy to see that in X passing each vertex there is exactly one 4-cycle, which belongs
to z. Clearly, any two distinct 4-cycles in z are vertex-disjoint. This implies that
∆ = {V (Ci

j) | i ∈ Z2, j ∈ Zp} is an A-invariant partition of V (X). Consider the quotient
graph X∆, and let K be the kernel of A acting on ∆. Then X∆

∼= Cp[2K1], and hence
A/K ≤ Aut(Cp[2K1]) ∼= Zp2 oD2p. Noting that between any two adjacent vertices of X∆

there is exactly one edge of X, K fixes each vertex of X and hence K = 1. If X is a
Cayley graph, then A = A/K has a regular subgroup of order 8p, and hence Aut(Cp[2K1])
would contain a subgroup of order 8p. However, this is impossible by Lemma 8.

5 Classification

In this section, we classify all connected cubic VNC-graphs of order 8p for each prime p.
Throughout this section, the notations FnA, FnB, etc. will refer to the corresponding
graphs of order n in the Foster census of all cubic symmetric graphs [2, 4]. The following
is the main result of this paper.

Theorem 10. A connected cubic graph of order 8p for a prime p is a VNC-graph if and
only if it is isomorphic to F56B, F56C, V NC1

8p or V NC2
8p.

Proof. By [4], F56B and F56C are cubic symmetric graphs. By MAGMA [1], Aut(F56B)
and Aut(F56C) have no subgroups of order 56. It follows from Proposition 2 that F56B
and F56C are non-Cayley graphs. By Theorems 5 and 9, the graphs V NC1

8p and V NC2
8p

are connected cubic VNC-graphs of order 8p.
To complete the proof, we only need to show necessity. Assume that X is a connected

cubic VNC-graph of order 8p. By McKay [18, pp.1114] and [21], all connected cubic
vertex-transitive graphs of order 16 or 24 are Cayley graphs. If X is symmetric then by
[7, Theorem 5.1], X ∼= F40A,F56B or F56C. By MAMGA [1], F40A ∼= V NC1

8·5.
In what follows, assume that p > 3 and X is non-symmetric. Let A = Aut(X). Since

X is non-Cayley, A has no subgroups acting regularly on V (X) by Proposition 2. For each
v ∈ V (X), we have |Av| = 2m and |A| = 2m+3p for some positive integer m. By Burnside’s
paqb-theorem [24, 8.5.3], A is solvable. For notational convenience, in the remainder of
the proof, we always use the following notations.
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Assumption For each q ∈ {2, p}, use Mq to denote the maximal normal q-subgroup of
A. Let XMq be the quotient graph of X relative to the orbit set of Mq, and let Kerq be
the kernel of A acting on V (XMq).

We first prove the following claims.

Claim 1 Suppose M2 > 1. Then for any orbit B of M2, we have X[B] is the null graph.

Since p > 2, one has |B| = 8, 4 or 2, and hence p | |XM2 |. This implies that d(XM2) ≥ 2.
If X[B] is not a null graph, then it has valency 1. For each v ∈ B, one neighbor of v is
in B, and the other two are in the two different orbits of M2 adjacent to B, respectively.
Because Ker2 fixes each orbit of M2, (Ker2)v fixes each neighbor of v. By the connectivity
of X, (Ker2)v fixes all vertices of X, and hence (Ker2)v = 1. This shows that Ker2 = M2

is semiregular. Clearly, XM2 must be a cycle of length ` = 8p/|B|. The vertex-transitivity
of A/M2 on XM2 implies that A/M2 contains a subgroup, say G/M2, acting regularly on
V (XM2). As a result, G is regular on V (X), a contradiction.

Claim 2 Suppose Mp > 1. Then XMp
∼= C8, Kerp = Mp o Av ∼= D2p and A/Kerp ∼= D8.

Furthermore, for any two adjacent orbits, say B,B′ of Mp, we have X[B] ∼= pK1 and
X[B ∪B′] ∼= C2p or pK2.

Since |A| = 2m+3p, Mp is a Sylow p-subgroup of A, and |XMp | = 8. So, d(XMp) = 3
or 2. Suppose d(XMp) = 3. Then the stabilizer (Kerp)v fixes the neighborhood of v
in X pointwise because Kerp fixes each orbit of Mp setwise. By the connectivity of
X, (Kerp)v fixes each vertex in V (X), forcing (Kerp)v = 1. Hence, Kerp = Mp. By
[21], XMp is a Cayley graph, and furthermore, either XMp

∼= Q3, the three dimensional
hypercube, or |Aut(XMp)| ≤ 16. Note that if XMp

∼= Q3 then Aut(XMp) ∼= S4×Z2. Since
|A/Mp| = 2m+3 > 8, A/Mp is always a Sylow 2-subgroup of Aut(XMp). As XMp is a

Cayley graph of order 8, Aut(XMp) has a regular subgroup, say G. By a Sylow Theorem,

one may assume that G = G/Mp ≤ A/Mp. This forces that G is regular on V (X), a
contradiction.

Now we know that d(XMp) = 2, namely, XMp
∼= C8. Then A/Kerp ≤ Aut(XMp) ∼= D16.

Let V (XMp) = {Bi | i ∈ Z8} with Bi ∼ Bi+1 for each i ∈ Z8. If some Bi contains an edge
of X, then the connectivity of XMp implies that d(X[Bi]) = 1. This forces that |Bi| = p
is even, a contradiction. Thus, X[Bi] ∼= pK1 for every i ∈ Z8. Since X is cubic, for
any two adjacent orbits B,B′ of Mp, we have X[B ∪ B′] ∼= C2p or pK2. Without loss of
generality, assume that X[B0 ∪ B7] ∼= pK2 and X[B0 ∪ B1] ∼= C2p. Then A/Kerp is not
edge-transitive on XMp , and hence A/Kerp ∼= D8. Since p > 3, the subgroup Ker∗p of Kerp
fixing B0 pointwise also fixes B1 and B7 pointwise. The connectivity of X gives Ker∗p = 1,
and consequently, Kerp ≤ Aut(B0 ∪ B1) ∼= D4p. Since Kerp fixes B0, one has Kerp ∼= Zp
or D2p. Since |A| > 8p, it follows that Kerp ∼= D2p and hence |A| = 16p. Since A/Kerp is
regular on V (XMp), one has Av = (Kerp)v ∼= Z2 and Kerp = Mp o Av.

Now we are ready to finish the proof. We distinguish two different cases.

Case 1 Mp > 1.

Since |A| = 2m+3p, one has Mp
∼= Zp. Let C = CA(Mp). Then Mp ≤ C and by

Proposition 1, A/C ≤ Aut(Mp) ∼= Zp−1. By Claim 2, A/Kerp ∼= D8 and Kerp = MpoAv ∼=
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D2p. This means that Cv = 1, and hence C is semiregular on V (X). So, |C| = 2p or 4p.
If |C| = 2p, then C/P ∼= Z2 is in the center of A/P . Since (A/P )/(C/P ) ∼= A/P ≤ Zp−1,
A/P is abelian. It follows that A/Kerp ∼= (A/P )/(Kerp/P ) is abelian, a contradiction.
So, the only possible is |C| = 4p.

Clearly, C has two orbits, say ∆ and ∆′ on V (X), and the action of C on each of these
two orbits is regular. It follows that ∆ = {uh | h ∈ C} and ∆′ = {vh | h ∈ C} for some
fixed u ∈ ∆ and v ∈ ∆′, and furthermore, uh1 6= uh2 and vh1 6= vh2 for any two distinct
h1, h2 ∈ C. Since ∆ is an orbit of C, X[∆] has valency 0, 1 or 2.

First, suppose d(X[∆]) = 0. Then X is bipartite. Let the neighbors of u be vh1 , vh2

and vh3 where h1, h2, h3 ∈ C. Note that C is abelian. For any h ∈ C, the neighbors of uh

are vhh1 , vhh2 and vhh3 , and furthermore, the neighbors of vh are uhh
−1
1 , uhh

−1
2 and uhh

−1
3 .

Now it is easy to see that the map α defined by vh 7→ uh
−1
, uh 7→ vh

−1
,∀h ∈ C, is an

automorphism of X of order 2. Since C E A, 〈C, α〉 = C o 〈α〉 has order 8p, implying
that 〈C, α〉 is regular on V (X), a contradiction.

Next, suppose d(X[∆]) = 1. Let Q be a Sylow 2-subgroup of C. As C is abelian and
normal in A, Q is characteristic in C, and hence it is normal in A. Clearly, every orbit of
Q has cardinality 4 and is contained in ∆ or ∆′. Let uh be a neighbor of u, where h ∈ C.
Clearly, {u, uh}h = {uh, uh2}. Since d(X[∆]) = 1, one has uh

2
= u, implying that h is an

involution. It follows that each orbit of Q of C consists of two pairs of adjacent vertices.
This is impossible by Claim 1 because Q ≤M2.

Now, suppose d(X[∆]) = 2. Since Mp ≤ C, each orbit of Mp is contained in ∆ or ∆′.
By Claim 2, for any two adjacent orbits B,B′ of Mp, X[B] ∼= pK1 and X[B ∪B′] ∼= pK2

or C2p. Since d(X[∆]) = 2, we must have X[∆] ∼= X[∆′] ∼= 2C2p. Let {x0, x1} be
an edge of X[∆]. Then there exists a ∈ C such that x1 = xa0. From Claim 1 we
get a is not an involution. Let a have order s and let xi = xa

i

0 with i ∈ Zs. Then
C1 = (x0, x1, . . . , xs−1, x0) is an s-cycle. Since X[∆] ∼= 2C2p, one has s = 2p.

Suppose C ∼= Z4p. Let w ∈ ∆′ be adjacent to x0, and let {wb, w} ∈ E(X[∆′]) for some
b ∈ C. Similar to an argument as above, we get that b has order 2p, and (w,wb, wb

2
, . . . ,

wb
2p−1

, w) is a 2p-cycle. Since C ∼= Z4p, one has 〈a〉 = 〈b〉, and so a = bk for some k ∈ Z∗2p.
This implies that for any i ∈ Z2p, xi = xa

i

0 ∼ wa
i

= wb
ik

. Consequently, the subgraph

induced by {xi, wb
i | i ∈ Z2p} has valency 3, contrary to the connectivity of X.

Now we know that C ∼= Z2p × Z2, and hence there is an involution c ∈ C \ 〈a〉.
Let yi = xci with i ∈ Z2p. Since C is abelian, C2 = (y0, y1, . . . , ys−1, y0) is also a 2p-
cycle. Clearly, C1 and C2 are vertex-disjoint, so X[∆] = C1 ∪ C2. Note that the edges
with one endpoint in ∆ and the other endpoint in ∆′ are independent. Assume that
∆′ = {ui, vi | i ∈ Z2p} so that ui ∼ xi and vi ∼ yi for i ∈ Z2p. Since X[∆′] ∼= 2C2p,
we may assume that u0 ∼ uλ or u0 ∼ vλ for some λ ∈ Z2p − {0}. If u0 ∼ uλ, then the
subgraph induced by {xi, ui | i ∈ Z2p} has valency 3, contrary to the connectivity of X.
Thus, u0 ∼ vλ. Since xci = yi, one has {xi, ui}c = {yi, vi}, and hence uci = vi. Since c is
an involution, one has {u0, vλ}c = {v0, uλ}. By Definition 3, X ∼= DP (2p, λ).

It is easy to see that CoAu is the kernel of A acting on {∆,∆′}, and A/(CoAu) ∼= Z2.
Let β ∈ A be a 2-element interchanging ∆ and ∆′. Then β2 ∈ C o Au. If β2 ∈ C then
〈C, β〉 is regular on V (X), a contradiction. Thus, β2 = gd where g ∈ C and Av = 〈d〉.
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Recalling Ker = P o Av ∼= D2p, one has β−2a2β2 = a−2. It follows that β−1a2β = a2t for

some t ∈ Z∗p satisfying t2 ≡ −1 (mod p). Without loss of generality, assume xβ0 = ui for

some i ∈ Z2p. Then xβ2 = (x0)a
2β = uβ

−1a2β
i = ua

2t

i = ui+2t. Since the distance between
x0 and x2 is 2, one has ui+2t = ui+2λ or ui−2λ. It follows that 2t ≡ ±2λ (mod 2p), and
hence λ ≡ ±t (mod p). This shows that λ ∈ Z2p is a solution of Eq. (1). By Lemma 4
and Theorem 5, we have X ∼= V NC1

8p.

Case 2 Mp = 1
By the solvability of A, we have M2 > 1. Let P be a Sylow p-subgroup of A. Then

P 5 A but PM2/M2 EA/M2, namely, PM2 EA. If P EPM2, then P is characteristic in
PM2, and hence it is normal in A, a contradiction. Thus, P is not normal in PM2. Let B
be an orbit of M2. Since p > 2, one has |B| = 8, 4 or 2, and hence p | |XM2|. This implies
that XM2 has valency greater than 1. If d(XM2) = 3, then |B| = 2 or 4, and it is easily
seen that M2 is semiregular, and so |M2| = |B|. Since p > 3, Sylow Theorem implies
that P E PM2, a contradiction. Thus, d(XM2) = 2. Also, since A/Ker2 is transitive on
V (XM2), Ker2 is a 2-group. The maximality of M2 gives Ker2 = M2.

If |B| = 8, then XM2
∼= Cp. By Claim 2, X[B] is a null graph. So, the subgraph

induced by any two adjacent orbits is of valency 1 or 2. This forces that |XM2| = p is
even, a contradiction. If |B| = 2, then XM2

∼= C4p, and hence A/M2 ≤ Aut(XM2)
∼= D8p.

Since A/M2 is transitive on V (XM2), A/M2
∼= D4p,Z4p or D8p. This implies that A/M2

always has a normal subgroup of order 2, contrary to the maximality of M2.
It now only remains to deal with the case when |B| = 4. In this case, XM2

∼= C2p

and by Claim 2, X[B] ∼= 4K1. Let V (XM2) = {Bi | i ∈ Z2p} with Bi ∼ Bi+1. Since
X is cubic, one may assume that X[B0 ∪ B1] ∼= C8 or 2C4 and X[B0 ∪ B2p−1] ∼= 4K2.
Suppose X[B0 ∪ B1] ∼= C8. The subgroup M∗

2 of M2 fixing B0 pointwise also fixes B1

and B2p−1 pointwise. The connectivity of X and the transitivity of A/M2 on V (XM2)
imply that M∗

2 = 1, and consequently, M2 ≤ Aut(X[B0 ∪ B1]) ∼= D16. Hence, Aut(M2)
is a {2, 3}-group. By Proposition 1, PM2/CPM2(M2) ≤ Aut(M2). Since p ≥ 5, one has
P ≤ CPM2(M2), forcing P E PM2, a contradiction.

We now know that X[B0 ∪B1] is a union of two 4-cycles, say (x0,0
0 , x0,0

1 , x0,1
0 , x0,1

1 ) and
(x1,1

0 , x1,1
1 , x1,0

0 , x1,0
1 ), where Bi = {x0,0

i , x0,1
i , x1,0

i , x1,1
i } with i = 0 or 1. Remember that

XN = (B0, B1, . . . , B2p−1) is a 2p-cycle. Hence, A has an element, say σ, of order p such
that Bσ

i = Bi+2 for each i ∈ Z2p. Without loss of generality, assume

σ =
∏

(r,s)∈Z2×Z2

(xr,s0 xr,s2 . . . xr,s2 )(xr,s1 xr,s3 . . . xr,s2p−1).

Then for each i ∈ Z2p, Bi = {x0,0
i , x0,1

i , x1,0
i , x1,1

i }, and (x0,0
2j , x

0,0
2j+1, x

0,1
2j , x

0,1
2j+1) and (x1,1

2j ,

x1,1
2j+1, x

1,0
2j , x

1,0
2j+1) are the two 4-cycles of X[B2j ∪B2j+1] for each j ∈ Zp.

Note that σ is an automorphism of X. Once the edges between B2j+1 and B2j+2 are
given, the graph X will be determined. Let u, v be the neighbors of x0,0

2i+1 and x0,1
2i+1 in

B2j+2, respectively.
If u, v are in the same 4-cycle of X[B2j+2 ∪B2j+3], then by the connectivity of X, we
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Figure 3: Two possible cases

get {u, v} = {x1,0
2i+2, x

1,1
2i+2}. This gives rise to four graphs Xi(0 ≤ i ≤ 4) such that

E(X0) = {{xr,s2i , x
r,t
2i+1}, {x

r,s
2i+1, x

r+1,s
2i+2 } | i ∈ Z2p, r, s, t ∈ Z2};

E(X1) = {{xr,s2i , x
r,t
2i+1}, {x

r,s
2i+1, x

r+1,s+1
2i+2 } | i ∈ Z2p, r, s, t ∈ Z2};

E(X2) = {{xr,s2i , x
r,t
2i+1}, {x

0,s
2i+1, x

1,s+1
2i+2 }, {x

1,s
2i+1, x

0,s
2i+2} | i ∈ Z2p, r, s, t ∈ Z2};

E(X3) = {{xr,s2i , x
r,t
2i+1}, {x

0,s
2i+1, x

1,s
2i+2}, {x

1,s
2i+1, x

0,s+1
2i+2 } | i ∈ Z2p, r, s, t ∈ Z2}.

Let δ =
∏

i∈Z2p
(x0,0

2i+2, x
0,1
2i+2)(x1,0

2i+2, x
1,1
2i+2) and γ =

∏
i∈Z2p

(x0,0
2i+2, x

0,1
2i+2). It is easy to see

that δ is an isomorphism from Xk to Xk+1 with k = 0, 2, and γ is an isomorphism from
X0 to X3. So, we may assume X = X0. In this case, X[B2j ∪ B2j+1 ∪ B2j+2 ∪ B2j+3] is
the first graph in Fig. 3. Since p > 3, it is easy to check that passing through each vertex
of X there is one and only one 4-cycle. Set Ω = {{x0,0

i , x0,1
i }, {x

1,0
i , x1,1

i } | i ∈ Z2p}. Take
an arbitrary ∆ ∈ Ω. Without loss of generality, let ∆ = {x0,0

i , x0,1
i } for some i ∈ Z4p.

For any g ∈ A, ∆g ⊂ Bg
i = Bj for some j ∈ Z4p. Since there is a 4-cycle in X passing

through (x0,0
i )g and (x0,1

i )g, one has ∆g = {x0,0
j , x0,1

j } or {x1,0
j , x1,1

j }. It follows that ∆g ∈ Ω.
Clearly, any two distinct subsets in Ω are disjoint. Then Ω is an A-invariant partition
of V (X). From the structure of X we obtain that XΩ

∼= C4p and X[∆] ∼= 2K1 for each
∆ ∈ Ω. For notational convenience, let V (XΩ) = {∆0,∆1, . . . ,∆4p−1} such that ∆i ∈ Ω
and ∆i ∼ ∆i+1 for each i ∈ Z4p. Since X has valency 3, assume that X[∆0 ∪ ∆1] ∼= C4

and X[∆4p−1 ∪∆0] ∼= 2K2. By the transitivity of A on V (X), X[∆2j ∪∆2j+1] ∼= C4 and
X[∆2j−1 ∪ ∆2j] ∼= 2K2 for each j ∈ Z2p. Let ∆i = {xi, yi} for each i ∈ Z4p. From the
above analysis we may assume that xi ∼ xi+1, yi ∼ yi+1, x2i ∼ y2i+1 and y2i ∼ x2i+1 for
each i ∈ Z4p. Let α : xi 7→ xi+2, yi 7→ yi+2 (i ∈ Z4p), β : xi 7→ yi, yi 7→ xi (i ∈ Z4p), and
γ : xi 7→ x4p+1−i, yi 7→ y4p+1−i (i ∈ Z4p) be the three permutations on V (X). It is easy
to check that α, β and γ are automorphisms of X. Furthermore, 〈α, β, γ〉 ∼= D4p × Z2 is
regular on V (X), a contradiction.

Now suppose that u, v are in different 4-cycles of X[B2j+2 ∪ B2j+3]. By [5, Proposi-
tion 3.1], we may assume that X[B2j ∪B2j+1∪B2j+2∪B2j+3] is the second graph in Fig. 3
In this case,

E(X) = {{xr,s2i , x
r,t
2i+1}, {x

r,s
2i+1, x

s,r
2i+2} | i ∈ Z2p, r, s, t ∈ Z2}.

From Definition 7 and Theorem 9, we know that X = V NC2
8p.
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