Cubic vertex-transitive non-Cayley graphs of order $8 p^{*}$

Jin-Xin Zhou, Yan-Quan Feng
Department of Mathematics, Beijing Jiaotong University, Beijing, China
jxzhou@bjtu.edu.cn, yqfeng@bjtu.edu.cn

Submitted: Nov 2, 2010; Accepted: Feb 28, 2012; Published: Mar 9, 2012
Mathematics Subject Classifications: 05C25, 20B25

Abstract

A graph is vertex-transitive if its automorphism group acts transitively on its vertices. A vertex-transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this paper, the cubic vertextransitive non-Cayley graphs of order $8 p$ are classified for each prime p. It follows from this classification that there are two sporadic and two infinite families of such graphs, of which the sporadic ones have order 56 , one infinite family exists for every prime $p>3$ and the other family exists if and only if $p \equiv 1(\bmod 4)$. For each family there is a unique graph for a given order.

Keywords: Cayley graphs, vertex-transitive graphs, automorphism groups

1 Introduction

For a finite, simple and undirected graph X, we use $V(X), E(X), A(X)$ and $\operatorname{Aut}(X)$ to denote its vertex set, edge set, arc set and full automorphism group, respectively. For $u, v \in V(X), u \sim v$ means that u is adjacent to v and denote by $\{u, v\}$ the edge incident to u and v in X. A graph X is said to be vertex-transitive, and arc-transitive (or symmetric) if $\operatorname{Aut}(X)$ acts transitively on $V(X)$ and $A(X)$, respectively. Given a finite group G and an inverse closed subset $S \subseteq G \backslash\{1\}$, the Cayley graph Cay (G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$.

It is well known that a vertex-transitive graph is a Cayley graph if and only if its automorphism group contains a subgroup acting regularly on its vertex set (see, for example, [25, Lemma 4]). There are vertex-transitive graphs which are not Cayley graphs

[^0]and the smallest one is the well-known Petersen graph. Such a graph will be called a vertex-transitive non-Cayley graph, or a VNC-graph for short. Many publications have been put into investigation of VNC-graphs from different perspectives. For example, in [13], Marušič asked for a determination of the set $N C$ of non-Cayley numbers, that is, those numbers for which there exists a VNC-graph of order n, and to settle this question, a lot of VNC-graphs were constructed in $[9,11,14,19,15,16,17,20,22,26]$. In [6], Feng considered the question to determine the smallest valency for VNC-graphs of a given order and it was solved for the graphs of odd prime power order. By [19, Table 1], the total number of vertex-transitive graphs of order n and the number of VNC-graphs of order n were listed for each $n \leq 26$. It seems that, for small orders at least, the great majority of vertex-transitive graphs are Cayley graphs. This is true particularly for small valent vertex-transitive graphs (see [21]). This suggests the problem of classifying small valent VNC-graphs. From $[3,12]$ all VNC-graphs of order $2 p$ are known for each prime p. Recently, in [30] all tetravalent VNC-graphs of order $4 p$ were classified, and in [28, 29, 31], all cubic VNC-graphs of order $2 p q$ were classified, where p and q are primes. In this paper we shall classify all cubic VNC-graphs of order $8 p$ for each prime p. As a result, there are two sporadic and two infinite families of such graphs, of which the sporadic ones have order 56 , one infinite family exists for every prime $p>3$ and the other family exists if and only if $p \equiv 1(\bmod 4)$. For each family there is a unique graph for a given order.

2 Preliminaries

In this section, we introduce some notations and definitions as well as some preliminary results which will be used later in the paper.

For a regular graph X, use $d(X)$ to represent the valency of X, and for any subset B of $V(X)$, the subgraph of X induced by B will be denoted by $X[B]$. Let X be a connected vertex-transitive graph, and let $G \leq \operatorname{Aut}(X)$ be vertex-transitive on X. For a G-invariant partition \mathcal{B} of $V(X)$, the quotient graph $X_{\mathcal{B}}$ is defined as the graph with vertex set \mathcal{B} such that, for any two vertices $B, C \in \mathcal{B}, B$ is adjacent to C if and only if there exist $u \in B$ and $v \in C$ which are adjacent in X. Let N be a normal subgroup of G. Then the set \mathcal{B} of orbits of N in $V(X)$ is a G-invariant partition of $V(X)$. In this case, the symbol $X_{\mathcal{B}}$ will be replaced by X_{N}.

For a positive integer n, denote by \mathbb{Z}_{n} the cyclic group of order n as well as the ring of integers modulo n, by \mathbb{Z}_{n}^{*} the multiplicative group of \mathbb{Z}_{n} consisting of numbers coprime to n, by $D_{2 n}$ the dihedral group of order $2 n$, and by C_{n} and K_{n} the cycle and the complete graph of order n, respectively. We call C_{n} a n-cycle.

For two groups M and $N, N \rtimes M$ denotes a semidirect product of N by M. For a subgroup H of a group G, denote by $C_{G}(H)$ the centralizer of H in G and by $N_{G}(H)$ the normalizer of H in G. Then $C_{G}(H)$ is normal in $N_{G}(H)$.

Proposition 1. [10, Chapter I, Theorem 4.5] The quotient group $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of the automorphism group $\operatorname{Aut}(H)$ of H.

Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if $G_{\alpha}=1$ for every $\alpha \in \Omega$ and regular if G is transitive and semiregular. For any $g \in G, g$ is said to be semiregular if $\langle g\rangle$ is semiregular. The following proposition gives a characterization for Cayley graphs in terms of their automorphism groups.

Proposition 2. [25, Lemma 4] A graph X is isomorphic to a Cayley graph on a group G if and only if its automorphism group has a subgroup isomorphic to G, acting regularly on the vertex set of X.

3 Double generalized Petersen graphs

In [28, 29, 31], the generalized Petersen graphs (see [27]) were used to construct cubic VNC-graphs with special orders. Let $n \geq 3$ and $1 \leq t<n / 2$. The generalized Petersen graph $P(n, t)$ (GPG for short) is the graph with vertex set $\left\{x_{i}, y_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and edge set the union of the out edges $\left\{\left\{x_{i}, x_{i+1}\right\} \mid i \in \mathbb{Z}_{n}\right\}$, the inner edges $\left\{\left\{y_{i}, y_{i+t}\right\} \mid i \in \mathbb{Z}_{n}\right\}$ and the spokes $\left\{\left\{x_{i}, y_{i}\right\} \mid i \in \mathbb{Z}_{n}\right\}$. Note that the subgraph of $P(n, t)$ induced by the out edges is an n-cycle. In this section, we modify the generalized Petersen graph construction slightly so that the subgraph induced by the out edges is a union of two n-cycles.

Definition 3. Let $n \geq 3$ and $t \in \mathbb{Z}_{n}-\{0\}$. The double generalized Petersen graph $D P(n, t)$ (DGPG for short) is defined to have vertex set $\left\{x_{i}, y_{i}, u_{i}, v_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and edge set the union of the out edges $\left\{\left\{x_{i}, x_{i+1}\right\},\left\{y_{i}, y_{i+1}\right\} \mid i \in \mathbb{Z}_{n}\right\}$, the inner edges $\left\{\left\{u_{i}, v_{i+t}\right\}\right.$, $\left.\left\{v_{i}, u_{i+t}\right\} \mid i \in \mathbb{Z}_{n}\right\}$ and the spokes $\left\{\left\{x_{i}, u_{i}\right\},\left\{y_{i}, v_{i}\right\} \mid i \in \mathbb{Z}_{n}\right\}$ (See Fig. 1 for $\operatorname{DP}(10,2)$).

Figure 1: The graph $\operatorname{DP}(10,2)$
Note that the complete classification of the automorphism groups of GPGs has been worked out in [8], and Nedela and Skoviera [23] have determined all Cayley graphs among GPGs. It is natural to consider the problem of determining all vertex-transitive graphs and all VNC-graphs among DGPGs. The complete solution of this problem may be a topic for our future effort. Here, we just give a sufficient condition for a DGPG being vertex-transitive non-Cayley. To do this, we introduce some notations.

In the remainder of this section, we always use p to represent a prime congruent to 1 modulo 4 . It is easy to see that $\lambda \in \mathbb{Z}_{p}$ is a solution of the equation

$$
\begin{equation*}
x^{2} \equiv-1(\bmod p) \tag{1}
\end{equation*}
$$

if and only if λ has order 4 in \mathbb{Z}_{p}^{*}. Since $p \equiv 1(\bmod 4), \mathbb{Z}_{p}^{*}$ has exactly two elements, say $\lambda, p-\lambda$, of order 4 . So, in \mathbb{Z}_{p}, Eq. (1) has exactly two solutions that are λ and $p-\lambda$. Note that every solution of Eq. (1) in $\mathbb{Z}_{2 p}$ is also a solution of Eq. (1) in \mathbb{Z}_{p}. This implies that in $\mathbb{Z}_{2 p}$, Eq. (1) has exactly four pairwise different solutions that are $\lambda, 2 p-\lambda, p-\lambda$ and $p+\lambda$.

Lemma 4. For any $\lambda_{1}, \lambda_{2} \in\{\lambda, 2 p-\lambda, p-\lambda, p+\lambda\}$, we have $D P\left(2 p, \lambda_{1}\right) \cong D P\left(2 p, \lambda_{2}\right)$.
Proof. By Definition 3, it is easy to see that if either $\left\{\lambda_{1}, \lambda_{2}\right\}=\{\lambda, 2 p-\lambda\}$ or $\left\{\lambda_{1}, \lambda_{2}\right\}=$ $\{p-\lambda, p+\lambda\}$, then $D P\left(2 p, \lambda_{1}\right)=D P\left(2 p, \lambda_{2}\right)$. To complete the proof, it suffices to show $D P(2 p, \lambda) \cong D P(2 p, p+\lambda)$.

Define a map from $V(D P(2 p, \lambda))$ to $V(D P(2 p, p+\lambda))$ as following:

$$
f: x_{i} \mapsto x_{i}, y_{i} \mapsto y_{i+p}, u_{i} \mapsto u_{i}, v_{i} \mapsto v_{i+p}, \forall i \in \mathbb{Z}_{2 p}
$$

It is easy to see that f is a bijection. Furthermore, f maps each of the out edges and the spokes of $D P(2 p, \lambda)$ to an edge of $D P(2 p, p+\lambda)$. For the inner edges, $\left\{u_{i}, v_{i+\lambda}\right\}^{f}=$ $\left\{u_{i}, v_{i+\lambda+p}\right\} \in E\left(D P\left(2 p, \lambda_{2}\right)\right)$. Similarly, $\left\{v_{i}, u_{i+\lambda}\right\}^{f}=\left\{v_{i+p}, u_{i+\lambda}\right\}=\left\{v_{i+p}, u_{i+p+p+\lambda}\right\}$ $\in E\left(D P\left(2 p, \lambda_{2}\right)\right)$. Thus, f is an isomorphism from $D P(2 p, \lambda)$ to $D P(2 p, p+\lambda)$.
Theorem 5. Suppose that $V N C_{8 p}^{1}:=D P(2 p, \lambda)$, where λ is a solution of Eq. (1) in $\mathbb{Z}_{2 p}$. Then $V N C_{8 p}^{1}$ is a connected cubic VNC-graph of order $8 p$.
Proof. Let $X=V N C_{8 p}^{1}$ and $A=\operatorname{Aut}(X)$. By the definition, it is easy to see that X is connected and has order $8 p$. Since $p \equiv 1(\bmod 4)$, one has $p \geq 5$. If $p=5$, with the help of MAGMA [1], X is a cubic VNC-graph. In what follows, assume $p>5$. Remember that Eq. (1) has exactly four solutions, namely, $\lambda, 2 p-\lambda, p-\lambda$ and $p+\lambda$, in $\mathbb{Z}_{2 p}$. By Lemma 4, we may assume that λ is even.

One can easily see that the following maps are permutations on the vertex set of X :

$$
\begin{aligned}
\alpha: & x_{i} \mapsto x_{i+1}, y_{i} \mapsto y_{i+1}, u_{i} \mapsto u_{i+1}, v_{i} \mapsto v_{i+1}, i \in \mathbb{Z}_{2 p}, \\
\beta: & x_{i} \mapsto y_{i}, y_{i} \mapsto x_{i}, u_{i} \mapsto v_{i}, v_{i} \mapsto u_{i}, i \in \mathbb{Z}_{2 p}, \\
\gamma: & x_{2 i+1} \mapsto v_{(2 i+1) \lambda}, x_{2 i} \mapsto u_{(2 i) \lambda}, y_{2 i+1} \mapsto v_{(2 i+1) \lambda+p}, y_{2 i} \mapsto u_{(2 i) \lambda+p}, \\
& u_{2 i} \mapsto x_{(2 i) \lambda}, v_{2 i} \mapsto x_{(2 i) \lambda+p}, u_{2 i+1} \mapsto y_{(2 i+1) \lambda}, v_{2 i+1} \mapsto y_{(2 i+1) \lambda+p}, i \in \mathbb{Z}_{2 p} .
\end{aligned}
$$

Also, one may easily see that α and β map each edge of X to an edge. So, $\alpha, \beta \in \operatorname{Aut}(X)$. Since λ is an even solution of Eq. (1), one has $p+\lambda^{2}+1 \equiv 0(\bmod 2 p)$. For each $i \in \mathbb{Z}_{2 p}$, we have

$$
\begin{aligned}
& \left\{x_{2 i}, x_{2 i+1}\right\}^{\gamma}=\left\{u_{(2 i) \lambda}, v_{(2 i+1) \lambda}\right\},\left\{y_{2 i}, y_{2 i+1}\right\}^{\gamma}=\left\{u_{(2 i) \lambda+p}, v_{(2 i+1) \lambda+p}\right\}, \\
& \left\{u_{2 i}, v_{2 i+\lambda}\right\}^{\gamma}=\left\{x_{(2 i) \lambda}, x_{(2 i+\lambda) \lambda, p}\right\}=\left\{x_{(2 i) \lambda}, x_{(2 i) \lambda-1}\right\}, \\
& \left\{v_{2 i}, u_{2 i+\lambda}\right\}^{\gamma}=\left\{x_{(2 i) \lambda+p}, x_{(2 i+\lambda) \lambda}\right\}=\left\{x_{(2 i) \lambda+p}, x_{(2 i) \lambda+p-1}\right\}, \\
& \left\{u_{2 i+1}, v_{2 i+1+\lambda}\right\}^{\gamma}=\left\{y_{(2 i+1) \lambda}, y_{(2 i+1+\lambda) \lambda+p}\right\}=\left\{y_{(2 i+1) \lambda}, y_{(2 i+1) \lambda-1}\right\}, \\
& \left\{v_{2 i+1}, u_{2 i+1+\lambda}\right\}^{\gamma}=\left\{y_{(2 i+1) \lambda+p}, y_{(2 i+1+\lambda) \lambda}\right\}=\left\{y_{(2 i+1) \lambda+p}, y_{(2 i+1) \lambda+p-1}\right\}, \\
& \left\{x_{2 i}, u_{2 i}\right\}^{\gamma}=\left\{u_{(2 i) \lambda}, x_{(2 i) \lambda}\right\},\left\{x_{2 i+1}, u_{2 i+1}\right\}^{\gamma}=\left\{v_{(2 i+1) \lambda}, y_{(2 i+1) \lambda}\right\}, \\
& \left\{y_{2 i}, v_{2 i}\right\}^{\gamma}=\left\{u_{(2 i) \lambda+p}, x_{(2 i) \lambda+p}\right\},\left\{y_{2 i+1}, v_{2 i+1}\right\}^{\gamma}=\left\{v_{(2 i+1) \lambda+p}, y_{(2 i+1) \lambda+p}\right\} .
\end{aligned}
$$

This implies that $\gamma \in \operatorname{Aut}(X)$. Clearly, $\left\{x_{i}, y_{i} \mid i \in \mathbb{Z}_{2 p}\right\}$ and $\left\{u_{i}, v_{i} \mid i \in \mathbb{Z}_{2 p}\right\}$ are two orbits of $\langle\alpha, \beta\rangle$ on $V(X)$, and γ interchanges these two orbits. Hence, $\langle\alpha, \beta, \gamma\rangle$ is transitive on $V(X)$. We shall show that $A=\langle\alpha, \beta, \gamma\rangle$. Since X has valency 3, the vertex-stabilizer A_{v} is a $\{2,3\}$-group. So, $|A| \mid 2^{3+i} 3^{j} p$ for some integers i, j. As $p>5$, the group $P=\left\langle\alpha^{2}\right\rangle$ is a Sylow p-subgroup of A.

We claim that P is normal in A. By [7, Theorem 5.1 and Corollary 3.8], this is true for the case when X is symmetric. Suppose X is non-symmetric. Then, $3 \nmid\left|A_{v}\right|$, and so A is a $\{2, p\}$-group. By Burnside's $\{p, q\}$-theorem [24, 8.5.3], A is solvable. So, we can take a maximal normal 2-subgroup, say N, of A. Then $P N / N \unlhd A / N$, namely, $P N \unlhd A$. To show $P \unlhd A$, it suffices to prove $P \unlhd P N$ because then P is characteristic in $P N$ and hence it is normal in A.

Consider the quotient graph X_{N} of X relative to the orbit set of N, and let K be the kernel of A acting on $V\left(X_{N}\right)$. Then $N \leq K$ and so $K=N K_{v}$ is a 2-group. The maximality of N gives that $K=N$. So, $A / N \leq \operatorname{Aut}\left(X_{N}\right)$. Clearly, X_{N} has valency 2 or 3 , namely, $d\left(X_{N}\right)=2$ or 3 . Let $B \in V\left(X_{N}\right)$. If either $d\left(X_{N}\right)=3$ or $d\left(X_{N}\right)=2$ and $d(X[B])=1$, then the stabilizer N_{v} of $v \in V(X)$ fixes each neighbor of v. By the connectivity of X, N_{v} fixes all vertices of X. It follows that $N_{v}=1$, and hence N is semiregular on $V(X)$. Consequently, $|N| \mid 8$. Since $p \geq 13$, by Sylow theorem, one has $P \unlhd P N$, as required. Suppose $d\left(X_{N}\right)=2$ and $d(X[B])=0$. Let B_{0} and B_{1} be two orbits adjacent to B. Since X is cubic, one may assume that $d\left(X\left[B \cup B_{0}\right]\right)=1$ and $d\left(X\left[B \cup B_{1}\right]\right)=2$. Since p is odd, it follows that $|B|=2$ or 4 . If $|B|=2$ then $X\left[B \cup B_{1}\right] \cong C_{4}$. However, since the set of vertices of X at distance 2 from x_{0} is $N_{2}\left(x_{0}\right)=\left\{x_{2}, u_{1}, v_{\lambda}, v_{-\lambda}, x_{2 p-2}, u_{2 p-1}\right\}$ which has cardinality 6 , passing through x_{0} there is no cycles of less than 5 in X. This implies that X has girth greater than 4 because it is vertex-transitive. A contradiction occurs. If $|B|=4$, then $X\left[B \cup B_{1}\right] \cong C_{8}$ since X has girth greater than 4. So, the subgroup N^{*} of N fixing B pointwise also fixes B_{0} and B_{1} pointwise. By the connectivity of X, N^{*} fixes all vertices of X, forcing $N^{*}=1$. It follows that $N \leq \operatorname{Aut}\left(X\left[B \cup B_{1}\right]\right) \cong D_{16}$. Since $p>5$ and $p \equiv 1(\bmod 4)$, by Sylow Theorem, one has $P \unlhd P N$, as required.

Now we know the claim is true, that is, $P \unlhd A$. Consider the quotient graph X_{P} of X relative to the orbit set of P, and let K be the kernel of A acting on $V\left(X_{P}\right)$. From the construction of $X, X_{P} \cong C_{8}$ and the subgraph of X induced by any two adjacent orbits of P is either $p K_{2}$ or $C_{2 p}$. This implies that K acts faithfully on each orbit of P, and hence $K \leq \operatorname{Aut}\left(C_{2 p}\right) \cong D_{4 p}$. Since K fixes each orbit of P, one has $K \leq D_{2 p}$. Clearly, A / K is not edge-transitive on X_{P}. It follows that $A / K \cong D_{8}$, and hence $|A| \leq 16 p$. This implies that $A=\langle\alpha, \beta\rangle \rtimes\langle\gamma\rangle \cong\left(\mathbb{Z}_{2 p} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{4}$.

Now we are ready to finish the proof. Suppose that X is a Cayley graph. By Proposition 2, A has a regular subgroup, say G. Clearly, $|A: G|=2$, and so G is maximal in A. Let $Q=\left\langle\alpha^{p}, \beta, \gamma\right\rangle$. Then Q is a Sylow 2-subgroup of A. So, $Q \varsubsetneqq G$, and hence $A=G Q$. From $|A|=\frac{|G||Q|}{|Q \cap G|}$ we get that $|Q \cap G|=8$, and hence $Q /(Q \cap G) \cong \mathbb{Z}_{2}$. It follows that $\gamma^{2} \in Q \cap G$. However, since γ^{2} fixes x_{0}, one has $\gamma^{2} \notin G$, a contradiction.

4 Graphs associated with lexicographic products

Let n be a positive integer. The lexicographic product $C_{n}\left[2 K_{1}\right]$ is defined as the graph with vertex set $\left\{x_{i}, y_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and edge set $\left\{\left\{x_{i}, x_{i+1}\right\},\left\{y_{i}, y_{i+1}\right\},\left\{x_{i}, y_{i+1}\right\},\left\{y_{i}, x_{i+1}\right\} \mid i \in\right.$ $\left.\mathbb{Z}_{n}\right\}$. In this section, we introduce a class of cubic vertex-transitive graphs which can be constructed from the lexicographic product $C_{n}\left[2 K_{1}\right]$. Note that these graphs belong to a large family of graphs constructed in [5, Section 3].

Definition 6. For integer $n \geq 2$, let $X(n, 2)$ be the graph of order $4 n$ and valency 3 with vertex set $V_{0} \cup V_{1} \cup \ldots V_{2 n-2} \cup V_{2 n-1}$, where $V_{i}=\left\{x_{i}^{0}, x_{i}^{1}\right\}$, and adjacencies $x_{2 i}^{r} \sim x_{2 i+1}^{r}(i \in$ $\left.\mathbb{Z}_{n}, r \in \mathbb{Z}_{2}\right)$ and $x_{2 i+1}^{r} \sim x_{2 i+2}^{s}\left(i \in \mathbb{Z}_{n} ; r, s \in \mathbb{Z}_{2}\right)$.

Note that $X(n, 2)$ is obtained from $C_{n}\left[2 K_{1}\right]$ by expending each vertex into an edge, in a natural way, so that each of the two blown-up endvertices inherits half of the neighbors of the original vertex.

Definition 7. Let $E X(n, 2)$ be the graph obtained from $X(n, 2)$ by blowing up each vertex x_{i}^{r} into two vertices $x_{i}^{r, 0}$ and $x_{i}^{r, 1}$. The adjacencies are as the following: $x_{2 i}^{r, s} \sim x_{2 i+1}^{r, t}$ and $x_{2 i+1}^{r, s} \sim x_{2 i+2}^{s, r}$, where $i \in \mathbb{Z}_{n}$ and $r, s, t \in \mathbb{Z}_{2}$ (see Fig. 2 for $\operatorname{EX}(5,2)$).

Figure 2: The graph $E X(5,2)$
Note that $E X(n, 2)$ is vertex-transitive for each $n \geq 2$ (see [5, Proposition 3.3]). However, $E X(n, 2)$ is not necessarily a Cayley graph. Below, we shall give a sufficient condition for the graph $E X(n, 2)$ to be vertex-transitive non-Cayley. To do this, we need a lemma.

Lemma 8. If $p>7$ is a prime, then $\operatorname{Aut}\left(C_{p}\left[2 K_{1}\right]\right)$ has no subgroups of order $8 p$.
Proof. Set $A=\operatorname{Aut}\left(C_{p}\left[2 K_{1}\right]\right)$. It is easily known that $A \cong \mathbb{Z}_{2}^{p} \rtimes D_{2 p}$. Recall that $C_{p}\left[2 K_{1}\right]$ has vertex set $\left\{x_{i}, y_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and edge set $\left\{\left\{x_{i}, x_{i+1}\right\},\left\{y_{i}, y_{i+1}\right\},\left\{x_{i}, y_{i+1}\right\},\left\{y_{i}, x_{i+1}\right\} \mid i \in\right.$ $\left.\mathbb{Z}_{p}\right\}$. Let K be the maximal normal 2-subgroup of A. Then $K=\left\langle k_{0}\right\rangle \times\left\langle k_{1}\right\rangle \times \ldots \times\left\langle k_{p-1}\right\rangle$, where $k_{i}=\left(x_{i} y_{i}\right)$ for $i \in \mathbb{Z}_{p}$. Let $\alpha=\left(x_{0} x_{1} \ldots x_{p-1}\right)\left(y_{0} y_{1} \ldots y_{p-1}\right)$. It is easy to see that α is an automorphism of $C_{p}\left[2 K_{1}\right]$ of order p. Set $P=\langle\alpha\rangle$.

Suppose to the contrary that A has a subgroup, say G, of order $8 p$. By Sylow Theorem, one may assume that $P \leq G$. Since $p>7$, Sylow Theorem gives $P \unlhd G$. Noting that
$G K \leq A$, one has $|A: G K|=1$ or 2 . Consequently, $G \cap K$ is isomorphic to \mathbb{Z}_{2}^{2} or \mathbb{Z}_{2}^{3} and is normal in G. It follows that $G \cap K \leq C_{A}(P)$. However, it is easy to see that $C_{A}(P) \cap K=\left\langle k_{0} k_{1} \ldots k_{p-1}\right\rangle \cong \mathbb{Z}_{2}$, a contradiction.

Theorem 9. Let $p>3$ be a prime. Then the graph $V N C_{8 p}^{2}:=E X(p, 2)$ is a connected cubic VNC-graph of order $8 p$.

Proof. Let $X=V N C_{8 p}^{2}=E X(p, 2)$ and $A=\operatorname{Aut}(X)$. If $p=5$ or 7 then by MAGMA [1], X is a connected cubic VNC-graph of order $8 p$. In what follows, assume that $p>7$. By [5, Proposition 3.3], X is vertex-transitive.

Clearly, for each $j \in \mathbb{Z}_{p}, C_{j}^{0}=\left(x_{2 j}^{0,0}, x_{2 j+1}^{0,0}, x_{2 j}^{0,1}, x_{2 j+1}^{0,1}\right)$ and $C_{j}^{1}=\left(x_{2 j}^{1,1}, x_{2 j+1}^{1,1}, x_{2 j}^{1,0}, x_{2 j+1}^{1,0}\right)$ are two 4 -cycles. Set $\digamma=\left\{C_{j}^{i} \mid i \in \mathbb{Z}_{2}, j \in \mathbb{Z}_{p}\right\}$. From the construction of X, it is easy to see that in X passing each vertex there is exactly one 4 -cycle, which belongs to \digamma. Clearly, any two distinct 4 -cycles in \digamma are vertex-disjoint. This implies that $\Delta=\left\{V\left(C_{j}^{i}\right) \mid i \in \mathbb{Z}_{2}, j \in \mathbb{Z}_{p}\right\}$ is an A-invariant partition of $V(X)$. Consider the quotient graph X_{Δ}, and let K be the kernel of A acting on Δ. Then $X_{\Delta} \cong C_{p}\left[2 K_{1}\right]$, and hence $A / K \leq \operatorname{Aut}\left(C_{p}\left[2 K_{1}\right]\right) \cong \mathbb{Z}_{2}^{p} \rtimes D_{2 p}$. Noting that between any two adjacent vertices of X_{Δ} there is exactly one edge of X, K fixes each vertex of X and hence $K=1$. If X is a Cayley graph, then $A=A / K$ has a regular subgroup of order $8 p$, and hence $\operatorname{Aut}\left(C_{p}\left[2 K_{1}\right]\right)$ would contain a subgroup of order $8 p$. However, this is impossible by Lemma 8 .

5 Classification

In this section, we classify all connected cubic VNC-graphs of order $8 p$ for each prime p. Throughout this section, the notations FnA, FnB, etc. will refer to the corresponding graphs of order n in the Foster census of all cubic symmetric graphs [2, 4]. The following is the main result of this paper.

Theorem 10. A connected cubic graph of order $8 p$ for a prime p is a VNC-graph if and only if it is isomorphic to $\mathrm{F} 56 \mathrm{~B}, \mathrm{~F} 56 \mathrm{C}, V N C_{8 p}^{1}$ or $V N C_{8 p}^{2}$.

Proof. By [4], F56B and F56C are cubic symmetric graphs. By MAGMA [1], Aut(F56B) and $\operatorname{Aut}(\mathrm{F} 56 \mathrm{C})$ have no subgroups of order 56. It follows from Proposition 2 that F56B and F56C are non-Cayley graphs. By Theorems 5 and 9 , the graphs $V N C_{8 p}^{1}$ and $V N C_{8 p}^{2}$ are connected cubic VNC-graphs of order $8 p$.

To complete the proof, we only need to show necessity. Assume that X is a connected cubic VNC-graph of order $8 p$. By McKay [18, pp.1114] and [21], all connected cubic vertex-transitive graphs of order 16 or 24 are Cayley graphs. If X is symmetric then by [7, Theorem 5.1], $X \cong$ F40A, F56B or F56C. By MAMGA [1], F40A $\cong V N C_{8.5}^{1}$.

In what follows, assume that $p>3$ and X is non-symmetric. Let $A=\operatorname{Aut}(X)$. Since X is non-Cayley, A has no subgroups acting regularly on $V(X)$ by Proposition 2. For each $v \in V(X)$, we have $\left|A_{v}\right|=2^{m}$ and $|A|=2^{m+3} p$ for some positive integer m. By Burnside's $p^{a} q^{b}$-theorem [24, 8.5.3], A is solvable. For notational convenience, in the remainder of the proof, we always use the following notations.

Assumption For each $q \in\{2, p\}$, use M_{q} to denote the maximal normal q-subgroup of A. Let $X_{M_{q}}$ be the quotient graph of X relative to the orbit set of M_{q}, and let Ker_{q} be the kernel of A acting on $V\left(X_{M_{q}}\right)$.

We first prove the following claims.
Claim 1 Suppose $M_{2}>1$. Then for any orbit B of M_{2}, we have $X[B]$ is the null graph.
Since $p>2$, one has $|B|=8$, 4 or 2 , and hence $p\left|\left|X_{M_{2}}\right|\right.$. This implies that $d\left(X_{M_{2}}\right) \geq 2$. If $X[B]$ is not a null graph, then it has valency 1 . For each $v \in B$, one neighbor of v is in B, and the other two are in the two different orbits of M_{2} adjacent to B, respectively. Because Ker_{2} fixes each orbit of $M_{2},\left(\operatorname{Ker}_{2}\right)_{v}$ fixes each neighbor of v. By the connectivity of $X,\left(\operatorname{Ker}_{2}\right)_{v}$ fixes all vertices of X, and hence $\left(\operatorname{Ker}_{2}\right)_{v}=1$. This shows that $\operatorname{Ker}_{2}=M_{2}$ is semiregular. Clearly, $X_{M_{2}}$ must be a cycle of length $\ell=8 p /|B|$. The vertex-transitivity of A / M_{2} on $X_{M_{2}}$ implies that A / M_{2} contains a subgroup, say G / M_{2}, acting regularly on $V\left(X_{M_{2}}\right)$. As a result, G is regular on $V(X)$, a contradiction.
Claim 2 Suppose $M_{p}>1$. Then $X_{M_{p}} \cong C_{8}, \operatorname{Ker}_{p}=M_{p} \rtimes A_{v} \cong D_{2 p}$ and $A / \operatorname{Ker}_{p} \cong D_{8}$. Furthermore, for any two adjacent orbits, say B, B^{\prime} of M_{p}, we have $X[B] \cong p K_{1}$ and $X\left[B \cup B^{\prime}\right] \cong C_{2 p}$ or $p K_{2}$.

Since $|A|=2^{m+3} p, M_{p}$ is a Sylow p-subgroup of A, and $\left|X_{M_{p}}\right|=8$. So, $d\left(X_{M_{p}}\right)=3$ or 2. Suppose $d\left(X_{M_{p}}\right)=3$. Then the stabilizer $\left(\operatorname{Ker}_{p}\right)_{v}$ fixes the neighborhood of v in X pointwise because Ker_{p} fixes each orbit of M_{p} setwise. By the connectivity of $X,\left(\operatorname{Ker}_{p}\right)_{v}$ fixes each vertex in $V(X)$, forcing $\left(\operatorname{Ker}_{p}\right)_{v}=1$. Hence, $\operatorname{Ker}_{p}=M_{p}$. By [21], $X_{M_{p}}$ is a Cayley graph, and furthermore, either $X_{M_{p}} \cong Q_{3}$, the three dimensional hypercube, or $\left|\operatorname{Aut}\left(X_{M_{p}}\right)\right| \leq 16$. Note that if $X_{M_{p}} \cong Q_{3}$ then $\operatorname{Aut}\left(X_{M_{p}}\right) \cong S_{4} \times \mathbb{Z}_{2}$. Since $\left|A / M_{p}\right|=2^{m+3}>8, A / M_{p}$ is always a Sylow 2-subgroup of $\operatorname{Aut}\left(X_{M_{p}}\right)$. As $X_{M_{p}}$ is a Cayley graph of order $8, \operatorname{Aut}\left(X_{M_{p}}\right)$ has a regular subgroup, say \bar{G}. By a Sylow Theorem, one may assume that $\bar{G}=G / M_{p} \leq A / M_{p}$. This forces that G is regular on $V(X)$, a contradiction.

Now we know that $d\left(X_{M_{p}}\right)=2$, namely, $X_{M_{p}} \cong C_{8}$. Then $A / \operatorname{Ker}_{p} \leq \operatorname{Aut}\left(X_{M_{p}}\right) \cong D_{16}$. Let $V\left(X_{M_{p}}\right)=\left\{B_{i} \mid i \in \mathbb{Z}_{8}\right\}$ with $B_{i} \sim B_{i+1}$ for each $i \in \mathbb{Z}_{8}$. If some B_{i} contains an edge of X, then the connectivity of $X_{M_{p}}$ implies that $d\left(X\left[B_{i}\right]\right)=1$. This forces that $\left|B_{i}\right|=p$ is even, a contradiction. Thus, $X\left[B_{i}\right] \cong p K_{1}$ for every $i \in \mathbb{Z}_{8}$. Since X is cubic, for any two adjacent orbits B, B^{\prime} of M_{p}, we have $X\left[B \cup B^{\prime}\right] \cong C_{2 p}$ or $p K_{2}$. Without loss of generality, assume that $X\left[B_{0} \cup B_{7}\right] \cong p K_{2}$ and $X\left[B_{0} \cup B_{1}\right] \cong C_{2 p}$. Then $A / \operatorname{Ker}_{p}$ is not edge-transitive on $X_{M_{p}}$, and hence $A / \operatorname{Ker}_{p} \cong D_{8}$. Since $p>3$, the subgroup $\operatorname{Ker}_{p}^{*}$ of Ker_{p} fixing B_{0} pointwise also fixes B_{1} and B_{7} pointwise. The connectivity of X gives $\operatorname{Ker}_{p}^{*}=1$, and consequently, $\operatorname{Ker}_{p} \leq \operatorname{Aut}\left(B_{0} \cup B_{1}\right) \cong D_{4 p}$. Since Ker_{p} fixes B_{0}, one has $\operatorname{Ker}_{p} \cong \mathbb{Z}_{p}$ or $D_{2 p}$. Since $|A|>8 p$, it follows that $\operatorname{Ker}_{p} \cong D_{2 p}$ and hence $|A|=16 p$. Since $A / \operatorname{Ker}_{p}$ is regular on $V\left(X_{M_{p}}\right)$, one has $A_{v}=\left(\operatorname{Ker}_{p}\right)_{v} \cong \mathbb{Z}_{2}$ and $\operatorname{Ker}_{p}=M_{p} \rtimes A_{v}$.

Now we are ready to finish the proof. We distinguish two different cases.
Case $1 M_{p}>1$.
Since $|A|=2^{m+3} p$, one has $M_{p} \cong \mathbb{Z}_{p}$. Let $C=C_{A}\left(M_{p}\right)$. Then $M_{p} \leq C$ and by Proposition 1, $A / C \leq \operatorname{Aut}\left(M_{p}\right) \cong \mathbb{Z}_{p-1}$. By Claim 2, $A / \operatorname{Ker}_{p} \cong D_{8}$ and $\operatorname{Ker}_{p}=M_{p} \rtimes A_{v} \cong$
$D_{2 p}$. This means that $C_{v}=1$, and hence C is semiregular on $V(X)$. So, $|C|=2 p$ or $4 p$. If $|C|=2 p$, then $C / P \cong \mathbb{Z}_{2}$ is in the center of A / P. Since $(A / P) /(C / P) \cong A / P \leq \mathbb{Z}_{p-1}$, A / P is abelian. It follows that $A / \operatorname{Ker}_{p} \cong(A / P) /\left(\operatorname{Ker}_{p} / P\right)$ is abelian, a contradiction. So, the only possible is $|C|=4 p$.

Clearly, C has two orbits, say Δ and Δ^{\prime} on $V(X)$, and the action of C on each of these two orbits is regular. It follows that $\Delta=\left\{u^{h} \mid h \in C\right\}$ and $\Delta^{\prime}=\left\{v^{h} \mid h \in C\right\}$ for some fixed $u \in \Delta$ and $v \in \Delta^{\prime}$, and furthermore, $u^{h_{1}} \neq u^{h_{2}}$ and $v^{h_{1}} \neq v^{h_{2}}$ for any two distinct $h_{1}, h_{2} \in C$. Since Δ is an orbit of $C, X[\Delta]$ has valency 0,1 or 2 .

First, suppose $d(X[\Delta])=0$. Then X is bipartite. Let the neighbors of u be $v^{h_{1}}, v^{h_{2}}$ and $v^{h_{3}}$ where $h_{1}, h_{2}, h_{3} \in C$. Note that C is abelian. For any $h \in C$, the neighbors of u^{h} are $v^{h h_{1}}, v^{h h_{2}}$ and $v^{h h_{3}}$, and furthermore, the neighbors of v^{h} are $u^{h h_{1}^{-1}}, u^{h h_{2}^{-1}}$ and $u^{h h_{3}^{-1}}$. Now it is easy to see that the map α defined by $v^{h} \mapsto u^{h^{-1}}, u^{h} \mapsto v^{h^{-1}}, \forall h \in C$, is an automorphism of X of order 2. Since $C \unlhd A,\langle C, \alpha\rangle=C \rtimes\langle\alpha\rangle$ has order $8 p$, implying that $\langle C, \alpha\rangle$ is regular on $V(X)$, a contradiction.

Next, suppose $d(X[\Delta])=1$. Let Q be a Sylow 2-subgroup of C. As C is abelian and normal in A, Q is characteristic in C, and hence it is normal in A. Clearly, every orbit of Q has cardinality 4 and is contained in Δ or Δ^{\prime}. Let u^{h} be a neighbor of u, where $h \in C$. Clearly, $\left\{u, u^{h}\right\}^{h}=\left\{u^{h}, u^{h^{2}}\right\}$. Since $d(X[\Delta])=1$, one has $u^{h^{2}}=u$, implying that h is an involution. It follows that each orbit of Q of C consists of two pairs of adjacent vertices. This is impossible by Claim 1 because $Q \leq M_{2}$.

Now, suppose $d(X[\Delta])=2$. Since $M_{p} \leq C$, each orbit of M_{p} is contained in Δ or Δ^{\prime}. By Claim 2, for any two adjacent orbits B, B^{\prime} of $M_{p}, X[B] \cong p K_{1}$ and $X\left[B \cup B^{\prime}\right] \cong p K_{2}$ or $C_{2 p}$. Since $d(X[\Delta])=2$, we must have $X[\Delta] \cong X\left[\Delta^{\prime}\right] \cong 2 C_{2 p}$. Let $\left\{x_{0}, x_{1}\right\}$ be an edge of $X[\Delta]$. Then there exists $a \in C$ such that $x_{1}=x_{0}^{a}$. From Claim 1 we get a is not an involution. Let a have order s and let $x_{i}=x_{0}^{a^{i}}$ with $i \in \mathbb{Z}_{s}$. Then $C_{1}=\left(x_{0}, x_{1}, \ldots, x_{s-1}, x_{0}\right)$ is an s-cycle. Since $X[\Delta] \cong 2 C_{2 p}$, one has $s=2 p$.

Suppose $C \cong \mathbb{Z}_{4 p}$. Let $w \in \Delta^{\prime}$ be adjacent to x_{0}, and let $\left\{w^{b}, w\right\} \in E\left(X\left[\Delta^{\prime}\right]\right)$ for some $b \in C$. Similar to an argument as above, we get that b has order $2 p$, and $\left(w, w^{b}, w^{b^{2}}, \ldots\right.$, $\left.w^{b^{2 p-1}}, w\right)$ is a $2 p$-cycle. Since $C \cong \mathbb{Z}_{4 p}$, one has $\langle a\rangle=\langle b\rangle$, and so $a=b^{k}$ for some $k \in \mathbb{Z}_{2 p}^{*}$. This implies that for any $i \in \mathbb{Z}_{2 p}, x_{i}=x_{0}^{a^{i}} \sim w^{a^{i}}=w^{b^{i k}}$. Consequently, the subgraph induced by $\left\{x_{i}, w^{b^{i}} \mid i \in \mathbb{Z}_{2 p}\right\}$ has valency 3 , contrary to the connectivity of X.

Now we know that $C \cong \mathbb{Z}_{2 p} \times \mathbb{Z}_{2}$, and hence there is an involution $c \in C \backslash\langle a\rangle$. Let $y_{i}=x_{i}^{c}$ with $i \in \mathbb{Z}_{2 p}$. Since C is abelian, $C_{2}=\left(y_{0}, y_{1}, \ldots, y_{s-1}, y_{0}\right)$ is also a $2 p$ cycle. Clearly, C_{1} and C_{2} are vertex-disjoint, so $X[\Delta]=C_{1} \cup C_{2}$. Note that the edges with one endpoint in Δ and the other endpoint in Δ^{\prime} are independent. Assume that $\Delta^{\prime}=\left\{u_{i}, v_{i} \mid i \in \mathbb{Z}_{2 p}\right\}$ so that $u_{i} \sim x_{i}$ and $v_{i} \sim y_{i}$ for $i \in \mathbb{Z}_{2 p}$. Since $X\left[\Delta^{\prime}\right] \cong 2 C_{2 p}$, we may assume that $u_{0} \sim u_{\lambda}$ or $u_{0} \sim v_{\lambda}$ for some $\lambda \in \mathbb{Z}_{2 p}-\{0\}$. If $u_{0} \sim u_{\lambda}$, then the subgraph induced by $\left\{x_{i}, u_{i} \mid i \in \mathbb{Z}_{2 p}\right\}$ has valency 3 , contrary to the connectivity of X. Thus, $u_{0} \sim v_{\lambda}$. Since $x_{i}^{c}=y_{i}$, one has $\left\{x_{i}, u_{i}\right\}^{c}=\left\{y_{i}, v_{i}\right\}$, and hence $u_{i}^{c}=v_{i}$. Since c is an involution, one has $\left\{u_{0}, v_{\lambda}\right\}^{c}=\left\{v_{0}, u_{\lambda}\right\}$. By Definition $3, X \cong D P(2 p, \lambda)$.

It is easy to see that $C \rtimes A_{u}$ is the kernel of A acting on $\left\{\Delta, \Delta^{\prime}\right\}$, and $A /\left(C \rtimes A_{u}\right) \cong \mathbb{Z}_{2}$. Let $\beta \in A$ be a 2-element interchanging Δ and Δ^{\prime}. Then $\beta^{2} \in C \rtimes A_{u}$. If $\beta^{2} \in C$ then $\langle C, \beta\rangle$ is regular on $V(X)$, a contradiction. Thus, $\beta^{2}=g d$ where $g \in C$ and $A_{v}=\langle d\rangle$.

Recalling Ker $=P \rtimes A_{v} \cong D_{2 p}$, one has $\beta^{-2} a^{2} \beta^{2}=a^{-2}$. It follows that $\beta^{-1} a^{2} \beta=a^{2 t}$ for some $t \in \mathbb{Z}_{p}^{*}$ satisfying $t^{2} \equiv-1(\bmod p)$. Without loss of generality, assume $x_{0}^{\beta}=u_{i}$ for some $i \in \mathbb{Z}_{2 p}$. Then $x_{2}^{\beta}=\left(x_{0}\right)^{a^{2} \beta}=u_{i}^{\beta^{-1} a^{2} \beta}=u_{i}^{a^{2 t}}=u_{i+2 t}$. Since the distance between x_{0} and x_{2} is 2 , one has $u_{i+2 t}=u_{i+2 \lambda}$ or $u_{i-2 \lambda}$. It follows that $2 t \equiv \pm 2 \lambda(\bmod 2 p)$, and hence $\lambda \equiv \pm t(\bmod p)$. This shows that $\lambda \in \mathbb{Z}_{2 p}$ is a solution of Eq. (1). By Lemma 4 and Theorem 5, we have $X \cong V N C_{8 p}^{1}$.
Case $2 M_{p}=1$
By the solvability of A, we have $M_{2}>1$. Let P be a Sylow p-subgroup of A. Then $P \nexists A$ but $P M_{2} / M_{2} \unlhd A / M_{2}$, namely, $P M_{2} \unlhd A$. If $P \unlhd P M_{2}$, then P is characteristic in $P M_{2}$, and hence it is normal in A, a contradiction. Thus, P is not normal in $P M_{2}$. Let B be an orbit of M_{2}. Since $p>2$, one has $|B|=8,4$ or 2 , and hence $p\left|\left|X_{M_{2}}\right|\right.$. This implies that $X_{M_{2}}$ has valency greater than 1. If $d\left(X_{M_{2}}\right)=3$, then $|B|=2$ or 4 , and it is easily seen that M_{2} is semiregular, and so $\left|M_{2}\right|=|B|$. Since $p>3$, Sylow Theorem implies that $P \unlhd P M_{2}$, a contradiction. Thus, $d\left(X_{M_{2}}\right)=2$. Also, since A / Ker_{2} is transitive on $V\left(X_{M_{2}}\right), \operatorname{Ker}_{2}$ is a 2-group. The maximality of M_{2} gives $\operatorname{Ker}_{2}=M_{2}$.

If $|B|=8$, then $X_{M_{2}} \cong C_{p}$. By Claim 2, $X[B]$ is a null graph. So, the subgraph induced by any two adjacent orbits is of valency 1 or 2 . This forces that $\left|X_{M_{2}}\right|=p$ is even, a contradiction. If $|B|=2$, then $X_{M_{2}} \cong C_{4 p}$, and hence $A / M_{2} \leq \operatorname{Aut}\left(X_{M_{2}}\right) \cong D_{8 p}$. Since A / M_{2} is transitive on $V\left(X_{M_{2}}\right), A / M_{2} \cong D_{4 p}, \mathbb{Z}_{4 p}$ or $D_{8 p}$. This implies that A / M_{2} always has a normal subgroup of order 2, contrary to the maximality of M_{2}.

It now only remains to deal with the case when $|B|=4$. In this case, $X_{M_{2}} \cong C_{2 p}$ and by Claim 2, $X[B] \cong 4 K_{1}$. Let $V\left(X_{M_{2}}\right)=\left\{B_{i} \mid i \in \mathbb{Z}_{2 p}\right\}$ with $B_{i} \sim B_{i+1}$. Since X is cubic, one may assume that $X\left[B_{0} \cup B_{1}\right] \cong C_{8}$ or $2 C_{4}$ and $X\left[B_{0} \cup B_{2 p-1}\right] \cong 4 K_{2}$. Suppose $X\left[B_{0} \cup B_{1}\right] \cong C_{8}$. The subgroup M_{2}^{*} of M_{2} fixing B_{0} pointwise also fixes B_{1} and $B_{2 p-1}$ pointwise. The connectivity of X and the transitivity of A / M_{2} on $V\left(X_{M_{2}}\right)$ imply that $M_{2}^{*}=1$, and consequently, $M_{2} \leq \operatorname{Aut}\left(X\left[B_{0} \cup B_{1}\right]\right) \cong D_{16}$. Hence, Aut $\left(M_{2}\right)$ is a $\{2,3\}$-group. By Proposition $1, P M_{2} / C_{P M_{2}}\left(M_{2}\right) \leq \operatorname{Aut}\left(M_{2}\right)$. Since $p \geq 5$, one has $P \leq C_{P M_{2}}\left(M_{2}\right)$, forcing $P \unlhd P M_{2}$, a contradiction.

We now know that $X\left[B_{0} \cup B_{1}\right]$ is a union of two 4-cycles, say $\left(x_{0}^{0,0}, x_{1}^{0,0}, x_{0}^{0,1}, x_{1}^{0,1}\right)$ and $\left(x_{0}^{1,1}, x_{1}^{1,1}, x_{0}^{1,0}, x_{1}^{1,0}\right)$, where $B_{i}=\left\{x_{i}^{0,0}, x_{i}^{0,1}, x_{i}^{1,0}, x_{i}^{1,1}\right\}$ with $i=0$ or 1 . Remember that $X_{N}=\left(B_{0}, B_{1}, \ldots, B_{2 p-1}\right)$ is a $2 p$-cycle. Hence, A has an element, say σ, of order p such that $B_{i}^{\sigma}=B_{i+2}$ for each $i \in \mathbb{Z}_{2 p}$. Without loss of generality, assume

$$
\sigma=\prod_{(r, s) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}}\left(x_{0}^{r, s} x_{2}^{r, s} \ldots x_{2}^{r, s}\right)\left(x_{1}^{r, s} x_{3}^{r, s} \ldots x_{2 p-1}^{r, s}\right) .
$$

Then for each $i \in \mathbb{Z}_{2 p}, B_{i}=\left\{x_{i}^{0,0}, x_{i}^{0,1}, x_{i}^{1,0}, x_{i}^{1,1}\right\}$, and $\left(x_{2 j}^{0,0}, x_{2 j+1}^{0,0}, x_{2 j}^{0,1}, x_{2 j+1}^{0,1}\right)$ and $\left(x_{2 j}^{1,1}\right.$, $\left.x_{2 j+1}^{1,1}, x_{2 j}^{1,0}, x_{2 j+1}^{1,0}\right)$ are the two 4 -cycles of $X\left[B_{2 j} \cup B_{2 j+1}\right]$ for each $j \in \mathbb{Z}_{p}$.

Note that σ is an automorphism of X. Once the edges between $B_{2 j+1}$ and $B_{2 j+2}$ are given, the graph X will be determined. Let u, v be the neighbors of $x_{2 i+1}^{0,0}$ and $x_{2 i+1}^{0,1}$ in $B_{2 j+2}$, respectively.

If u, v are in the same 4-cycle of $X\left[B_{2 j+2} \cup B_{2 j+3}\right]$, then by the connectivity of X, we

Figure 3: Two possible cases
get $\{u, v\}=\left\{x_{2 i+2}^{1,0}, x_{2 i+2}^{1,1}\right\}$. This gives rise to four graphs $X_{i}(0 \leq i \leq 4)$ such that

$$
\begin{aligned}
& E\left(X_{0}\right)=\left\{\left\{x_{2 i}^{r, s}, x_{2 i+1}^{r, t}\right\},\left\{x_{2 i+1}^{r, s}, x_{2 i+s}^{r+1, s}\right\} \mid i \in \mathbb{Z}_{2 p}, r, s, t \in \mathbb{Z}_{2}\right\} ; \\
& E\left(X_{1}\right)=\left\{\left\{x_{2 i}^{r, s},,_{2 i+1}^{r, t}\right\},\left\{x_{2 i+1}^{r, s}, x_{2 i+2}^{r+1, s+1}\right\} \mid i \in \mathbb{Z}_{2 p}, r, s, t \in \mathbb{Z}_{2}\right\} ; \\
& E\left(X_{2}\right)=\left\{\left\{x_{2 i}^{r, s},,_{2 i+1}^{r, t}\right\},\left\{x_{2 i+s}^{0, s}, x_{2 i+1}^{1, s+1}\right\},\left\{x_{2 i+1}^{1, s} x_{2 i+\infty}^{0, s}\right\} \mid i \in \mathbb{Z}_{2 p}, r, s, t \in \mathbb{Z}_{2}\right\} ; \\
& E\left(X_{3}\right)=\left\{\left\{x_{2 i}^{r, s}, x_{2 i+1}^{r, t}\right\},\left\{x_{2 i+1}^{0, s}, x_{2 i+2}^{1, s+2}\right\},\left\{x_{2 i+1}^{1, s}, x_{2 i+2}^{0, s+1}\right\} \mid i \in \mathbb{Z}_{2 p}, r, s, t \in \mathbb{Z}_{2}\right\} .
\end{aligned}
$$

Let $\delta=\prod_{i \in \mathbb{Z}_{2 p}}\left(x_{2 i+2}^{0,0}, x_{2 i+2}^{0,1}\right)\left(x_{2 i+2}^{1,0}, x_{2 i+2}^{1,1}\right)$ and $\gamma=\prod_{i \in \mathbb{Z}_{2 p}}\left(x_{2 i+2}^{0,0}, x_{2 i+2}^{0,1}\right)$. It is easy to see that δ is an isomorphism from X_{k} to X_{k+1} with $k=0,2$, and γ is an isomorphism from X_{0} to X_{3}. So, we may assume $X=X_{0}$. In this case, $X\left[B_{2 j} \cup B_{2 j+1} \cup B_{2 j+2} \cup B_{2 j+3}\right]$ is the first graph in Fig. 3. Since $p>3$, it is easy to check that passing through each vertex of X there is one and only one 4-cycle. Set $\Omega=\left\{\left\{x_{i}^{0,0}, x_{i}^{0,1}\right\},\left\{x_{i}^{1,0}, x_{i}^{1,1}\right\} \mid i \in \mathbb{Z}_{2 p}\right\}$. Take an arbitrary $\Delta \in \Omega$. Without loss of generality, let $\Delta=\left\{x_{i}^{0,0}, x_{i}^{0,1}\right\}$ for some $i \in \mathbb{Z}_{4 p}$. For any $g \in A, \Delta^{g} \subset B_{i}^{g}=B^{j}$ for some $j \in \mathbb{Z}_{4 p}$. Since there is a 4 -cycle in X passing through $\left(x_{i}^{0,0}\right)^{g}$ and $\left(x_{i}^{0,1}\right)^{g}$, one has $\Delta^{g}=\left\{x_{j}^{0,0}, x_{j}^{0,1}\right\}$ or $\left\{x_{j}^{1,0}, x_{j}^{1,1}\right\}$. It follows that $\Delta^{g} \in \Omega$. Clearly, any two distinct subsets in Ω are disjoint. Then Ω is an A-invariant partition of $V(X)$. From the structure of X we obtain that $X_{\Omega} \cong C_{4 p}$ and $X[\Delta] \cong 2 K_{1}$ for each $\Delta \in \Omega$. For notational convenience, let $V\left(X_{\Omega}\right)=\left\{\Delta_{0}, \Delta_{1}, \ldots, \Delta_{4 p-1}\right\}$ such that $\Delta_{i} \in \Omega$ and $\Delta_{i} \sim \Delta_{i+1}$ for each $i \in \mathbb{Z}_{4 p}$. Since X has valency 3 , assume that $X\left[\Delta_{0} \cup \Delta_{1}\right] \cong C_{4}$ and $X\left[\Delta_{4 p-1} \cup \Delta_{0}\right] \cong 2 K_{2}$. By the transitivity of A on $V(X), X\left[\Delta_{2 j} \cup \Delta_{2 j+1}\right] \cong C_{4}$ and $X\left[\Delta_{2 j-1} \cup \Delta_{2 j}\right] \cong 2 K_{2}$ for each $j \in \mathbb{Z}_{2 p}$. Let $\Delta_{i}=\left\{x_{i}, y_{i}\right\}$ for each $i \in \mathbb{Z}_{4 p}$. From the above analysis we may assume that $x_{i} \sim x_{i+1}, y_{i} \sim y_{i+1}, x_{2 i} \sim y_{2 i+1}$ and $y_{2 i} \sim x_{2 i+1}$ for each $i \in \mathbb{Z}_{4 p}$. Let $\alpha: x_{i} \mapsto x_{i+2}, y_{i} \mapsto y_{i+2}\left(i \in \mathbb{Z}_{4 p}\right), \beta: x_{i} \mapsto y_{i}, y_{i} \mapsto x_{i}\left(i \in \mathbb{Z}_{4 p}\right)$, and $\gamma: x_{i} \mapsto x_{4 p+1-i}, y_{i} \mapsto y_{4 p+1-i}\left(i \in \mathbb{Z}_{4 p}\right)$ be the three permutations on $V(X)$. It is easy to check that α, β and γ are automorphisms of X. Furthermore, $\langle\alpha, \beta, \gamma\rangle \cong D_{4 p} \times \mathbb{Z}_{2}$ is regular on $V(X)$, a contradiction.

Now suppose that u, v are in different 4 -cycles of $X\left[B_{2 j+2} \cup B_{2 j+3}\right]$. By [5, Proposition 3.1], we may assume that $X\left[B_{2 j} \cup B_{2 j+1} \cup B_{2 j+2} \cup B_{2 j+3}\right]$ is the second graph in Fig. 3 In this case,

$$
E(X)=\left\{\left\{x_{2 i}^{r, s}, x_{2 i+1}^{r, t}\right\},\left\{x_{2 i+1}^{r, s}, x_{2 i+2}^{s, r}\right\} \mid i \in \mathbb{Z}_{2 p}, r, s, t \in \mathbb{Z}_{2}\right\}
$$

From Definition 7 and Theorem 9, we know that $X=V N C_{8 p}^{2}$.

Acknowledgements

The authors thank the anonymous referees for his valuable suggestions in order to improve the final version of the article.

References

[1] W. Bosma, C. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 24 (1997) 235-265.
[2] I. Z. Bouwer (ed.), The Foster Census, Charles Babbage Research Centre, Winnipeg, 1988.
[3] Y. Cheng, J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory B 42 (1987) 196-211.
[4] M.D.E. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002) 41-63.
[5] E. Dobson, A. Malnič, D. Marušič, L.A. Nowitz, Semiregular automorphisms of vertex-transitive graphs of certain valencies, J. Combin. Theory B 97 (2007) 371380.
[6] Y.-Q. Feng, On vertex-transitive graphs of odd prime-power order, Discrete Math. 248 (2002) 265-269.
[7] Y.-Q. Feng, J.H. Kwak, Classifying cubic symmetric graphs of order $8 p$ or $8 p^{2}$, European J. Combin. 26 (2005) 1033-1052.
[8] R. Frucht, J.E. Graver, M.E. Watkins, The groups of the generalized Petersen graphs, Proc. Camb. Phil. Soc. 70 (1974) 211-218.
[9] A. Hassani, M.A. Iranmanesh, C.E. Praeger, On vertex-imprimitive graphs of order a product of three distinct odd primes, J. Combin. Math. Combin. Comput. 28 (1998) 187-213.
[10] B. Huppert, Eudliche Gruppen I, Springer-Verlag, Berlin, 1967.
[11] C.H. Li, A. Seress, On vertex-transitive non-Cayley graphs of square-free order, Designs, Codes and Cryptography 34 (2005) 265-281.
[12] D. Marušič, On vertex symmetric digraphs, Discrete Math. 36 (1981) 69-81.
[13] D. Marušič, Cayley properties of vertex symmetric graphs, Ars Combin. 16B (1983) 297-302.
[14] D. Marušič, Vertex transitive graphs and digraphs of order p^{k}, Ann. Discrete Math. 27 (1985) 115-128.
[15] D. Marušič, R. Scapellato, Characterizing vertex-transitive $p q$-graphs with an imprimitive automorphism subgroup, J. Graph Theory 16 (1992) 375-387.
[16] D. Marušič, R. Scapellato, Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica 14 (1994) 187-201.
[17] D. Marušič, R. Scapellato, B. Zgrablič, On quasiprimitive pqr-graphs, Algebra Colloq. 2 (1995) 295-314.
[18] B.D. McKay, Transitive graphs with fewer than 20 vertices, Math. Comp. 33 (1979) 1101-1121.
[19] B.D. McKay, C.E. Praeger, Vertex-transitive graphs which are not Cayley graphs I, J. Austral. Math. Soc. 56 (1994) 53-63.
[20] B.D. McKay, C.E. Praeger, Vertex-transitive graphs which are not Cayley graphs II, J. Graph Theory 22 (1996) 321-334.
[21] B.D. McKay, G. Royal, Cubic transitive graphs, http://units.maths.uwa.edu.au/ gordon/remote/cubtrans/index.html.
[22] A.A. Miller, C.E. Praeger, Non-Cayley vertex-transitive graphs of order twice the product of two odd primes, J. Algebraic Combin. 3 (1994) 77-111.
[23] R. Nedela, M. Škoviera, Which generalized Petersen graphs are not Cayley graphs?, J. Graph Theory 19 (1995) 1-11.
[24] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
[25] G. Sabidussi, On a class of fix-point-free graphs, Proc. Amer. Math. Soc. 9 (1958) 800-804.
[26] A. Seress, On vertex-transitive non-Cayley graphs of order pqr, Discrete Math. 182 (1998) 279-292.
[27] M.E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969) 152-164.
[28] J.-X. Zhou, Cubic vertex-transitive graphs of order $4 p$ (Chinese), J. Sys. Sci. \& Math. Sci. 28 (2008) 1245-1249.
[29] J.-X. Zhou, Cubic vertex-transitive graphs of order $2 p^{2}$ (Chinese), Advance in Math. 37 (2008) 605-609.
[30] J.-X. Zhou, Tetravlent vertex-transitive graphs of order 4p, J. Graph Theory (2011) DOI 10.1002/jgt. 20653.
[31] J.-X. Zhou, Y.-Q. Feng, Cubic vertex-transitive graphs of order 2pq, J. Graph Theory 65 (2010) 285-302.

[^0]: *Supported by the National Natural Science Foundation of China (10901015, 11171020), the Fundamental Research Funds for the Central Universities (2011JBM127, 2011JBZ012), and the Subsidy for Outstanding People of Beijing (2011D005022000005).

