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Abstract

The Jacobi-Stirling numbers and the Legendre-Stirling numbers of the first and
second kind were first introduced by Everitt et al. (2002) and (2007) in the spectral
theory. In this paper we note that Jacobi-Stirling numbers and Legendre-Stirling
numbers are specializations of elementary and complete symmetric functions. We
then study combinatorial interpretations of this specialization and obtain new com-
binatorial interpretations of the Jacobi-Stirling and Legendre-Stirling numbers.

Keywords: Jacobi-Stirling numbers, Legendre-Stirling numbers, symmetric func-
tions, combinatorial interpretations.

1 Introduction

The aim of this paper is to give combinatorial interpretations of a family of numbers which
includes the Legendre-Stirling numbers and Jacobi-Stirling numbers of both kinds. The
Jacobi-Stirling numbers were introduced in [7] as the coefficients of the integral composite
powers of the Jacobi differential operator

lα,β[y](t) =
1

(1− t)α(1 + t)β
(
− (1− t)α+1(1 + t)β+1y′(t)

)′
, (1)

with fixed real parameters α, β > −1. When the parameters are both equal to 0, we find
the definition of the Legendre-Stirling numbers, first introduced in [6] and later studied
in [1]. In [6, 7, 13] the authors show that both numbers share many properties with the
classical Stirling numbers of both kinds such as similar recurrence relations, generating
functions and total positivity properties. Recently several combinatorial interpretations
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of the Legendre-Stirling numbers ([2, 5]) and the Jacobi-Stirling numbers ([8]) have been
given, most of which are based on permutations and partitions, exactly the same combi-
natorial objects used for the classical interpretations of the Stirling numbers.

In this paper we note that the Jacobi-Stirling numbers and the Legendre-Stirling num-
bers of both kinds are specializations of elementary and complete homogeneous symmetric
functions. We study these specializations and then apply the results to Jacobi-Stirling and
Legendre-Stirling numbers. More precisely, we give general combinatorial interpretations
of these specializations with a unified approach. These combinatorial interpretations
include new combinatorial interpretations for the Jacobi-Stirling and Legendre-Stirling
numbers as well as the results in [2, Theorem 2], [5, Theorem 2.5] and [8, Theorem 7].

The organization of the paper is as follows. In Section 2 we recall the symmetric func-
tions and some of their properties and show how we can obtain Jacobi-Stirling numbers
and Legendre-Stirling numbers by a suitable evaluation of them. In Section 3 we define
a q-analogue of these numbers and we give a combinatorial interpretations of them that
generalizes interpretations given in [2, 5, 8] when q = 1 and that we can use in particular
for the Jacobi-Stirling numbers. The evaluation of the symmetric functions that we use
are parameterized by real nonnegative numbers. As done in [8] for the Jacobi-Stirling
numbers, in Section 4 we study our evaluations of the symmetric functions as polynomi-
als in these parameters. In Section 5 we turn our attention to other functions, already
introduced in [3], that generalized the complete and elementary symmetric functions. We
give a combinatorial interpretation of their evaluations and if we apply it to the case
of Jacobi-Stirling numbers we get a new result. Moreover in this section we study the
evaluations of the well known monomial symmetric functions. Finally, in Section 6 we
recall other properties of the elementary and symmetric functions such that if applied to
the Jacobi-Stirling numbers and Legendre-Stirling numbers gives us immediately some
properties studied in [1, 6, 7].

2 Definitions, notation and preliminaries

We let P := {1, 2, 3, ...}, N := P∪{0}, Z = N∪{−1,−2,−3, . . . }. The cardinality of a set
A will be denoted by |A|.

For the following definitions we use the notations of [12, Chapter I.2]. Consider the ring
Z[x1, . . . , xn] of polynomials in n independent variables x1, . . . , xn with integer coefficients.
For each r ≥ 0 the r-th elementary symmetric function er is the sum of all products of r
distinct variables xi, so that e0 = 1 and for r ≥ 1

er(x1, . . . , xn) =
∑

i1<i2<···<ir

xi1xi2 · · ·xir . (2)

The r-th complete symmetric function hr is the sum of all monomials of total degree r in
the variables x1, . . . , xn so that h0 = 1 and for r ≥ 1

hr(x1, . . . , xn) =
∑

i1≤i2≤···≤ir

xi1xi2 · · ·xir . (3)
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It is a simple exercise to check the following recursion formulas for n, j ≥ 1, n > j:

hn−j(x1, . . . , xj) =hn−j(x1, . . . , xj−1) + xjhn−j−1(x1, . . . , xj); (4)

en−j(x1, . . . , xn−1) =en−j(x1, . . . , xn−2) + xn−1en−j−1(x1, . . . , xn−2) (5)

with initial conditions

h0(x1, . . . , xj) = 1; hn−j(x1, . . . , xj) = 0 (if n < j), (6)

e0(x1, . . . , xn−1) = 1; en−j(x1, . . . , xn−1) = 0 (if n < j). (7)

We now recall the definitions of the Jacobi-Stirling numbers and the Legendre-Stirling
numbers and some of their basic properties.

The Jacobi-Stirling numbers of the second kind JS
(j)
n (z) are defined for all n, j ∈ N

by Everitt et al. via the following expansion of the n-th composite power of lα,β (see [7,
Theorem 4.2]):

(1− t)α(1 + t)βlnα,β[y](t) =
n∑
j=0

(−1)j
(
JS(j)

n (α + β + 1)(1− t)α+j(1 + t)β+jy(j)(t)
)(k)

,

where lα,β is the Jacobi differential operator (1) and α, β > −1 are fixed real parameters.
Since these numbers depend only on the sum α + β, we set z = α + β + 1 > −1.

In [7, Section 4] or in [8, Section 1] the following recursive formula are given

JS(j)
n (z) = JS

(j−1)
n−1 (z) + j(j + z)JS

(j)
n−1(z) (8)

with initial conditions

JS(0)
n (z) = JS

(j)
0 (z) = 0; JS

(0)
0 (z) = 1. (9)

From [7, Theorem 4.1] relations (8), (9) can be easily deduced.
Moreover, in [7] the following equation is given:

xn =
n∑
j=0

JS(j)
n

j−1∏
i=0

(x− i(z + i)) (10)

and in the same paper the authors define the (unsigned) Jacobi-Stirling numbers of the
first kind for all n, j ∈ N as follows

n−1∏
i=0

(x− i(z + i)) =
n∑
j=0

(−1)jJc(j)n xj. (11)

The Jacobi-Stirling numbers of the first kind satisfy the following recursion

Jc(j)n (z) = Jc
(j−1)
n−1 (z) + (n− 1)(n− 1 + z)Jc

(j)
n−1(z) (12)
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with initial conditions

Jc(0)n (z) = Jc
(j)
0 (z) = 0; Jc

(0)
0 (z) = 1. (13)

It is simple to check that recursion (4) is the same as (8) if xj = j(j + z) for all j ≥ 1
and that recursion (5) is the same as (12) if xn−1 = (n− 1)(n− 1 + z) for all n ≥ 2.

The Legendre-Stirling numbers were first introduced in [6] as the coefficients of the
integral powers of the second-order Legendre differential operator l[·] (1) when α = β = 0.
Therefore these numbers coincide with the Jacobi-Stirling numbers when z = 1. As noted
in [6] and [7], both numbers have properties similar to the classical Stirling numbers of
both kinds. This is because the Stirling numbers also satisfy the same recursion formulas
(4) and (5) with xj = j for all j ≥ 1. For these reasons we define the following objects.

Fix an integer r ≥ 1 and fix a1, . . . , ar nonnegative real numbers. Let f(x) = (x +
a1)(x+ a2) · · · (x+ ar). We then define for all n, j ∈ N

Hf
j,n = hn−j(f(1), f(2), . . . , f(j)); (14)

Ef
j,n = en−j(f(1), f(2), . . . , f(n− 1)). (15)

By the above remarks, and denoting with S(n, j), c(n, j) the (unsigned) Stirling num-
bers of the second and first kind, and with LS(n, j), Lc(n, j) the (unsigned) Legendre-
Stirling numbers of the second and first kind, it is easy to check that

S(n, j) = Hx
j,n; c(n, j) = Ex

j,n; (16)

LS(j)
n = H

x(x+1)
j,n ; Lc(j)n = E

x(x+1)
j,n ; (17)

JS(j)
n (z) = H

x(x+z)
j,n ; Jc(j)n (z) = E

x(x+z)
j,n . (18)

When the polynomial f is in N[x] it is possible to define a q-analogue of the numbers
Hf
j,n and Ef

j,n.
Given a positive integer n, we denote by [n] the polynomial 1+q+· · ·+qn−1; moreover,

we set [0] := 0.

Definition 1. Let f(x) = (x + a1) · · · (x + ar), with r ∈ P and a1, . . . , ar ∈ N. For all
j, n ≥ 1, we define the polynomials Hf

j,n(q) by the recursive formula

Hf
j,n(q) =Hf

j−1,n−1(q) + [j + a1][j + a2] · · · [j + ar]H
f
j,n−1(q); (19)

with initial conditions

Hf
0,n(q) =Hf

j,0(q) = 0; Hf
0,0(q) = 1.

For all j, n ≥ 1, we define the polynomials Ef
j,n(q) by the recursive formula

Ef
j,n(q) =Ef

j−1,n−1(q) + [n− 1 + a1][n− 1 + a2] · · · [n− 1 + ar]E
f
j,n−1(q); (20)

with initial conditions

Ef
0,n(q) =Ef

j,0(q) = 0; Ef
0,0(q) = 1.
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In the case of the Stirling numbers we recognize well-known q-analogue (see e. g.
[4, 10, 11]).

In the following, for all j, n, k ∈ N we denote by Hf
j,n[k] and Ef

j,n[k] the coefficient of

qk in Hf
j,n(q) and Ef

j,n(q), respectively.

In the next section we give a combinatorial interpretation for Hf
j,n[k] and Ef

j,n[k]; in

particular we obtain a combinatorial interpretation of Hf
j,n and Ef

j,n. This combinatorial
interpretation is new even for f = x(x + z) (i. e., for the Jacobi-Stirling numbers). In
Section 4 we consider Hf

j,n and Ef
j,n as polynomials in a1, . . . , ar where f(x) = (x +

a1) · · · (x+ ar) and we give other combinatorial interpretations.

3 Combinatorial interpretations of Hf
j,n[k] and Ef

j,n[k]

In this section we give a combinatorial interpretation of the coefficients Hf
j,n[k] and Ef

j,n[k]
for any fixed polynomial with only integer roots and nonnegative coefficients f = (x +
a1)(x+ a2) · · · (x+ ar), a1 ≤ a2 ≤ · · · ≤ ar, and for fixed j, n, k ∈ N.

3.1 Combinatorial interpretation of Hf
j,n[k].

Fix j, n, k ∈ N and consider r labeled copies of the numbers 1, . . . , n, i. e.

11, 12, . . . , 1r, 21, 22, . . . , 2r, . . . . . . , n1, n2, . . . , nr. (21)

We consider a pair P = (π, (S1, . . . , Sar)) where π is a set partition of a subset of
{11, . . . , nr} into j blocks and S1, . . . , Sar are subsets of {11, . . . , nr}. We say that P
is f-Stirling of order (n, j) if P is a partition of (21) into j + ar subsets such that

• the subsets in π are nonempty and each one contains the minimum number with all
its indices;

• one of the subsets in π contains 11, 12, . . . , 1r;

• each mi, (1 ≤ m ≤ n, 1 ≤ i ≤ r) is in one of the first j + ai subsets.

For example, an f -Stirling partition of order (3, 2), with f = (x + 1)(x + 2),
is ({11, 12, 31}, {21, 22}, {}, {32}). The partitions P1 = ({11, 12, 21}, {22, 31, 32}, {}, {}),
P2 = ({21, 22}, {31, 32}, {11, 12}, {}) and P3 = ({11, 12, 32}, {21, 22}, {}, {31}) are not f -
Stirling of order (3, 2) since one of the previous conditions fails.

Now, given an f -Stirling partition P = (π, (S1, . . . , Sar)) of order (n, j), we label each
subset in P in the following way: each one of the subsets in π is labeled by the minimum
number that it contains; each Si is labeled by 1− i for all i = 1, . . . , ar. For example, the
sets in ({11, 12, 31}, {21, 22}, {}, {32}) have labels (1, 2, 0,−1). With these labels, we can
define a total order relation between the subsets of P . Moreover we say that a subset is
greater or less than a number via its label. By using these order relations we can define
the following numbers.
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Let ij (i ≤ n, j ≤ r) be a labeled number in (21) and let Aij be the unique subset in
P containing ij. We set

sij :=
∣∣{A subset in P |Aij < A < i}

∣∣
and

sP :=
∑

1≤i≤n,1≤j≤r

sij .

We define sP := 0 when n = 0. For example, if P = ({11, 12, 31}, {21, 22}, {}, {32}) then
s31 = 1, s32 = 3 and all other sij are 0, so sP = 4.

We then have the following result.

Proposition 2. For all n, j, k ∈ N we have that Hf
j,n[k] is the number of f -Stirling

partitions P of order (n, j) such that sP = k.

Proof. For all n, j ≥ 0 we consider the following generating function

pfj,n(q) :=
∑
P

qsP

where the sum is over all f -Stirling partitions P of order (n, j). We prove that pfj,n(q) =

Hf
j,n(q) by induction on n. If n = 0 we then have to put no numbers in j + ar subsets

such that the first j subset are nonempty: this is possible if and only if j = 0; indeed
Hf

0,0(q) = 1. If j = 0 and n > 1 we can’t put 11, . . . , 1r in one of the first 0 subsets, so

there aren’t any f -Stirling partitions of order (n, 0). Therefore pfj,n(q) = Hf
j,n(q) if n = 0

or j = 0.
Now, suppose j, n ≥ 1 and the claim true for smaller values. We can obtain an f -

Stirling partition P either by adding a subset {n1, . . . , nk} to an f -Stirling partition P1

of order (n − 1, j − 1), or by adding each number ni with 1 ≤ i ≤ r to one of the first
j + ai subset of an f -Stirling partition P2 of order (n− 1, j).

The generating function for the first case is clearly pfj−1,n−1(q) and the generating

function for the latter case is clearly [j + a1] · · · [j + ar]p
f
j,n−1(q). Now the result follows

by adding these two generating functions and using (19).
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For example here are all f -Stirling partitions of order (3, 2) when f = (x+ 1)(x+ 2):

label 1 2 0 −1

P1 : {11, 12, 31, 32} {21, 22} {} {} sP1 = 2

P2 : {11, 12, 31} {21, 22, 32} {} {} sP2 = 1

P3 : {11, 12, 31} {21, 22} {32} {} sP3 = 3

P4 : {11, 12, 31} {21, 22} {} {32} sP4 = 4

P5 : {11, 12, 32} {21, 22, 31} {} {} sP5 = 1

P6 : {11, 12} {21, 22, 31, 32} {} {} sP6 = 0

P7 : {11, 12} {21, 22, 31} {32} {} sP7 = 2

P8 : {11, 12} {21, 22, 31} {} {32} sP8 = 3

P9 : {11, 12, 32} {21, 22} {31} {} sP9 = 3

P10 : {11, 12} {21, 22, 32} {31} {} sP10 = 2

P11 : {11, 12} {21, 22} {31, 32} {} sP11 = 4

P12 : {11, 12} {21, 22} {31} {32} sP12 = 5

label 1 3 0 −1

P13 : {11, 12, 21, 22} {31, 32} {} {} sP13 = 0

P14 : {11, 12, 21} {31, 32} {22} {} sP14 = 1

P15 : {11, 12, 21} {31, 32} {} {22} sP15 = 2

P16 : {11, 12, 22} {31, 32} {21} {} sP16 = 1

P17 : {11, 12} {31, 32} {21, 22} {} sP17 = 2

P18 : {11, 12} {31, 32} {21} {22} sP18 = 3

Indeed H
(x+1)(x+2)
2,3 (q) = 2 + 4q+ 5q2 + 4q3 + 2q4 + q5. When r = 1 and a1 = 0, as sug-

gested by the anonymous referee, we recognize the following combinatorial interpretation
of q-Stirling numbers of the second kind due to Sagan [14, Theorems 4.1 and 1.1].

Corollary 3. For all j, n, k ∈ N, S(n, j)[k] is the number of partitions P of {1, . . . , n} in
j nonempty blocks with sP = k.

When we evaluate all polynomials in q = 1 we get

Corollary 4. For all j, n ∈ N, Hf
j,n is the number of f -Stirling partitions of order (n, j).

In particular, when r = 2, a1 = 0 and a2 = 1 (i. e. for the Legendre-Stirling numbers),
we obtain the following result.

Corollary 5. For all n, j, k ∈ N we have that LS
(j)
n [k] is the number of x(x+ 1)-Stirling

partitions P of order (n, j) such that sP = k.
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This interpretation is similar to one in [2, Theorem 2]. Here the authors fill j + 1 sets
with the numbers in (21), such that there exists a set (the “zero box”) which is the only
set that may be empty and it may not contain both copies of any number; the other j
sets are indistinguishable and each is non-empty; each such set contains both copies of
its smallest element and does not contain both copies of any other elements. Consider
an x(x + 1)-Stirling partition and for all m ≤ n if Am1 ≤ Am2 move the element m1 in
the set immediately lower than Am1 . It gives a bijective proof of the equivalence of both
interpretations.

Finally, for the Jacobi-Stirling numbers, Corollary 4 becomes:

Corollary 6. For all j, n, z ∈ N, JS
(j)
n is the number of x(x + z)-Stirling partitions of

order (n, j).

3.2 Combinatorial interpretation of Ef
j,n[k]

In [5], for any cycle of a permutation Egge defines the cycle maxima (resp. cycle minima)
as the maximum (resp. minimum) of the numbers in the cycle. We consider an r-tuple
of permutations π = (π1, . . . , πr) with πi ∈ Sn+ai for all i = 1, . . . , r and we say that π is
f-Stirling of order (n, j) if and only if

(a) each πi has exactly j + ai cycles;

(b) π1, π2, . . . , πr have the same cycle maxima less than n+ 1;

(c) the orbits of n, n+ 1, . . . , n+ ai in πi are pairwise distinct for all i ≤ r.

For example, an f -Stirling 2-tuple permutation of order (3, 2), with f = (x+1)(x+2),
is {(4)(3, 1)(2), (5)(4, 1)(3)(2)}. The 2-tuples σ1 = {(4)(3, 1)(2), (5)(4, 1)(2, 3)}, σ2 =
{(4)(3, 1)(2), (5)(4, 2)(3)(1)} and σ3 = {(4)(3, 1)(2), (5, 4)(3)(2)(1)} are not f -Stirling
since one of the previous conditions fails.

Given a permutation ρ ∈ Sn we define a word in the alphabet {1, . . . , n} as follows:
we write each cycle of ρ with the cycle maxima in the first place and we order the cycles
by their cycle maxima in decreasing order; then we delete the brackets. We call sρ this
word. For example, if ρ = (162)(45) ∈ S6 then sρ = 621543; if σ = (12)(45) ∈ S6 then
sσ = 654321. Note that we can obtain the same word from two different permutations:
for example if ρ1 = (12)(45) ∈ S6, ρ2 = (132)(654) ∈ S6 then sρ1 = sρ2 = 654321. Now
let s be a such word in the alphabet {1, . . . , n}. Let’s define

coinv(i)
s :=

∣∣∣{j ∈ {1, . . . , n}|j > i and i is on the left of j in s
}∣∣∣.

For example, if s = 623541 then coinv(2)
s = 3; coinv(5)

s = 0. We then set

coinvs :=
n∑
i=1

coinv(i)
s .

We call coinversions of s the number coinvs. Equivalently, coinvs is the minimum number
of exchanges of two consecutive elements in s to obtain the word n, n− 1, . . . , 2, 1.
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Proposition 7. Fix n, j, k ∈ N. Then Ef
j,n[k] is the number of f -Stirling r-tuples of

permutations π = (π1, . . . , πr) such that

r∑
i=1

coinvπi = k. (22)

Proof. For all n, j ≥ 0 we consider the following generating function

pfj,n(q) :=
∑
π

q
∑r
i=1 coinvπi

where the sum is over all f -Stirling r-tuples of permutations π = (π1, . . . , πr) satisfying
(22). We prove by induction on n that pnj,n(q) = Ef

j,n(q). If j = 0, by conditions (a) and
(c), we have only one possibility when n = 0. If n < j, condition (a) is never satisfied.
Indeed in both cases Ef

j,n(q) = 0 except Ef
0,0(q) = 1. Therefore, let’s suppose 1 ≤ j ≤ n.

We can make an f -Stirling r-tuple of permutations of order (n, j) in two distinct ways:
1) start from an f -Stirling r-tuple of permutations π of order (n− 1, j− 1), increase each
number of one unit and then add in each permutation πi (with abuse of notations) the
trivial cycle (1). In this case, for all i ≤ r coinv(1)

πi
= 0.

2) start from an f -Stirling r-tuple of permutations π of order (n − 1, j), increase each
number of one unit and then add the element 1 in each permutation πi. This operation
can be done in n − 1 + ai ways for all permutation πi (it is equivalent to put the new
number in the word sπi in all positions except the first) and coinv(1)

πi
can assume all values

between 0 and n− 2 + ai.
In the case 1) the generating function is clearly pfj−1,n−1(q) and in the case 2) the

generating function is given by [n−1+a1] · · · [n−1+ar]Ej,n−1. Now the result will follow
by adding these two generating functions and using (20).
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For example, here are all f -Stirling 2-tuples of permutations of order (3, 2) when
f = (x+ 1)(x+ 2).

σ1 : (4, 1)(3)(2); (5, 1)(4)(3)(2) coinv = 2 + 3 = 5

σ2 : (4, 1)(3)(2); (5)(4, 1)(3)(2) coinv = 2 + 2 = 4

σ3 : (4, 1)(3)(2); (5)(4)(3, 1)(2) coinv = 2 + 1 = 3

σ4 : (4, 1)(3)(2); (5)(4)(3)(2, 1) coinv = 2 + 0 = 2

σ5 : (4)(3, 1)(2); (5, 1)(4)(3)(2) coinv = 1 + 3 = 4

σ6 : (4)(3, 1)(2); (5)(4, 1)(3)(2) coinv = 1 + 2 = 3

σ7 : (4)(3, 1)(2); (5)(4)(3, 1)(2) coinv = 1 + 1 = 2

σ8 : (4)(3, 1)(2); (5)(4)(3)(2, 1) coinv = 1 + 0 = 1

σ9 : (4)(3)(2, 1); (5, 1)(4)(3)(2) coinv = 0 + 3 = 3

σ10 : (4)(3)(2, 1); (5)(4, 1)(3)(2) coinv = 0 + 2 = 2

σ11 : (4)(3)(2, 1); (5)(4)(3, 1)(2) coinv = 0 + 1 = 1

σ12 : (4)(3)(2, 1); (5)(4)(3)(2, 1) coinv = 0 + 0 = 0

σ13 : (4, 2)(3)(1); (5, 2)(4)(3)(1) coinv = 1 + 2 = 3

σ14 : (4, 2)(3)(1); (5)(4, 2)(3)(1) coinv = 1 + 1 = 2

σ15 : (4, 2)(3)(1); (5)(4)(3, 2)(1) coinv = 1 + 0 = 1

σ16 : (4)(3, 2)(1); (5, 2)(4)(3)(1) coinv = 0 + 2 = 2

σ17 : (4)(3, 2)(1); (5)(4, 2)(3)(1) coinv = 0 + 1 = 1

σ18 : (4)(3, 2)(1); (5)(4)(3, 2)(1) coinv = 0 + 0 = 0

Indeed, E
(x+1)(x+2)
2,3 (q) = 2 + 4q + 5q2 + 4q3 + 2q4 + q5. When r = 1 and a1 = 0, with the

same arguments of the proof of Proposition 7, we have the following new combinatorial
interpretation of q-Stirling numbers of the first kind.

Corollary 8. For all j, n, k ∈ N, S(n, j)[k] is the number of permutations ρ ∈ Sn with j
cycles with coinvsρ = k.

When we evaluate all polynomials in q = 1 we have

Corollary 9. For all j, n ∈ N, Ef
j,n is the number of f -Stirling r-tuples of permutations

of order (n, j).

For r = 2, a1 = 0 and a2 = 1, Corollary 9 reduces to [5, Theorem 2.5].

4 Combinatorial interpretations as polynomials

In this section we consider the numbers Hf
j,n and Ef

j,n as polynomials in a1, . . . , ar with r
a fixed positive integer and f(x) = (x+ a1) · · · (x+ ar).
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4.1 Combinatorial interpretation of Hf
j,n

Fix j, n ∈ N and consider exactly r copies of numbers 0, . . . , n, i. e.

01, 02, . . . , 0r, 11, 12, . . . , 1r, . . . . . . , n1, n2, . . . , nr. (23)

We consider a partition P of (23) and we say that P is r-Stirling of order (n, j) if P is a
partition of (23) into j + 1 subsets such that

• all the j + 1 subsets are nonempty;

• each subset contains the minimum number with all its indices;

• if n 6= 0 then no subset contains both 0i, 1i for any index i ≤ r.

Given such a partition P , we call 0-subset of P the only subset that contains 01, . . . , 0r.
For example, a 2-Stirling partition of order (3, 2) is ({01, 02, 32}, {11, 12, 31},

{21, 22}). The partitions P1 = ({01, 02, 21, 22}, {11, 12, 31, 32}, {}), P2 = ({01, 02, 11},
{12, 21, 22}, {31, 32}) and P3 = ({01, 02, 11, 12}, {21, 22}, {31, 32}) are not 2-Stirling since
one of the previous condition fails.

Proposition 10. For all j, n ∈ N and for all β1, . . . , βr ∈ N we have that the coefficient
of aβ11 a

β2
2 · · · aβrr in Hf

j,n is the number of r-Stirling partitions of order (n, j) whose 0-subset
contains βi + 1 numbers with index i for all i ∈ {1, . . . , r}.

Proof. For all n, j ≥ 0 we consider the following generating function

pj,n(a1, . . . , ar) :=
∑
P

a
P (1)
1 · · · aP (r)

r

where the sum is over all r-Stirling partitions of order (n, j) and P (i) + 1 is the number
of elements in the 0-subset having label i, for i = 1, . . . , r. We will prove by induction
that pj,n(a1, . . . , ar) = Hf

j,n. We set pj,n(β1, . . . , βr) the number of r-Stirling partitions P
of order (n, j) such that the 0-subset of P contains βi + 1 numbers with index i for all
i ∈ {1, . . . , r}. If n = 0 then we put the numbers 01, . . . , 0r in the same subset. Therefore
there exist r-Stirling partitions of order (0, j) if and only if j = 0. Indeed, we have
Hf

0,j = δ0,j. If j = 0, since we cannot put 01, . . . , 0r, 11, . . . , 1r in the same subset, then
necessarily n = 0.

Now, suppose that j, n ≥ 1 and the claim is true for smaller values. We can obtain
an r-Stirling partition P or by adding a subset {n1, . . . , nr} to an r-Stirling partition P1

of order (n − 1, j − 1), or by adding each number ni with 1 ≤ i ≤ r in one of the j + 1
subsets of an r-Stirling partition P2 of order (n − 1, j). The generating function for the
first case is clearly pj−1,n−1(a1, . . . , ar) and the generating function for the second case is
clearly (j + a1) · · · (j + ar)pj,n−1(a1, . . . , ar). Now the result follows by adding these two
generating functions and using (4) and (14).
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For example, here are all 2-Stirling partitions of order (3, 2).

P1 : {01, 02, 31, 32} {11, 12} {21, 22}
P2 : {01, 02, 31} {11, 12, 32} {21, 22}
P3 : {01, 02, 31} {11, 12} {21, 22, 32}
P4 : {01, 02, 32} {11, 12, 31} {21, 22}
P5 : {01, 02} {11, 12, 31, 32} {21, 22}
P6 : {01, 02} {11, 12, 31} {21, 22, 32}
P7 : {01, 02, 32} {11, 12} {21, 22, 31}
P8 : {01, 02} {11, 12, 32} {21, 22, 31}
P9 : {01, 02} {11, 12} {21, 22, 31, 32}
P10 : {01, 02, 21, 22} {11, 12} {31, 32}
P11 : {01, 02, 21} {11, 12, 22} {31, 32}
P12 : {01, 02, 22} {11, 12, 21} {31, 32}
P13 : {01, 02} {11, 12, 21, 22} {31, 32}

Indeed, Hf
2,3 = 5 + 3(a1 + a2) + 2a1a2.

In the case of Jacobi-Stirling numbers we have f = x(x+z): then, in our notation, we
have r = 2, a1 = 0, and a2 = z. To set a1 = 0 is equivalent to take only the monomials
without factor a1. By Proposition 10, we have to consider only the 2-Stirling partitions P
of order (n, j) of 01, 02, . . . , n1, n2 with the 0-subset without numbers labeled by 1 except
01. With this remark our interpretation in Proposition 10 reduces to

Corollary 11. For all j, n, β ∈ N the coefficient of zβ in JSj,n(z) is the number of 2-
Stirling partitions of order (n, j) whose 0-subset contains β+ 1 numbers with index 2 and
only one number with index 1 (necessarily 01).

This result is equivalent of the one given in [8, Theorem 2]. Here the authors consider
partitions of (23) such that each set contains both copies of its smallest element and
does not contain both copies of any other number. Consider a 2-Stirling partition whose
0-subset has no positive numbers labeled by 1. If m1,m2 are in the same set, with
1 ≤ m ≤ n, then move m1 in the 0-subset. This prove that the two interpretations are
equivalent.

4.2 Combinatorial interpretation of Ef
j,n

Fix j, n ∈ N and consider an r-tuple of permutations π = (π1, . . . , πr) ∈ Srn+1. We say
that π is r-Stirling of order (n, j) if and only if

(a’) each πi has exactly j + 1 cycles;

(b’) π1, π2, . . . , πr have the same cycle minima;

the electronic journal of combinatorics 19 (2012), #P60 12



(c’) if n 6= 0 the orbits of 1 and 2 are disjoint for all permutations πi.

For example, a 2-Stirling 2-tuple of permutations of order (3, 2) is {(1)(2, 4)(3),
(1)(2)(3, 4)}. The 2-tuples σ1 = {(1)(2, 4)(3), (1)(2, 3)(4)} and σ2 = {(1, 2)(3)(4),
(1, 2)(3)(4)} are not 2-Stirling since one of the previous condition fails.

Given a word w = w(1) . . . w(l) on the finite alphabet {1, . . . , n + 1}, a letter w(j)
is a left-to-right minimum of w if w(k) > w(j) for every k ∈ {1, . . . , j − 1}. We define
lrm(w) to be the number of left-to-right minima of w and given π ∈ Sn+1 we define
lrm(σ) = lrm(σ(1), σ2(1), . . . , 1) (the elements are only in the orbit of 1).

Proposition 12. For all n, j ∈ N and for all β1, . . . , βr ∈ N the coefficient of aβ11 a
β2
2 · · · aβrr

in Er
j,n is the number of r-Stirling r-tuples of permutations π = (π1, . . . , πr) such that

lrm(πi) = βi + 1 for all i = 1, . . . , r.

Proof. For all n, j ≥ 0 we consider the following generating function

pj,n(a1, . . . , ar) :=
∑
π

a
lrm(π1)−1
1 · · · alrm(πr)−1

r

where the sum is over all r-Stirling r-tuples of permutations π = (π1, . . . , πr) of order
(n, j). We will prove by induction that pj,n(a1, . . . , ar) = Ef

j,n. If j = 0, by conditions (a’)
and (c’), we have only one r-tuple of r-Stirling permutations of order (n, 0) when n = 0
and no one when n > 0. If n < j, condition (a’) is never satisfied. Indeed, in both cases
Ef
j,n = 0 except E0,0 = 1. Let’s now suppose that 1 ≤ j ≤ n. We can construct a r-Stirling

r-tuples of permutations π = (π1, . . . , πr) of order (n, j) in two different ways (and the
reader can check that in these ways we obtain all such r-tuples). The first possibility is
to start with an r-Stirling r-tuple of permutations of order (n− 1, j− 1) and add a trivial
cycle (n + 1) in each its permutation. In this case we preserve the orbit of (1), i. e. the
numbers of left-to-right minima of all permutations does not change.

The second possibility is to start with an r-Stirling r-tuple π′ = (π′1, . . . , π
′
r) of per-

mutations of order (n − 1, j) and add the number n + 1 in each permutation π′i. In this
case we increase the numbers of left-to-right minima if and only if we put n + 1 on the
right of 1 in the cycle notation of πi, i. e. π′i(1) = n+ 1, π′i(n+ 1) = πi(1) and π′(i) = π(i)
otherwise. The generating function for the first case is clearly pj−1,n−1(a1, . . . , ar) and the
generating function for the second case in clearly (a1 + n− 1) · · · (ar + n− 1)pj,n−1. Now
the result follows by adding these two generating functions and using (5) and (15).
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For example, here are all 2-Stirling 2-tuples of permutations of order (3, 2).

σ1 : (1, 4)(2)(3); (1, 4)(2)(3) lrm = (2, 2)

σ2 : (1, 4)(2)(3); (1)(2, 4)(3) lrm = (2, 1)

σ3 : (1, 4)(2)(3); (1)(2)(3, 4) lrm = (2, 1)

σ4 : (1)(2, 4)(3); (1, 4)(2)(3) lrm = (1, 2)

σ5 : (1)(2, 4)(3); (1)(2, 4)(3) lrm = (1, 1)

σ6 : (1)(2, 4)(3); (1)(2)(3, 4) lrm = (1, 1)

σ7 : (1)(2)(3, 4); (1, 4)(2)(3) lrm = (1, 2)

σ8 : (1)(2)(3, 4); (1)(2, 4)(3) lrm = (1, 1)

σ9 : (1)(2)(3, 4); (1)(2)(3, 4) lrm = (1, 1)

σ10 : (1, 3)(2)(4); (1, 3)(2)(4) lrm = (2, 2)

σ11 : (1, 3)(2)(4); (1)(2, 3)(4) lrm = (2, 1)

σ12 : (1)(2, 3)(4); (1, 3)(2)(4) lrm = (1, 2)

σ13 : (1)(2, 3)(4); (1)(2, 3)(4) lrm = (1, 1)

We have 5 couples of permutations with left-to-right minima (1, 1), 3 with left-to-right
minima (2, 1) and (1, 2) and 2 with left-to-right minima (2, 2). Indeed, Ef

2,3 = 5 + 3(a1 +
a2) + 2a1a2.

In the case of Jacobi-Stirling numbers we have f = x(x+z). Therefore, in our notation,
we have r = 2, a1 = 0, and a2 = z. To set a1 = 0 is equivalent to take only the monomials
without factor a1. By Proposition 12, we have to consider only the 2-Stirling 2-tuples of
permutations π = (π1, π2) with the orbit of 1 in π1 be trivial. Therefore, Proposition 12
reduces to

Corollary 13. For all n, j, β ∈ N the coefficient of zβ in Jcj,n(z) is the number of 2-
Stirling 2-permutations (π1, π2) such that π1(1) = 1 and lrm(π2) = β + 1.

Obviously, π1 can be identified with a permutation of Sn. With this identification, our
interpretation is the same of the one given in [8, Theroem 7].

5 Developments on some generalization of symmetric

functions

In this section we analyze other functions introduced in [3, 9] which generalize the el-
ementary and complete symmetric functions. We give a combinatorial interpretation if
we evaluate them in f(1), f(2), . . . as done in the previous sections. In particular, this
approach is used to obtain a new interpretation of the Jacobi-Stirling numbers.

In [9, Section 7] Gessel and Viennot introduce the generalized Schur functions, defined
on a set X = {x1, . . . , xn} of indeterminates, with an order relation R, in the following
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way

hRk (x1, . . . , xn) :=
∑
i1,...,ik

xi1xi2 · · ·xik (24)

where the sum is over all indices such that i1 R i2 R · · ·R ik. If k = 0 then hR0 = 0. If
we consider the classical order relations < or ≤ we have the elementary or complete
symmetric functions. In [3, Section 5] the author turns his attention to the relation Rt

defined as follows: for all t ∈ N and for all i, j ∈ N, we set xi Rt xj if and only if j− i ≥ t.
Another generalization of the elementary symmetric functions is given in [3, Section 5] as
follows: for all t, n, k ∈ P we set

a
(t)
k (x1, . . . , xn) :=

∑
i1,...,ik

xi1xi2 · · ·xik (25)

where the sum is over all 1 ≤ i1 < · · · < ik ≤ n such that ij ≡ j (mod t) for all

j = 1, . . . , k. For example, a
(2)
2 (x1, . . . , x6) = x1x2 + x1x4 + x1x6 + x3x4 + x3x6 + x5x6.

In the next two subsections we give combinatorial interpretations of
hRtk (f(1), . . . , f(n)) and a

(t)
k (f(1), . . . , f(n)), where f is the polynomial with all real zeros

and nonnegative coefficients.

5.1 Combinatorial interpretation of hRt
n

Given r ∈ N, a1, . . . , ar ∈ N, let f be the polynomial f(x) = (x+a1) · · · (x+ar). Let n ∈ N
and σ ∈ Sn be a permutation. We decompose σ in disjoint cycles and we write each cycle
with its minimum at the first place. Then we label each cycle with its minimum and order
the cycles in increasing order of their minima. Therefore, examples of decompositions are
(136)(25)(4) and (1652)(34). We say that two or more permutations have the same ordered
cycle structure if in the previous notation, the sequences of lengths of the cycles are equals
(in the following we denote by l(c) the length of a cycle c). For example, (136)(25)(4) and
(123)(45)(6) have the same ordered cycle structure, while (136)(25)(4) and (15)(234)(6)
no.

We say that one or more permutations have the same ordered cycle structure up to
k if the first k elements of the sequences of the lengths of the cycles are equals for all
permutations and the lengths of remaining cycles (if they exist) are equal to 1. For
example (132)(45) and (176)(24)(3)(5) have the same ordered cycle structure up to 2,
(132)(45) and (176)(24)(35) no.

Now fix a permutation σ with ordered cycles ci1 , . . . , cir for some integer r ∈ N. Each
cycle is labeled by its minimum element. We define a distance between two cycles via the
following natural definition

d(ci, cj) :=
∣∣{ck cycle of σ|i < k ≤ j}

∣∣, (26)

if i ≤ j, else d(ci, cj) := d(cj, ci). It is obvious that if two permutations have the same
ordered cycle structure, then the distances between corresponding disjoint cycles are the
same. Now we can show the following result.
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Proposition 14. Let r ∈ P, a1, . . . , ar ∈ N and f(x) = (x+ a1) · · · (x+ ar). Then for all
n, k ∈ N and t ≥ 2, hRtn (f(1), . . . , f(k)) is the number of elements in Sk+1+a1×· · ·×Sk+1+ar

such that all permutations have the same ordered cycle structure up to k + 1 − n, each
one with k + 1 − n + ai cycles and length at most 2 and if ci, cj are two cycles with
l(ci) = l(cj) = 2 then d(ci, cj) ≥ t− 1.

Proof. If n = 0 then each permutation in Sk+1+ai as in the statement has k+1+ai disjoint
cycles. Therefore it is the trivial permutation, indeed hRt0 (f(1), . . . , f(k)) = 1. Moreover,
if k < n then k + 1− n ≤ 0 and therefore, since the permutations have the same ordered
cycle structure up to k+1−n, all cycles are trivial; but in this case k+1−n+ai = k+1+ai
and this is impossible. Indeed, in this case hRtn (f(1), . . . , f(t)) = 0.

Let’s suppose that n ≥ 1, k ≥ n and the thesis true for smaller values of n. We fix an
r-tuple of permutations as in the statement and we turn our attention to the element 1 in
each permutation. By assumption, all the first cycles have the same length, in particular
they are all trivial or they have length 2. In the first case we delete the trivial cycle (1) in
each permutation and decrease all other elements by one. Therefore we have elements in
Sk+a1×· · ·×Sk+ar whose permutations have the same ordered cycle structure up to k−n
and k−n+ai cycles. By induction, their number is hRtn (f(1), . . . , f(k−1)). In the second
case, the first cycle of the i-th permutation contains a number in {2, . . . , k + 1 + ai}. In
all permutations we delete the first cycle (there are

∏r
i=1(k+ ai) = f(k) different ways to

have such deleted cycles) and rename all remaining numbers preserving the natural order
of them. We get permutations in Sk−1+ai with k−n+ai cycles. Moreover, by assumption
in each permutation the first t−2 cycles are trivial (check the distances) and then we can
delete them. We get therefore permutations in S(k−t)+1+ai with (k − t)− (n− 1) + 1 + ai
cycles. Their number is by induction hRtn−1(f(1), . . . , f(k − t)).

By definition, it is simple to check that for all n, k ≥ 1

hRtn (x1, . . . , xk) = hRtn (x1, . . . , xk−1) + xkh
Rt
n−1(x1, . . . , xk−t). (27)

This complete the proof.

For example, let f(x) = x(x + 1), t = 2, k = 3, n = 2. It is simple to check that
hR2
2 (f(1), f(2), f(3)) = f(1)f(3) = 24. We want obtain elements in S4 × S5 as in the

previous statement. The first permutation will be (12)(34), (13)(24) or (14)(23); the
second permutation, which has the same ordered cycle structure up to 2 of the first,
will be one of (12)(34)(5), (12)(35)(4), (13)(24)(5), (13)(25)(4), (14)(23)(5), (14)(25)(3),
(15)(23)(4), (15)(24)(3). Indeed, we have 24 possibilities.

If f(x) = x(x + 1), t = 3, k = 4, n = 2, then hR3
2 (f(1), f(2), f(3), f(4)) = f(1)f(4) =

40. In this case we want elements in S5 × S6 as in the statement. The first permu-
tation is one between (12)(3)(45), (13)(2)(45), (14)(2)(35) and (15)(2)(34); the second
permutation is one between (12)(3)(45)(6), (12)(3)(46)(5), (13)(2)(45)(6), (13)(2)(46)(5),
(14)(2)(35)(6), (14)(2)(36)(5), (15)(2)(34)(6),
(15)(2)(36)(4), (16)(2)(34)(5), (16)(2)(35)(4). We have 40 possibilities.

In [3] we find the polynomials h̄Rtn (x1, . . . , xk) =
∑

i1,...,ir
xi1 · · ·xir , that are the same

as hRtn but with another condition i1 ≥ t. In this case, the interpretation is the same as
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that in Proposition 14 but the ordered cycle structure is up to k − n− t + 2. The proof
is essentially the same.

It is possible to consider hRtn (f(1), . . . , f(k)) as polynomial in a1, . . . , ar. For this
purpose we introduce the following definition. Given a permutation σ we say that a
number n is a big number if in the expansion of σ in ordered disjoint cycles, n is greater
than each number on its right. For example in (15)(24)(3) the big numbers are 5, 4, 3; in
(14)(25)(3) the big numbers are 5, 3.

Proposition 15. Let r ∈ P,f(x) = (x+ a1) · · · (x+ ar) and β1, . . . , βr ∈ N. Then for all
n, k ∈ N and t ≥ 2, the coefficient of aβ11 · · · aβrr in hRtn (f(1), . . . , f(k)) is the number of
elements in Srk+2 such that all permutations have the same ordered cycle structure up to
k+ 1−n, each one with k+ 2−n cycles and length at most 2; if ci, cj are two cycles with
l(ci) = l(cj) = 2 then d(ci, cj) ≥ t − 1 and for all i = 1, . . . , r, the i-th permutation has
βi + 1 big numbers.

We omit the proof which is similar to that of Proposition 14. The only difference is in
the case with all the first cycles having lengths 2. When the maximum number is in the
first cycle of the i-th permutation (so this number is big), we have a contribution of the
indeterminate ai.

5.2 Combinatorial interpretation of a
(t)
n

In this subsection we give a combinatorial interpretation of a
(t)
n (f(1), . . . , f(k)), where

f is as usual. For permutations, we use the same notation introduced in the previous
subsection.

Proposition 16. Let r ∈ P, a1, . . . , an ∈ N and f(x) = (x+ a1) · · · (x+ ar). Then for all

n, k ∈ N and t ≥ 1 a
(t)
n (f(1), . . . , f(k)) is the number of elements in Sk+1+a1×· · ·×Sk+1+ar

such that all permutations have the same ordered cycle structure up to k+ 1−n, each one
with k + 1− n+ ai cycles and if the j-th cycle is not trivial then k + 1− n ≡ j mod t.

Proof. If n = 0 then each permutation in Sk+1+ai as in the statement has k+1+ai disjoint
cycles, then it is the trivial permutation, indeed at0(f(1), . . . , f(k)) = 1. Moreover, if k < n
then k+ 1−n ≤ 0 and therefore, by hypothesis of ordered cycle structure up to k+ 1−n,
all cycles are trivial; but in this case k + 1 − n + ai = k + 1 + ai and this is impossible.
Indeed, in this case a

(t)
n (f(1), . . . , f(k)) = 0.

Now let n ≥ 1, k ≥ n and the thesis true for smaller values of n. We fix an r-
tuple of permutation as in the statement and we analyze the cycles labeled by 1. If
k 6≡ n mod t then they are all trivial, and we delete them. In this way we may obtain
a
(t)
n (f(1), . . . , f(k − 1)) different r-tuples by induction. If k ≡ n mod t, then the cycles

labeled by 1 have arbitrary lengths (but all the same). Let we assume that these lengths
are equal to h + 1 with h ≥ 0. Then for all i ≤ r the first cycle in the i-th permutation
can be choosen between (k + ai)(k + ai − 1) · · · (k + ai − h+ 1) different cycles (only one
choose if h = 0). By multiplying over i we get f(k) · · · f(k − h + 1). We delete now all
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cycles labeled by 1 and so we have elements in Sk−h+a1 × · · · × Sk−h+ar that by induction

are a
(t)
n−h(f(1), . . . , f(k − h− 1)).

It is simple to check by definition that a
(t)
n (x1, . . . , xk) = a

(t)
n (x1, . . . , xk−1) if k 6≡ n

mod t and that if n ≡ k mod t then
a
(t)
n (x1, . . . , xk) =

∑
h≥0 xkxk−1 · · ·xk−h+1a

(t)
n−h(x1, . . . , xk−h−1). Thus the proof is com-

pleted.

If t = 1, a
(1)
n (x1, . . . , xk) = en(x1, . . . , xk). We then have

Corollary 17. For all n, k ∈ N, en(f(1), . . . , f(k)) is the number of elements in Sk+1+a1×
· · · × Sk+1+ar such that all permutations have the same ordered cycle structure up to
k + 1− n, each one with k + 1− n+ ai cycles.

In the particular case of the Jacobi-Stirling numbers of the first kind, by (18) we have
the following new interpretation.

Corollary 18. For n, k, z ∈ N Jc(n, k) is the number of elements in Sn × Sn+z whose
permutations have the same ordered cycle structure up to k and the number of cycles are
respectively k and k + z.

Obviously, we can apply Corollary 18 to the Legendre-Stirling numbers of the first
kind just by setting z = 1. For example, we know that Lc(3, 2) = 8. Indeed, by Corol-
lary 18 we obtain the following elements of S3×S4: (12)(3), (12)(3)(4); (12)(3), (13)(2)(4);
(12)(3), (14)(2)(3); (13)(2), (12)(3)(4);
(13)(2), (13)(2)(4); (13)(2), (14)(2)(3); (1)(23), (1)(23)(4); (1)(23), (1)(24)(3).

It is possible to consider a
(t)
n (f(1), . . . , f(k)) as polynomial in a1, . . . , ar.

Proposition 19. Let r ∈ P, β1, . . . , βn ∈ N and f(x) = (x + a1) · · · (x + ar). Then for

all n, k ∈ N and t ≥ 1 the coefficient of aβ11 · · · aβrr in a
(t)
n (f(1), . . . , f(k)) is the number of

elements in Srk+2 such that all permutations have the same ordered cycle structure up to
k+1−n, each one with k+2−n cycles and if the j-th cycle is not trivial then k+1−n ≡ j
mod t; moreover, the i-th permutation has exactly βi + 1 big numbers.

The proof is the same as the one in Proposition 16. In the i-th permutation each big
number give us a contribution of the indeterminate ai.

In the case of the Jacobi-Stirling numbers, we consider the polynomial f(x) = (x +
a1)(x+z) and consider only the monomial without a1 (it is equivalent to set a1 = 0). Then
we have exactly one big number in the first permutation of S2

k+2 as in Proposition 19.
This number is k+ 2 and it is necessarily in a trivial cycle. Therefore we can omit it and
by (18) we have the following result.

Corollary 20. For all n, j, b ∈ N the coefficient of zb in Jc(n, j) is the number of elements
in Sn × Sn+1 such that both permutations have the same ordered cycle structure up to j,
with respectively j and j + 1 cycles and the second permutation has exactly k + 1 big
numbers.
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For example, if n = 3, j = 2, Jc(3, 2) = 5 + 3z. The elements of S3 × S4

whose second permutation has one big number are (12)(3), (12)(3)(4); (12)(3), (13)(2)(4);
(13)(2), (12)(3)(4); (13)(2), (13)(2)(4); (1)(23), (1)(23)(4); the other 3 elements are
(1)(23), (1)(24)(3); (12)(3), (14)(2)(3); (13)(2), (14)(2)(3).

5.3 Another interpretation of hn(f(1), . . . , f(k))

In the previous subsection we have a combinatorial interpretation of the Jacobi-Stirling
numbers of the first kind, but not of the second kind. In this subsection we want to
use an idea similar to the ordered cycle structure to obtain another combinatorial in-
terpretation for the Jacobi-Stirling numbers of the second kind and, more generally, of
hn(f(1), . . . , f(k)), with f as usual.

Let we denote with S
h

n be the set of ordered sequences of h elements, where the i-th
element is an ordered finite sequence (maybe empty) of integers in {i, i+1, . . . , n}. Given

an element s ∈ Shn we say that s has dimension k if the sum of the cardinality of all the

h sequences is k. For example, in S
3

4 (3, 1, 4), (4, 4, 3, 4), () is an element of dimension 7.

As done for the permutations, we say that two elements in S
h

m and S
h

n have the same
ordered structure if the cardinalities of the sequences of both elements are equal. For
example (3, 1, 2), (4, 4), (3) and (1, 2, 1), (3, 3), (3) have the same ordered structure.

Proposition 21. Let r ∈ P, a1, . . . , ar ∈ N and f(x) = (x + a1) · · · (x + ar). Then for

all n, k ∈ N hn(f(1), . . . , f(k)) is the number of elements in S
k

k+a1
× · · · × Skk+ar with the

same ordered structure and dimension n.

Proof. If n = 0 then we have only the empty sequence, indeed h0(f(1), . . . , f(k)) = 1.

If k = 0 then S
0

n has the trivial element only if n = 0. Indeed, hn(0) = 0 for n ≥ 1.
Now let n ≥ 1 and suppose that the thesis is true for smaller values of n. Fix an element

s = (si)i≤k ∈ S
k

k+a1
× · · · × Skk+ar . For all i ≤ k the cardinality of the first sequence in

si is the same for all i and it ranges between 0 and n: we call c this number. Now each
number in the first sequence in si is in {1, . . . , k+ai}. We delete the first sequence in each

si and we decrease all numbers by one. We obtain elements in S
k−1
k−1+a1 × · · · × S

k−1
k−1+ar

with dimension n− c. By induction there are hn−c(f(1), . . . , f(k − 1)) of such elements.
In formula, the cardinality of Sk+a1 × · · · × Sk+ar is

n∑
c=0

hn−c(f(1), . . . , f(k − 1))
r∏
i=1

(k + ai)
c =

n∑
c=0

hn−c(f(1), . . . , f(k − 1))f(k)c

=hn(f(1), . . . , f(k)).

Thus the proof is completed.

By (18) we have

Corollary 22. Let n, j, z ∈ N. Then JS(n, j) is the number of elements in S
j

j × S
j

j+z

with the same ordered structure and dimension n− j.

the electronic journal of combinatorics 19 (2012), #P60 19



We now give an example when z = 1. We know that LS(3, 2) = 8. The elements in

S
2

2×S
2

3 as in Corollary 22 are the following: (1)(), (1)(); (1)(), (2)(); (1)(), (3)(); (2)(), (1)();
(2)(), (2)(); (2)(), (3)(); ()(2), ()(2); ()(2), ()(3).

If we consider hn(f(1), . . . , f(k)) as polynomial in a1, . . . , ar we have the following
result.

Proposition 23. Let r ∈ P, β1, . . . , βr ∈ N and f(x) = (x + a1) · · · (x + ar). Then for
all n, k ∈ N the coefficient of aβ11 · · · aβrr in hn(f(1), . . . , f(k)) is the number of elements

s = (si)i≤r ∈ (S
k

k+1)
r with the same ordered structure, dimension n and such that k + 1

appears βi times in all sequences of si for all i ≤ r.

The proof is essentially the same as that of Proposition 21. In the case of the Jacobi-
Stirling numbers of the second kind, this proposition becomes

Corollary 24. Let n, j, b ∈ N. Then the coefficient of zb in JS
(j)
n (z) is the number of

elements in Sj × Sj+1 with the same ordered structure and dimension n − j, such that
j + 1 appears b times.

5.4 Monomial symmetric functions

In this last subsection we want to give a simple combinatorial interpretation of the mono-
mial symmetric functions, evaluated in f(1), . . . , f(k), where f is as usual.

Let λ = (λ1, . . . , λt) be a partition of n = |λ| and let k be an integer, k ≥ t. Then the
monomial symmetric function associated to λ in x1, . . . , xk is

mλ(x1, . . . , xk) =
∑
σ

xλ1σ(1) · · ·x
λk
σ(k)

where the sum is over the group of permutations Sk modulo the stabilizer of λ. We
will give a combinatorial interpretation of mλ(f(1), . . . , f(k)). Let u = (u1, . . . , uk),v =
(v1, . . . , vk) ∈ Nk be two sequences of k integers. We say that u ≥ v if ui ≥ vi for all
i ≤ k. Moreover, if m ∈ N we say that u ≤ m if ui ≤ m for all i ≤ k.

Fix a positive integer k and a partition λ = (λ1, . . . , λt), with k ≥ t. Let
n = |λ|. We define Sλ,k as the set of n-tuples of elements ≤ k in increasing order
such that {m(1),m(2), . . . ,m(k)} = {λ1, . . . , λk} as multiset, where m(i) denotes the
multiplicity of i and λi = 0 for all i > t. For example, if k = 3, λ = (2, 1) then
Sλ,k = {(1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 3, 3), (2, 2, 3), (2, 3, 3)}.

Proposition 25. Let r ∈ P, a1, . . . , ar ∈ N and f(x) = (x + a1) · · · (x + ar). Then
mλ(f(1), . . . , f(k)) is the number of r + 1 sequences (s0, . . . , sr), not necessarily ordered,
each one with n = |λ| elements, such that s0 ∈ Sλ,k and s0 ≤ si ≤ k + ai for all i ≤ k.

Proof. Let s0 = (j1, . . . , jn) ∈ Sλ,k. Then for all i ≤ r there are (k + ai − j1 + 1)(k + ai −
j2 + 1) · · · (k + ai − jn + 1) sequences si such that s0 ≤ si ≤ k + ai. Therefore there are

r∏
i=1

( n∏
h=1

(k + ai − jh + 1)

)
=

n∏
h=1

f(k − jh + 1) =
k∏
j=1

f(j)m(k+1−j,s0)
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sequences (s0, . . . , sr) as in the statement, with s0 fixed (m(j, s0) denotes the multiplicity
of j in s0). Now we sum over s0 and by virtue of definition of Sλ,k we have the number of
all such sequences is

∑
s0∈Sλ,k

k∏
j=1

f(j)m(k+1−j,s0) = mλ(f(1), . . . , f(k)).

When λ = (1, 1, . . . , 1) we have that mλ(x1, . . . , xr) = e|λ|(x1, . . . , xr). Therefore we
have the following result.

Corollary 26. Let n, j, z ∈ N. Then Jc
(j)
n (z) is the number of sequences (s0, s1, s2),

each one with n − j elements, such that the elements of s0 are strictly increasing and
s0 ≤ s1 ≤ k and s0 ≤ s2 ≤ n−1 + z (the sequences s1 and s2 are not necessarily ordered).

For example, let n = 3, j = 1, z = 1. Then Lc
(1)
3 = 12. Here we list all 12

sequences satysfying the previous statement: {(1, 2), (1, 2), (1, 2)}, {(1, 2), (1, 2), (1, 3)},
{(1, 2), (1, 2), (2, 2)}, {(1, 2), (1, 2), (2, 3)}, {(1, 2), (1, 2), (3, 2)}, {(1, 2), (1, 2), (3, 3)},
{(1, 2), (2, 2), (1, 2)}, {(1, 2), (2, 2), (1, 3)}, {(1, 2), (2, 2), (2, 2)}, {(1, 2), (2, 2), (2, 3)},
{(1, 2), (2, 2), (3, 2)}, {(1, 2), (2, 2), (3, 3)}.

If we want to consider mλ(f(1), . . . , f(k)) as polynomial in a1, . . . , ar then we have the
following interpretation.

Proposition 27. Let r ∈ P, β1, . . . , βr ∈ N and f(x) = (x + a1) · · · (x + ar). Then the
coefficient of aβ11 · · · aβrr in mλ(f(1), . . . , f(k)) is the number of r+1 sequences (s0, . . . , sr),
not necessarily ordered, each one with n = |λ| elements, such that s0 ∈ Sλ,k and s0 ≤ si ≤
k + 1 for all i ≤ k, such that k + 1 appears βi times in si.

Corollary 28. Let n, j, b ∈ N. Then the coefficient of zb in Jc
(j)
n (z) is the number of

sequences (s0, s1, s2), not necessarily ordered, each one with n = |λ| elements, such that
s0 has its elements pairwise distinct and s0 ≤ s1 ≤ k and s0 ≤ s2 ≤ k+ 1, such that k+ 1
appears b times.

6 Final remarks

In this section we recall properties of symmetric functions and apply them to the special
symmetric functions Hf

j,n and Ef
j,n. It is well known (see e.g. [12, Chapter I.2]) that the

generating functions of the elementary and complete symmetric functions are respectively

n∑
r=0

er(x1, . . . , xn)tr =
n∏
i=1

(1 + xit)

∞∑
r=0

hr(x1, . . . , xn)tr =
n∏
i=1

1

1− xit
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Therefore, the generating functions of Ef
j,n and Hf

j,n are respectively

n∑
j=0

Ef
j,nt

n−j =
n−1∏
i=1

(1 + f(i)t)

∞∑
n=j

Hf
j,nt

n−j =

j∏
i=1

1

1− f(i)t

or, equivalently,

n∑
j=0

Ef
j,nt

j = t

n−1∏
i=1

(t+ f(i)) (28)

∞∑
n=j

Hf
j,nt

n =

j∏
i=1

t

1− f(i)t
. (29)

We have that the matrices Hf = (Hf
j,n)j,n∈N and Ef = ((−1)j+nEf

j,n)j,n∈N are inverses
of each other. In fact, for fixed j, n′ ∈ N∏n′−1

i=1 (1− f(i)t)∏j
l=1(1− f(l)t)

=

( ∞∑
n=0

Hf
j,nt

n−j
)( n′∑

j′=0

Ef
j′,n′(−t)n

′−j′
)

(30)

=
∞∑
n=0

n′∑
j′=0

(−1)j
′+n′

Hf
j,nE

f
j′,n′t

n−j+n′−j′ . (31)

When we extract the coefficient of tn
′−j, by (31), we get the entry j, n′ of the product

HfEf . If n′ < j then tn
′−j has coefficient 0 in the RHS of (30); if n′ = j the LHS of (30)

is 1
1−f(j)t and therefore the coefficient of t0 is 1; if n′ > j the LHS of (30) is a polynomial

of degree n′− j− 1 and therefore the coefficient of tn
′−j is 0. So the product HfEf is the

(infinite) identity matrix.
Now, for all j ≥ 1, set 〈x〉j := x(x−f(1))(x−f(2)) · · · (x−f(j−1)) and set 〈x〉0 := 1.

By previous remark and by (28) we have

xn =
n∑
j=0

Hf
j,n〈x〉j (32)

〈x〉n =
n∑
j=0

Ef
j,nx

j. (33)

Finally, since f has all real and nonpositive zeros, f is injective if it is evaluated on
R+. Thus, it is possible to use the Newton interpolation formula

xn =
n∑
j=0

(
j∑
r=0

xnr
j∏

k=0,k 6=r

(xr − xk)

)
j−1∏
i=0

(x− xi)
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in (32) to obtain the following expression for the Hf
j,n when n ≥ 1 (we set x0 = 0)

Hf
j,n =

j∑
r=1

f(r)n−1

j∏
k=1,k 6=r

(f(r)− f(k))

.
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