
On the Ramsey Number R(4, 6)

Geoffrey Exoo
Department of Mathematics and Computer Science

Indiana State University
Terre Haute, IN 47809

ge@cs.indstate.edu

Submitted: Mar 6, 2012; Accepted: Mar 23, 2012; Published: Mar 31, 2012

Mathematics Subject Classifications: 05C55, 05D10

Abstract

The lower bound for the classical Ramsey number R(4, 6) is improved from 35
to 36. The author has found 37 new edge colorings of K35 that have no complete
graphs of order 4 in the first color, and no complete graphs of order 6 in the second
color. The most symmetric of the colorings has an automorphism group of order 4,
with one fixed point, and is presented in detail. The colorings were found using a
heuristic search procedure.

This note deals with a new lower bound for the classical Ramsey number R(4, 6).
Recall that the classical Ramsey number R(s, t) is the smallest integer n such that in any
two-coloring of the edges of Kn there is a monochromatic copy of Ks in the first color or
a monochromatic copy of Kt in the second color. A recent summary of the state of the
art for Ramsey numbers can be found in the Dynamic Survey [10].

Theorem 1. R(4, 6) ≥ 36.

Proof. The proof is given by the coloring of K35 which can be derived from Table 1, below.
This table contains an adjacency list for the color one graph of a two-coloring of K35. All
other edges are assigned color two.

This coloring improves the lower bound for R(4, 6) from 35 to 36, five short of the
upper bound of 41 [8]. The coloring has an automorphism group of order 4, with exactly
one fixed point [7]. It was found using a method that the author had discarded many
years ago, a method we now discuss.

A number of the lower bounds given in the table of two color classical Ramsey numbers
(see Table 1 in the Dynamic Survey [10]) were established by this author using computer
search techniques. Three of these, R(4, 6), R(3, 10), and R(5, 5) [1, 2, 3], are the smallest
unsettled cases for two color classical Ramsey numbers. They are also, in the opinion of
this author, the only unsettled cases where optimal colorings can be found using computer

the electronic journal of combinatorics 19 (2012), #P66 1



0: 2 6 7 9 11 13 15 17 18 20 21 23 24 26 28 32

1: 3 4 5 9 11 13 15 17 18 21 22 23 25 27 29 33

2: 0 4 5 8 10 12 14 16 19 20 21 22 25 27 28 32

3: 1 6 7 8 10 12 14 16 19 20 22 23 24 26 29 33

4: 1 2 7 8 10 11 13 17 19 20 22 24 26 31 34

5: 1 2 6 8 9 11 14 17 19 21 23 24 26 30 34

6: 0 3 5 9 10 11 12 16 18 21 23 25 27 31 34

7: 0 3 4 8 9 10 15 16 18 20 22 25 27 30 34

8: 2 3 4 5 7 9 12 15 17 23 24 27 29 31 32

9: 0 1 5 6 7 8 13 14 16 22 25 26 29 31 32

10: 2 3 4 6 7 11 13 14 18 21 25 26 28 30 33

11: 0 1 4 5 6 10 12 15 19 20 24 27 28 30 33

12: 2 3 6 8 11 13 15 17 18 20 22 25 31 33

13: 0 1 4 9 10 12 14 16 19 21 23 24 31 33

14: 2 3 5 9 10 13 15 17 18 20 22 24 30 32

15: 0 1 7 8 11 12 14 16 19 21 23 25 30 32

16: 2 3 6 7 9 13 15 19 21 24 27 29 32 34

17: 0 1 4 5 8 12 14 18 20 25 26 29 32 34

18: 0 1 6 7 10 12 14 17 22 24 27 28 33 34

19: 2 3 4 5 11 13 15 16 23 25 26 28 33 34

20: 0 2 3 4 7 11 12 14 17 23 27 29 30 31

21: 0 1 2 5 6 10 13 15 16 22 26 29 30 31

22: 1 2 3 4 7 9 12 14 18 21 26 28 30 31

23: 0 1 3 5 6 8 13 15 19 20 27 28 30 31

24: 0 3 4 5 8 11 13 14 16 18 26 27 32 33 34

25: 1 2 6 7 9 10 12 15 17 19 26 27 32 33 34

26: 0 3 4 5 9 10 17 19 21 22 24 25 28 29

27: 1 2 6 7 8 11 16 18 20 23 24 25 28 29

28: 0 2 10 11 18 19 22 23 26 27 29 31 34

29: 1 3 8 9 16 17 20 21 26 27 28 30 34

30: 5 7 10 11 14 15 20 21 22 23 29 34

31: 4 6 8 9 12 13 20 21 22 23 28 34

32: 0 2 8 9 14 15 16 17 24 25 33

33: 1 3 10 11 12 13 18 19 24 25 32

34: 4 5 6 7 16 17 18 19 24 25 28 29 30 31

Table 1: A (4, 6)-coloring of K35.
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methods that manipilate colorings one edge at a time. These three lower bounds were es-
tablished using one (or more) of the following computer search methods. In each case, the
object of the method is to produce colorings with no monochromatic subgraphs of order
s in color one, and no monochomatic subgraphs of order t in color two. Monochromatic
copies of such subgraphs in a coloring will be referred to as bad subgraphs.

Method A: One begins with a randomly generated edge coloring for a complete graph
whose order n is small enough so that a good coloring can be obtained easily. Then
using simulated annealing [6], or a synthesis of simulated annealing and tabu search
[5], the coloring is transformed into a good coloring by looking at individual edges,
and choosing the color that minimizes the number of bad subgraphs. When all bad
subgraphs have been eliminated, n is incremented, and the process is repeated.

Method B: This method is different from Method A in two respects. Instead of begin-
ning with a graph of small order, one begins with a complete graph of the desired
order (e.g., large enough to improve the lower bound for the Ramsey number). But
the important difference pertains to the objective function. Instead of simply recol-
oring edges so as to minimize the number of bad subgraphs, we add a term to the
objective that attempts to maximize the number of monochromatic induced copies
of P4, the path on 4 vertices. The importance of the P4 count in the objective can
be as great or greater than the bad subgraph counts.

Method C: Here one begins by searching for highly symmetric colorings, for example
circle colorings (or more generally, Cayley colorings), that have relatively few bad
subgraphs, and that have one additional property. They must have individual edges
(as opposed to orbits) that, when recolored, reduce the number of monochromatic
subgraphs. Once such a coloring is found, one proceeds as in Method A.

One further remark on Method B should be made. Often we used a somewhat more
detailed variation of the method. There are 11 isomorphism classes of graphs of order 4,
and hence 11 essentially different ways to two-color the edges of a subgraph of order 4
in a two-coloring of Kn. If we count the number of vertex sets of size four which induce
each of these 11 possible colorings, we produce a vector of length 11. Edges can be thus
recolored so as to minimize the distance between the computed vector and a postulated
target vector. The target vector might be determined by looking at known good colorings,
by a higher level optimization process, or by sheer speculation. Experience has shown
that maximizing the number of induced P4’s is the key ingredient.

All three methods have successfully produced lower bounds for classical Ramsey num-
bers. The current lower bound for R(5, 5), for example, was originally established [1] using
Method C. Very soon thereafter, we were able to find the same coloring using Method B,
and eventually, using Method A. Since the idea behind Method B does not seem to have
any direct theoretical justification, and since Method A was faster (counting induced P4’s
takes more time than counting cliques, when the number of cliques is small), Method B
was gradually discarded.
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4-subgraph G1 G2 G3 G4 G5

E4 0 0 0 0 0
K2 1886 1464 1475 1484 1500
2K2 1640 1311 1303 1427 1273
P3 4880 4204 4228 4364 4208
K1,3 2167 2199 2215 2092 2247
P4 9553 9190 9138 9359 9152
K3 3204 2856 2834 3027 2804
K3 + e 11268 11776 11784 11589 11770
C4 2558 2900 2920 2687 2936
K4 − e 7634 8645 8644 8534 8667
K4 1586 1831 1835 1813 1819

Table 2: Induced subgraph counts in five (4, 6)-colorings of K34.

However, Method B has at least one potential advantage. By manipulating the objec-
tive function, one can drive the search away from known colorings, and (hopefully) toward
new colorings. So, given the significant increase in computer speed since the mid-1980’s,
the author decided to revisit Method B, and apply it to each of the three frontier cases
mentioned above. In addition to attempting to improve the lower bounds, we were also
interested in finding new examples of colorings that equaled the current bounds, hoping
to find colorings that were in some respect different from the known examples. It was
such a coloring that led to the improved lower bound for R(4, 6).

In Table 2, we present some data pertaining to the color two subgraphs from five new
(4, 6)-colorings of K34 that were obtained together (on different machines, but at roughly
the same time). This table lists the counts for each of the 11 types of induced subgraphs
of order 4. The important column is that of G1, the other four colorings are presented as
representative examples. The colorings were obtained using a variety of target vectors (for
counts of induced colorings of order 4), created more or less ad hoc. We emphasize that
in the table, the graph described is the color two graph. The abbreviation E4 denotes
the empty (edgeless) graph of order 4, and P4 denotes the path of order 4; the other
abbreviations are fairly standard and of lesser importance.

Observe that the induced subgraph counts are approximately the same in each case,
except for G1. The other four have subgraph counts that are substantially the same as
the hundreds of other (4, 6)-colorings the author found previously. The coloring G1 is
quite different from any of these. The K4 count is only 1586, whereas in no other case
did we find a coloring with less than 1780 monochromatic K4’s (in the K6-free color).
In addition, the number of induced P4’s is significantly larger than in any of the other
colorings. As soon as these differences were noticed, we attempted to extend the coloring
to 35 vertices and succeeded immediately. All 37 colorings found so far are closely related
to G1.

The coloring given in Table 1 is the most symmetric of the 37 colorings found to date.
It has an automorphism group of order 4 [7]. There are six orbits of size 4, consisting
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of vertices i, i + 1, i + 2 and i + 3 for i = 0, 4, 8, 12, 16, 20. There are five orbits of size
2, consisting of vertices j and j + 1 for j = 24, 26, 28, 30, 32. Vertex 34 is a fixed point.
Note that the minimum degree in color 1 is 11 and so the maximum degree in color 2 is
23, which is one shy of the maximum possible, in view of the fact that R(4, 5) = 25 [10].
Similarly, the minimum degree in color 2 is 18, and so the maximum degree in color 1 is
16, which is also one shy of the maximum possible, since R(3, 6) = 18 [10].

There are two other colorings that are adjacent to the coloring given above. They can
be obtained from the original by recoloring the edge 1 − 3, and by recoloring the edges
1 − 3 and 29 − 33. In both cases, the resulting coloring has an automorphism group of
order two. In addition to these three colorings, another group of 34 good colorings was
found nearby by reversing the colors of between 20 and 25 edges (it may be possible to
obtain this latter group of colorings by a shorter route). This set of 34 colorings was
originally found by a program that systematically looks for new colorings by changing the
colors of small sets of edges. Later, some of the colorings in this set of 34 were also found
by the Method B search program.

The Method B program that found these colorings has run to a successful conclusion
(when searching for (4, 6)-colorings on K35) nearly 1000 times. In almost all of these cases,
the coloring found was one of the three colorings that are mentioned at the begining of
the previous paragraph. Only five times have we found a coloring in the group of 34.

Copies of the 37 colorings, in different formats, can be found at the author’s web site
[4] and at Brendan McKay’s web site [9].
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